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SAHAR SLAMA, YOUSRI SLAOUI, AND HAMDI FATHALLAH

THE STOCHASTIC APPROXIMATION METHOD FOR

SEMI-RECURSIVE MULTIVARIATE KERNEL-TYPE REGRESSION

ESTIMATION

In this research paper, we elaborate an extension of the semi-recursive kernel-type
regression function estimator. We investigate the asymptotic properties of this esti-

mator and compare them with non-recursive Nadaraya Watson regression estimator.

From this perspective, we first calculate the bias and the variance of the proposed
estimator which strongly depend on the choice of three parameters, namely the step-

sizes (βn) and (γn) as well as the bandwidth (hn) chosen using one of the best

methods of bandwidth selection, the bootstrap approach compared to the plug-in
method. An appropriate choice of those parameters yields that, under some con-

ditions, the MSE (Mean Squared Error) of the proposed estimator can be smaller
than that of Nadaraya Watson’s estimator. We corroborate our theoretical results

through simulations studies and by considering two real dataset applications, the

French Hospital Data of COVID-19 epidemic as well as the Plasmodium Falciparum
Parasite Load (PL).

1. Introduction

Let (X,Y ) ∈ Rd × R and (X1, Y1), ..., (Xn, Yn) be independent random vectors iden-
tically distributed as (X,Y ) with a joint density function g(x, y) and let f denote the
probability density of X. For a chosen measurable function φ and x ∈ Rd the regression
function, whenever it exists, is defined by

rφ(x) = E[φ(Y )|X = x] =
1

f(x)

∫
R
φ(y)g(x, y)dy.

Regression analysis stands for the study of how a response variable depends on one or
more predictors. In fact, it’s a reliable method of identifying which variables have impact
on a topic of interest. The process of performing a regression allows us to confidently de-
termine which factors matter most, which factors can be ignored, and how these factors
influence each other. Regression problems can be usefully solved using nonparametric
regression methods, which correspond to a category of regression analysis where the pre-
dictor does not take a predetermined form but is constructed according to information
derived from the data. From this perspective, we have multiple methods of nonpara-
metric estimation, such as Gaussian process regression (Kriging), kernel regression and
regression trees.

In this work, our central focus is upon kernel-type regression function estimation
which is a non-parametric technique in statistics to estimate the conditional expectation
of a random variable. For the recursive approach, Kiefer and Wolfwitz (1952) [8] set for-
ward the stochastic approximation algorithm for recursive regression function estimation.
Their work was extended with Nadaraya (1964) [14] and Watson(1964) [22].
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An estimator of the rφ regression was first developed by Roussas (1990) [16] and
improved by Einmahl and Mason (2000) [5] to determine exact rates of uniform strong
consistency of kernel-type function estimators.

Later, Deheuvels and Mason (2004) [3] established uniform and non-uniform asymp-
totic simultaneous confidence bands for functionals of the distribution based on kernel-
type estimators.

The classical recursive regression estimator was addressed in Mokaddem et al. (2009b)
[12] for univariate framework and a multivariate extension of this estimator was carried
out by Mokaddem and Pelletier (2016) [13]. Subsequently, Slaoui (2016) [20] established
the semi-recursive case and introduced a new estimator which is the fraction of a recursive
regression by a recursive density function. As far as this research is concerned, our
basic objective is to extend this estimator for kernel-type estimation with large choice
of parameters and properties in a multivariate case. Note that, recently, Bouzebda and
Slaoui (2020) [2] explored general kernel type estimators for spatial data defined by the
stochastic approximation algorithm.

Let us start with the presentation of our stochastic approximation method. To build
up a stochastic algorithm, which estimates recursively the regression function

aφ : x 7−→ rφ(x)f(x) =

∫
R
φ(y)g(x, y)dy

at a given vector x, we follow the approach of Révész (1977) [15] and Tsybakov (1990)
[21]. Therefore, the stochastic approximation algorithm can be expressed as follows :

aφn(x) = (1− βn)aφn−1(x) + βn φ(Yn)h
−d
n K

(
x−Xn

hn

)
,

where the bandwidth (hn) and the stepsize (βn) are positive sequences of real numbers
decreasing towards zero and K is a multivariate kernel.
Here, we consider that a0(x) = 0, then by a recurrence, we get

aφn(x) = Qn

n∑
k=1

Q−1
k βk φ(Yk)h

−d
k K

(
x−Xk

hk

)
.

Moreover, we use the recursive multivariate probability density estimator of the density
function f defined in Mokkadem et al. (2009a) [11] and provided by

fn(x) = Πn

n∑
k=1

Π−1
k γk h

−d
k K

(
x−Xk

hk

)
,

where (γn) is a positive sequence of real numbers decreasing towards zero.
Through this paper, we consider the general multivariate kernel-type estimator for the

regression function r : x 7−→ E[φ(Y )|X = x] at the vector x

(1) rφn(x) =


aφn(x)

fn(x)
if fn(x) ̸= 0

0 if fn(x) = 0
.

Our first aim is to examine the asymptotic properties of our proposed semi-recursive
estimator of a multivariate regression function. Then, we prove its performance.
We shall also compare our estimator to the generalized non-recursive kernel regression
estimator of Nadaraya-Watson [14] and [22] r̃φn

indicated by

(2) r̃φn
(x) =


ãφn(x)

f̃n(x)
if f̃n(x) ̸= 0

0 if f̃n(x) = 0

,
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with

ãφn(x) =
1

nhd
n

n∑
k=1

φ(Yk)K

(
x−Xk

hn

)
and f̃n(x) =

1

nhd
n

n∑
k=1

K

(
x−Xk

hn

)
.

Particular cases:

(1) For φ(y) := I(y) = y, we have the classical regression function

rI(x) = E[Y |X = x].

A recursive estimator of rI was reported in Slaoui (2015) [19].
(2) For φ(y) := I(y) = ym, m ∈ N, we have the conditional moments

rI(x) = E[Y m|X = x].

(3) For φ(y) := χt(y) = 1{y⩽t}, t ∈ R, we have the conditional cumulative distribu-
tion function

rχt
(y) = π(t|x) = P[Y ⩽ t|X = x].

A recursive estimator of rχt was identified in Slama et al. (2020) [17].

2. Assumptions and Notations

For our theoretical main results, we need the following technical assumptions.
Assumptions:

(A1) K : Rd −→ R+ is a continuous bounded function satisfying:∫
Rd

K(u)du = 1 , ∀j ∈ {1, . . . , d},
∫
Rd

ujK(u)du = 0 and

∫
Rd

u2
jK(u)du < ∞.

(A2) (i) (βn)n≥1 ∈ GS(−β), with β ∈
(
1
2 , 1
]
.

(ii) (γn)n≥1 ∈ GS(−α), with α ∈
(
1
2 , 1
]
.

(iii) (hn)n≥1 ∈ GS(−a), with a ∈ (0, 1].

(iv) lim
n→+∞

(nβn) ∈
(
min{2a, β−ad

2 },∞
]
.

(v) lim
n→+∞

(nγn) ∈
(
min{2a, α−ad

2 },∞
]
.

(A3) (i) f is bounded, twice differentiable and ∀i, j ∈ {1, . . . , d}, f (2)
ij :=

∂2f

∂xi∂xj
is

bounded.

(ii) aφ is bounded, twice differentiable and ∀i, j ∈ {1, . . . , d}, a(2)φij :=
∂2aφ
∂xi∂xj

is

bounded.

(iii) The function s 7−→
∫
R
φ(t)g(s, t)dt is bounded continuous at s = x.

(iv) For all p > 0, s 7−→
∫
R
|φ(t)|2+pg(s, t)dt is a bounded function.

Throughout this paper, the following notations are used :

ξβ = lim
n→+∞

(nβn)
−1, Qn =

n∏
j=1

(1− βj), ξβ,α = lim
n→+∞

(βnγ
−1
n ), µi(K) =

∫
Rd

z2iK(z)dz,

ξα = lim
n→+∞

(nγn)
−1, Πn =

n∏
j=1

(1− γj), ξα,β = lim
n→+∞

(γnβ
−1
n ), R(K) =

∫
Rd

K2 (z) dz,

I1 =

∫
Rd

 d∑
j=1

µj(K)a(2)φjj
(x)

2

f(x)dx, I4 =

∫
Rd

E[φ(Y )2|X = x]f2(x)dx,
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I2 =

∫
Rd

 d∑
j=1

µj(K)a(2)φjj
(x)

 d∑
j=1

µj(K)f
(2)
jj (x)

 rφ(x)f(x)dx,

I3 =

∫
Rd

 d∑
j=1

µj(K)f
(2)
jj (x)

2

r2φ(x)f(x)dx, I5 =

∫
Rd

r2φ(x)f
2(x)dx.

First of all, let us set the following definition of the class of regularly varying sequences
introduced by Galambos and Seneta (1973) [7].

Definition 2.1. Let (vn)n≥1 be a nonrandom positive sequence and γ ∈ R. We state
that

(vn)n≥1 ∈ GS(γ) if lim
n→+∞

n

[
1− vn−1

vn

]
= γ.

3. Main results of rφn

In order to investigate the asymptotic properties of our estimator rφn, we need to first
introduce the following proposition which provide the bias and the variance of aφn.

Proposition 3.1. (Bias and variance of aφn)

Under the assumptions (A1) − (A3), and assuming that, for all i, j ∈ {1, . . . , d}, a(2)φij is
continuous at x, we obtain

(1) If a ∈
(
0, β

d+4

]
, then

(3) E[aφn(x)]− aφ(x) =
h2
n

2(1− 2aξβ)

d∑
j=1

µj(K)a(2)φjj
(x) + o

(
h2
n

)
.

If a ∈
(

β
d+4 , 1

)
, then

(4) E[aφn(x)]− aφ(x) = o

(√
βnh

−d
n

)
.

(2) If a ∈
(
0, β

d+4

)
, then

(5) V ar[aφn(x)] = o
(
h4
n

)
.

If a ∈
[

β
d+4 , 1

)
, then

(6) V ar[aφn(x)] =
βn

hd
n

E[φ(Y )2|X = x]

2− (β − ad)ξβ
f(x)R(K) + o

(
βnh

−d
n

)
.

Our main result rests on the following theorem, which yields the bias and the variance
of rφn.

Theorem 3.1. (Bias and variance of rφn)

Under the assumptions (A1)− (A3), and assuming that, for all i, j ∈ {1, . . . , d}, a(2)φij and

f
(2)
ij are continuous at x, we obtain

(1) If a ∈
(
0, min(β,α)

d+4

]
, then

(7) E[rφn(x)]− rφ(x) =
h2
n

f(x)


d∑

j=1

µj(K)a
(2)
φjj (x)

2(1− 2aξβ)
−

rφ(x)
d∑

j=1

µj(K)f
(2)
jj (x)

2(1− 2aξα)

+o
(
h2
n

)
.
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If a ∈
(

min(β,α)
d+4 , 1

)
, then

(8) E[rφn(x)]− rφ(x) = o

(√
βnh

−d
n

)
1{β≤α} + o

(√
γnh

−d
n

)
1{α<β}.

(2) If a ∈
(
0, min(β,α)

d+4

)
, then

(9) V ar[rφn(x)] = o
(
h4
n

)
.

If a ∈
[
min(β,α)

d+4 , 1
)
, then

V ar[rφn(x)] =
βn

hd
n

R(K)

f(x)

[
E[φ(Y )2|X = x]

2− (β − ad)ξβ
(10)

−r2φ(x)

(
2

1− (β − ad− ξ−1
β )ξα

− ξα,β
2− (α− ad)ξα

)
+ o

(
βn

hd
n

)]
1{β⩽α}

+
γn
hd
n

R(K)

f(x)

[
E[φ(Y )2|X = x]ξβ,α

2− (β − ad)ξβ

−r2φ(x)

(
2

1− (α− ad− ξ−1
α )ξβ

− 1

2− (α− ad)ξα

)
+ o

(
γn
hd
n

)]
1{α<β}.

Therefore, the bias and the variance of the estimator rφn defined by the stochastic
approximation algorithm (1) depend heavily on the choice of the stepsizes (βn) and (γn).

Remark 3.1. Notice that, for the case where (γn) = (βn) and then α = β, the expression
(10) will be written as follows

V ar[rφn(x)] =
βn

hd
n

R(K)

f(x)

V ar[φ(Y )|X = x]

2− (β − ad)ξβ
+ o

(
βnh

−d
n

)
.

The asymptotic normality of the generalized semi-recursive estimator rφn is indicated

by the following theorem. Note that
D−→

n→+∞
denotes convergence in distribution, N

corresponds to the normal distribution and
P−→

n→+∞
stands for convergence in probability.

3.1. Weak pointwise convergence rate of rφn.

Theorem 3.2. Under the assumptions (A1)− (A3), we obtain:

(1) For the case β ≤ α:
(a) If there exists c ≥ 0 such that β−1

n hd+4
n −→

n→+∞
c, then

(11)

√
β−1
n hd

n

(
rφn(x)− rφ(x)

) D−→
n→+∞

N
(√

cMβ(x) , Σβ(x)

)
,

with

(12) Mβ(x) =
1

2f(x)


d∑

j=1

µj(K)a
(2)
φjj (x)

(1− 2aξβ)
−

rφ(x)
d∑

j=1

µj(K)f
(2)
jj (x)

(1− 2aξα)


and

Σβ(x) =
R(K)

f(x)

[
E[φ(Y )2|X = x]

2− (β − ad)ξβ
(13)
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− r2φ(x)

(
2

1− (β − ad− ξ−1
β )ξα

− ξα,β
2− (α− ad)ξα

)]
.

(b) If β−1
n hd+4

n −→
n→+∞

∞, then

1

h2
n

(
rφn(x)− rφ(x)

) P−→
n→+∞

Mβ(x).

(2) For the case β > α:
(a) If there exists c ≥ 0 such that γ−1

n hd+4
n −→

n→+∞
c, then

(14)

√
γ−1
n hd

n

(
rφn(x)− rφ(x)

) D−→
n→+∞

N
(√

cMγ(x) , Σγ(x)

)
,

with

(15) Mγ(x) =
1

2f(x)


d∑

j=1

µj(K)a
(2)
φjj (x)

(1− 2aξβ)
−

rφ(x)
d∑

j=1

µj(K)f
(2)
jj (x)

(1− 2aξα)


and

Σγ(x) =
R(K)

f(x)

[
E[φ(Y )2|X = x]ξβ,α

2− (α− ad)ξα
(16)

− r2φ(x)

(
2

1− (α− ad− ξ−1
α )ξβ

− 1

2− (α− ad)ξα

)]
.

(b) If γ−1
n hd+4

n −→
n→+∞

∞, then

1

h2
n

(
rφn(x)− rφ(x)

) P−→
n→+∞

Mγ(x).

The following theorem demonstrates the strong pointwise convergence rate of our esti-
mator rφn.

3.2. Strong pointwise convergence rate of rφn.

Theorem 3.3. Under the assumptions (A1)− (A3), we get:

(1) For the case β ≤ α:

(a) If there exists b ≥ 0 such that
β−1
n hd+4

n

ln

(
n∑

i=1
βi

) −→
n→+∞

b, then with probability one,

the sequence
√√√√√ β−1

n hd
n

2 ln

(
n∑

i=1

βi

) (rφn(x)− rφ(x)
)

is relatively compact and its limit set is the interval[√
b

2
Mβ(x)−

√
Σβ(x) ,

√
b

2
Mβ(x) +

√
Σβ(x)

]
.
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(b) If
β−1
n hd+4

n

ln

(
n∑

i=1
βi

) −→
n→+∞

∞, then, with probability one,

lim
n→+∞

1

h2
n

(
rφn(x)− rφ(x)

)
= Mβ(x).

(2) For the case β > α:

(a) If there exists b ≥ 0 such that
γ−1
n hd+4

n

ln

(
n∑

i=1
γi

) −→
n→+∞

b, then with probability one,

the sequence
√√√√√ γ−1

n hd
n

2 ln

(
n∑

i=1

γi

) (rφn(x)− rφ(x)
)

is relatively compact and its limit set is the interval[√
b

2
Mγ(x)−

√
Σγ(x) ,

√
b

2
Mγ(x) +

√
Σγ(x)

]
.

(b) If
γ−1
n hd+4

n

ln

(
n∑

i=1
γi

) −→
n→+∞

∞, then, with probability one,

lim
n→+∞

1

h2
n

(
rφn(x)− rφ(x)

)
= Mγ(x).

In what follows, we clarify the choices of the stepsizes (βn) as well as (γn) and the
bandwidth (hn) based on the MWISE of the recursive estimator minimization, and
then enact a comparison with Nadaraya Watson’s estimator.

4. Optimal choice of the stepsizes

In order to measure the optimal choice of the couple of stepsizes (βn, γn), we need to
minimize the Mean Weighted Integrated Squared Error (MWISE) of the semi-recursive
estimator rφn.

The MWISE of the estimator rφn is determined by the following expression

MWISE[rφn] =

∫
Rd

(
E[rφn(x)]− rφ(x)

)2
f3(x)dx+

∫
Rd

V ar[rφn(x)]f
3(x)dx.

Proposition 4.1. We first note,

C1 =
I1

(1− 2aξβ)
2 − 2I2

(1− 2aξβ)(1− 2aξα)
+

I3

(1− 2aξα)
2 , C2 =

I4
2− (β − ad)ξβ

,

C3 =
I4ξβ,α

2− (β − ad)ξβ
, C4 = I5

(
2

1− (β − ad− ξ−1
β )ξα

− ξα,β
2− (α− ad)ξα

)
,

C5 = I5

(
2

1− (α− ad− ξ−1
α )ξβ

− 1

2− (α− ad)ξα

)
.

(1) For the case β ≤ α:

MWISE[rφn] =


1

4
C1h

4
n + o(h4

n) if a ∈
(
0, β

d+4

)
(C2 − C4)R(K)βnh

−d
n +

1

4
C1h

4
n + o(h4

n) if a = β
d+4

(C2 − C4)R(K)βnh
−d
n + o

(
βnh

−d
n

)
if a ∈

(
β

d+4 , 1
) .
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(2) For the case β > α:

MWISE[rφn] =


1

4
C1h

4
n + o(h4

n) if a ∈
(
0, α

d+4

)
(C3 − C5)R(K)γnh

−d
n +

1

4
C1h

4
n + o(h4

n) if a = α
d+4

(C3 − C5)R(K)γnh
−d
n + o

(
γnh

−d
n

)
if a ∈

(
α

d+4 , 1
) .

The following corollary ensures that the bandwidth which minimizes the MWISE of
rφn depends on the choice of the stepsizes (βn) and (γn) and then the corresponding
MWISE depends in turn on (βn) and (γn).

Corollary 4.1. Let assumptions (A1) − (A3) hold. To minimize the MWISE of rφn,
the bandwidth (hn) needs to be equal to the following expressions.

(1) For the case β ≤ α:

hn = d
1

d+4

(
C2 − C4

C1

) 1
d+4

R(K)
1

d+4 β
1

d+4
n .

Hence, the corresponding MWISE is specified by

MWISE[rφn] =
(d+ 4)

4d
d

d+4

C
d

d+4

1 (C2 − C4)
4

d+4R(K)
4

d+4 β
4

d+4
n + o

(
β

4
d+4
n

)
.

(2) For the case α < β :

hn = d
1

d+4

(
C3 − C5

C1

) 1
d+4

R(K)
1

d+4 γ
1

d+4
n .

Thus, the corresponding MWISE is expressed by

MWISE[rφn] =
(d+ 4)

4d
d

d+4

C
d

d+4

1 (C3 − C5)
4

d+4R(K)
4

d+4 γ
4

d+4
n + o

(
γ

4
d+4
n

)
.

The following corollary is provided in the special cases, where (βn) is chosen as (βn) =
(β0n

−1) in order to minimize the MWISE[aφn] and (γn) is chosen as (γn) = (γ0n
−1) in

order to minimize the MWISE[fn].

Proposition 4.2. Let assumptions (A1)− (A3) hold. It is worth noting,

Θ1 =
β0I4

(d+ 4)β0 − 2
− 2γ0I5

(d+ 4)(γ0+β0

2 )− 2
+

β−1
0 γ2

0I5
(d+ 4)γ0 − 2

,

Θ2 =
γ0I5

(d+ 4)γ0 − 2
− 2β0I5

(d+ 4)(γ0+β0

2 )− 2
,

Θ3 =
β2
0I1

((d+ 4)β0 − 2)2
− 2β0γ0I2

((d+ 4)β0 − 2)((d+ 4)γ0 − 2)
+

γ2
0I3

((d+ 4)γ0 − 2)2
.

To minimize the MWISE of rφn, we need to choose the stepsize (γn) in GS(−1) such
that lim

n→∞
(nγn) = γ0 and the stepsize (βn) in GS(−1) such that lim

n→∞
(nβn) = β0. As a

matter of fact,

(1) For the case β ≤ α: The bandwidth (hn) needs to be equal to(
β

1
d+4

0

(
d

2(d+ 4)

) 1
d+4

R(K)
1

d+4n
−1
d+4

(
Θ1

Θ3

) 1
d+4

)
.
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Consequently, the corresponding MWISE is determined by

MWISE[rφn] =
(d+ 4)

3d+8
d+4

4
d+6
d+4 d

d
d+4

β
4

d+4

0 Θ
4

d+4

1 Θ
d

d+4

3 R(K)
4

d+4n
−4
d+4 + o

(
n

−4
d+4

)
.

(2) For the case α < β : The bandwidth (hn) needs to be equal to(
γ

1
d+4

0

(
d

2(d+ 4)

) 1
d+4

R(K)
1

d+4n
−1
d+4

(
Θ2

Θ3

) 1
d+4

)
.

Therefore, the corresponding MWISE is specified by

MWISE[rφn] =
(d+ 4)

3d+8
d+4

4
d+6
d+4 d

d
d+4

γ
4

d+4

0 Θ
4

d+4

2 Θ
d

d+4

3 R(K)
1

d+4n
−4
d+4 + o

(
n

−4
d+4

)
.

Additionally, the minimum of MWISE[rφn] is achieved at (β0, γ0) = (1, 1). From this
perspective, the optimal bandwidth (hn) must be equal to

(17)

((
d(d+ 2)

2(d+ 4)

) 1
d+4
(

I4 − I5
I1 − 2I2 + I3

) 1
d+4

R(K)
1

d+4n
−1
d+4

)
.

Thus, the corresponding MWISE is indicated by

MWISE[rφn]

=
(d+ 4)

3d+8
d+4

4
d+6
d+4 d

d
d+4 (d+ 2)

d+6
d+4

(I1 − 2I2 + I3)
d

d+4 (I4 − I5)
4

d+4 R(K)
4

d+4n
−4
d+4 + o

(
n

−4
d+4

)
.

Remark 4.1. Note that for the particular case where the stepsize (βn) is in GS(−1) such
that lim

n→∞
(nβn) = 1, (γn) is in GS(−1) such that lim

n→∞
(nγn) = 1 and the bandwidth

(hn) is chosen such that lim
n→∞

nhd+4
n = 0 (which corresponds to undersmoothing), the

asymptotic normality of the proposed estimator is represented as follows√
nhd

n

(
rφn(x)− rφ(x)

) D−→
n→+∞

N
(
0 ,

1

a+ d
R(K)

V ar[φ(Y )|X = x]

f(x)

)
.

5. Main results of r̃φn

The main properties of the generalized non-recursive regression function estimator r̃φn

are displayed in the following proposition.

Proposition 5.1. Let assumptions (A1) and (A3) hold. Then, the asymptotic properties
of Nadaraya-Watson’s estimator are denoted as follows.

• The bias of r̃φn :

E[r̃φn
(x)]− rφ(x) =

1

2f(x)
h2
n

 d∑
j=1

µj(K)aφ
(2)
jj (x)− rφ(x)

d∑
j=1

µj(K)f
(2)
jj (x)

+ o
(
h2
n

)
.

• The variance of r̃φn
:

V ar[r̃φn
(x)] =

1

nhd
n

1

f(x)
V ar[φ(Y )|X = x]R(K) + o

(
1

nhd
n

)
.

• The MWISE of r̃φn :

MWISE[r̃φn ] =
1

4
(I1 − 2I2 + I3)h

4
n +

1

nhd
n

(I4 − I5)R(K) + o

(
h4
n +

1

nhd
n

)
.



36 SAHAR SLAMA, YOUSRI SLAOUI, AND HAMDI FATHALLAH

To minimize the MWISE of r̃φn
, the bandwidth (hn) must be equal to

(18)

(
d

1
d+4

(
I4 − I5

I1 − 2I2 + I3

) 1
d+4

R(K)
1

d+4n− 1
d+4

)
.

Therefore, the corresponding MWISE is expressed by

MWISE[r̃φn ] =
(d+ 4)

4d
d

d+4

(I4 − I5)
4

d+4 (I1 − 2I2 + I3)
d

d+4 R(K)
1

d+4n− 4
d+4 + o

(
n− 4

d+4

)
.

• The asymptotic normality of r̃φn
:

Suppose that nhd+4
n −→

n→+∞
0. Thus,√

nhd
n (r̃φn(x)− rφ(x))

D−→
n→+∞

N
(
0 , R(K)

V ar[φ(Y )|X = x]

f(x)

)
.

• The weak pointwise convergence rate of r̃φn
:

If nhd+4
n −→

n→+∞
∞, then

1

h2
n

(r̃φn(x)− rφ(x))
P−→

n→+∞
0.

6. Bandwidth selection

Kernel smoothing in non-parametric statistics requires the choice of a bandwidth
parameter. There are numerous methods for bandwidth selection, namely the cross-
validation method, the bootstrap procedure and the second generation plug-in approach.

First of all, for the sake of simplicity, the kernel K we shall use is considered as a

product of univariate kernels K satisfying

∫
R
K(x)dx = 1. Hence, we have

rφn(x) =

Qn

n∑
k=1

Q−1
k βkφ(Yk)h

−d
k

d∏
i=1

K

(
xi −Xki

hk

)
Πn

n∑
k=1

Π−1
k γk h

−d
k

d∏
i=1

K

(
xi −Xki

hk

)
and

r̃φn(x) =

(
nhd

n

)−1 n∑
k=1

φ(Yk)
d∏

i=1

K

(
xi −Xki

hn

)
(nhd

n)
−1

n∑
k=1

d∏
i=1

K

(
xi −Xki

hn

) .

Let us start by introducing our bandwidth selection methods.

6.1. Plug-in method. In statistics, Altman and Leger (1995) [1] set forward an efficient
method of bandwidth selection, a plug-in estimate which minimizes an estimate of the
mean weighted integrated squared error, using the density function as a weight function.
Since the MWISE depends on the unknown quantities Ij , j = 1, . . . , 5, we attempt to
construct an asymptotic unbiased estimator of those quantities.
In order to estimate the optimal bandwidth (17), we have to estimate Ij , j = 1, . . . , 5,
by using the approach of Altman and Leger (1995) [1], called ”Plug-in estimate”. For
this reason, we introduce (bn)n≥1 ∈ GS(−δ), δ ∈ (0, 1) .

In practice, we take bn = n−δ min

{
ŝ,

Q3 −Q1

1.349

}
, with ŝ being the sample standard

deviation and Q1, Q3 being the first and third quartiles.
At this stage of analysis, our choice of the parameter δ is based on the work of Slaoui
(2014) [18] and Slaoui (2016) [20]. Therefore, we recall that Kb is a kernel and bn is the
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associated bandwidth, such that δ = 2/5, and K
(2)
b′ is the second derivative of a kernel

Kb′ with the associated bandwidth b
′

n such that δ = 3/14.

6.1.1. Semi-Recursive estimator rφn: To estimate the optimal bandwidth (17), we need
to estimate Ij , j = 1, . . . , 5.
Estimation of I1, I2 and I3: Here, the plug-in estimate gives

Î ′1 =
Q2

n

n

n∑
i,j,k=1
i̸=j ̸=k

Q−1
j Q−1

k βjβkb
′−(d+2)
j b′

−(d+2)
k

×

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b
′
j

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bj

)
×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b
′
k

) d∏
l=1
l ̸=t

Kb

(
Xil −Xkl

bk

)φ(Yj)φ(Yk),

Î ′2 =
QnΠn

n

n∑
i,j,k=1
i̸=j ̸=k

Q−1
j Π−1

k βjγkb
′−(d+2)
j b′

−(d+2)
k

×

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b
′
j

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bj

)
×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b
′
k

) d∏
l=1
l ̸=t

Kb

(
Xil −Xkl

bk

)φ(Yj)φ(Yi),

Î ′3 =
Π2

n

n

n∑
i,j,k,m=1
i̸=j ̸=k ̸=m

Π−1
j Π−1

k γjγkb
′−(d+2)
j b′

−(d+2)
k

×

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b
′
j

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bj

)
×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b
′
k

) d∏
l=1
l ̸=t

Kb

(
Xil −Xkl

bk

)φ(Yi)φ(Ym),

Therefore, we obtain

Îi = µ2(K)Î ′i, i = 1 . . . 3.

Estimation of I4 and I5:

Î4 =
Πn

n

n∑
i,k=1
i̸=k

Π−1
k γkb

−d
k

d∏
l=1

Kb

(
Xil −Xkl

bk

)
φ(Yi)

2

and
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Î5 =
Qn

n

n∑
i,k=1
i̸=k

Q−1
k βkb

−d
k

d∏
l=1

Kb

(
Xil −Xkl

bk

)
φ(Yi)φ(Yk),

As a result, the plug-in estimator of (17) is denoted in terms of :

(19) hn =

(d(d+ 2)

2(d+ 4)

) 1
d+4

(
Î4 − Î5

Î1 − 2Î2 + Î3

) 1
d+4

R(K)
1

d+4n
−1
d+4

 ,

Finally, an estimator of MWISE[rφn] is expressed as

̂MWISE[rφn]

=
(d+ 4)

3d+8
d+4

4
d+6
d+4 d

d
d+4 (d+ 2)

d+6
d+4

(
Î1 − 2Î2 + Î3

) d
d+4
(
Î4 − Î5

) 4
d+4

R(K)
1

d+4n
−4
d+4 + o

(
n

−4
d+4

)
.

6.1.2. Non-Recursive estimator r̃φn : To estimate the optimal bandwidth (18), we need
to estimate Ij , j = 1, . . . , 5.
Estimation of I1, I2 and I3: For the non-recursive case, the plug-in estimate yields

Ĩ ′1 =
1

n3b′2(d+2)
n

n∑
i,j,k=1
i̸=j ̸=k

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bn

)
×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b′n

)
d∏

l=1
l̸=t

Kb

(
Xil −Xkl

bn

)φ(Yj)φ(Yk),

Ĩ ′2 =
1

n3b′2(d+2)
n

n∑
i,j,k=1
i̸=j ̸=k

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bn

)
×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xkl

bn

)φ(Yj)φ(Yi),

Ĩ ′3 =
1

n4b′2(d+2)
n

n∑
i,j,k,m=1
i̸=j ̸=k ̸=m

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bn

)
×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xkl

bn

)φ(Yi)φ(Ym),

Therefore, we obtain

Ĩi = µ2(K)Ĩ ′i, i = 1 . . . 3.

Estimation of I4 and I5:

Ĩ4 =
1

n2bdn

n∑
i,k=1
i̸=k

d∏
l=1

Kb

(
Xil −Xkl

bn

)
φ(Yi)

2

and

Ĩ5 =
1

n2bdn

n∑
i,k=1
i̸=k

d∏
l=1

Kb

(
Xil −Xkl

bn

)
φ(Yi)φ(Yk),
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As a consequence, the plug-in estimator of (18) is indicated by

(20) hn =

( Ĩ4 − Ĩ5

Ĩ1 − 2Ĩ2 + Ĩ3

) 1
d+4

R(K)
1

d+4n− 1
d+4

 ,

Finally, a non-recursive estimator of MWISE[rφn] is determined by

˜MWISE[r̃φn ] =
5

4

(
Ĩ4 − Ĩ5

) 4
d+4
(
Ĩ1 − 2Ĩ2 + Ĩ3

) 1
d+4

R(K)
1

d+4n− 4
d+4 + o

(
n− 4

d+4

)
.

6.2. Wild Bootstrap approach. The basic idea of the wild bootstrap introduced in
Hardle and Marron (1991) [6] lies in resampling from the estimated residuals

εi = φ(Yi)− rn(Xi)

instead of resampling from the pairs (Yi, Xi)
n
i=1 and then investing the obtained data

to construct an estimator whose distribution will approximate the distribution of the
original estimator. Notice that each bootstrapped residual εi is drawn from a two-point
distribution, such that

E(ε∗i ) = 0, E(ε∗i
2) = ε̂2i and E(ε∗i

3) = ε̂3i .

Such distribution is expressed by

G∗
i =

(
5 +

√
5

10

)
δ
ε̂i

(1−
√

5)
2

+

(
5−

√
5

10

)
δ
ε̂i

(1+
√

5)
2

.

Our adapted procedure for bandwidth selection to estimate the operator rφ recursively
relies on three steps:

(1) Giving the bootstrapped residuals ε∗i drawn from the distribution G∗
i .

(2) Resampling new observations φ(Y ∗
i ) = rn(Xi, g) + ε∗i such that g should be

oversmoothed (g needs to be larger than h).
(3) Computing the kernel regression estimator r∗n(Xi, h), based on the bootstrapped

data (Xi, Y
∗
i )

n
i=1.

The bootstrapped bandwidth h∗ is then indicated by:

(21) h∗ = argmin
h∈H

(
1

NB

NB∑
i=1

(r∗n(Xi, h)− rn(Xi, g))
2

)
,

where H is a fixed set of bandwidths and NB is the number of replications.
In order to ameliorate the performance of the bootstrap procedure over the plug-in
method, we set H =]hn − ϵ, hn + ϵ[, where hn is the plug-in bandwidth and ϵ is quite
close to zero.

7. Confidence intervals

Now, let ϕ denote the distribution function of the standard normal distribution, and

let tλ/2 be such that ϕ
(
tλ

2

)
= 1− λ

2 with λ ∈ (0, 1). We set

Irn =
[
rn (x)− tλ

2
Λ, rn (x) + tλ

2
Λ
]
,

with

Λ =
√

Cf (rn) [Cσ(rn)σ2
n(x)− Cr(rn)r2n(x)], σ2

n(x) =
1

n

n∑
i=1

(φ(Yi)− rn(Xi))
2

and
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rn case Cf (rn) Cσ(rn) Cr(rn)

rφn α > β
βnR(K)

hd
nfn(x)

1

2− (β − ad)ξβ

2

1− (β − ad− ξ−1
β )ξα

− ξα,β
2− (α− ad)ξα

− 1

2− (β − ad)ξβ

rφn α < β
γnR(K)

hd
nfn(x)

ξβ,α
2− (β − ad)ξβ

2

1− (α− ad− ξ−1
α )ξβ

− 1

2− (α− ad)ξα
− ξβ,α

2− (β − ad)ξβ

rφn γn = βn = 1
n

R(K)

nhd
nfn(x)

1

1 + ad
0

r̃φn

1
n

R(K)

nhd
nf̃n(x)

1 0

In fact, since we have (32) and considering that

Σβ,n(x) =
R(K)

fn(x)

[
σ2
n(x)

2− (β − ad)ξβ

− r2n(x)

(
2

1− (β − ad− ξ−1
β )ξα

− ξα,β
2− (α− ad)ξα

− 1

2− (β − ad)ξβ

)]

is an estimator of (13), the Confidence Intervals for means with unknown standard
deviation approach ensure

P

[
−tλ

2
<

√
β−1
n hd

n

(
rn(x)− E[rn(x)]√

Σβ,n(x)

)
< tλ

2

]
= 1− λ.

Therefore, a confidence interval for the coverage error is given by

Irn =

[
rn (x)− tλ

2

√
Σβ,n(x)

β−1
n hd

n

, rn (x) + tλ
2

√
Σβ,n(x)

β−1
n hd

n

]
.

8. Numerical applications

The main target of this section is to perform a simulation study comparing the perfor-
mance of our semi-recursive estimator (1) to that of Nadaraya-Watson (2) from confidence
interval point of view. Throughout this section, we consider the regression model defined
as

φ(Y ) = rφ(X) + ε,

whereX follows the multivariate normal distributionN (0d, σId) and ε follows the normal
distribution N (0, σε) , with σ and σε are two positive constants smaller than 2.
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8.1. Simulation studies. We shall start by specifying our kernel function K. The
Gaussian kernel is considered. This choice is not carried out at random but accord-
ing to several criteria. The Gaussian kernel has as an expression

K(x) =
1√
2π

exp
(

−x2

2

)
, for all x ∈ R with ϕ(K) =

1√
π

and µ(K) = 1.

When applying our estimator rφn, we must choose three quantities:

· The Gaussian kernel K.
· The stepsizes (βn, γn) =

(
β0n

−1, γ0n
−1
)
, where β0 = 1 and γ0 = 1.

· The bandwidth (hn) which is chosen to be equal to (19) for plug-in recursive
estimator (resp. (21) for bootstrapped recursive one).

For this special case, we set

În =

rφn (x)− 1.96

√√√√√R(K)
n∑

i=1

(
φ(Yi)− rφn(Xi)

)2
(1 + ad)n2hd

nfn(x)
,

rφn (x) + 1.96

√√√√√R(K)
n∑

i=1

(
φ(Yi)− rφn(Xi)

)2
(1 + ad)n2hd

nfn(x)

 .

When applying our estimator r̃φn , we have to opt for two quantities:

· The Gaussian kernel K.
· The bandwidth (hn) which is chosen to be equal to (20) for plug-in non-recursive
estimator (resp. (21) for bootstrapped non-recursive one).

For this special case, we set

Ĩn =

r̃φn (x)− 1.96

√√√√√R(K)
n∑

i=1

(φ(Yi)− r̃φn
(Xi))

2

n2hd
nf̃n(x)

,

r̃φn
(x) + 1.96

√√√√√R(K)
n∑

i=1

(φ(Yi)− r̃φn
(Xi))

2

n2hd
nf̃n(x)

 .

In what follows, we denote by r∗i the reference regression, by ri the test regression and
by Li the average length of the test confidence interval, then we compute the following
measures:

· Mean squared error: MSE =
1

n

n∑
i=1

(ri − r∗i )
2.

· The linear correlation: Cor = Cov(ri, r
∗
i )σ(ri)

−1σ(r∗i )
−1.

· Mean amplitude of the confidence interval: MAIC =
1

Np

Np∑
i=1

Li.

Aiming to compare the proposed semi-recursive estimator to the non-recursive Nadaraya-
Watson one, we consider four sample sizes: n = 50, 100, 200 and 500, a fixed number of
simulations : N=500 and two models:

◦ Model 1: X follows the normal distribution N (0, 5) and rφ(x) =
1

1 + exp(−x)
.
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◦ Model 2: X follows the standard bivariate normal distribution N
((

0
0

)
,

(
1 0
0 1

))
and rφ(x1, x2) = exp(−x2

1) + sin(x2).

Plug-in Bootstrap
Model σε n Nadaraya’s Recursive Nadaraya’s Recursive

estimator estimator estimator estimator

0.01 MSE 50 0.00316 0.00282 0.00307 0.00273
100 0.00176 0.00165 0.00171 0.00159
200 0.00111 0.00103 0.00108 0.00099
500 0.00090 0.00085 0.00088 0.00083

Model 1 Cor 50 0.99499 0.99573 0.99512 0.99585
100 0.99690 0.99723 0.99699 0.99731
200 0.99797 0.99819 0.99802 0.99825
500 0.99828 0.99841 0.99832 0.99845

MAIC 50 0.05291 0.05051 0.04785 0.04556
100 0.03647 0.03533 0.02995 0.02911
200 0.02599 0.02479 0.02181 0.02103
500 0.02089 0.02039 0.01663 0.01614

0.01 MSE 50 0.04793 0.04395 0.04683 0.04317
100 0.04366 0.03475 0.04086 0.03142
200 0.01696 0.00593 0.01698 0.00592
500 0.01596 0.00438 0.01534 0.00436

Model 2 Cor 50 0.98491 0.98493 0.98295 0.98600
100 0.98738 0.98756 0.98746 0.98772
200 0.98387 0.99434 0.98379 0.99423
500 0.99639 0.99739 0.99640 0.99739

MAIC 50 0.53178 0.50550 0.52328 0.47993
100 0.43686 0.41610 0.42394 0.37903
200 0.45451 0.36258 0.42906 0.35669
500 0.36321 0.32708 0.34213 0.30261

Table 1. Quantitative comparison between Nadaraya-Watson estima-
tor and the proposed estimator with stepsizes (βn, γn) = (n−1, n−1)
through a plug-in method and a bootstrap one for both models.
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Figure 1. Qualitative comparison between the Nadaraya-Watson esti-
mator and the recursive estimator for Model 1 with n=50 and σε = 0.01.

Figure 2. Qualitative comparison between the Nadaraya-Watson esti-
mator and the recursive estimator for Model 1 with n=500 and σε =
0.01.

Figure 3. The reference regression function for Model 2 for one simple sim-

ulation with n = 500.
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Figure 4. The recursive regresion estimator for Model 2 for one simple

simulation with n = 500.

Figure 5. The non-recursive regression estimator for Model 2 for one simple

simulation with n = 500.

Numerical interpretation:
Owing to the specific choice of the bandwidth interval, H =]hn − ϵ, hn + ϵ[, with an
appropriate choice of the plug-in bandwidth hn, the proposed estimator (1) often pro-
vides better results compared to the non-recursive Nadaraya Watson’s one in terms of
estimation error. Thereafter, the use of our recursive estimator enables us to get closer
to the true regression function rather than non-recursive one. Meanwhile, even if the
modified bootstrap approach outperforms the plug-in method, it’s not quite accurate to
assert that one method is better than the other. We recommend the reader to consult
Delaigle and Gijbels (2004) [4] for a detailed comparison of practical bandwidth selection
procedures. They are indistinguishable and it has been widely proven that they behave
similarly.

8.2. Real Datasets.

8.2.1. Application 1: French Hospital Data of COVID19.
The French Hospital data of the COVID-19 epidemic are found in https://www.data.

gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/. The Santé
publique France’s mission is devoted to improve and protect the health of population.
During the health crisis related to the COVID-19 epidemic, Santé publique France
has been in charge of monitoring and understanding the dynamics of the epidemic, an-
ticipating the different scenarios and implementing actions so as to prevent and limit the
spread of this virus on the national territory.
Description of the dataset
This dataset provides information on the hospital situation regarding the COVID-19 epi-
demic. We have chosen the first proposed file:
Hospital data related to the COVID-19 epidemic by department (dep) and sex (sex)
of the patient: number of hospitalized patients (hosp), number of persons currently in
intensive care or resuscitation (rea), number of persons currently in follow-up and re-
habilitation care (SSR) or long-term care units (USLD), number of persons currently
in conventional hospitalization (HospConv), number of persons currently hospitalized in
another type of service (autres) or cumulative number of persons having returned home
(rad), cumulative number of persons who died (dc).
The data are daily updated. For the current application, we have selected the data of

 https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
 https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
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28/07/2021, with a total of 150894 observations. For simplicity reasons, we opted for
focusing just on the department of ’Paris’ database.
As a matter of fact, our application rests upon a dataframe of 1494 observations and 6
variables. The following two models are considered :

• Model 1: X = rea, Y = hosp and φ : y 7−→ y.
• Model 2: X1 = rea, X2 = dc, Y = hosp and φ : y 7−→ y.

Plug-in Bootstrap
Model Nadaraya’s Recursive Nadaraya’s Recursive

estimator estimator estimator estimator

Model 1 3.64817 3.64737 3.64819 3.64736
Model 2 2.85212 2.51463 2.85266 2.51417

Table 2. Quantitative comparison between Nadaraya-Watson estima-
tor and the proposed one with stepsizes (βn, γn) = (n−1, n−1) through
plug-in method and the bootstrap one.

Figure 6. Box-plot of the relative error estimation of the four consid-
ered estimators for the bivariate COVID-19 application Model 1.

Figure 7. Box-plot of the relative error estimation of the four consid-
ered estimators for the bivariate COVID-19 application Model 1.
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Figure 8. Box-plot of the relative error estimation of the four consid-
ered estimators for the bivariate COVID-19 application Model 2.

Figure 9. Box-plot of the relative error estimation of the four consid-
ered estimators for the bivariate COVID-19 application Model 2.

8.2.2. Application 2: Plasmodium falciparum Parasite Load.
As far as our application is concerned, we considered a dataset of 176 families belonging
to Senegal, living in two villages of Niakhar (Diohine and Toucar), with 505 children
aged between 2 and 19 years old. The total number of observations was 6986. We
measured Plasmodium falciparum Parasite Load (PL) from thick blood smears obtained
by finger-prick during two different seasons and regularly over a three-year observation
period (2001–2003). The number of measurements per child ranged from 1 to 15. For
more details about the data, we refer the reader to consult Milet et al. (2010) [9]. This
application relies upon the following variables:

• PL : Parasite Load, as our response variable Y .
• malariae : The presence of co-infection with P. malariae, a factor with two levels
(infected: 1 or not infected: 0).

• sex : A factor with two levels (a boy: 0 or a girl: 1).
• age : Age of the child in years between 2 and 19.
• season : A factor with two levels (July-October and October-March).

Therefore, for our selection we have a dataframe of 500 observations and 3 variables. The
following two models are considered :

• Model 3: X1 = sex, X2 = age, Y = PL and φ : y 7−→ log(y + 1).
• Model 4: X1 = age, X2 = malariae, X3 = season, Y = PL and φ : y 7−→

log(y + 1).
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Plug-in Bootstrap
Model Nadaraya’s Recursive Nadaraya’s Recursive

estimator estimator estimator estimator

Model 3 0.80578 0.80153 0.80587 0.80194
Model 4 0.80199 0.79629 0.80253 0.79547

Table 3. Quantitative comparison between Nadaraya-Watson estima-
tor and the proposed one with stepsizes (βn, γn) = (n−1, n−1) through
plug-in method and the bootstrap one.

Figure 10. Box-plot of the relative error estimation of the four consid-
ered estimators for the multivariate PL application Model 3.

Figure 11. Box-plot of the relative error estimation of the four consid-
ered estimators for the multivariate PL application Model 3.
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Figure 12. Box-plot of the relative error estimation of the four consid-
ered estimators for the multivariate PL application Model 4.

Figure 13. Box-plot of the relative error estimation of the four consid-
ered estimators for the multivariate PL application Model 4.

9. Conclusion

This paper reports an extension of the semi-recursive regression function estimator.
Initially, we tackled the asymptotic properties of the proposed estimator in order to
demonstrate that our estimator asymptotically follows a normal distribution. The pro-
posed estimator was compared to the non-recursive multivariate Nadaraya Watson re-
gression estimator. Basically, we revealed that using a specific bandwidth selection,
the plug-in approach as well as the bootstrap procedure, and particular stepsizes couple
(γn, βn) =

(
n−1, n−1

)
; the proposed estimator (1) often provides better results compared

to the non-recursive Nadaraya Watson’s one in terms of estimation error. The simulation
studies and real datasets illustrate our findings. In conclusion, the use of our recursive
estimator, with an appropriate choice of the bandwidth, enables us to get closer to the
true regression function rather than non-recursive one.

10. proofs

Throughout this section, we will need the following notations:

Zn(x) = h−d
n φ(Yn)K

(
x−Xn

hn

)
and Wn(x) = h−d

n K

(
x−Xn

hn

)
, for all x ∈ Rd.

First of all, we introduce a lemma that will be widely used for the study of our estimator
rφn. This lemma’s proof was recorded in Mokkadem et al. (2009a) [11].

Lemma 10.1. Let (vn)n≥1 ∈ GS(v∗), (γn)n≥1 ∈ GS(−α) and let m > 0 such that
m− v∗ξ > 0. Hence,

lim
n→+∞

vnΠ
m
n

n∑
k=1

Π−m
k

γk
vk

=
1

m− v∗ξ
.

Furthermore, for any positive sequence (αn)n≥1 such that lim
n→+∞

αn = 0 and all C ∈ R,

lim
n→+∞

vnΠ
m
n

[
n∑

k=1

Π−m
k

γk
vk

αk + C

]
= 0.

In the next paragraph, we shall depict the asymptotic properties of the multivariate
density estimator fn developed in Mokkadem et al. (2009a) [11].

Proposition 10.1. (Bias and variance of fn) Under the assumptions (A1)− (A3), and

assuming that, for all i, j ∈ {1, . . . , d}, f (2)
ij is continuous at x; we obtain
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(1) If a ∈
(
0, α

d+4

]
, then

(22) E[fn(x)]− f(x) =
h2
n

2(1− 2aξα)

d∑
j=1

µj(K)f
(2)
jj (x) + o

(
h2
n

)
.

If a ∈
(

α
d+4 , 1

)
, then

(23) E[fn(x)]− f(x) = o

(√
γnh

−d
n

)
.

(2) If a ∈
(
0, α

d+4

)
, then

(24) V ar[fn(x)] = o
(
h4
n

)
.

If a ∈
[

α
d+4 , 1

)
, then

V ar[fn(x)] =
γn
hd
n

1

2− (α− ad)ξα
f(x)R(K) + o

(
γnh

−d
n

)
.(25)

Proof. (Proposition 3.1)
This proof is mainly based on the same concept as Slama et al. (2020) [17], by assuming
a := aφ.
To this extent, we just briefly outline the proof. We have

aφn(x)− aφ(x) = Qn

n∑
k=1

Q−1
k βk(Zk(x)− aφ(x)) +Qn[a0(x)− aφ(x)].

Hence,

E[aφn(x)]− aφ(x) = Qn

n∑
k=1

Q−1
k βk(E[Zk(x)]− aφ(x)) +Qn[a0(x)− aφ(x)].

Bias of aφn : Resting upon the assumptions (A1) and (A3) and by applying Taylor’s
development formula for aφ, we deduce that

E[Zk(x)]− aφ(x) =

∫
Rd

h−d
k K

(
x− y

hk

)
E[φ(Y )|X = y]f(y)dy −

∫
Rd

K (y) aφ(x)dy

=

∫
Rd

K (z) [aφ(x− zhk)− aφ(x)] dz

=

∫
Rd

K(z)

 d∑
i=1

∂a

∂xi
(x)zihk +

∫ 1

0

(1− t)

d∑
i,j=1

∂2a

∂xi∂xj
(x+ tzhk)zizjh

2
kdt

 dz

=
h2
k

2

d∑
j=1

µj(K)aφ
(2)
jj (x) + h2

kηk(x),

where ηk(x) =
d∑

i,j=1

∫
Rd

∫ 1

0

(1− t)
[
aφ

(2)
ij (x+ tzhk)− aφ

(2)
ij (x)

]
zizjK(z)dtdz.

We thus get

E[aφn(x)]− aφ(x) =
1

2

d∑
j=1

µj(K)aφ
(2)
jj (x)Qn

n∑
k=1

Q−1
k βkh

2
k +Qn

n∑
k=1

Q−1
k βkh

2
kηk(x)

+Qn[a0(x)− aφ(x)].
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For the case a > β/(d + 4), we have lim
+∞

(nβn) > α−a
2 , which ensures that h2

n =

o
(√

βnh
−d
n

)
. Therefore, the application of lemma 10.1 entails

E[aφn(x)]− aφ(x) =
1

2

d∑
j=1

µj(K)aφ
(2)
jj (x)Qn

n∑
k=1

Q−1
k βko

(√
βkh

−d
k

)

+Qn

n∑
k=1

Q−1
k βko

(√
βkh

−d
k

)
+O (Qn)

= o

(√
βnh

−d
n

)
.

For the case a ⩽ β/(d + 4), we have lim
+∞

(nβn) > 2a and then 1 − 2aξβ > 0. Hence, the

application of lemma 10.1 provides

E[aφn(x)]− aφ(x)

=
1

2

d∑
j=1

µj(K)aφ
(2)
jj (x)Qn

n∑
k=1

Q−1
k βkh

2
k +Qn

n∑
k=1

Q−1
k βko

(
h2
k

)
+O (Qn)

=
h2
n

2(1− 2aξβ)

d∑
j=1

µj(K)aφ
(2)
jj (x) + o

(
h2
n

)
+ o (1) +O (Qn) .

Variance of aφn : For the variance, we infer that

V ar[aφn(x)] = V ar

[
Qn

n∑
k=1

Q−1
k βkZk(x)

]

= Q2
n

n∑
k=1

Q−2
k β2

k

(
E[Z2

k(x)]− E[Zk(x)]
2
)
.

We have

E[Z2
k(x)] =

∫
Rd

h−2d
k E[φ(Y )2|X = y]K2

(
x− y

hk

)
f(y)dy

=

∫
Rd

h−d
k K2 (z)E[φ(Y )2|X = x− zhk]f(x− zhk)dz

= h−d
k

[
E[φ(Y )2|X = x]f(x)

∫
Rd

K2 (z) dz + νk(x)

]
,

with

νk(x) =

∫
Rd

K2 (z)
[
E[φ(Y )2|X = x− zhk]f(x− zhk)− E[φ(Y )2|X = x]f(x)

]
dz.

Thus,

V ar[aφn(x)] = Q2
n

n∑
k=1

Q−2
k β2

kh
−d
k

×
[
E[φ(Y )2|X = x]f(x)

∫
Rd

K2 (z) dz + νk(x)− hd
kηk(x)

]
,

where ηk(x) =

(∫
Rd

K (z) aφ(x− zhk)dz

)2

.
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For the case a ⩾ β/(d+ 4), we have lim
+∞

(nβn) >
α−ad

2 and therefore 1− 2aξβ > 0. Since

we have lim
k→+∞

hkηk(x) = 0 and Taylor’s expansions for

x 7−→ E[φ(Y )2|X = x]f(x) =

∫
R
φ(y)2g(x, y)dy

ensures that νk(x) = o(1), then the application of lemma 10.1 yields

V ar[aφn(x)] = Q2
n

n∑
k=1

Q−2
k β2

kh
−d
k

[
E[φ(Y )2|X = x]f(x)R(K) + νk(x)− hd

kηk(x)
]

= Q2
n

n∑
k=1

Q−2
k β2

kh
−d
k

[
E[φ(Y )2|X = x]f(x)R(K) + o (1)

]
=

E[φ(Y )2|X = x]

2− (α− ad)ξβ

βn

hn
[f(x)R(K) + o (1)].

Thus, the result is indicated in terms of

V ar[aφn(x)] =
E[φ(Y )2|X = x]

2− (α− a)ξβ

βn

hn
f(x)R(K) + o

(
βn

hn

)
.

For the case a < β/(d+4), we have lim
+∞

(nβn) > 2a, which ensures that βnh
−d
n = o

(
h4
n

)
.

By applying lemma 10.1, we obtain

V ar[aφn(x)] = Q2
n

n∑
k=1

Q−2
k β2

kh
−d
k

[
E[φ(Y )2|X = x]f(x)R(K) + o (1)

]
= Q2

n

n∑
k=1

Q−2
k βko

(
h4
k

)
= o

(
h4
n

)
.

□

Proof. (Theorem 3.1)
This proof is based on the following observation

(26) rφn(x)− rφ(x) = Dn(x)
f(x)

fn(x)
, fn ̸= 0

with

Dn(x) =
1

f(x)

(
aφn(x)− aφ(x)

)
− rφ(x)

f(x)
(fn(x)− f(x)) .

The only remaining point concerns the asymptotic behaviour of rφn(x) − rφ(x), which
can be deduced from that of Dn(x). Hence, we can state

E[Dn(x)] =
1

f(x)

(
E[aφn(x)]− aφ(x)

)
− rφ(x)

f(x)
(E[fn(x)]− f(x)) .

Combining the bias of aφn(x) ((3) and (4)) as well as that of fn(x) ((22) and (23) ) yields
the desired results (7) and (8).
For the variance, we get

V ar[Dn(x)] =
1

(f(x))2
V ar[aφn(x)]−

(rφ(x))
2

(f(x))2
V ar[fn(x)]−2

rφ(x)

(f(x))2
Cov(aφn(x), fn(x)).
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(1) For the case β ≤ α:
Since Xk’s are independent, then for all i ̸= k,Cov(Zk(x),Wi(x)) = 0 and by
applying lemma 10.1, classical computations entail

(27) Cov(aφn(x), fn(x)) = rφ(x)f(x)R(K)βnh
−d
n

(
1

1− (β − ad− ξ−1
β )ξα

+ o (1)

)
.

In fact, we have

Cov(aφn(x), fn(x))

= Cov

(
Qn

n∑
k=1

Q−1
k βk φ(Yk)h

−d
k K

(
x−Xk

hk

)
,Πn

n∑
i=1

Π−1
i γih

−d
i K

(
x−Xi

hi

))

= Qn

n∑
k=1

Q−1
k βkΠn

n∑
i=1

Π−1
i γi Cov

(
φ(Yk)h

−d
k K

(
x−Xk

hk

)
, h−d

i K

(
x−Xi

hi

))

= QnΠn

n∑
k=1

Π−1
k Q−1

k γkβkCov

(
φ(Yk)h

−d
k K

(
x−Xk

hk

)
, h−d

k K

(
x−Xk

hk

))

= QnΠn

n∑
k=1

Π−1
k Q−1

k γkβk

(
E
[
φ(Yk)h

−2d
k K2

(
x−Xk

hk

)]

− E
[
φ(Yk)h

−d
k K

(
x−Xk

hk

)]
E
[
h−d
k K

(
x−Xk

hk

)])

= QnΠn

n∑
k=1

Π−1
k Q−1

k γkβk

(
E[φ(Y )|X = x]f(x)R(K)h−d

k + o
(
h−d
k

)
−E[φ(Y )|X = x]f2(x) + o(1)

)
= QnΠn

n∑
k=1

Π−1
k Q−1

k γkβkh
−d
k

(
rφ(x)f(x)R(K) + o (1)

)
=

βnh
−d
n

1− (β − ad− ξ−1
β )ξα

rφ(x)f(x)R(K) + o
(
βnh

−d
n

)
.

Consequently, (9) and (10) follow from the combination of the variance of aφn(x)
((5) and (6)), as well as from that of fn(x) ((24) and (25)) and the covariance
expression (27).
It is noteworthy that, for the case a ≥ β/(d+ 4), we deduce

V ar[rφn(x)]

=
1

f(x)

βn

hd
n

E[φ(Y )2|X = x]

2− (β − ad)ξβ
R(K) + o

(
βnh

−d
n

)
+

rφ(x)
2

f(x)

γn
hd
n

1

2− (α− ad)ξα
R(K)

+ o
(
γnh

−d
n

)
− 2

rφ(x)

f(x)2
βnh

−d
n

1− (β − ad− ξ−1
β )ξα

rφ(x)f(x)R(K) + o
(
βnh

−d
n

)
=

1

f(x)

βn

hd
n

E[φ(Y )2|X = x]

2− (β − ad)ξβ
R(K) + o

(
βnh

−d
n

)
+

rφ(x)
2

f(x)

βn

hd
n

ξα,β
2− (α− ad)ξα

R(K)

− 2
rφ(x)

2

f(x)

βnh
−d
n

1− (β − ad− ξ−1
β )ξα

R(K) + o
(
βnh

−d
n

)
=

βn

hd
n

R(K)

f(x)

[
E[φ(Y )2|X = x]

2− (β − ad)ξβ
− rφ(x)

2

(
2

1− (β − ad− ξ−1
β )ξα

− ξα,β
2− (α− ad)ξα

)]



THE STOCHASTIC APPROXIMATION METHOD FOR SEMI-RECURSIVE ... 53

+ o
(
βnh

−d
n

)
.

(2) For the case α < β:
Similarly to the first case, and taking the stepsize (γn) as a reference, we infer
the result.

□

Proof. (Theorem 3.2)
We have

Dn(x)− E[Dn(x)] =
1

f(x)
[aφn(x)− E[aφn(x)]]−

rφ(x)

f(x)
[fn(x)− E[fn(x)]]

=
1

f(x)
Qn

n∑
k=1

Q−1
k βk (Tk(x)− E[Tk(x)]) ,

with

Tk(x) = Zk(x)− rφ(x)Q
−1
n ΠnΠ

−1
k Qkβ

−1
k γkWk(x).

We note

(28) Sk(x) = Q−1
k βk (Tk(x)− E[Tk(x)]) .

Hence, we can write

(29) Dn(x)− E[Dn(x)] =
1

f(x)
Qn

n∑
k=1

Sk(x).

Now, we are trying to apply Lyapunov’s theorem for Sk(x). For this reason, we assume

υ2
n =

n∑
k=1

V ar[Sk(x)]

=

n∑
k=1

Q−2
k β2

kV ar[Tk(x)]

=

n∑
k=1

Q−2
k β2

kV ar [Zk(x)] + rφ(x)
2Q−2

n Π2
n

n∑
k=1

Π−2
k γ2

kV ar [Wk(x)]

− 2rφ(x)Q
−1
n Πn

n∑
k=1

Q−1
k βkΠ

−1
k γkCov (Zk(x),Wk(x)) .

Here, we consider the case β ≤ α. Since we have

V ar [Zk(x)] = h−d
k

(
E[φ(Y )2|X = x]f(x)R(K) + o(1)

)
,

V ar [Wk(x)] = h−d
k

(
f(x)R(K) + o(1)

)
,

Cov (Zk(x),Wk(x)) = h−d
k

(
rφ(x)f(x)R(K) + o(1)

)
,

then, the application of lemma 10.1 ensures that

υ2
n =

n∑
k=1

Q−2
k β2

kh
−d
k

(
E[φ(Y )2|X = x]f(x)R(K) + o(1)

)
+ rφ(x)

2Q−2
n Π2

n

n∑
k=1

Π−2
k γ2

kh
−d
k

(
f(x)R(K) + o(1)

)
− 2rφ(x)Q

−1
n Πn

n∑
k=1

Q−1
k βkΠ

−1
k γkh

−d
k

(
rφ(x)f(x)R(K) + o(1)

)
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=
βn

hd
n

f(x)2

Q2
n

[Σβ(x) + o (1)].

On the other side, we have

∀p > 0, E[|Tk(x)|2+p] = O

(
1

h
d(1+p)
k

)
.

Therefore,

E
[
|Sk(x)|2+p

]
= Q−2−p

k β2+p
k E

[
|Tk(x)− E[Tk(x)]|2+p]

≤ 2Q−2−p
k β2+p

k E
[
|Tk(x)|2+p

]
.

Hence,

(30) E
[
|Sk(x)|2+p

]
= O

(
Q−2−p

k β2+p
k

1

h
d(1+p)
k

)
.

As a consequence,

n∑
k=1

E[|Sk(x)|2+p] = O

(
n∑

k=1

Q−2−p
k β2+p

k

1

h
d(1+p)
k

)
.

In what follows, let us assume that there is p > 0, such that

lim
n→+∞

(nβn) >
1 + p

2 + p
(β − ad).

The application of lemma 10.1 yields

n∑
k=1

E[|Sk(x)|2+p] = O

(
β1+p
n

Q2+p
n h

d(1+p)
k

)
.

Hence,

1

υ2+p
n

n∑
k=1

E[|Sk(x)|2+p] = O

(
β1+p
n

υ2+p
n Q2+p

n h
d(1+p)
n

)
.

Thus, we deduce

1

υ2+p
n

n∑
k=1

E[|Sk(x)|2+p] = O

((
βn

hd
n

)p/2
)

= o (1) .

In addition, since we have

lim
n→+∞

1

υ2+p
n

n∑
k=1

E
[
|Sk(x)− E[Sk(x)]|2+p

]
= lim

n→+∞

1

υ2+p
n

n∑
k=1

E[|Sk(x)|2+p] = 0,

therefore, by applying the Lyapunov theorem, we get

1√
υ2
n

n∑
k=1

(Sk(x)− E[Sk(x)])
D−→

n→+∞
N (0 , 1) ,

which implies

1

υn

n∑
k=1

Sk(x)
D−→

n→+∞
N (0 , 1) .

Moreover, (26) and (29) ensure that

(31) f(x)Q−1
n υ−1

n

(
rφn(x)− E[rφn(x)]

) D−→
n→+∞

N (0 , 1) .
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Given that υ2
n =

βn

hd
n

f(x)2

Q2
n

[Σβ(x)+ o (1)], where Σβ(x) is defined in (12) and by replac-

ing υn with its value in (31), we conclude that

(32)

√
β−1
n hd

n

(
rφn(x)− E[rφn(x)]

) D−→
n→+∞

N (0 ,Σβ(x)) .

The convergence in (11) then follows from the application of Lyapounov’s Theorem and
the combination between (7), (8) and (32).
For the convergence in probability, by applying the Bienaymé–Chebyshev inequality, we
get

P
[∣∣∣∣rφn(x)− rφ(x)

h2
n

− E
[
rφn(x)− rφ(x)

h2
n

]∣∣∣∣ ≥ ϵ

]
≤

V ar[rφn(x)]

h4
nϵ

2
.

Since we have β−1
n hd+4

n −→
n→+∞

∞, then we deduce that

1

h2
n

(
rφn(x)− rφ(x)

) P−→
n→+∞

Mβ(x),

with Mβ(x) is provided in (12). □

Proof. (Theorem 3.3)
For this proof, we state

ζn(x) :=

n∑
k=1

Sk(x) = f(x)Q−1
n (Dn(x)− E[Dn(x)]) ,

where Sk is given in (28).

Here, we consider the case β ≤ α and we suppose that a ≥ β
d+4 . Set β0 = h0 = 1 and

H2
n = Q2

nβ
−1
n hd

n, then we get

ln(H−2
n ) = ln

(
Q−2

n

)
+ ln(βnh

−d
n )

= −2 ln (Qn) + ln

(
n∏

k=1

β−1
k−1h

−d
k−1

β−1
k h−d

k

)

= −2

n∑
k=1

ln (1− βk) +

n∑
k=1

ln

(
1− β − ad

k
+ o

(
1

k

))

= −2

n∑
k=1

(−βk + o(βk)) +

n∑
k=1

(−(β − ad)βkξ + o(βk))

=

n∑
k=1

(2βk − (β − ad)βkξ + o(βk)) .

Hence, using the notation sn =
n∑

k=1

βk, we can write

(33) ln(H−2
n ) = (2− (β − ad)ξ) sn + o (sn) .

Since 2 − (β − ad)ξ > 0 and s∞ diverges, then we deduce that lim
n→+∞

H−2
n = ∞ and

lim
n→+∞

H−2
n−1

H−2
n

= 1. Moreover, we have
n∑

k=1

V ar[Sk(x)] =
βn

hd
n

f(x)2

Q2
n

[Σβ(x) + o (1)], where

Σβ(x) is defined in (13).
From this perspective, it’s obvious that

lim
n→+∞

H2
n

n∑
k=1

V ar[Sk(x)] = f(x)2Σβ(x).
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Considering the particular case of p = 1 in (30), we have E
[
|Sk(x)|3

]
= O

(
Q−3

k β3
kh

−2d
k

)
and then we deduce that

1

n
√
n

n∑
k=1

E
[
|HnSk(x)|3

]
= O

(
H3

n

n
√
n
Q−3

k β3
kh

−2d
k

)
= O

(
H3

n

n
√
n
Q−3

k βk o
(
[βkh

−d
k ]

3
2

))
= O

(
H3

n

n
√
n
Q−3

n o
(
[βnh

−d
n ]

3
2

))
= o

(
H3

n

n
√
n
Q−3

n [βnh
−d
n ]

3
2

)
= o

(
1

n
√
n

)
= o

(
[ln(H−2

n )]−1
)
.

The application of the LIL Theorem1 in Mokaddem and Pelletier (2007) [10] then ensures
that, with probability one, the sequence Hnζn(x)√

2 ln ln(H−2
n )

 =


√
β−1
n hd

nf(x) (Dn(x)− E[Dn(x)])√
2 ln ln(H−2

n )


is relatively compact and its limit set is the interval[

−f(x)
√
Σβ(x), f(x)

√
Σβ(x)

]
.

On account of (33), we have lim
n→+∞

ln ln(H−2
n )

ln(sn) = 1, and referring to (26) and (29), we

deduce that 
√
β−1
n hd

n

(
rφn(x)− E[rφn(x)]

)
√
2 ln sn


is relatively compact and its limit set is the interval[

−
√
Σβ(x),

√
Σβ(x)

]
.

The combination between (7) and (8) then entails√ β−1
n hd

n

2 ln (sn)

(
rφn(x)− rφ(x)

)
is relatively compact and its limit set is the interval[√

b

2
Mβ(x)−

√
Σβ(x) ,

√
b

2
Mβ(x) +

√
Σβ(x)

]
,

where Mβ(x) is defined in (12) and Σβ(x) is provided in (13).

Now we suppose that a < β
d+4 . Set H

−2
n = Q−2

n h4
n(ln ln(Q

−2
n h4

n)
−1), then we get

ln(Q−2
n h4

n) = ln
(
Q−2

n

)
+ ln(h4

n)

= −2 ln (Qn) + ln

(
n∏

k=1

h−4
k−1

h−4
k

)
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= −2

n∑
k=1

ln (1− βk) +

n∑
k=1

ln

(
1− 4a

k
+ o

(
1

k

))

= −2

n∑
k=1

(−βk + o(βk)) +

n∑
k=1

(−4aβkξ + o(βk)) .

Hence, using the notation sn =
n∑

k=1

βk, we can write

(34) ln(H−2
n ) = (2− 4aξ) sn + o (sn) .

Since 2 − 4aξ > 0 and s∞ diverges, then we deduce that lim
n→+∞

H−2
n = +∞ and

lim
n→+∞

H−2
n−1

H−2
n

= 1. Moreover, we have

H2
n

n∑
k=1

V ar[Sk(x)] = O

(
Q2

nh
−4
n ln ln(Q−2

n h4
n)

βn

hd
nQ

2
n

)
= o(1).

Considering the particular case of p = 1 in (30), we have E
[
|Sk(x)|3

]
= O

(
Q−3

k β3
kh

−2d
k

)
and then we deduce that

1

n
√
n

n∑
k=1

E
[
|HnSk(x)|3

]
= O

(
H3

n

n
√
n

n∑
k=1

Q−3
k β3

kh
−2d
k

)

= O

(
H3

n

n
√
n

n∑
k=1

Q−3
k βk o

(
h6
k

))

= o

(
H3

n

n
√
n
Q−3

n h6
n

)
= o

(
[ln(H−2

n )]−1
)
.

The application of the LIL Theorem then ensures that, with probability one, the sequence Hnζn(x)√
2 ln ln(H−2

n )

 =

h−2
n

√
ln ln(Q−2

n h4
n)f(x) (Dn(x)− E[Dn(x)])√
2 ln ln(H−2

n )


is relatively compact and its limit set is 0.

On account of (33), we have lim
n→+∞

ln ln(H−2
n )

ln ln(Q−2
n h4

n)
= 1, and referring to (26) and (29), we

deduce that
lim

n→+∞
h−2
n

(
rφn(x)− E[rφn(x)]

)
= 0.

The combination between (7) and (8) then entails

lim
n→+∞

h−2
n

(
rφn(x)− rφ(x)

)
= Mβ(x),

where Mβ(x) is defined in (12). □
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