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Y. SLAOUI AND A. JMAEI

RECURSIVE AND NON-RECURSIVE REGRESSION ESTIMATORS

USING BERNSTEIN POLYNOMIALS

If a regression function has a bounded support, the kernel estimates often exceed

the boundaries and are therefore biased on and near these limits. In this paper, we
focus on mitigating this boundary problem. We apply Bernstein polynomials and

the Robbins-Monro algorithm to construct a non-recursive and recursive regression
estimator. We study the asymptotic properties of these estimators, and we compare

them with those of the Nadaraya-Watson estimator and the generalized Révész es-

timator introduced by Mokkadem et al. [21]. In addition, through some simulation
studies, we show that our non-recursive estimator has the lowest integrated root

mean square error (ISE) in most of the considered cases. Finally, using a set of real

data, we demonstrate how our non-recursive and recursive regression estimators can
lead to very satisfactory estimates, especially near the boundaries.

1. Introduction

The goal in any data analysis is to extract from raw information the accurate esti-
mation. One of the most important and common questions concerning if there is a sta-
tistical relationship between a response variable (Y ) and an explanatory variable (Xi).
An option to answer this question is to employ regression analysis in order to model this
relationship.

Let (X,Y ) , (X1, Y1) , . . . , (Xn, Yn) be independent, identically distributed pairs of ran-
dom variables with joint density function g (x, y), and let f denote the probability density
of X. There were many ways to estimate the regression function r : x 7→ E[Y |X = x].
The most known are the kernel regression estimators. On the non-recursive approach,
we refer, among many others, to the estimator proposed by Nadaraya [23] and Watson
[43], the alternative kernel estimators given by Priestley and Chao [24] and Gasser and
Müller [8]. On the other hand, the recursive estimation was widely discussed, we refer to
the approach of Révész [26, 27] and Tsybakov [41] which was studied by Mokkadem et al.
[21], Slaoui [32, 33, 34], also we find the semi-recursive approach introduced by Slaoui
[35]. The advantage of the recursive estimator is the update of the estimation, which is
computationally cost-effective when new data appear in the sample, this advantage given
an additional motivation of the present work. Each of the last estimators has its own
particular strengths and weaknesses. However, the common problem is the edge effect. In
fact, when the regression function has bounded support, kernel estimates often overspill
the boundaries and are consequently biased at and near these edges. To overcome this
problem, many works are devoted to reducing the effects, we can list Gasser and Müller
[8], Gasser et al. [9], Granovsky and Müller [11] and Müller [22] discuss boundary kernel
methods. Djojosugito and Speckman [5] investigated boundary bias reduction based on a
finite-dimensional projection in a Hilbert space. In this work, we propose a non-recursive
and recursive approach of regression estimation using Bernstein polynomials.
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The estimation using Bernstein polynomial for density and distribution functions have
been widely discussed in several frameworks. See, for instance, the original work of Vitale
[42] and extensions given by Tenbusch [39], Ghosal [10], Kakizawa [14, 15], Igarashi and
Kakizawa [12], Rao [25], Leblanc [16, 17, 18], Babu et al. [1], Babu and Chaubey [2],
Jmaei et al. [13] and more recently Slaoui and Jmaei [36].

The layout of the present paper is as follows. In Section 2, we list our assumptions and
notations. In Section 3, we introduce our non-recursive estimator and we compute its
bias, variance, mean squared error (MSE), the mean integrated squared error (MISE)
and we establish a weak convergence rate. In Section 4 we introduce our recursive esti-
mator and we state the main theoretical results. Section 5 is devoted to some numerical
studies : first, a simulation study is presented in Subsection 5.1 and, then, an applica-
tion to a real dataset is described in Subsection 5.2. Finally, we discuss our conclusion in
Section 6. To avoid interrupting the flow of this paper, all mathematical developments
are relegated to the Appendix.

2. Assumptions and Notations

Let us first define the class of positive sequences that will be used in the statement of
our assumptions.

Definition 2.1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We say that
(vn) ∈ GS(γ) if

lim
n→+∞

n

[
1− vn−1

vn

]
= γ.

This condition was introduced by Galambos and Seneta [7] to define regularly varying
sequences (see also Bojanic and Seneta [3]). Typical sequences in GS(γ) are, for b ∈ R,
nγ(log n)b, nγ(log log n)b, and so on.

To obtain the behavior of our estimators, we make to the following assumptions :

: (A1) (γn) ∈ GS (−α), α ∈
(
3
4 , 1
]
.

: (A2) (mn) ∈ GS(a), a ∈
(
1−α
4 , 23α

)
.

: (A3) (i) g (s, t) is twice continuously differentiable with respect to s.
(ii) For q ∈ {0, 1, 2}, s 7→

∫
R t

qg (s, t) dt is a bounded function continuous at

s = x. For q ∈ [2, 3], s 7→
∫
R |t|q g (s, t) dt is a bounded function.

(iii) For q ∈ {0, 1},
∫
R |t|q

∣∣∣ ∂g∂x (x, t)∣∣∣ dt < ∞, and s 7→
∫
R t

q ∂
2g
∂s2 (s, t) dt is a

bounded function continuous at s = x.

Assumption (A1) on the stepsize was used in the recursive framework for the estimation
of the density function (see Mokkadem et al. [20] and [29, 30]), for the estimation of the
distribution function (see Slaoui [31]) and for the estimation of the regression function
(see Mokkadem et al. [21] and [34, 35]). This assumption ensures that

∑
n≥1 γn = ∞

and
∑
n≥1 γ

2
n <∞, which are two classical assumptions for obtaining the convergence of

Robbins-Monro’s algorithm (see [6]).
Assumption (A2) on (mn) was introduced similarly to the assumption on the band-

width used for the recursive kernel regression estimator (see Mokkadem et al. [20, 21]),
to ensure the application of the technical lemma given in the appendix A.

Assumption (A3) on the density of the couple (X,Y ) was used in the nonrecursive
framework for the estimation of the regression function (see Nadaraya [23] and Watson
[43]) and in the recursive framework (see Mokkadem et al. [21] and Slaoui [32, 33, 34]).

Remark 2.1. The intuition behind the use of such order (mn) belonging to GS (a) is that
the ratio mn−1/mn is equal to 1 − a/n + o (1/n), then using such order and using the
assumption on the stepsize, which ensures that γn−1/γn is equal to 1 + α/n + o (1/n).
The application of the technical lemma given in the appendix A ensures that the bias
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and the variance will depend only on mn and γn and not on m1, . . . ,mn and γ1, . . . , γn,
then the MISE will depend also only on mn and γn, which will be helpful to deduce an
optimal order and an optimal stepsize.

Throughout this paper we will use the following notations :

∆1(x) =
1

2

[
(1− 2x)f ′(x) + x(1− x)f (2)(x)

]
, ψ(x) = (4πx(1− x))−1/2,

ξ = lim
n→∞

(nγn)
−1,

N (x) = r (x) f (x) , ∆2(x) =
1

2

{
(1− 2x)N (x) + x(1− x)N ′ (x)

}
,

∆(x) =
1

2

{
x(1− x)r(2)(x) +

[
(1− 2x) + 2x(1− x)

f ′(x)

f(x)

]
r′(x)

}
,

C1 =

∫ 1

0

∆2(x)dx, C2 =

∫ 1

0

V ar[Y |X = x]

f(x)
ψ(x)dx,

K1 =

∫ 1

0

{
∆(x)f(x)

f(x)− aξ

}2

dx, K2 =

∫ 1

0

2f(x)ψ(x)Var [Y |X = x]

4f(x)− (2α− a)ξ
dx.

Moreover, we denote by ox the pointwise bound in x (i.e., the error is not uniform in
x ∈ [0, 1]).

3. Estimators based on the Bernstein polynomials

Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent, identically distributed pairs of ran-
dom variables with joint density function g(x, y), and let f denote the probability density
of X which is supported on [0, 1]. We follow the approach of Vitale [42] and Leblanc
[16, 17], used for distribution and density estimation, to define a Bernstein estimator of
the regression r : x 7→ E [Y |X = x] at a given point x ∈ [0, 1] such that f(x) ̸= 0

r̂n(x) =

n∑
i=1

Yi

mn−1∑
k=0

1{ k
mn

<Xi≤ k+1
mn

}bk(mn − 1, x)

n∑
i=1

mn−1∑
k=0

1{ k
mn

<Xi≤ k+1
mn

}bk(mn − 1, x)

,(1)

where bk(m,x) =
(
m
k

)
xk(1 − x)m−k is the Bernstein polynomial of order m. This esti-

mator can be viewed as a generalization of the estimator proposed in Tenbusch [40], in
which the order mn is chosen to be equal to n.

The following proposition gives the bias, the variance and the MSE of r̂n(x), for
x ∈ [0, 1] such that f(x) > 0.

Proposition 3.1. Let Assumptions (A2) and (A3) hold. For x ∈ [0, 1], such that f(x) >
0, we have

E [r̂n(x)]− r(x) = ∆(x)m−1
n + o

(
m−1
n

)
.(2)

Var [r̂n(x)] =


m1/2

n

n
Var[Y |X=x]

f(x) ψ(x) + ox

(
m1/2

n

n

)
if x ∈ (0, 1),

mn

n
Var[Y |X=x]

f(x) + ox
(
mn

n

)
if x = 0, 1.

(3)

MSE [r̂n(x)]
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=

∆2(x)m−2
n +

m1/2
n

n
Var[Y |X=x]

f(x) ψ(x) + o
(
m−2
n

)
+ ox

(
m1/2

n

n

)
if x ∈ (0, 1),

∆2(x)m−2
n + mn

n
Var[Y |X=x]

f(x) + o
(
m−2
n

)
+ ox

(
mn

n

)
if x = 0, 1.

To minimize theMSE of r̂n, for x ∈ [0, 1] such that f(x) > 0, the order m must equal
to

mopt =


[

4∆2(x)f(x)
Var[Y |X=x]ψ(x)

]2/5
n2/5 if x ∈ (0, 1),[

2∆2(x)f(x)
Var[Y |X=x]

]1/3
n1/3 if x = 0, 1,

then

MSE
[
r̂n,mopt(x)

]
=


5(∆(x))2/5(Var[Y |X=x]ψ(x))4/5

(4f(x))4/5
n−4/5 + o

(
n−4/5

)
if x ∈ (0, 1),

3(∆(x)Var[Y |X=x])2/3

(2f(x))2/3
n−2/3 + o

(
n−2/3

)
if x = 0, 1.

Remark 3.1. Clearly, our first proposed estimator converge to the true regression func-
tion. The rate of convergence is bigger near of the edge (x ∈ {0, 1}) than inside the
interval, however, as it was shown, the non-parametric kernel estimation near of the edge
fails (see for instance Jmaei et al. [13], Slaoui and Jmaei [36]).

The following proposition gives the MISE of r̂n

Proposition 3.2. Let Assumptions (A2) and (A3) hold, we have

MISE(r̂n) = C2
m

1/2
n

n
+ C1m

−2
n + o

(
m

1/2
n

n

)
+ o

(
m−2
n

)
.(4)

Hence, the asymptotically optimal choice of m is

mopt =

[
4C1

C2

]2/5
n2/5,

for which we get

MISE
(
r̂n,mopt

)
=

5C
1/5
1 C

4/5
2

44/5
n−4/5 + o

(
n−4/5

)
.

Let us now state the following theorem which gives the weak convergence rate of the
estimator r̂n(x) defined in (1), for x ∈ [0, 1] such that f(x) > 0.

Theorem 3.1. (Weak pointwise convergence rate). Let Assumptions (A2) and (A3)
hold.

When x ∈ (0, 1), and mn is chosen such that nm
−5/2
n → c for some constant

c ≥ 0, we have

n1/2m−1/4
n (r̂n (x)− r (x))

D→ N
(√

c∆(x),
Var [Y |X = x]ψ(x)

f(x)

)
.

When x ∈ {0, 1}, and mn is chosen such that nm−3
n → c for some constant c ≥ 0,

we have√
n

mn
(r̂n (x)− r (x))

D→ N
(√

c∆(x),
Var [Y |X = x]

f(x)

)
.

When x ∈ (0, 1) and mn is chosen such that nm
−5/2
n → ∞ or when x ∈ {0, 1}

and mn is chosen such that nm−3
n → ∞ we have

mn (r̂n (x)− r (x))
P→ ∆(x),
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where
D→ denotes the convergence in distribution, N the Gaussian-distribution and

P→
the convergence in probability. The next corollary is an immediate consequence of the
previous Theorem on which we give the the weak convergence rate of the estimator r̂n(x),

for x ∈ [0, 1] such that f (x) > 0 in the case when mn is chosen such that nm
−5/2
n → 0

for x ∈ (0, 1) and nm−3
n → 0 for x ∈ {0, 1}.

Corollary 3.1. Let Assumptions (A2) and (A3) hold.

When x ∈ (0, 1), and mn is chosen such that nm
−5/2
n → 0, then

n1/2m−1/4
n (r̂n (x)− r (x))

D→ N
(
0,

Var [Y |X = x]ψ(x)

f(x)

)
.

When x ∈ {0, 1}, and mn is chosen such that nm−3
n → 0, then√

n

mn
(r̂n (x)− r (x))

D→ N
(
0,

Var [Y |X = x]

f(x)

)
.

4. Recursive estimator

In order to construct a stochastic algorithm for the estimation of the regression func-
tion r : x 7→ E [Y |X = x] at a point x such as f(x) ̸= 0, Révész [26] defines an algorithm,
which approximates the zero of the function h : y 7→ f(x)r(x)− f(x)y. Using the proce-
dure proposed in Robbins and Monro [28], the considered algorithm is defined by setting
r0(x) ∈ R and for n ≥ 1

rn(x) = rn−1(x) + γnWn(x),

where γn is the stepsize and Wn is an observation of the function h at the point rn−1(x).
We define Wn, using Bernstein polynomials

Wn(x) = mnYn

mn−1∑
k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x)

−mn

mn−1∑
k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x)rn−1(x),

then, the estimator rn can be rewritten as

rn(x) =

(
1− γnmn

mn−1∑
k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x)

)
rn−1(x)

+ γnmnYn

mn−1∑
k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x),

= (1− γnf(x)) rn−1(x) + γn

(
f(x)−mn

mn−1∑
k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x)

)
rn−1(x)

+ γnmnYn

mn−1∑
k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x).

We set

Zn(x) = mn

mn−1∑
k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x),

Wn(x) = mnYn

mn−1∑
k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x).
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Then, the proposed algorithm can be rewritten as follows:

rn(x) = (1− γnf(x)) rn−1(x) + γn (f(x)− Zn(x)) rn−1(x) + γnWn(x).(5)

In order, to establish the asymptotic behaviour of rn, we introduce the auxiliary sto-
chastic approximation algorithm defined by setting ρn(x) = r(x) for all n ≤ n0 − 2,
ρn0−1(x) = rn0−1(x), and, for n ≥ n0,

ρn(x) = (1− γnf(x)) ρn−1(x) + γn (f(x)− Zn(x)) r(x) + γnWn(x).(6)

We first give the behaviour of ρn. Then, we show how the behaviour of rn can be deduced
from that of ρn.

4.1. Within the interval [0, 1]. To obtain the bias, the variance and theMSE of rn(x),
for x ∈ (0, 1) such that f(x) > 0, we set

: (A4) limn→∞(nγn) ∈
(
min

(
a

f(x) ,
2α−a
4f(x)

)
,∞
]
.

Proposition 4.1. Let Assumptions (A1)−(A4) hold. For x ∈ (0, 1), such that f(x) > 0,
we have

E[rn(x)]− r(x) =
f(x)∆(x)

f(x)− aξ
1{a∈( 1−α

4 , 25α]}m
−1
n + 1{a∈( 2

5α,
2
3 )}o

(√
γnm

1/2
n

)
+o

(
m−1
n +

√
γnm

1/2
n

)
,(7)

V ar[rn(x)] =
2f(x)ψ(x)Var [Y |X = x]

4f(x)− (2α− a)ξ
1{a∈[ 25α,

2
3 )}γnm

1/2
n + 1{a∈( 1−α

4 , 25α)}o
(
m−2
n

)
+o
(
γnm

1/2
n +m−2

n

)
,(8)

and

MSE [rn(x)] =
f2(x)∆2(x)

(f(x)− aξ)2
1{a∈( 1−α

4 , 25α)}m
−2
n

+
2f(x)Var [Y |X = x]ψ(x)

4f(x)− (2α− a)ξ
1{a∈( 2

5α,
2
3 )}γnm

1/2
n + o

(
m−2
n + γnm

1/2
n

)
.

Remark 4.1. When limn→∞(nγn) > max
(

a
f(x) ,

2α−a
4f(x)

)
, the equations (7) and (8) hold

simultaneously.

To minimize the MSE of rn(x), for x ∈ (0, 1) such that f(x) > 0, the stepsize (γn) must
be chosen in GS(−1) and (mn) must must be in GS (2/5) such that(

43/5
(
f(x)− 2

5
ξ

)−2/5 [
f(x)∆2(x)

Var [Y |X = x]ψ(x)

]2/5
γ−2/5
n

)
,

then

MSE [rn(x)] =
5(f(x))6/5(∆(x))2/5(Var [Y |X = x]ψ(x))4/5

46/5
(
f(x)− 2

5ξ
)6/5 γ4/5n + o

(
γ4/5n

)
.

Let us now state the following theorem, which gives the weak convergence rate of the
estimator rn(x) defined in (5), for x ∈ (0, 1) such that f(x) > 0.

Theorem 4.1. (Weak pointwise convergence rate). Let Assumptions (A1)-(A4) hold,
we have

(1) If γ−1
n m

−5/2
n → c for some constant c ≥ 0, then

γ−1/2
n m−1/4

n (rn (x)− r (x))
D→ N

(√
c
f(x)∆(x)

f(x)− aξ
,
2f(x)Var [Y |X = x]ψ(x)

4f(x)− (2α− a)ξ

)
.
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(2) If γ−1
n m

−5/2
n → ∞, then

mn (rn (x)− r (x))
P→ f(x)∆(x)

f(x)− aξ
,

where
D→ denotes the convergence in distribution, N the Gaussian-distribution and

P→
the convergence in probability.

The next corollary is an immediate consequence of the previous Theorem on which
we give the the weak convergence rate of the estimator rn(x), for x ∈ (0, 1) in the case

when mn is chosen such that nm
−5/2
n → 0 for x ∈ (0, 1).

Corollary 4.1. Let Assumptions (A1)-(A4) hold, when x ∈ (0, 1), and mn is chosen

such that nm
−5/2
n → 0, then

γ−1/2
n m−1/4

n (rn (x)− r (x))
D→ N

(
0,

2f(x)Var [Y |X = x]ψ(x)

4f(x)− (2α− a)ξ

)
.

4.2. The edges of the interval [0, 1]. For the case x ∈ {0, 1}, such that f(x) > 0, we
need to consider the following additional Assumption

: (A′4) limn→∞(nγn) ∈
(
min

(
a

f(x) ,
α−a
2f(x)

)
,∞
]
.

The following proposition gives the bias, the variance and the MSE of rn(x), for x ∈
{0, 1}.

Proposition 4.2. Let Assumptions (A1)−(A′4) hold. For x ∈ {0, 1}, such that f(x) > 0,
we have

E[rn(x)]− r(x) =
f(x)∆(x)

f(x)− aξ
1{a∈( 1−α

4 ,α3 ]}m
−1
n + 1{a∈(α

3 ,
2
3α)}o (

√
γnmn)

+o
(
m−1
n

)
,(9)

V ar[rn(x)] =
f(x)Var [Y |X = x]

2f(x)− (α− a)ξ
1{a∈[α3 ,

2
3α)}γnmn + 1{a∈( 1−α

4 ,α3 ]}o
(
m−2
n

)
+o (γnmn) ,(10)

and

MSE [rn(x)] =
f2(x)∆2(x)

(f(x)− aξ)2
1{a∈( 1−α

4 ,α3 ]}m
−2
n

+
f(x)Var [Y |X = x]

2f(x)− (α− a)ξ
1{a∈( 1−α

4 ,α3 ]}γnmn + o
(
m−2
n + γnmn

)
.

Remark 4.2. (1) When limn→∞(nγn) > max
(

a
f(x) ,

α−a
2f(x)

)
, the equations (9) and

(10) hold simultaneously.
(2) To minimize the MSE of rn, for x ∈ {0, 1} such that f(x) > 0, the stepsize (γn)

must be chosen in GS(−1) and (mn) must be in GS (1/3) such that(
22/3

(
f(x)− 1

3
ξ

)−1/3 [
f(x)∆2(x)

Var [Y |X = x]

]1/3
γ−1/3
n

)
,

then

MSE [rn(x)] =
3(f(x))4/3(∆(x)Var [Y |X = x])2/3

24/3
(
f(x)− 1

3ξ
)4/3 γ2/3n + o

(
γ2/3n

)
.

Let us now state the following theorem, which gives the weak convergence rate of the
estimator rn(x) defined in (5), for x ∈ {0, 1} such that f(x) > 0.
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Theorem 4.2. (Weak pointwise convergence rate). Let Assumption (A1)-(A′4) hold, we
have

(1) If γ−1
n m−3

n → c for some constant c ≥ 0, then

γ−1/2
n m−1/2

n (rn (x)− r (x))
D→ N

(√
c
f(x)∆(x)

f(x)− aξ
,
f(x)Var [Y |X = x]ψ(x)

2f(x)− (α− a)ξ

)
,

(2) If γ−1
n m−3

n → ∞, then

mn (rn (x)− r (x))
P→ f(x)∆(x)

f(x)− aξ
,

where
D→ denotes the convergence in distribution, N the Gaussian-distribution and

P→
the convergence in probability.

The next corollary is an immediate consequence of the previous Theorem on which
we give the the weak convergence rate of the estimator rn(x), for x ∈ {0, 1} in the case

when mn is chosen such that nm
−5/2
n → 0 for x ∈ {0, 1}.

Corollary 4.2. Let Assumption (A1)-(A′4) hold, when x ∈ {0, 1}, and mn is chosen
such that nm−3

n → 0, then

γ−1/2
n m−1/2

n (rn (x)− r (x))
D→ N

(
0,
f(x)Var [Y |X = x]ψ(x)

2f(x)− (α− a)ξ

)
.

4.3. The MISE of rn. To obtain the MISE of rn, we add the following assumption

: (A′′4) Set φ = infx∈[0,1] f(x) > 0, we demand that

lim
n→∞

(nγn) ∈
(
min

(
a

φ
,
2α− a

4φ

)
,∞
]
.

Proposition 4.3. Let Assumptions (A1)− (A′′4) hold, we have

MISE (rn) = K11{a∈( 1−α
4 , 25α]}m

−2
n +K21{a∈[ 25α,

2
3α}γnm

1/2
n + o

(
m−2
n + γnm

1/2
n

)
The following result is a consequence of the previous proposition which gives the optimal
order (mn) of the estimator rn introduced in (5) and the corresponding MISE.

Corollary 4.3. Let Assumptions (A1)− (A′′4) hold. To minimize the MISE of rn, the
stepsize (γn) must be chosen in GS(−1) and (mn) must be in GS(2/5) such that(

4K1

K2

)2/5

γ−2/5
n ,

and then

MISE (rn) =
5K

1/5
1 K

4/5
2

44/5
γ4/5n + o

(
γ4/5n

)
.

Remark 4.3. We can claim that our two proposed estimators converge to the true regres-
sion function. It is true that the rate of convergence is bigger near of the edge (x ∈ {0, 1})
than inside the interval, however, as it was shown previously (see for instance Jmaei et al.
[13], Slaoui and Jmaei [36]) the non-parametric kernel estimation near of the edge fails.
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5. Applications

We recall the regression function’s kernel estimator proposed by Nadaraya [23] and
Watson [43], for x ∈ R such that f(x) ̸= 0

r̂NWn (x) =

n∑
i=1

YiK

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) ,(11)

where K : R → R is a nonnegative, continuous, bounded function satisfying
∫
RK(z)dz =

1,
∫
R zK(z)dz = 0 and

∫
R z

2K(z)dz < ∞ known as kernel and h = (hn) is a bandwidth
(that is, a sequence of positive real numbers that goes to zero). We also recall the
recursive estimator of a regression function which is a generalized version of Révész’s
estimator (see Révész [26, 27]) and was studied by Mokkadem et al. [21]

rGRn (x) =

(
1− γnh

−1
n K

(
x−Xn

hn

))
rGRn−1(x) + γnh

−1
n YnK

(
x−Xn

hn

)
.(12)

The major limitation of these two estimators occurs at the edges of the support. In
fact, these estimators are inconsistent at the boundary. This effectively restricts their
application to values of x in the interior of the support of the estimated regression
function.

The purpose of this section is to provide a comparative study between Nadaraya-
Watson’s estimator r̂NWn defined in (11), the generalized Révész’s estimator rGRn defined
in (12), our non-recursive estimator r̂n defined in (1) and our recursive estimator rn
introduced in (5).

5.1. Simulations. We consider the regression model

Y = r(X) + ε,

where ε ∼ N (0, 1).
When using the estimators r̂NWn and rGRn , we choose the kernel

K(x) = (2π)−1/2 exp
(
−x2/2

)
and the bandwidth equal to (hn) = n−1/5(ln(n + 1))−1. When using our proposed
Bernstein estimators r̂n and rn, we choose the order equal to mn = ⌊n2/5(ln(n + 1))⌋
and we choose two stepsize (γn) = (n−0.9) and (γn) = (n−1).

We consider three sample sizes n = 50, n = 100 and n = 500, three regression functions

(a) r(x) = cos(x),
(b) r(x) = 0.3 exp

(
−x2/2

)
+ 0.7 exp

(
−(x− 1)2/2

)
,

(c) r(x) = 1 + 0.6x,

and three densities of X, the beta density B(3, 5), the beta mixture density 0.5B(2, 1) +
0.5B(1, 4) and the truncated standard normal density N[0,1](0, 1). We consider six es-
timators: our non-recursive Bernstein estimator r̂n defined in (1), Nadaraya-Watson’s
estimator r̂NWn proposed in (11), two proposed recursive Bernstein estimators rn,1 and
rn,2 introduced in (5) with stepsize (γn) = (n−1) and (γn) = (n−0.9) respectively and
finally two Generalized Révész’s estimators rGRn,1 and rGRn,2 defined in (12) using the same
stepsizes as the one previously used in rn. For each model and sample of size n, we
approximate the average integrated squared error (ISE) of the estimator using N = 500
trials of sample size n

ISE =
1

N

N∑
k=1

ISE [r̄k] ,
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Regression function Density of X n r̂n r̂NW
n rn,1 rn,2 rGR

n,1 rGR
n,2

(a) B(3, 5) 50 0.055 0.055 0.104 0.115 0.038 0.047
200 0.032 0.034 0.079 0.081 0.022 0.028
500 0.026 0.028 0.066 0.069 0.016 0.019

0.5B(2, 1) + 0.5B(1, 4) 50 0.068 0.067 0.125 0.134 0.108 0.106
200 0.038 0.042 0.106 0.104 0.090 0.085
500 0.030 0.033 0.099 0.101 0.084 0.075

N[0,1](0, 1) 50 0.064 0.063 0.064 0.081 0.041 0.048
200 0.038 0.041 0.025 0.033 0.017 0.024
500 0.029 0.031 0.012 0.018 0.009 0.014

(b) B(3, 5) 50 0.036 0.036 0.092 0.095 0.050 0.052
200 0.014 0.016 0.064 0.063 0.032 0.032
500 0.009 0.011 0.057 0.057 0.027 0.028

0.5B(2, 1) + 0.5B(1, 4) 50 0.030 0.030 0.085 0.092 0.042 0.048
200 0.012 0.013 0.061 0.063 0.029 0.029
500 0.007 0.008 0.057 0.057 0.024 0.024

N[0,1](0, 1) 50 0.051 0.050 0.060 0.078 0.038 0.048
200 0.020 0.023 0.023 0.033 0.017 0.023
500 0.013 0.015 0.012 0.018 0.010 0.014

(c) B(3, 5) 50 0.067 0.067 0.113 0.107 0.120 0.105
200 0.041 0.043 0.078 0.079 0.086 0.076
500 0.036 0.037 0.074 0.070 0.079 0.064

0.5B(2, 1) + 0.5B(1, 4) 50 0.055 0.054 0.098 0.105 0.094 0.086
200 0.039 0.039 0.079 0.072 0.068 0.070
500 0.033 0.034 0.066 0.063 0.065 0.052

N[0,1](0, 1) 50 0.082 0.082 0.065 0.085 0.055 0.059
200 0.051 0.053 0.024 0.034 0.021 0.025
500 0.039 0.042 0.012 0.017 0.010 0.014

Table 1. The average integrated squared error (ISE) of our non-
recursive estimator r̂n, Nadaraya-Watson’s estimator r̂NWn , rn,1 and rn,2
correspond to our recursive estimator with the choice (γn) = (n−1) and
(γn) = (n−0.9) respectively, and rGRn,1 and rGRn,2 correspond to the general-

ized Révész’s estimator with the choice (γn) = (n−1) and (γn) = (n−0.9)
respectively.

where r̄k is the estimator computed from the kth sample, and

ISE [r̄k] =

∫ 1

0

{r̄(x)− r(x)}2 dx.

In Table 1 we give qualitative comparison between our non-recursive estimator r̂n
defined in (1) and our recursive estimator rn given in (5) with (γn) = (n−1). We then
conclude that:

• In all the considered models, the average ISE of our non-recursive regression
estimator r̂n defined in (1) is the smallest, except the cases with X ∼ B(3, 5)
where the the average ISE of Nadaraya-Watson’s estimator r̂GRn given in (11) is
the smallest when the size is n = 50 and the cases with X ∼ N[0,1](0, 1) where
the average ISE of the generalized Révész’s estimator estimator is the smallest.

• In all the models with X ∼ N[0,1](0, 1), the average ISE of our recursive regres-

sion estimator rn defined in (5) with the choice (γn) = (n−1) is smaller than that
of our non-recursive regression estimator r̂n introduced in (1).

• In all the models, the average ISE of our recursive regression estimator rn,1 with
the choice (γn) = (n−1) is smaller than that of our recursive regression estimator
rn,2 with the choice (γn) = (n−0.9).

• The average ISE decreases as the sample size increases.

Figure 1, shows regression estimates plotted for 500 simulated samples from the model
r(x) = cos(x) with X ∼ N[0,1](0, 1) of sizes n = 100 (left panel) and n = 500 (right
panel). From Figure 1, we conclude that:

• Both our estimators are close to the true regression function.
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Figure 1. Qualitative comparison between the two proposed regression
estimators rn given in (5) with stepsize (γn) = (n−1) (solid line) and r̂n
given in (1) (dashed line), the true regression function (circle line) for
500 samples respectively of size 100 (left panel) and of size 500 (right
panel) of the model r(x) = cos(x) with X ∼ N[0,1](0, 1).

• Our recursive regression estimator rn defined in (5) using the stepsize (γn) =
(n−1) is closer to the true regression function than that of the proposed non-
recursive estimator r̂n given in (1) especially with the size n = 500.

• When the sample size increases, we get closer estimation of the true regression
function.

5.2. Real dataset. In order to illustrate our two proposed estimators by using a set of
real data. We consider the CO2 dataset which is available in the R package Stat2Data

and contained 237 observations on two variables; Day and CO2. Scientists at a research
station in Brotjacklriegel, Germany recorded CO2 levels, in parts per million, in the
atmosphere for each day from the start of April through November in 2001. First, to
estimate an unknown regression function, it is critical to have a reliable data-dependent
rule for order selection. One popular and practical approach is cross-validation. First,
we compute the leave-one-out residuals:

∀i ∈ {1, . . . , n} , e−i = Yi − r̄−i(Xi),

where r̄−i is the regression estimate without the data point (Xi, Yi). Then, the smoothing
parameter is chosen by minimizing

CV (mn) =
1

n

n∑
i=1

e2−i.

We then apply our proposed estimators r̂n defined in (1) and rn given in (5) on this
model. For convenience, we assume that the minimum of days is 90 and the maximum
is 335 (the Day data are such that mini(xi) = 91 and maxi(xi) = 334). Finally, we used
the Cross-validation method to obtain mn = 220 for our non-recursive estimator r̂n and
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mn = n for our recursive estimator. We observe from Figure 2 that the two proposed
estimators give better estimation compared to Nadaraya-Watson’s (11) especially near
the boundaries, which corroborate remarks 3.1 and 4.3f.

100 150 200 250 300

3
6
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3
7
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3
8
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3
9
0

Day

C
O

2

Figure 2. The daily carbon dioxide measurements data using Nada-
raya-Watson’s estimator (11) (dotted line) and our proposed Bernstein
estimators r̂n defined in (1) (dashed line) and rn given in (5) with step-
size (γn) = (n−1) (solid line).

6. Conclusion

In this paper, we propose a non-recursive and recursive estimator of regression function
based on Bernstein polynomials and stochastic algorithm derived from the Robbins-
Monro’s scheme. We first study their theoretical behavior. Then, we conduct a simulation
study and analyse a real data application on CO2 data. For all the models, the average
ISE of our non-recursive regression estimator r̂n defined in (1) is the smallest, except
the cases with X ∼ B(3, 5) where the average ISE of Nadaraya-Watson’s estimator r̂GRn
given in (11) is smaller in the case when the sample size is n = 50 and the cases with
X ∼ N[0,1](0, 1) where the average ISE of the generalized Révész’s estimator give better
results in terms of average ISE. In addition, a major advantage of our recursive estimator
is that its update, when new sample points are available, requires less computational
cost than Nadaraya-Watson estimator. Finally, the two estimators have nice features
and satisfactory improvement in comparison to Kernel estimators especially near the
boundaries.

In conclusion, the estimation using Bernstein polynomials allowed us to overcome the
edge problem and obtain quite similar results as Nadaraya-Watson’s estimator. Moreover,
we plan to make extensions of our method in the future and to consider the functional
data (see, Slaoui [37, 38]) to built a semi-recursive Bernstein estimator for regression func-
tion. We plan also to extend our estimators by considering the recursive nonparametric
estimation for Bayesian networks (see for instance the recent paper in this subject Bouk-
abour and Masmoudi [4]).
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Appendix A. Outlines of the proofs

In this section, we present proofs for the results given in the paper. First, we recall a
series of results, which are proven in Leblanc [16], linked to different sums of Bernstein
polynomial, defined by

Smn
(x) =

mn∑
k=0

b2k(mn, x),

These results are given in the following lemma.

Lemma A.1. We have

: (i) 0 ≤ Smn
(x) ≤ 1, ∀x ∈ [0, 1],

: (ii) Smn(x) = m
−1/2
n [ψ(x) + ox(1)], ∀x ∈ (0, 1)

: (iii) Smn
(0) = Smn

(1) = 1.
Let g be any continuous function on [0, 1]. Then

: (iv) m
1/2
n

∫ 1

0
g(x)Smn(x)dx =

∫ 1

0
g(x)ψ(x)dx+ o(1),

We start by proving the characteristics of our non-recursive estimator r̂n defined by
(1). To do so, we note

Nn(x) =
mn

n

n∑
i=1

Yi

mn−1∑
k=0

1{ k
mn

<Xi≤ k+1
mn

}bk(mn − 1, x).

Then, we may rewrite r̂n as

r̂n(x) =
Nn(x)

fn(x)
,

where fn is the Vitale’s estimator of the density f defined, for all x ∈ [0, 1], by

fn(x) =
mn

n

n∑
i=1

mn−1∑
k=0

1{ k
mn

<Xi≤ k+1
mn

}bk(mn − 1, x)

= m

mn−1∑
k=0

{
Fn

(
k + 1

mn

)
− Fn

(
k

mn

)}
bk(mn − 1, x),

with Fn is the empirical distribution function of the variable X.

A.1. Prooof of Proposition 3.1. We start by giving the bias and the variance of Nn(x)

E [Nn(x)] = mnE

[
Y

mn−1∑
k=0

1{ k
mn

<X≤ k+1
mn

}bk(mn − 1, x)

]
,

= mn

mn−1∑
k=0

∫ k+1
mn

k
mn

(∫
R
yg(z, y)dy

)
dzbk(mn − 1, x),

= mn

mn−1∑
k=0

(∫ k+1
mn

k
mn

r(z)f(z)dz

)
bk(mn − 1, x).

Using Taylor expansion, we have

r(z)f(z) =

[
r(x) + (z − x)r′(x) +

(z − x)2

2
r(2) (x) + o

(
(z − x)2

)]
×
[
f(x) + (z − x)f ′(x) +

(z − x)2

2
f (2) (x) + o

(
(z − x)2

)]
,

= r(x)f(x) + (z − x) (r′(x)f(x) + r(x)f ′(x))
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+
(z − x)2

2

(
r(2)(x)f(x) + f (2)(x)r(x) + 2r′(x)f ′(x)

)
+ o

(
(z − x)2

)
.

Since N(x) = r(x)f(x), then we obtain

E [Nn(x)] = r(x)f(x)mn

mn−1∑
k=0

(
k + 1

mn
− k

mn

)
bk(mn − 1, x)

+ (r′(x)f(x) + r(x)f ′(x))
mn

2

mn−1∑
k=0

{(
k + 1

mn
− x

)2

−
(
k

mn
− x

)2
}

× bk(mn − 1, x)

+
(
r(2)(x)f(x) + f (2)(x)r(x) + 2r′(x)f ′(x)

) mn

6

mn−1∑
k=0

{(
k + 1

mn
− x

)3

−
(
k

mn
− x

)3
}

× bk(mn − 1, x)

+ o

(
m

mn−1∑
k=0

{(
k + 1

mn
− x

)3

−
(
k

mn
− x

)3
}
bk(mn − 1, x)

)

= N(x) + (r′(x)f(x) + r(x)f ′(x))
mn

2

mn−1∑
k=0

m−2
n (2k + 1− 2mnx)bk(mn − 1, x)

+
(
r(2)(x)f(x) + f (2)(x)r(x) + 2r′(x)f ′(x)

) mn

6

mn−1∑
k=0

m−3
n

{
(k+1−mnx)

2+(k−mnx)
2

+ (k + 1−mnx)(k −mnx)
}
bk(mn − 1, x)[1 + o(1)]

= N(x) + (r′(x)f(x) + r(x)f ′(x))
m−1
n

2
{2T1,mn−1(x) + (1− 2x)T0,mn−1(x)}

+
(
r(2)(x)f(x) + f (2)(x)r(x) + 2r′(x)f ′(x)

) m−2
n

6

mn−1∑
k=0

{
3(k −mnx)

2

+ 3(k −mx) + 1
}
bk(mn − 1, x)[1 + o(1)]

= N(x) + (r′(x)f(x) + r(x)f ′(x))
m−1
n

2
{2T1,mn−1(x) + (1− 2x)T0,mn−1(x)}

+
(
r(2)(x)f(x) + f (2)(x)r(x) + 2r′(x)f ′(x)

) m−2
n

6

{
3T2,mn−1(x)

+ 3(2x+ 1)T1,mn−1(x) + (x2 + 3x+ 1)T0,mn−1(x)
}
[1 + o(1)],

where

Tj,mn
(x) =

mn−1∑
k=0

(k −mnx)
jbk(mn, x), ∀j ∈ N.

Note that it is easy to obtain

T0,mn(x) = 1, T1,mn(x) = 0, T2,mn(x) = mnx(1− x),

then, we have

E [Nn(x)] = N(x) + ∆2(x)m
−1
n + o

(
m−1
n

)
.(13)

Moreover, we have

Var [Nn(x)] = E
[
N2
n(x)

]
− E2 [Nn(x)] ,
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where

N2
n(x) =

m2
n

n2

n∑
i=1

Y 2
i

(
mn−1∑
k=0

1{ k
mn

<Xi≤ k+1
mn

}bk(mn − 1, x)

)2

+
m2
n

n2

n∑
i,j=1
i̸=j

YiYj

(
mn−1∑
k=0

1{ k
mn

<Xi≤ k+1
mn

}bk(mn − 1, x)

)

×

(
mn−1∑
k=0

1{ k
mn

<Xj≤ k+1
mn

}bk(mn − 1, x)

)
.

Then, we get

E
[
N2
n(x)

]
=
m2
n

n
E

Y 2

(
mn−1∑
k=0

1{ k
mn

<X≤ k+1
mn

}bk(mn − 1, x)

)2


+
m2
nn(n− 1)

n2
E2

[
Y

mn−1∑
k=0

1{ k
mn

<X≤ k+1
mn

}bk(mn − 1, x)

]
,

=
m2
n

n
E

Y 2

(
mn−1∑
k=0

1{ k
mn

<X≤ k+1
mn

}bk(mn − 1, x)

)2
+

(
1− 1

n

)
E2 [Nn(x)] ,

and

Var [Nn(x)] =
m2
n

n
E

Y 2

(
mn−1∑
k=0

1{ k
mn

<X≤ k+1
mn

}bk(mn − 1, x)

)2
− 1

n
E2 [Nn(x)] ,

=
m2
n

n
E

[
Y 2

mn−1∑
k=0

1{ k
mn

<X≤ k+1
mn

}b
2
k(mn − 1, x)

]
− 1

n
E2 [Nn(x)] ,

=
m2
n

n

mn−1∑
k=0

∫ k+1
mn

k
mn

(∫
R
y2g(z, y)dy

)
dzb2k(mn − 1, x)− 1

n
E2 [Nn(x)] ,

=
m2
n

n

mn−1∑
k=0

(∫ k+1
mn

k
mn

E[Y 2|X = z]f(z)dz

)
b2k(mn − 1, x)− 1

n
E2 [Nn(x)] ,

=
mn

n
E[Y 2|X = x]f(x)Smn(x)−

1

n
E2 [Nn(x)] .

The application of Lemma A.1 (ii) and (iii), ensures that

Var [Nn(x)] =

{
m1/2

n

n E[Y 2|X = x]f(x)ψ(x) + ox

(
m1/2

n

n

)
for x ∈ (0, 1),

mn

n E[Y 2|X = x]f(x) + ox
(
mn

n

)
for x = 0, 1.

(14)

Furthermore, we have

Cov (fn(x), Nn(x)) = E [fn(x)Nn(x)]− E [fn(x)]E [Nn(x)] ,

=
m2
n

n
E

Y (mn−1∑
k=0

1{ k
mn

<X≤ k+1
mn

}bk(mn − 1, x)

)2


+
n(n− 1)m2

n

n2
E2

[
Y

mn−1∑
k=0

1{ k
mn

<X≤ k+1
mn

}bk(mn − 1, x)

]
− E [fn(x)]E [Nn(x)] ,
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=
m2
n

n
E

Y (mn−1∑
k=0

1{ k
mn

<X≤ k+1
mn

}bk(mn − 1, x)

)2
− 1

n
E [fn(x)]E [Nn(x)] ,

=
m2
n

n

mn−1∑
k=0

∫ k+1
mn

k
mn

(∫
R
yg(z, y)dy

)
dzb2k(mn − 1, x)− 1

n
E [fn(x)]E [Nn(x)] ,

=
mn

n
r(x)f(x)Smn(x)−

1

n
E [fn(x)]E [Nn(x)] .

The application of Lemma A.1 (ii) and (iii), ensures that

Cov (fn(x), Nn(x)) =

{
m1/2

n

n r(x)f(x)ψ(x) + ox

(
m1/2

n

n

)
for x ∈ (0, 1),

mn

n r(x)f(x) + ox
(
mn

n

)
for x = 0, 1.

(15)

To compute the bias of r̂n(x), we let h(x, y) = y
x and we apply Taylor’s expansion, we

get

h(xn, yn) = h(x, y) + (xn − x, yn − y)∇hT (x, y)

+
1

2
(xn − x, yn − y)H(x, y)(xn − x, yn − y)T + o

(
||(xn − x, yn − y)||2

)
,

where ∇h is the gradient of h and H is its hessian matrix.

∇h(x, y) =

(
− y

x2
,
1

x

)
H =

(
2y
x3 − 1

x2

− 1
x2 0

)
.

Then, we have

yn
xn

=
y

x
− y

x2
(xn − x) +

1

x
(yn − y) +

y

x3
(xn − x)2 − 1

x2
(xn − x)(yn − y)

+ o
(
(xn − x)2 + (xn − x)(yn − y)

)
.

We set (xn, yn) = (fn(x), Nn(x)) and (x, y) = (f(x), N(x)), we infer that

r̂n(x) = r(x)− r(x)

f(x)
(fn(x)− f(x)) +

1

f(x)
(Nn(x)−N(x))

+
r(x)

{f(x)}2
(fn(x)− f(x))

2 − 1

{f(x)}2
(fn(x)− f(x)) (Nn(x)−N(x))

+o
(
(fn(x)− f(x))

2
+ (fn(x)− f(x)) (Nn(x)−N(x))

)
,

then

E [r̂n(x)] = r(x)− r(x)

f(x)
(E [fn(x)]− f(x)) +

1

f(x)
(E [Nn(x)]−N(x))

+
r(x)

{f(x)}2
(E [fn(x)]− f(x))

2 − 1

{f(x)}2
E [(fn(x)− f(x)) (Nn(x)−N(x))]

+ o
(
E
[
(fn(x)− f(x))

2
]
+ E [(fn(x)− f(x)) (Nn(x)−N(x))]

)
.

Let us recall, that for the Vitale’s estimator fn, we have

E [fn(x)] = f(x) +
∆1(x)

mn
+ o

(
m−1
n

)
, ∀x ∈ [0, 1],(16)
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and

Var [fn(x)] =

{
m1/2

n

n f(x)ψ(x) + ox

(
m1/2

n

n

)
for x ∈ (0, 1),

mn

n f(x) + ox
(
mn

n

)
for x = 0, 1.

(17)

The combination of (16) and (13), ensures that

E [r̂n(x)] = r(x) +

(
1

f(x)
∆2(x)−

r(x)

f(x)
∆1(x)

)
m−1
n + o

(
m−1
n

)
,

= r(x) + ∆(x)m−1
n + o

(
m−1
n

)
, ∀x ∈ [0, 1]

and we obtain (2) of Proposition 3.1.
Now, in order to compute the variance of r̂n(x), we use the fact that

Var [h(xn, yn)] = ∇h(x, y)V ar(xn, yn)∇hT (x, y)[1 + o(1)],

which ensures that

Var [r̂n(x)] = ∇h(x, y)Σ [fn(x), Nn(x)]∇hT (x, y)[1 + o(1)].

The combination of (14), (15) and (17), ensures that

Σ [fn(x), Nn(x)]

=


m1/2

n

n

(
f(x) f(x)r(x)

f(x)r(x) f(x)E(Y 2|X = x)

)
ψ(x) + ox

(
m1/2

n

n

)
for x ∈ (0, 1),

mn

n

(
f(x) f(x)r(x)

f(x)r(x) f(x)E(Y 2|X = x)

)
+ o

(
mn

n

)
for x = 0, 1.

We infer that, for x ∈ (0, 1), we have

Var [r̂n(x)] =

(
− N(x)

{f(x)}2
,

1

f(x)

)
×
(

f(x) f(x)r(x)
f(x)r(x) f(x)E(Y 2|X = x)

)

×

(
− N(x)

{f(x)}2
,

1

f(x)

)T
× m1/2

n
ψ(x) + ox

(
m

1/2
n

n

)
,

=

(
−N(x)

f(x)
+ r(x),−N(x)r(x)

f(x)
+ E(Y 2|X = x)

)
×

(
− N(x)

{f(x)}2
,

1

f(x)

)T

× m
1/2
n

n
ψ(x) + ox

(
m

1/2
n

n

)
,

=
1

f(x)

(
0,−E2(Y |X = x) + E(Y 2|X = x)

)
× (−1, 1)T

m
1/2
n

n
ψ(x) + ox

(
m

1/2
n

n

)
,

=
1

f(x)

[
E(Y 2|X = x)− E2(Y |X = x)

]
× m

1/2
n

n
ψ(x) + ox

(
m

1/2
n

n

)
,

=
m

1/2
n

n

Var [Y |X = x]

f(x)
ψ(x) + ox

(
m

1/2
n

n

)
,

and, For x ∈ {0, 1}, we have

Var [r̂n(x)] =
mn

n

Var [Y |X = x]

f(x)
+ ox

(mn

n

)
.

which gives (3) of Proposition 3.1.
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A.2. Proof of Proposition 3.2. First, we have

MISE(r̂n) =

∫ 1

0

(
Var [r̂n(x)] +Bias2 [r̂n(x)]

)
dx

=

∫ 1

0

Var [r̂n(x)] dx+ C1m
−2
n + o

(
m−2
n

)
.

Moreover, we have

Var [r̂n(x)] ≃

(
− N(x)

{f(x)}2
,

1

f(x)

)
×
(

Var [fn(x)] Cov [fn(x), Nn(x)]
Cov [fn(x), Nn(x)] Var [Nn(x)]

)

×

(
− N(x)

{f(x)}2
,

1

f(x)

)T
,

=
r2(x)

{f(x)}2
Var [fn(x)]− 2

r(x)

{f(x)}2
Cov [fn(x), Nn(x)]

+
1

{f(x)}2
Var [Nn(x)] [1 + o(1)],

then∫ 1

0

Var [r̂n(x)] dx =

∫ 1

0

r2(x)dx
Var [fn(x)]

{f(x)}2
dx− 2

∫ 1

0

r(x)
Cov [fn(x), Nn(x)]

{f(x)}2
dx

+

∫ 1

0

Var [Nn(x)] dx

{f(x)}2
[1 + o(1)].(18)

Since, we have for x ∈ [0, 1],

Var [fn(x)] =
1

n

[
Amn

(x)− f2mn
(x)
]
,

f2mn
(x) = E2 [fn(x)] = f2(x) +O

(
m−1
n

)
,

Amn
(x) = m2

n

mn−1∑
k=0

[
F

(
k + 1

mn

)
− F

(
k

mn

)]
b2k(mn − 1, x),

= mn

[
f(x)Smn−1(x) +O (Hmn−1(x)) +O

(
m−1
n

)]
,

Hmn
(x) =

mn−1∑
k=0

∣∣∣∣ kmn
− x

∣∣∣∣ b2k(mn − 1, x).

The application of Cauchy-Schwarz inequality together with the fact that 0 ≤ bk(mn, x) ≤
1 and

mn∑
k=0

(
k

mn
− x

)2

bk(mn, x) =
x(1− x)

mn
≤ 1

4mn
,

gives for all mn ≥ 1 and x ∈ [0, 1]

Hmn
(x) ≤

[
m∑
k=0

(
k

mn
− x

)2

bk(mn, x)

]1/2 [mn∑
k=0

b3k(mn, x)

]1/2
≤
[
Smn(x)

4mn

]1/2
.

Moreover, the application of Jensen’s inequality together with Lemma A.1 (iv), ensures
that, for any continuous function g∫ 1

0

g(x)Hmn(x)dx ≤
∫ 1

0

g(x)

[
Smn

(x)

4mn

]1/2
dx,
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≤
[∫ 1

0

g(x)dx

]1/2 [
1

4m
3/2
n

∫ 1

0

g(x)ψ(x)dx+ o
(
m−3/2
n

)]1/2
= O

(
m−3/4
n

)
.

Then, we infer that∫ 1

0

r2(x)
Var [fn(x)]

{f(x)}2
dx =

1

n

∫ 1

0

r2(x)
Amn

(x)− f2mn
(x)

{f(x)}2
dx,

=
1

n

[∫ 1

0

r2(x)
Amn(x)

{f(x)}2
dx−

∫ 1

0

r2(x)dx

]
+O

(
1

mnn

)
,

=
mn

n

[∫ 1

0

r2(x)

{f(x)}2
(
Smn−1(x) +O (Hmn−1(x)) +O

(
m−1
n

))
dx

]

− 1

n

∫ 1

0

r2(x)dx+O

(
1

mnn

)
,

=
mn

n

[∫ 1

0

r2(x)

f(x)
Smn−1(x)dx+O

(
m−3/4
n

)]
− 1

n

∫ 1

0

r2(x)dx+O

(
1

mnn

)
.

Moreover, the application of Lemma A.1 (iv), gives∫ 1

0

r2(x)
Var [fn(x)]

{f(x)}2
dx =

m
1/2
n

n

∫ 1

0

r2(x)

f(x)
ψ(x)dx− 1

n

∫ 1

0

r2(x)dx

+o

(
m

1/2
n

n

)
+O

(
1

mnn

)
.(19)

Further, we have

Cov [fn(x), Nn(x)]

=
1

n

{
m2
n

mn−1∑
k=0

(∫ k+1
mn

k
m

r(z)f(x)dz

)
b2k(mn − 1, x)− E [fn(x)]E [Nn(x)]

}
,

=
1

n

{
m2
n

mn−1∑
k=0

(∫ k+1
mn

k
mn

[r(x)f(x) +O(z − x)]dz

)
b2k(mn − 1, x)− f(x)N(x)

}

+O

(
1

mnn

)
,

=
mn

n

[
r(x)f(x)Smn−1(x) +O (Hmn−1(x)) +O

(
m−1
n

)]
− 1

n
f(x)N(x)

+O

(
1

mnn

)
.

Then, using the same argument for Hmn−1(x) as previously, we obtain

(20)

∫ 1

0

r(x)
Cov [fn(x), Nn(x)]

{f(x)}2
dx

=
mn

n

[∫ 1

0

r2(x)

f(x)
Smn−1(x)dx+O

(
m−3/4
n

)]
− 1

n

∫ 1

0

r2(x)dx

+O

(
1

mnn

)
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=
m

1/2
n

n

∫ 1

0

r2(x)

f(x)
ψ(x)dx− 1

n

∫ 1

0

r2(x)dx

+ o

(
m

1/2
n

n

)
+O

(
1

mnn

)
.

Moreover, we have

Var [Nn(x)] =
m2
n

n

mn−1∑
k=0

(∫ k+1
mn

k
mn

E[Y 2|X = z]f(z)dz

)
b2k(mn − 1, x)− 1

n
E2 [Nn(x)] ,

=
m2
n

n

mn−1∑
k=0

(∫ k+1
mn

k
mn

[E[Y 2|X = x]f(x) +O (z − x)]dz

)
b2k(mn − 1, x)− 1

n
N2(x)

+O

(
1

mnn

)
,

=
mn

n

[
E[Y 2|X = x]f(x)Smn−1(x) +O (Hmn−1(x)) +O

(
m−1
n

)]
− 1

n
N2(x)

+O

(
1

mnn

)
,

then,

(21)

∫ 1

0

Var [Nn(x)]

{f(x)}2
dx

=
mn

n

[∫ 1

0

E[Y 2|X = x]

f(x)
Smn−1(x)dx+O

(
m−3/4
n

)]
− 1

n

∫ 1

0

r2(x)dx

+O

(
1

mnn

)
,

=
m

1/2
n

n

∫ 1

0

E[Y 2|X = x]

f(x)
ψ(x)dx− 1

n

∫ 1

0

r2(x)dx+ o

(
m

1/2
n

n

)

+O

(
1

mnn

)
.

Finally, substituting (19), (20) and (21) into (18), gives∫ 1

0

Var [r̂n(x)] dx =

(∫ 1

0

E[Y 2|X = x]

f(x)
ψ(x)dx−

∫ 1

0

E2[Y |X = x]

f(x)
ψ(x)dx

)
m

1/2
n

n

+o

(
m

1/2
n

n

)
,

=

∫ 1

0

E[Y 2|X = x]− E2[Y |X = x]

f(x)
ψ(x)dx

m
1/2
n

n
+ o

(
m

1/2
n

n

)
,

=

∫ 1

0

V ar[Y |X = x]

f(x)
ψ(x)dx

m
1/2
n

n

+o

(
m

1/2
n

n

)
.

Then, we obtain the result in (4) of Proposition 3.2.
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A.3. Proof of Theorem 3.1. To prove the convergence, for x ∈ (0, 1), we use the fact
that

(22) n1/2m−1/4
n (r̂n (x)− E [r̂n(x)])

D→ N
(
0,

Var [Y |X = x]

f(x)
ψ(x)

)
,

which will be proved later. We have

n1/2m−1/4
n (r̂n (x)− r (x))

= n1/2m−1/4
n

(
r̂n (x)− E [r̂n (x)] + n1/2m−1/4

n (E [r̂n (x))]− r(x)
)
,

= n1/2m−1/4
n (r̂n (x)− E [r̂n (x)]) + n1/2m−5/4

n ∆(x)[1 + o(1)],

then, when nm
−5/2
n → c for some constant c ≥ 0, Part 1 of Theorem 3.1 follows imme-

diately.

Now, when nm
−5/2
n → ∞, we have

mn (r̂n (x)− r (x)) = mn (r̂n (x)− E [r̂n (x)]) +mn (E [r̂n (x)]− r (x)) ,

=
(
n−1/2m5/4

n

)
n1/2m−1/4

n (r̂n (x)− E [r̂n (x)]) + ∆(x)[1 + o(1)].

Since we have n1/2m
5/4
n → 0, Part 2 of Theorem 3.1 follows from (22). Now let us prove

(22). First, we let

wi =

mn−1∑
k=0

1{ k
mn

<Xi≤ k+1
mn

}bk(mn − 1, x)

n∑
i=1

mn−1∑
k=0

1{ k
mn

<Xn≤ k+1
mn

}bk(mn − 1, x)

.

Clearly we have

r̂n(x) =

n∑
i=1

wiYi,

and

r̂n(x)− E [r̂n(x)] =

n∑
i=1

(wiYi − E [wiYi]) .

Noting that 0 ≤ wi ≤ 1, for all p > 0, we have E
[
|wiYi|2+p

]
= O(1) and

n∑
i=1

E
[
|wiYi|2+p

]
= O(n).

Moreover, for x ∈ (0, 1), we have

v2n =

n∑
i=1

Var [wiYi] =
V ar[Y |X = x]

f(x)
ψ(x)nm1/2

n + o
(
nm1/2

n

)
,

then, we have

1

v2+pn

n∑
i=1

E
[
|wiYi|2+p

]
= O

(
n

n
2+p
2 m

2+p
4

n

)
,

= O
(
n−

p
2m

− 2+p
4

n

)
= o(1).

Then the convergence in (22) follows from the application of Lyapounov’s theorem.
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Now to prove the convergence, For x ∈ {0, 1}, we use the fact that

(23)

√
n

mn
(r̂n (x)− E [r̂n(x)])

D→ N
(
0,

Var [Y |X = x]

f(x)

)
,

which will be proved later. We have√
n

mn
(r̂n (x)− r (x)) =

√
n

mn

(
r̂n (x)− E [r̂n (x)] +

√
n

mn
(E [r̂n (x))]− r(x)

)
,

=

√
n

mn
(r̂n (x)− E [r̂n (x)]) + n1/2m−3/2

n ∆(x)[1 + o(1)],

we infer that, when nm−3
n → c for some constant c ≥ 0, then Part 3 of Theorem 3.1

follows.
Now, if nm−3

n → ∞, we have

mn (r̂n (x)− r (x)) = mn (r̂n (x)− E [r̂n (x)]) +mn (E [r̂n (x)]− r (x)) ,

=
(
n1/2m3/2

n

)√ n

mn
(r̂n (x)− E [r̂n (x)]) + ∆(x)[1 + o(1)],

and then Part 4 of Theorem 3.1 follows from (23) and the fact that n1/2m
5/4
n → 0.

To prove (23), For x ∈ {0, 1}, we have

v2n =

n∑
i=1

Var
[
|wiYi − E [wiYi]|2+p

]
=
V ar[Y |X = x]

f(x)
nmn + o (nmn) ,

hence

1

v2+pn

n∑
i=1

E
[
|wiYi − E [wiYi]|2+p

]
= O

(
n

n
2+p
2 m

2+p
2

n

)
,

= O
(
n−

p
2m

− 2+p
2

n

)
= o(1).

Then the convergence in (23) follows from the application of Lyapounov’s theorem.

A.4. Proof of the results obtained for rn. First, we set n0 ≥ 3 such that ∀k ≥
n0, γk ≤ (2 ∥f∥∞)

−1
and γkmk ≤ 1. Moreover, we introduce the following notations:

sn =

n∑
k=n0

γk

Πn(s) =

n∏
j=n0

(1− sγj) for s > 0,

Uk,n(s) = Πn(s)Π
−1
k (s) for s > 0.

Further, we define the sequences (λn), (λ̃n), (βn) and (β̃n) by setting

(λn) =


(√

γnm
1/2
n

)
if limn→∞

(
γnm

5/2
n

)
= ∞,(

m−1
n

)
otherwise.

(λ̃n) =


(√

γnm
1/2
n lnn

)
if limn→∞

(
γnm

5/2
n lnn

)
= ∞,(

m−1
n

)
otherwise.

(βn) =

{(√
γnmn

)
if limn→∞

(
γnm

3
n

)
= ∞,(

m−1
n

)
otherwise.

(24)
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(β̃n) =

{(√
γnmn lnn

)
if limn→∞

(
γnm

3
n lnn

)
= ∞,(

m−1
n

)
otherwise.

Note that (λn) and (λ̃n) belong to GS(−λ∗) with λ∗ = min
{

2α−a
4 , a

}
, and (βn) and

(β̃n) belong to GS(−β∗) with β∗ = min
{
α−a
2 , a

}
.

To establish the characteristics of our recursive estimator rn defined by (5), we state
the following technical lemma, which is proved in Mokkadem et al. [21], and which will
be used throughout the demonstrations.

Lemma A.2. Let (vn) ∈ GS(v∗), (γn) ∈ GS(−α) with α > 0, and set l > 0. If
ls− v∗ξ > 0 (where ξ = limn→∞(nγn)

−1), then

lim
n→∞

vnΠ
l
n(s)

n∑
k=n0

Π−l
k (s)

γk
vk

=
1

ls− v∗ξ
.

Moreover, for all positive sequence (αn) such that limn→∞ αn = 0, and all C,

lim
n→∞

vnΠ
l
n(s)

[
n∑

k=n0

Π−l
k (s)

γk
vk
αk + C

]
= 0.

We first give the asymptotic behavior of (ρn) defined in (7). Then, we follow similar
steps as Mokkadem et al. [21] to show how the asymptotic behavior of (rn) (6) can be
deduced from that of (ρn).

A.4.1. Asymptotic behavior of ρn. The following Lemma gives the bias and the variance
of the estimator ρn defined in (6).

Lemma A.3. (Bias and Variance of ρn)

(1) Assume that Assumptions (A1)− (A4) hold. For x ∈ (0, 1), such that f(x) > 0,
we have

(25) E [ρn(x)]− r(x) =
f(x)∆(x)

f(x)− aξ
1{a∈( 1−α

4 , 25α]}m
−1
n

+ 1{a∈( 2
5α,

2
3α]}o

(√
γnm

1/2
n

)
+ o

(
m−1
n

)
,

(26) Var [ρn(x)] =
2f(x)ψ(x)Var [Y |X = x]

4f(x)− (2α− a)
1{a∈( 2

5α,
2
3α]}γnm

1/2
n

+ 1{a∈( 1−α
4 , 25α)}o

(
m−2
n

)
+ o

(
γnm

1/2
n

)
.

(2) Assume that Assumptions (A1)− (A′4) hold. For x ∈ {0, 1}, such that f(x) > 0,
we have

E [ρn(x)]− r(x) =
f(x)∆(x)

f(x)− aξ
1{a∈( 1−α

4 ,α3 ]}m
−1
n + 1{a∈(α

3 ,
2
3α)}o (

√
γnmn)

+o
(
m−1
n

)
,(27)

Var [ρn(x)] =
f(x)ψ(x)Var [Y |X = x]

2f(x)− (α− a)
1{a∈(α

3 ,
2
3α]}γnmn + 1{a∈( 1−α

4 ,α3 )}o
(
m−2
n

)
+o (γnmn) .(28)
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A.4.2. Proof of Lemma A.3. We have, for n ≥ n0,

ρn(x)− r(x) = (1− γnf(x)) (ρn−1(x)− r(x)) + γn (Wn(x)− r(x)Zn(x)) ,

= Πn(f(x))

n∑
k=n0

Π−1
k (f(x))γk (Wk(x)− r(x)Zk(x))

+Πn(f(x))(ρn0−1(x)− r(x)),

= Tn(x) +Rn(x).

Remark A.1. (1) Since ρn0−1(x) = rn0−1(x), we have

Tn(x) =

n∑
k=n0

Uk,n(f(x))γk (Wk(x)− r(x)Zk(x)) ,

Rn(x) = Πn(f(x))(rn0−1(x)− r(x)).

(2) Since |rn0−1(x)− r(x)| = O(1) a.s. The application of Lemma A.2, ensures that

Rn(x) = O (Πn(f(x))) a.s.(29)

=

{
o (λn) for x ∈ (0, 1),

o (βn) for x ∈ {0, 1} .
a.s.

We infer that Lemma A.3 hold when ρn(x) is replaced by Tn(x). Then, for x ∈ [0, 1]
such that f(x) > 0, we have

E [Tn(x)] =

n∑
k=n0

Uk,n(f(x))γk (E [Wk(x)]− r(x)E [Zk(x)]) ,

where

E [Zk(x)] = mk

mk−1∑
k=0

[
F

(
k + 1

mk

)
− F

(
k

mk

)]
bk(m− 1, x),

= f(x) + ∆1(x)m
−1
k + o

(
m−1
k

)
,

and

E [Wk(x)] = mkE

[
Y

mk−1∑
k=0

1{
k

mk
<X≤ k+1

mk

}bk(mk − 1, x)

]
,

= r(x)f(x) + ∆2(x)m
−1
k + o

(
m−1
k

)
.

Then, we obtain

E [Tn(x)] = f(x)∆(x)

n∑
k=n0

Uk,n(f(x))γk
[
m−1
k + o

(
m−1
k

)]
.

Moreover, we have

Var [Tn(x)] =

n∑
k=n0

U2
k,n(f(x))γ

2
k {Var [Wk(x)]

+ r2(x)Var [Zk(x)]− 2r(x)Cov (Wk(x), Zk(x))
}
,

where

Var [Wk(x)] =

{
E[Y 2|X = x]f(x)ψ(x)m

1/2
k + ox

(
m

1/2
k

)
for x ∈ (0, 1),

E[Y 2|X = x]f(x)mk + ox (mk) for x = 0, 1.
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Var [Zk(x)] =

{
f(x)ψ(x)m

1/2
k + ox

(
m

1/2
k

)
for x ∈ (0, 1),

f(x)mk + o (mk) for x = 0, 1.

Cov (Wk(x), Zk(x)) =

{
r(x)f(x)ψ(x)m

1/2
k + ox

(
m

1/2
k

)
for x ∈ (0, 1),

r(x)f(x)mk + ox (mk) for x = 0, 1.

which gives

Var [Tn(x)]

=


f(x)Var [Y |X = x]ψ(x)

n∑
k=n0

U2
k,n(f(x))γ

2
k

[
m

1/2
k + ox

(
m

1/2
k

)]
for x ∈ (0, 1),

f(x)Var [Y |X = x]

n∑
k=n0

U2
k,n(f(x))γ

2
k [mk + ox (mk)] for x = 0, 1.

Remark A.2. (1) For x ∈ (0, 1), the application of Lemma A.2 gives (25) and (26).
(2) For x ∈ {0, 1}, the application of Lemma A.2 gives (27) and (28).

The following lemma gives the weak convergence rate of the estimator ρn defined in
(7), for x ∈ [0, 1] such that f(x) > 0.

Lemma A.4. (Weak convergence rate of ρn)
Let Assumption (A1)− (A4) hold. For x ∈ (0, 1), we have

(1) If γ−1
n m

−5/2
n → c for some constant c ≥ 0, then

γ−1/2
n m−1/4

n (ρn (x)− r (x))
D→ N

(√
c
f(x)∆(x)

f(x)− aξ
,
2f(x)Var [Y |X = x]ψ(x)

4f(x)− (2α− a)ξ

)
,

(2) If γ−1
n m

−5/2
n → ∞, then

mn (ρn (x)− r (x))
P→ f(x)∆(x)

f(x)− aξ
.

Let Assumption (A1)-(A′4) hold. For x ∈ {0, 1}, we have

(1) If γ−1
n m−3

n → c for some constant c ≥ 0, then

γ−1/2
n m−1/2

n (ρn (x)− r (x))
D→ N

(√
c
f(x)∆(x)

f(x)− aξ
,
f(x)Var [Y |X = x]ψ(x)

2f(x)− (α− a)ξ

)
,

(2) If γ−1
n m−3

n → ∞, then

mn (ρn (x)− r (x))
P→ f(x)∆(x)

f(x)− aξ
.

A.4.3. Proof of Lemma A.4. To prove Lemma A.4, for x ∈ (0, 1), we use the fact that if
a ∈ [ 25α,

2
3α), we have

γ−1/2
n m−1/4

n (ρn (x)− E [ρn (x)])
D→ N

(
0,

2f(x)Var [Y |X = x]ψ(x)

4f(x)− (2α− a)ξ

)
,(30)

which will be proved later.

Remark A.3. (1) The result in (30) hold if we replace ρn(x) by Tn(x).
(2) Part 1 of Lemma A.4 follows from the combination (25) and (30).
(3) Part 1 and 2 of Lemma A.4 follows from the combination of (27) and (30)
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Now, we set

ηk(x) = Π−1
k (f(x))γk (Wk(x)− r(x)Zk(x)) .(31)

Then,

Tn(x)− E [Tn(x)] = Πn(f(x))

n∑
k=n0

(ηk(x)− E [ηk(x)]) .

Moreover, for x ∈ (0, 1), we have

Var [ηk(x)] = Π−2
k (f(x))γ2km

1/2
k [f(x)ψ(x)Var [Y |X = x] + o(1)] ,

and, since limn→∞(nγn) > (2α− a)/(4f(x)), Lemma A.2 ensures that

v2n =

n∑
k=n0

Var [ηk(x)]

=

n∑
k=n0

Π−2
k (f(x))γ2km

1/2
k [f(x)ψ(x)Var [Y |X = x] + o(1)]

=
2Π−2

n (f(x))γnm
1/2
n

4f(x)− (2α− a)ξ
[f(x)ψ(x)Var [Y |X = x] + o(1)] .(32)

Further, for all p > 0 and x ∈ [0, 1], we make use of Lemma A.1 (ii) to ensure that

E

|Yk − r(x)|2+p
{
mk−1∑
i=0

1{
i

mi
<Xn≤ i+1

mi

}bk(mi − 1, x)

}2+p


≤

{
mk−1∑
i=0

b2k(mi − 1, x)

}(2+p)/2 ∫ 1

0

∫
R
|y − r(x)|2+pg(z, y)dzdy

≤ m−(2+p)/4
n

∫ 1

0

{∫
R
|y|2+pg(z, y)dy + |r(x)|2+p

∫
R
g(z, y)dy

}
dz

= O
(
m−(2+p)/4
n

)
.(33)

Moreover, since limn→∞(nγn) > (α− a/2) /(2f(x)), there exists a p > 0 such that

limn→∞(nγn) > (1 + p) (α− a/2) /(2 + p)(f(x)) > (1+p)α−(3(2+p)/4)a
2+p , then the applica-

tion of Lemma A.2 gives

n∑
k=n0

E
[
|ηk(x)|2+p

]
= O

(
n∑

k=n0

Π−2−p
k (f(x))γ2+pk m2+p

k

×E

|Yk − r(x)|2+p
{
mk−1∑
i=0

1{
i

mi
<Xn≤ i+1

mi

}bk(mi − 1, x)

}2+p


= O

(
n∑

k=n0

Π−2−p
k (f(x))γ2+pk m

3(2+p)/4
k

)
= O

(
γ1+pn m

3(2+p)/4
n

Π2+p
n (f(x))

)
,

we infer that

1

v2+pn

n∑
k=n0

E
[
|ηk(x)|2+p

]
= O

(
mn (γnmn)

p/2
)
,

and the convergence in (30) follows from the application of Lyapounov’s Theorem.
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Now, to prove Lemma A.4, For x ∈ {0, 1}, we use the fact that when a ∈ [α3 ,
2
3α), we

have

γ−1/2
n m−1/2

n (ρn (x)− E [ρn (x)])
D→ N

(
0,
f(x)Var [Y |X = x]

2f(x)− (α− a)ξ

)
,(34)

which will be proved later.

Remark A.4. (1) Part 3 and 4 of Lemma A.4 follows from the combination of (26)
and (34).

(2) The result in (34) hold if we replace ρn(x) by Tn(x).

In the case when x = 0, 1, we have

Var [ηk(x)] = Π−2
k (f(x))γ2kmk [f(x)Var [Y |X = x] + o(1)] .

Since limn→∞(nγn) > (α− a)/(2f(x)), we make use of Lemma A.2 to ensure that

v2n =

n∑
k=n0

Var [ηk(x)]

=

n∑
k=n0

Π−2
k (f(x))γ2kmk [f(x)Var [Y |X = x] + o(1)]

=
2Π−2

n (f(x))γnmn

4f(x)− (2α− a)ξ
[f(x)Var [Y |X = x] + o(1)] .

Moreover, there exists a p > 0 such that
n∑

k=n0

E
[
|ηk(x)|2+p

]
= O

(
γ1+pn m

3(2+p)/4
n

Π2+p
n (f(x))

)
,

then,

1

v2+pn

n∑
k=n0

E
[
|ηk(x)|2+p

]
= O

(
m1/2
n

(
γnm

1/2
n

)p/2)
,

and the convergence in (34) follows from the application of Lyapounov’s Theorem.
The following lemma gives the strong pointwise convergence rate of ρn, for x ∈ [0, 1]

such that f(x) > 0.

Lemma A.5. (Strong pointwise convergence rate of ρn) Let Assumption (A1) − (A4)
hold. For x ∈ (0, 1), we have

(1) If γ−1
n m

−5/2
n / ln(sn) → c for some constant c ≥ 0, then, with probability one, the

sequence √γ−1
n m

−1/2
n

2 ln(sn)
(ρn(x)− r(x))


is relatively compact and its limit set is the interval[√

c

2

f(x)∆(x)

f(x)− aξ
−

√
2f(x)Var [Y |X = x]ψ(x)

4f(x)− (2α− a)ξ
,

√
c

2

f(x)∆(x)

f(x)− aξ
+

√
2f(x)Var [Y |X = x]ψ(x)

4f(x)− (2α− a)ξ

]
.

(2) If γ−1
n m

−5/2
n / ln(sn) → ∞, then with probability one

lim
n→∞

mn (ρn (x)− r (x)) =
f(x)∆(x)

f(x)− aξ
.
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Let Assumption (A1)-(A′4) hold. For x ∈ {0, 1}, we have

(1) If γ−1
n m−3

n / ln(sn) → c for some constant c ≥ 0, then, with probability one, the
sequence √γ−1

n m−1
n

2 ln(sn)
(ρn (x)− r (x))


is relatively compact and its limit set is the interval[√

c

2

f(x)∆(x)

f(x)− aξ
−

√
f(x)Var [Y |X = x]ψ(x)

2f(x)− (α− a)ξ
,

√
c

2

f(x)∆(x)

f(x)− aξ
+

√
f(x)Var [Y |X = x]ψ(x)

2f(x)− (α− a)ξ

]
.

(2) If γ−1
n m−3

n / ln(sn) → ∞, then, with probability one

lim
n→∞

mn (ρn (x)− r (x)) =
f(x)∆(x)

f(x)− aξ
.

A.4.4. Proof of Lemma A.5.

Remark A.5. (1) In view of (30), Lemma A.5 hold when ρn (x) − r (x) is replaced
by Tn(x)

(2) We give the proof in the case when x ∈ (0, 1), the case x = 0, 1 can be proven by
following similar steps.

First, we set

Bn(x) =

n∑
k=n0

(ηk(x)− E [ηk(x)]) ,

where ηk is defined in (31).

• We consider the case a ≥ 2
5α (in which limn→∞(nγn) > (α − a/2)/(2f(x))).

We set H2
n(f(x)) = Π2

n(f(x))γ
−1
n m

−1/2
n , and note that, since

(
γ−1
n m

−1/2
n

)
∈

GS(α− a/2), we have

ln
(
H−2
n (f(x))

)
= −2 ln (Πn(f(x))) + ln

(
n∏

k=n0

γ−1
k−1m

−1/2
k−1

γ−1
k m

−1/2
k

)
+ ln

(
γn0−1m

1/2
n0−1

)
= −2

n∑
k=n0

ln (1− f(x)γk) +

n∑
k=n0

ln

(
1− α− a/2

k
+ o

(
1

k

))
+ ln

(
γn0−1m

1/2
n0−1

)
=

n∑
k=n0

(2f(x)γk + o (γk))−
n∑

k=n0

((α− a/2)ξγk + o (γk)) + ln
(
γn0−1m

1/2
n0−1

)
= (2f(x)− (α− a/2)ξ) sn + o (sn) .(35)

Since 2f(x)− (α− a/2)ξ > 0, it follows in particular that limn→∞H−2
n (f(x)) =

∞. Moreover, we have limn→∞H2
n(f(x))/H

2
n−1(f(x)) = 1, and the application

of Lemma A.2 together with (32), ensures that

lim
n→∞

H2
n(f(x))

n∑
k=n0

Var [ηk(x)] =
f(x)ψ(x)Var [Y |X = x]

(2f(x)− (α− a/2)ξ)
.
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Moreover, in view of (33), we have

E
[
|ηk(x)|3

]
= O

(
Π−3
n (f(x))γ3nm

9/4
n

)
.

Now, since
(
γ−1
n m

1/2
n

)
∈ GS(α − a/2), the application of Lemma A.2 together

with (35), ensures that

1

n
√
n

n∑
k=n0

E
(
|Hn(f(x))ηk(x)|3

)
= O

(
H3
n(f(x))

n
√
n

(
n∑

k=n0

Π−3
k (f(x))γ3km

9/4
k

))

= O

(
Π3
n(f(x))γ

−3/2
n m

−3/4
n

n
√
n

(
n∑

k=n0

Π−3
k (f(x))γkmko

((
γkm

1/2
k

)3/2)))

= o

(
mn

n
√
n

)
.

The application of Theorem 1 in Mokkadem and Pelletier [19] then ensures that,
with probability one, the sequence Hn(f(x))Bn(x)√

2 ln ln
(
H−2
n (f(x))

)
 =


√
γ−1
n m1/2

n (Tn(x)− E [Tn(x)])√
2 ln ln

(
H−2
n (f(x))

)


is relatively compact and its limit set is the interval[
−

√
2f(x)Var [Y |X = x]ψ(x)

4f(x)− (2α− a)ξ
,

√
2f(x)Var [Y |X = x]ψ(x)

4f(x)− (2α− a)ξ

]
.(36)

In view (35), we have limn→∞ ln ln
(
H−2
n (f(x))

)
/ ln(sn) = 1. It, follows that,

with probability one, the sequence

(√
γ−1
n m1/2

n (Tn(x)− E [Tn(x)]) /
√

2 ln(sn)

)
is relatively compact and its limit set is the interval given in (36). The application
of (25) concludes the proof of Lemma A.5 in the cases a ≥ 2α/5.

• We consider the case a < 2
5α (in which limn→∞(nγn) > a/f(x)). We set

H−2
n (f(x)) = Π−2

n (f(x))m−2
n

(
ln ln

(
Π−2
n (f(x))m−2

n

))−1
, and note that, since(

m2
n

)
∈ GS(2a), we have

ln
(
Π−2
n (f(x))m−2

n

)
= −2 ln (Πn(f(x))) + ln

(
n∏

k=n0

m2
k−1

m2
k

)
+ ln

(
m−2
n0−1

)
= −2

n∑
k=n0

ln (1− f(x)γk) +

n∑
k=n0

ln

(
1− 2a

k
+ o

(
1

k

))
+ ln

(
γn0−1m

1/2
n0−1

)
=

n∑
k=n0

(2f(x)γk + o (γk))−
n∑

k=n0

(2aξγk + o (γk)) + ln
(
γn0−1m

1/2
n0−1

)
= (2f(x)− 2aξ) sn + o (sn) .(37)

Since 2f(x)−2aξ > 0, it follows in particular that limn→∞ Π−2
n (f(x))m−2

n = ∞ and thus
limn→∞H−2

n (f(x)) = ∞. Moreover, we have limn→∞H2
n(f(x))/H

2
n−1(f(x)) = 1. Now,
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set ε ∈ (0, α − 5a/2) such that limn→∞(nγn) > a/f(x) + ε/2. Then, the application of
Lemma A.2 together with (32), ensures that

H2
n(f(x))

n∑
k=n0

Var [ηk(x)]

= O

(
Π2
n(f(x))m

2
n

(
ln ln

(
Π−2
n (f(x))m−2

n

)) n∑
k=n0

Π−2
k (f(x))γkm

1/2
k

)

= O

(
Π2
n(f(x))m

2
n

(
ln ln

(
Π−2
n (f(x))m−2

n

)) n∑
k=n0

Π−2
k (f(x))γko

(
m−2
k k−ε

))
= o(1).

Moreover, in view of (33)

E
[
|ηk(x)|3

]
= O

(
Π−3
n (f(x))γ3nm

9/4
n

)
,

and thus in view of (37), we get

1

n
√
n

n∑
k=n0

E
(
|Hn(f(x))ηk(x)|3

)
= O

(
H3
n(f(x))

n
√
n

(
ln ln

(
Π−2
n (f(x))m−2

n

))3/2( n∑
k=n0

Π−3
k (f(x))γ3km

9/4
k

))

= O

(
Π3
n(f(x))m

3
n

n
√
n

(
ln ln

(
Π−2
n (f(x))m−2

n

))3/2( n∑
k=n0

Π−3
k (f(x))γko

(
m−3
k

)))

= O

((
ln ln

(
Π−2
n (f(x))m−2

n

))3/2
n
√
n

)
= o

([
ln
(
H−2
n (f(x))

)]−1
)
.

The application of Theorem 1 in Mokkadem and Pelletier [19] then ensures that, with
probability one

lim
n→∞

Hn(f(x))Bn(x)√
2 ln ln

(
H−2
n (f(x))

)
= lim
n→∞

m−1
n

√
ln ln

(
Π−2
n (f(x))m−2

n

)√
2 ln ln

(
H−2
n (f(x))

) (Tn(x)− E [Tn(x)]) = 0.

Noting that (37) ensures that

lim
n→∞

ln ln
(
H−2
n (f(x))

)
/ ln ln

(
Π−2
n (f(x))m−2

n

)
= 1,

then,

lim
n→∞

m−1
n (Tn(x)− E [Tn(x)]) = 0 a.s.

and Lemma A.5 in the case when a < 2α/5 follows from (25).
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A.4.5. MISE of ρn. The following Lemma give the MISE of ρn.

Lemma A.6. (MISE of ρn)
Let Assumptions (A1)− (A′′4) hold, we have

MISE (ρn) = K11{a∈( 1−α
4 , 25α]}m

−2
n +K21{a∈[ 25α,

2
3α)}γnm

1/2
n + o

(
m−2
n + γnm

1/2
n

)
.

A.4.6. Proof of Lemma A.6. We have

MISE (ρn) =

∫ 1

0

Bias2 [ρn(x)] dx+

∫ 1

0

Var [ρn(x)] dx.

• In the case when a ∈ ( 1−α4 , 25α], we use the fact that for all x ∈ (0, 1),

lim
n→∞

(nγn) > a/φ > a/f(x),

we have∫ 1

0

Bias2 [ρn(x)] dx =

∫ 1

0

[
m−1
n

f(x)

f(x)− aξ
∆(x) + o

(
m−1
n

)]2
dx

= K1m
−2
n + o

(
m−2
n

)
.(38)

• In the case when a ∈ ( 25α,
2
3α), we have m−1

n = o
(
γnm

1/2
n

)
, then Lemma A.2

gives∫ 1

0

Bias2 [ρn(x)] dx =

∫ 1

0

Πn(f(x))

n∑
k=n0

Π−1
k (f(x))γko

(
γkm

1/2
k

)
dx

= o
(
γnm

1/2
n

)
.(39)

On the other hand, we note that∫ 1

0

Var [ρn(x)] dx =

∫ 1

0

Var [Tn(x)] dx

=

∫ 1

0

n∑
k=n0

U2
k,n(f(x))γ

2
k

{
Var [Wk(x)] + r2(x)Var [Zk(x)]

−2r(x)Cov (Wk(x), Zk(x))

}
dx.

Using the same argument as in the proof of Proposition 3.2, we obtain

• In the case when a ∈ [ 25α,
2
3α), since, for all x ∈ (0, 1), limn→∞(nγn) > (2α −

a)/(4φ) > (2α− a)/(4f(x)), Lemma A.2 gives∫ 1

0

Var [ρn(x)] dx = K2γ
2
nm

1/2
n + o

(
γnm

1/2
n

)
.(40)

• In the case when a ∈ ( 1−α4 , 25α), we have γnm
1/2
n = o

(
m−2
n

)
and Lemma A.2

gives∫ 1

0

Var [ρn(x)] dx =

∫ 1

0

Π2
n(f(x))

n∑
k=n0

Π−2
k (f(x))o

(
m−2
k

)
dx

= o
(
m−2
n

)
.(41)

Then, Part 1 of Lemma A.6 follows from the combination of (38) and (41), Part
2 from that of (38) and (40) and Part 3 from (39) and (40).



RECURSIVE AND NON-RECURSIVE REGRESSION ESTIMATORS ... 91

A.4.7. Asymptotic behaviour of rn. We show in this section how to deduce the asymptotic
behaviour of rn from that of ρn. To do so, we set

δn(x) = rn(x)− ρn(x),

and we prove that δn is negligible in front of ρn. Note that, in view of (5) and (6), and
since ρn0−1 = rn0−1, we have, for n ≥ n0

δn(x) = (1− γnf(x)) δn−1(x) + γn (f(x)− Zn(x)) (rn−1(x)− r(x))

=

n∑
k=n0

Uk,n(f(x))γk (f(x)− Zk(x)) (rk−1(x)− r(x)) .(42)

To obtain an upper bound of δn, we must have an upper bound of rn − r. To do so, we
use the following property given by Mokkadem et al. [21]
(P) : if (rn−r) is known to be bounded almost surely by a sequence (wn), then it can be
shown that (δn) is bounded almost surely by a sequence (w′

n) such that limn→∞ w′
nwn =

0, which may allow to upper bound rn − r by a sequence smaller than (wn).
We thus proceed as follows. We first establish an upper bound of (rn − r). Then, we

apply the Property (P) several times until we obtain an upper bound which allows to
prove that δn is negligible in front of ρn.

The proof of the results given in Section 4 relies on the repeated application of the
following lemma.

Lemma A.7. Let Assumptions (A1) − (A3) hold, and assume that there exists (wn) ∈
GS(w∗) such that |rn(x)− r(x)| = O(wn) a.s. For x ∈ (0, 1), we have

(1) If the sequence (nγn) is bounded, if

lim
n→∞

(nγn) > min {a/f(x), (2α− a)/(4f(x))} ,

and if w∗ > 0, then, for all δ > 0,

|δn(x)| = O
(
λnwn(lnn)

1+δ
2

)
+ o (λn) a.s.

(2) If limn→∞(nγn) = ∞, then, for all δ > 0,

|δn(x)| = O

(
λnwn

(
n1+δγn

) 1+δ
2

)
a.s.

For x ∈ {0, 1}, we have

(1) If the sequence (nγn) is bounded, if

lim
n→∞

(nγn) > min {a/f(x), (α− a)/(2f(x))} ,

and if w∗ > 0, then, for all δ > 0,

|δn(x)| = O
(
βnwn(lnn)

1+δ
2

)
+ o (βn) a.s.

(2) If limn→∞(nγn) = ∞, then, for all δ > 0,

|δn(x)| = O

(
βnwn

(
n1+δγn

) 1+δ
2

)
a.s.

A.4.8. Proof of Lemma A.7. To prove Lemma A.7, we use the following decomposition,
which can be deduced from (42)

δn(x) = δ(1)n (x) + δ(2)n (x),

with

δ(1)n (x) =

n∑
k=n0

Uk,n(f(x))γk (E [Zk(x)]− Zk(x)) (rk−1(x)− r(x)) ,
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δ(2)n (x) =

n∑
k=n0

Uk,n(f(x))γk (f(x)− E [Zk(x)]) (rk−1(x)− r(x)) .

Moreover, we have for x ∈ [0, 1]

E [Zk(x)] = f(x) + ∆1(x)m
−1
k + o

(
m−1
k

)
.

Then, the application of Lemma A.2, ensures that∣∣∣δ(2)n (x)
∣∣∣ = O

(
Πn(f(x))

n∑
k=n0

Π−1
k (f(x))γkm

−1
k wk

)
a.s.

= O

(
Πn(f(x))

n∑
k=n0

Π−1
k (f(x))γkO (λk)wk

)
a.s.

= O (λnwn) a.s.

Further, we set

εk(x) = E [Zk(x)]− Zk(x),

Gk(x) = rk(x)− r(x),

Qn(x) =

n∑
k=n0

Π−1
k (f(x))γkεk(x)Gk−1(x),

and Fk = σ ((X1, Y1) , . . . , (Xk, Yk)). Since, we have

Var [Zk(x)] = f(x)ψ(x)m
1/2
k + o

(
m

1/2
k

)
, ∀x ∈ (0, 1),

and of Lemma A.2, the increasing process of the martingale (Qn(x)) satisfies

< Q >n (x) =

n∑
k=n0

E
[
Π−2
k (f(x))γ2kε

2
k(x)G

2
k−1(x)|Fk−1

]
=

n∑
k=n0

Π−2
k (f(x))γ2kG

2
k−1(x)Var [Zk(x)]

= O

(
n∑

k=n0

Π−2
k (f(x))γ2kw

2
km

1/2
k

)
a.s.

= O

(
n∑

k=n0

Π−2
k (f(x))γkλ

2
kw

2
k

)
a.s.

= O
(
Π−2
n (f(x))λ2nw

2
n

)
a.s.

• Let us first consider the case when the sequence (nγn) is bounded. In this case
we have

(
Π−1
n (f(x))

)
∈ GS(ξ−1f(x)), and thus ln (< Q >n (x)) = O (lnn) a.s.

Theorem 1.3.15 in Duflo [6] then ensures that, for any δ > 0,

|Qn(x)| = o
(
< Q >

1
2
n (x) (ln < Q >n (x))

1+δ
2

)
+O(1) a.s.

= o
(
Π−1
n (f(x))λnwn (lnn)

1+δ
2

)
+O(1) a.s.

It follows that, for any δ > 0,∣∣∣δ(1)n (x)
∣∣∣ = o

(
λnwn (lnn)

1+δ
2

)
+O (Πn(f(x))) a.s.

= o
(
λnwn (lnn)

1+δ
2

)
+ o (λn) a.s.

which concludes the proof of Lemma A.7 in this case.
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• Let us now consider the case limn→∞(nγn) = ∞. In this case, for all δ > 0, we
have

ln
(
Π−2
n (f(x))

)
=

n∑
k=n0

ln (1− γkf(x))
−2

=

n∑
k=n0

(2γkf(x) + o(γk))

= O

(
n∑
k=1

γkk
δ

)
.

Moreover, since
(
γnn

δ
)
∈ GS(−(α− δ)) with (α− δ) < 1, we have

lim
n→∞

n
(
γnn

δ
)

n∑
k=1

γkk
δ

= 1− (α− δ).

It follows that ln
(
Π−2
n (f(x))

)
= O

(
n1+δγn

)
. The sequence (λnwn) being in

GS(−λ∗ + w∗), we deduce that, for all δ > 0, we have

ln (< Q >n (x)) = O
(
n1+δγn

)
a.s.

Theorem 1.3.15 in Duflo [6] then ensures that, for any δ > 0,

|Qn(x)| = o
(
< Q >

1
2
n (x) (ln < Q >n (x))

1+δ
2

)
+O(1) a.s.

= o

(
Π−1
n (f(x))λnwn

(
n1+δγn

) 1+δ
2

)
+O(1) a.s.

The application of Lemma A.2 then ensures that, for any δ > 0,∣∣∣δ(1)n (x)
∣∣∣ = o

(
λnwn

(
n1+δγn

) 1+δ
2

)
+O (Πn(f(x))) a.s.

= o

(
λnwn

(
n1+δγn

) 1+δ
2

)
a.s.

which concludes the proof of Lemma A.7 for x ∈ (0, 1).

Remark A.6. (1) For x ∈ {0, 1}, we use the same steps as in the case x ∈ (0, 1) with
the sequence (βn) defined in (24).

(2) To use Lemma A.7, we must establish an upper bound for rn(x)− r(x). For this
purpose, we follow similar steps as Mokkadem et al. [21] to prove Proposition
4.1, Theorem 4.1 and Proposition 4.3 in the case (nγn) is bounded and in the
case limn→∞(nγn) = ∞ (see the supplementary material).

(3) We use the same idea to prove Proposition 4.2 and Theorem 4.2 which correspond
to the case x = 0, 1.
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