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Abstract. In a pioneer work, Révész (1973) introduces the stochastic approxi-
mation method to build up a recursive kernel estimator of the regression function
x 7→ E(Y |X = x). However, according to Révész (1977), his estimator has two main
drawbacks: on the one hand, its convergence rate is smaller than that of the non-
recursive Nadaraya-Watson’s kernel regression estimator, and, on the other hand,
the required assumptions on the density of the random variable X are stronger
than those usually needed in the framework of regression estimation. We first come
back on the study of the convergence rate of Révész’s estimator. An approach in
the proofs completely different from that used in Révész (1977) allows us to show
that Révész’s recursive estimator may reach the same optimal convergence rate as
Nadaraya-Watson’s estimator, but the required assumptions on the density of X re-
main stronger than the usual ones, and this is inherent to the definition of Révész’s
estimator. To overcome this drawback, we introduce the averaging principle of
stochastic approximation algorithms to construct the averaged Révész’s regression
estimator, and give its asymptotic behaviour. Our assumptions on the density of
X are then usual in the framework of regression estimation. We prove that the
averaged Révész’s regression estimator may reach the same optimal convergence
rate as Nadaraya-Watson’s estimator. Moreover, we show that, according to the
estimation by confidence intervals point of view, it is better to use the averaged
Révész’s estimator rather than Nadaraya-Watson’s estimator.

1. Introduction

The use of stochastic approximation algorithms in the framework of regression es-
timation was introduced by Kiefer and Wolfowitz (1952). It allows the construction
of online estimators. The great advantage of recursive estimators on nonrecursive
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ones is that their update, from a sample of size n to one of size n+1, requires consid-
erably less computations. This property is particularly important in the framework
of regression estimation, since the number of points at which the function is es-
timated is usually very large. The famous Kiefer and Wolfowitz algorithm allows
the approximation of the point at which a regression function reaches its maxi-
mum. This pioneer work was widely discussed and extended in many directions
(see, among many others, Blum, 1954; Fabian, 1967; Kushner and Clark, 1978;
Hall and Heyde, 1980, Ruppert, 1982, Chen, 1988, Spall, 1988, Polyak and Tsy-
bakov, 1990; Dippon and Renz, 1997; Spall, 1997; Chen et al., 1999; Dippon, 2003
and Mokkadem and Pelletier, 2007). The question of applying Robbins-Monro’s
procedure to construct a stochastic approximation algorithm, which allows the es-
timation of a regression function at a given point (instead of approximating its
mode) was introduced by Révész (1973).

Let us recall that Robbins-Monro’s procedure consists in building up stochastic
approximation algorithms, which allow the search of the zero z∗ of an unknown
function h : R → R. These algorithms are constructed in the following way : (i)
Z0 ∈ R is arbitrarily chosen; (ii) the sequence (Zn) is recursively defined by setting

Zn = Zn−1 + γnWn, (1.1)

where Wn is an observation of the function h at the point Zn−1, and where the
stepsize (γn) is a sequence of positive real numbers that goes to zero.

Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent, identically distributed pairs
of random variables, and let f denote the probability density of X . In order to
construct a stochastic algorithm for the estimation of the regression function r : x 7→
E(Y |X = x) at a point x such that f(x) 6= 0, Révész (1973) defines an algorithm,
which approximates the zero of the function h : y 7→ f(x)r(x) − f(x)y. Following
Robbins-Monro’s procedure, this algorithm is defined by setting r0(x) ∈ R and, for
n ≥ 1,

rn(x) = rn−1(x) +
1

n
Wn(x), (1.2)

where Wn(x) is an “observation” of the function h at the point rn−1(x). To de-
fine Wn(x), Révész (1973) introduces a kernel K (that is, a function satisfying
∫

R
K(x)dx = 1) and a bandwidth (hn) (that is, a sequence of positive real numbers

that goes to zero), and sets

Wn(x) = h−1
n YnK(h−1

n [x − Xn]) − h−1
n K(h−1

n [x − Xn])rn−1(x). (1.3)

Révész (1977) chooses the bandwidth (hn) equal to (n−a) with a ∈]1/2, 1[, and
establishes a central limit theorem for rn(x) − r(x) under the assumption f(x) >
(1 − a)/2, as well as an upper bound of the uniform strong convergence rate of rn

on any bounded interval I on which infx∈I f(x) > (1 − a)/2. The two drawbacks
of his approach are the following. First, the condition a > 1/2 on the bandwidth
leads to a pointwise weak convergence rate of rn slower than n1/4, whereas the
optimal pointwise weak convergence rate of the kernel estimator of a regression
function introduced by Nadaraya (1964) and Watson (1964) is n2/5 (and obtained by
choosing a = 1/5). Then, the condition f(x) > (1−a)/2 (or infx∈I f(x) > (1−a)/2)
is stronger than the condition f(x) > 0 (or infx∈I f(x) > 0) usually required to
establish the convergence rate of regression’s estimators.

Our first aim in this paper is to come back on the study of the asymptotic
behaviour of Révész’s estimator. The technic we use is totally different from that
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employed by Révész (1977). Noting that the estimator rn can be rewritten as

rn(x) =

(

1 − 1

n
h−1

n K

(

x − Xn

hn

))

rn−1(x) +
1

n
h−1

n YnK

(

x − Xn

hn

)

=

(

1 − 1

n
f(x)

)

rn−1(x) +
1

n

[

f(x) − h−1
n K

(

x − Xn

hn

)]

rn−1(x)

+
1

n
h−1

n YnK

(

x − Xn

hn

)

,

we approximate the sequence (rn) by the unobservable sequence (ρn) recursively
defined by

ρn(x) =

(

1 − 1

n
f(x)

)

ρn−1(x) +
1

n

[

f(x) − h−1
n K

(

x − Xn

hn

)]

r(x)

+
h−1

n

n
YnK

(

x − Xn

hn

)

. (1.4)

The asymptotic properties (pointwise weak and strong convergence rate, upper
bound of the uniform strong convergence rate) of the approximating algorithm (1.4)
are established by applying different results on the sums of independent variables
and on the martingales. To show that the asymptotic properties of the approxi-
mating algorithm (1.4) are also satisfied by Révész’s estimator, we use a technic of
successive upper bounds. It turns out that our technique of demonstration allows
the choice of the bandwidth (hn) = (n−1/5), which makes Révész’s estimator con-
verge with the optimal pointwise weak convergence rate n2/5. However, to establish
the asymptotic convergence rate of Révész’s estimator, we need the same kind of
conditions on the marginal density of X as Révész (1977) does. To understand why
this second drawback is inherent in the definition of Révész’s estimator, let us come
back on the algorithm (1.1). The convergence rate of stochastic approximation al-
gorithms constructed following Robbins-Monro’s scheme, and used for the search
of the zero z∗ of an unknown function h, was widely studied. It is now well known
(see, among many others, Nevelsón and Has’minskii, 1976; Kushner and Clark,
1978; Ljung et al., 1992 and Duflo, 1996) that the convergence rate of algorithms
defined as (1.1) is obtained under the condition that the limit of the sequence (nγn)
as n goes to infinity is larger than a quantity, which involves the differential of h at
the point z∗. Now, let us recall that the Révész’s estimator (1.2) is an algorithm
approximating the zero y∗ = r(x) of the function y 7→ f(x)r(x)− f(x)y (whose dif-
ferential at the point y∗ equals −f(x)), and let us enlighten that the stepsize used
to define his algorithm is (γn) = (n−1) (so that limn→∞ nγn = 1); the condition
on the limit of (nγn), which is usual in the framework of stochastic approximation
algorithms, comes down, in the case of Révész’s estimator, to a condition on the
probability density f .

Our second aim in this paper is to introduce the averaging principle of stochastic
approximation algorithms in the framework of regression estimation. As a matter
of fact, in the framework of stochastic approximation, this principle is now well
known to allow to get rid of tedious conditions on the stepsize. It was independently
introduced by Ruppert (1988) and Polyak (1990), and then widely discussed and
extended (see, among many others, Yin, 1991; Delyon and Juditsky, 1992; Polyak
and Juditsky, 1992; Kushner and Yang, 1993; Le Breton, 1993; Le Breton and
Novikov, 1995; Dippon and Renz, 1996, 1997 and Pelletier, 2000). This procedure
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consists in: (i) running the approximation algorithm by using slower stepsizes;
(ii) computing an average of the approximations obtained in (i). We thus need to
generalize the definition of Révész’s estimator before defining the averaged Révész’s
estimator.

Let (γn) be a sequence of positive numbers going to zero. The generalized
Révész’s estimator is defined by setting r0(x) ∈ R, and, for n ≥ 1,

rn(x) = rn−1(x) + γnWn(x), (1.5)

where Wn(x) is defined in (1.3). (Révész’s estimator clearly corresponds to the
choice of the stepsize (γn) = (n−1)). The estimator (1.5) with (γn) not necessary
equal to (n−1) was introduced in Györfi et al. (2002), where the strong universal
convergence rate of rn(x) is also proved. Now, let the stepsize in (1.5) satisfy
limn→∞ nγn = ∞, and let (qn) be a positive sequence such that

∑

qn = ∞. The
averaged Révész’s estimator is defined by setting

rn(x) =
1

∑n
k=1 qk

n
∑

k=1

qkrk(x) (1.6)

(where the rk(x) are given by the algorithm (1.5)). Let us enlighten that the
estimator rn is still recursive.

We establish the asymptotic behaviour (pointwise weak and strong convergence
rate, upper bound of the uniform strong convergence rate) of rn. The condition we
require on the density f to prove the pointwise (respectively uniform) convergence
rate of the averaged Révész’s estimator is the usual condition f(x) > 0 (respectively
infx∈I f(x) > 0). Concerning the bandwidth, the choice (hn) = (n−1/5), which
leads to the optimal convergence rate n2/5, is allowed. Finally, we show that to
construct confidence intervals by slightly undersmoothing, it is preferable to use the
averaged Révész’s estimator rn (with an adequate choice of weights (qn)) rather
than Nadaraya-Watson’s estimator, since the asymptotic variance of this lattest
estimator is larger than that of rn.

Our paper is organized as follows. Our assumptions and main results are stated
in Section 2, simulations study is performed in Section 3, the outlines of the proofs
given in Section 4, whereas Section 5 is devoted to the proof of several lemmas.

2. Assumptions and main results

Let us first define the class of positive sequences that will be used in the statement
of our assumptions.

Definition 2.1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence. We

say that (vn) ∈ GS (γ) if

lim
n→∞

n

[

1 − vn−1

vn

]

= γ. (2.1)

Condition (2.1) was introduced by Galambos and Seneta (1973) to define regu-
larly varying sequences (see alsoBojanic and Seneta, 1973); it was used in Mokka-
dem and Pelletier (2007) in the context of stochastic approximation algorithms.

Typical sequences in GS (γ) are, for b ∈ R, nγ (log n)
b
, nγ (log log n)

b
, and so on.

Let g (s, t) denote the density of the couple (X, Y ) (in particular f(x) =
∫

R
g(x, t)

dt), and set a (x) = r (x) f (x). The assumptions to which we shall refer for our
pointwise results are the following.
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(A1) K : R → R is a nonnegative, continuous, bounded function satisfying
∫

R
K (z)dz = 1,

∫

R
zK (z)dz = 0 and

∫

R
z2K (z) dz < ∞.

(A2) i) (γn) ∈ GS (−α) with α ∈
]

3
4 , 1
]

; moreover the limit of (nγn)
−1

as n goes
to infinity exists.
ii) (hn) ∈ GS (−a) with a ∈

]

1−α
4 , α

3

[

.
(A3) i) g (s, t) is two times continuously differentiable with respect to s.

ii) For q ∈ {0, 1, 2}, s 7→
∫

R
tqg (s, t) dt is a bounded function continuous at

s = x.
For q ∈ [2, 3], s 7→

∫

R
|t|q g (s, t) dt is a bounded function.

iii) For q ∈ {0, 1},
∫

R
|t|q
∣

∣

∣

∂g
∂x (x, t)

∣

∣

∣ dt < ∞, and s 7→
∫

R
tq ∂2g

∂s2 (s, t) dt is a

bounded function continuous at s = x.

Remark 2.2. (A3) ii) says in particular that f is continuous at x.

For our uniform results, we shall also need the following additional assumption.

(A4) i)K is Lipschitz-continuous.
ii) There exists t∗ > 0 such that E (exp (t∗ |Y |)) < ∞.
iii) a ∈ ]1 − α, α − 2/3[.

iv) For q ∈ {0, 1}, x 7→
∫

R
|t|q
∣

∣

∣

∂g
∂x (x, t)

∣

∣

∣ dt is bounded on the set {x, f(x) >

0}.
Throughout this paper we shall use the following notation :

ξ = lim
n→∞

(nγn)−1 , (2.2)

and, for f (x) 6= 0,

m(2) (x) =
1

2f (x)

[∫

R

t
∂2g

∂x2
(x, t) dt − r (x)

∫

R

∂2g

∂x2
(x, t) dt

]∫

R

z2K (z)dz.

The asymptotic properties of the generalized Révész’s estimator defined in (1.5)
are stated in Section 2.1, those of the averaged estimator defined in (1.6) in Section
2.2.

2.1. Asymptotic behaviour of the generalized Révész’s estimator. For stepsizes satis-
fying limn→∞ nγn = ∞, the strong universal consistency of the generalized Révész’s
estimator was established by Walk (2001) and Györfi et al. (2002). The aim of this
section is to state the convergence rate of the estimator defined by (1.5). Theorems
2.3, 2.4, and 2.5 below give its weak pointwise convergence rate, its strong point-
wise convergence rate, and an upper bound of its strong uniform convergence rate,
respectively. Let us enlighten that the particular choice of stepsize (γn) = (n−1)
gives the asymptotic behaviour of Révész’s estimator defined in (1.2).

Theorem 2.3 (Weak pointwise convergence rate of rn).
Let Assumptions (A1) − (A3) hold for x ∈ R such that f (x) 6= 0.

(1) If there exists c ≥ 0 such that γ−1
n h5

n → c, and if limn→∞(nγn) > (1 −
a)/(2f(x)), then
√

γ−1
n hn (rn (x) − r (x))

D→ N
(√

cf (x)m(2) (x)

f (x) − 2aξ
,
V ar [Y |X = x] f (x)

(2f (x) − (1 − a) ξ)

∫

R

K2 (z)dz

)

.
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(2) If γ−1
n h5

n → ∞, and if limn→∞ (nγn) > 2a/f (x), then

1

h2
n

(rn (x) − r (x))
P→ f (x)m(2) (x)

(f (x) − 2aξ)
,

where
D→ denotes the convergence in distribution, N the Gaussian-distribution and

P→ the convergence in probability.

The combination of Parts 1 and 2 of Theorem 2.3 ensures that the optimal weak
pointwise convergence rate of rn equals n2/5, and is obtained by choosing a = 1/5
and (γn) such that limn→∞ (nγn) ∈]2/(5f (x)),∞[.

Theorem 2.4 (Strong pointwise convergence rate of rn).
Let Assumptions (A1) − (A3) hold for x ∈ R such that f (x) 6= 0.

(1) If there exists c ≥ 0 such that γ−1
n h5

n/ ln (
∑n

k=1 γk) → c, and if

lim
n→∞

(nγn) > (1 − a)/(2f(x)),

then, with probability one, the sequence
(

√

γ−1
n hn

2 ln (
∑n

k=1 γk)
(rn (x) − r (x))

)

is relatively compact and its limit set is the interval




√

c

2

f (x)m(2) (x)

f (x) − 2aξ
−
√

V ar [Y |X = x] f (x)
∫

R
K2 (z) dz

(2f (x) − (1 − a) ξ)
,

√

c

2

f (x) m(2) (x)

f (x) − 2aξ
+

√

V ar [Y |X = x] f (x)
∫

R
K2 (z)dz

(2f (x) − (1 − a) ξ)



 .

(2) If γ−1
n h5

n/ ln (
∑n

k=1 γk) → ∞, and if limn→∞ (nγn) > 2a/f (x), then, with
probability one,

lim
n→∞

1

h2
n

(rn (x) − r (x)) =
f (x) m(2) (x)

f (x) − 2aξ
.

Theorem 2.5 (Strong uniform convergence rate of rn).
Let I be a bounded open interval of R on which ϕ = infx∈I f (x) > 0, and let
Assumptions (A1) − (A4) hold for all x ∈ I.

(1) If the sequence
(

γ−1
n h5

n/[lnn]2
)

is bounded and if limn→∞(nγn) > 1 −
a/(2ϕ), then

sup
x∈I

|rn (x) − r (x)| = O

(
√

γnh−1
n lnn

)

a.s.

(2) If limn→∞

(

γ−1
n h5

n/[lnn]2
)

= ∞ and if limn→∞ (nγn) > 2a/ϕ, then

sup
x∈I

|rn (x) − r (x)| = O
(

h2
n

)

a.s.

Parts 1 of Theorems 2.3 and 2.5 were obtained by Révész (1977) for the choices
(γn) = (n−1) and (hn) = (n−a) with a ∈]1/2, 1[. Let us underline that, for this
choice of stepsize, the conditions limn→∞(nγn) > (1−a)/(2f(x)) and limn→∞(nγn)
> (1 − a)/(2 infx∈I f(x)) come down to the following conditions on the unknown
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density f : f(x) > (1 − a)/2 and infx∈I f(x) > (1 − a)/2. Let us also mention
that our assumption (A2) implies a ∈]0, 1/3[, so that our results on the generalized
Révész’s estimator do not include the results given in Révész (1977). However,
our assumptions include the choice (γn) = (n−1) and a = 1/5, which leads to
the optimal weak convergence rate n2/5, whereas the condition on the bandwidth
required by Révész leads to a convergence rate of rn slower than n1/4.

Although the optimal convergence rate we obtain for the generalized Révész’s
estimator rn has the same order as that of Nadaraya-Watson’s estimator, this es-
timator has a main drawback: to make rn converge with its optimal rate, one
must set a = 1/5 and choose (γn) such that limn→∞ nγn = γ∗ ∈]0,∞[ with
γ∗ > 2/[5f(x)] whereas the density f is unknown. This tedious condition dis-
appears as soon as the stepsize is chosen such that limn→∞ nγn = ∞ (for instance
when (γn) = ((ln n)bn−1) with b > 0), but the optimal convergence rate n2/5 is
then not reached any more.

2.2. Asymptotic behaviour of the averaged Révész’s estimator. To state the asymp-
totic properties of the averaged Révész’s estimator defined in (1.6), we need the
following additional assumptions.

(A5) limn→∞ nγn (ln (
∑n

k=1 γk))
−1

= ∞ and a ∈ ]1 − α, (4α − 3) /2[.
(A6) (qn) ∈ GS (−q) with q < min {1 − 2a, (1 + a) /2}.

Theorems 2.6, 2.7 and 2.8 below give the weak pointwise convergence rate, the
strong pointwise convergence rate, and an upper bound of the strong uniform con-
vergence rate of the averaged Révész’s estimator.

Theorem 2.6 (Weak pointwise convergence rate of r̄n).
Let Assumptions (A1) − (A3), (A5) and (A6) hold for x ∈ R such that f (x) 6= 0.

(1) If there exists c ≥ 0 such that nh5
n → c, then

√

nhn (r̄n (x) − r (x))

D→ N
(

c
1
2

1 − q

1 − q − 2a
m(2) (x) ,

(1 − q)
2

1 + a − 2q

V ar [Y |X = x]

f (x)

∫

R

K2 (z)dz

)

.

(2) If nh5
n → ∞, then

1

h2
n

(r̄n (x) − r (x))
P→ 1 − q

1 − q − 2a
m(2) (x) .

The combination of Parts 1 and 2 of Theorem 2.6 ensures that the optimal weak
pointwise convergence rate of r̄n is obtained by choosing a = 1/5, and equals n2/5.

Theorem 2.7 (Strong pointwise convergence rate of r̄n).
Let Assumptions (A1) − (A3), (A5) and (A6) hold for x ∈ R such that f (x) 6= 0.

(1) If there exists c1 ≥ 0 such that nh5
n/ ln lnn → c1, then, with probability one,

the sequence
(
√

nhn

2 ln lnn
(r̄n (x) − r (x))

)
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is relatively compact and its limit set is the interval


c
1
2
1

1 − q

1 − q − 2a
m(2) (x) −

√

(1 − q)
2

1 + a − 2q

V ar [Y/X = x]

f (x)

∫

R

K2 (z)dz,

c
1
2
1

1 − q

1 − q − 2a
m(2) (x) +

√

(1 − q)
2

1 + a − 2q

V ar [Y/X = x]

f (x)

∫

R

K2 (z) dz



 .

(2) If nh5
n/ ln lnn → ∞, then

lim
n→∞

1

h2
n

(r̄n (x) − r (x)) =
1 − q

1 − q − 2a
m(2) (x) a.s.

Theorem 2.8 (Strong uniform convergence rate of r̄n).
Let I be a bounded open interval of R on which infx∈I f (x) > 0, and let Assumptions
(A1) − (A6) hold for all x ∈ I.

(1) If the sequence
(

nh5
n/[lnn]2

)

is bounded, and if α > (3a + 3) /4, then

sup
x∈I

|r̄n (x) − r (x)| = O
(
√

n−1h−1
n ln n

)

a.s.

(2) If limn→∞

(

nh5
n/[lnn]2

)

= ∞, and if, in the case a ∈ [α/5, 1/5], α >
(4a + 1) /2, then

sup
x∈I

|r̄n (x) − r (x)| = O
(

h2
n

)

a.s.

Whatever the choices of the stepsize (γn) and of the weight (qn) are, the conver-
gence rate of the averaged Révész’s estimator has the same order as that of the gen-
eralized Révész’s estimator defined with a stepsize (γn) satisfying limn→∞(nγn)−1 6=
0 (and, in particular, of Révész’s estimator). The main advantage of the averaged
Révész’s estimator on its nonaveraged version is that its convergence rate is ob-
tained without tedious conditions on the marginal density f .
Now, to compare the averaged Révész’s estimator with the nonrecursive Nadaraya-
Watson’s estimator defined as

r̃n (x) =

∑n
k=1 YkK

(

h−1
n [x − Xk]

)

∑n
k=1 K

(

h−1
n [x − Xk]

) ,

let us consider the estimation by confidence intervals point of view. In the context
of density estimation, Hall (1992) shows that, to construct confidence intervals,
slightly undersmoothing is more efficient than bias estimation; in the framework
of regression estimation, the method of undersmoothing to construct confidence
regions is used in particular by Neumann and Polzehl (1998) and Claeskens and
van Keilegom (2003). To undersmooth, we choose (hn) such that limn→∞ nh5

n = 0
(and thus a ≥ 1/5). Moreover, to construct a confidence interval for r(x), it is
advised to choose the weight (qn), which minimizes the asymptotic variance of r̄n.
For a given a, the function q 7→ (1 − q)2/(1 + a − 2q) reaching its minimum at the
point q = a, we can state the following corollary.

Corollary 2.9.
Let Assumptions (A1) − (A3), (A5) and (A6) hold for x ∈ R such that f (x) 6= 0,
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and with a ≥ 1/5. To minimize the asymptotic variance of r̄n, q must be chosen
equal to a. Moreover, if limn→∞ nh5

n = 0, we then have

√

nhn (r̄n (x) − r (x))
D→ N

(

0, (1 − a)
V ar [Y |X = x]

f (x)

∫

R

K2 (z)dz

)

.

Let us recall that, when the bandwidth (hn) is chosen such that limn→∞ nh5
n = 0,

Nadaraya-Watson’s estimator satisfies the central limit theorem

√

nhn (r̃n (x) − r (x))
D→ N

(

0,
V ar [Y |X = x]

f (x)

∫

R

K2 (z)dz

)

. (2.3)

It turns out that the averaged Révész’s estimator defined with a weight (qn) be-
longing to GS(−a) has a smaller asymptotic variance than Nadaraya-Watson’s es-
timator. According to the estimation by confidence intervals point of view, it is
thus better to use the averaged Révész’s estimator rather than Nadaraya-Watson’s
one. This superiority of the recursive averaged Révész’s estimator on the classi-
cal nonrecursive Nadaraya-Watson’s estimator must be related to that of recursive
density estimators on the classical nonrecursive Rosenblatt’s estimator, and can be
explained more easily in the framework of density estimation: roughly speaking,
Rosenblatt’s estimator can be seen as the average of n independent random vari-
ables, which all share the same variance vn, whereas recursive estimators appear
as the average of n independent random variables whose variances v∗k, 1 ≤ k ≤ n,
satisfy v∗k < vn for all k < n and v∗n = vn.

3. Simulations

The object of this section is to provide a simulations study comparing Nadaraya-
Watson’s estimator and the averaged Révész’s estimator. We consider the regression
model

Y = r (X) + dε,

where d > 0 and ε is N (0, 1)-distributed. Whatever the estimator is, we choose

the kernel K (x) = (2π)
−1/2

exp
(

−x2/2
)

, and the bandwidth equal to (hn) =

n−1/5 (lnn)
−1

(which corresponds to a slight undersmoothing). The confidence
intervals of r (x) we consider are the following.

• When Nadaraya-Watson’s estimator r̃n is used, we set

Ĩn =



r̃n (x) − 1.96

√

∑n
i=1 (Yi − r̃n (Xi))

2

n2hnf̃n (x)

∫

R

K2 (z)dz,

r̃n (x) + 1.96

√

∑n
i=1 (Yi − r̃n (Xi))

2

n2hnf̃n (x)

∫

R

K2 (z)dz



 ,

where f̃n (x) = (nhn)−1
∑n

k=1 K
(

h−1
n [x − Xk]

)

is Rosenblatt’s density es-

timator. In view of (2.3), the asymptotic confidence level of Ĩn is 95%.
• To define the averaged Révész’s estimator r̄n, we choose the weights (qn)

equal to (hn). This choice guarantees that (hn) and (qn) both belong to
GS (−a) (with a = 1/5 here), so that, in view of Corollary 2.9, the asymp-
totic variance of r̄n is minimal. We also let (γn) =

(

n−0.9
)

(this choice
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being allowed by our assumptions). Moreover, we estimate the density f

by the recursive estimator f̂n (x) defined as

f̂n(x) = (1 − βn)f̂n−1(x) + βnh−1
n K

(

x − Xn

hn

)

,

where (βn) =
(

4
5n−1

)

; this choice of the stepsize (βn) is known to minimize

the variance of f̂n (see Mokkadem et al., 2009). Finally, replacing r̃n and

f̃n by the recursive estimators r̄n and f̂n in the definition of Ĩn, we get the
recursive confidence interval

Īn =

[

r̄n (x) − 1.96

√

∑n
i=1 (Yi − r̄n (Xi))

2

n2hnf̂n (x)

∫

R

K2 (z)dz,

r̄n (x) + 1.96

√

∑n
i=1 (Yi − r̄n (Xi))

2

n2hnf̂n (x)

∫

R

K2 (z) dz

]

.

The widths of the intervals Ĩn and Īn are of the same order, but the asymp-
totic level of Īn is larger than that of Ĩn. More precisely, let Φ denote the dis-
tribution function of the standard normal; the application of Corollary 2.9

ensures that the asymptotic level of Īn is 2Φ
(

1.96/
√

4/5
)

− 1 = 97.14%.

We consider three sample sizes n = 50, n = 100 and n = 200, three regression

functions r(x) = cos(x), r (x) = 0.3 exp(−4 (x + 1)
2
) + 0.7 exp(−16 (x − 1)

2
), and

r (x) = 1 + 0.4x, three points x = −0.5, x = 0 and x = 0.5, two values of d, d = 1
and d = 2, and three densities of X , standard normal, normal mixture and student
with 6 degrees of freedom. In each case the number of simulations is N = 5000.
In each table, the first line corresponds to the use of Nadaraya-Watson’s estimator
r̃n and gives the empirical levels #{r (x) ∈ Ĩn}/N ; the second line corresponds
to the use of the averaged Révész’s estimator r̄n and gives the empirical levels
#{r (x) ∈ Īn}/N .

The simulations results confirm the theoretical ones: the coverage error of the
intervals built up with the averaged Révész’s estimator is smaller than the coverage
error of the intervals built up with Nadaraya-Watson’s estimator.
Model r(x) = cos(x).

Distribution of X: N (0, 1)
x = −0.5 x = 0 x = 0.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
d = 1

96.5% 96.76% 96.5% 96.44% 96.62% 96.84% 96.7% 97.04% 96.92%
99.82% 99.9% 99.92% 99.8% 99.68% 99.76% 99.94% 99.86% 99.88%

d = 2
95.42% 95.32% 95.7% 94.94% 95.44% 95.08% 95.4% 95.44% 96.2%
99.82% 99.86% 99.76% 99.66% 99.6% 99.44% 99.82% 99.9% 99.98%

Model r(x) = 0.3 exp(−4(x + 1)2) + 0.7 exp(−16(x − 1)2).

Distribution of X: N (0, 1)
x = −0.5 x = 0 x = 0.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
d = 1

95.04% 94.74% 95.08% 95.06% 95.28% 95.4% 95.44% 95.44% 95.84%
99.8% 99.62% 99.46% 99.24% 99.34% 99.06% 99.34% 99.34% 99.12%

d = 2
95.26% 95.14% 95.34% 94.74% 94.88% 95.06% 94.48% 95.56% 95.62%
99.86% 99.76% 99.72% 99.64% 99.52% 99.38% 99.62% 99.74% 99.6%
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Model r(x) = 1 + 0.4x.

Distribution of X: N (0, 1)
x = −0.5 x = 0 x = 0.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
d = 1

96.32% 95.94% 96.1% 96.24% 96.2% 96% 96.1% 96.24% 96.62%
99.84% 99.9% 99.6% 99.92% 99.82% 99.72% 99.86% 99.8% 99.76%

d = 2
95.46% 94.76% 95.16% 95.56% 95.38% 95.54% 94.98% 94.96% 95.62%
99.82% 99.88% 99.62% 99.88% 99.78% 99.68% 99.88% 99.82% 99.68%

Model r(x) = cos(x).

Distribution of X: 1/2N (−1/2, 1) + 1/2N (1/2, 1)
x = −0.5 x = 0 x = 0.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
d = 1

96.96% 97.06% 97.12% 97.26% 96.8% 97.1% 97.46% 96.94% 96.94%
99.96% 99.92% 99.88% 99.86% 99.8% 99.66% 99.96% 99.96% 99.8%

d = 2
95.6% 95.32% 95.56% 95.08% 95.36% 95.64% 96.38% 95.7% 95.34%
99.82% 99.92% 99.74% 99.94% 99.78% 99.64% 99.96% 99.9% 99.64%

Model r(x) = 0.3 exp(−4(x + 1)2) + 0.7 exp(−16(x − 1)2).

Distribution of X: 1/2N (−1/2, 1) + 1/2N (1/2, 1)
x = −0.5 x = 0 x = 0.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
d = 1

94.9% 95.38% 95.3% 95.56% 94.56% 94.86% 95.24% 95.24% 95.48%
99.74% 99.62% 99.58% 99.44% 99.22% 99.1% 99.34% 99.28% 99.06%

d = 2
94.54% 95.34% 94.92% 95.2% 94.4% 94.82% 95.24% 95.06% 95.14%
99.82% 99.78% 99.74% 99.84% 99.74% 99.6% 99.8% 99.78% 99.58%

Model r(x) = 1 + 0.4x.

Distribution of X: 1/2N (−1/2, 1) + 1/2N (1/2, 1)
x = −0.5 x = 0 x = 0.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
d = 1

96.32% 96.66% 96.84% 96.46% 96.74% 96.64% 96.6% 96.72% 97.2%
99.92% 99.88% 99.8% 99.94% 99.98% 99.84% 99.88% 99.9% 99.86%

d = 2
95.18% 95.46% 96.1% 95.08% 95.52% 95.6% 95.58% 95.44% 95.74%
99.94% 99.86% 99.78% 99.88% 99.96% 99.7% 99.9% 99.86% 99.8%

Model r(x) = cos(x).

Distribution of X: T (6)
x = −0.5 x = 0 x = 0.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
d = 1

96.98% 97.54% 97.64% 97.02% 97.28% 97.52% 97.6% 97.1% 96.98%
99.9% 99.84% 99.62% 99.74% 99.86% 99.88% 99.98% 99.9% 99.86%

d = 2
95.6% 95.96% 95.94% 95.4% 95.84% 96.06% 96.26% 95.62% 95.24%
99.88% 99.78% 99.82% 99.74% 99.72% 99.8% 99.98% 99.82% 99.68%

Model r(x) = 0.3 exp(−4(x + 1)2) + 0.7 exp(−16(x − 1)2).

Distribution of X: T (6)
x = −0.5 x = 0 x = 0.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
d = 1

95.3% 94.88% 95.08% 95.5% 95.06% 95.02% 95.28% 95.48% 95.56%
99.8% 99.68% 99.46% 99.16% 99.26% 99.18% 99.4% 99.24% 99.18%

d = 2
94.88% 94.5% 94.8% 95.28% 94.8% 94.64% 95.06% 95.3% 95.3%
99.84% 99.82% 99.58% 99.64% 99.66% 99.58% 99.8% 99.7% 99.7%
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Model r(x) = 1 + 0.4x.

Distribution of X: T (6)
x = −0.5 x = 0 x = 0.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
d = 1

96.62% 97.04% 97% 97.2% 97.08% 97.02% 96.36% 97.14% 97.22%
99.84% 99.9% 99.92% 99.94% 99.88% 99.82% 99.86% 99.84% 99.86%

d = 2
95.04% 95.62% 95.54% 95.96% 95.58% 95.88% 94.94% 96.14% 95.86%
99.82% 99.9% 99.82% 99.84% 99.78% 99.66% 99.86% 99.84% 99.76%

4. Outlines of the proofs

From now on, we set n0 ≥ 3 such that ∀k ≥ n0, γk ≤ (2‖f‖∞)−1 and γkh−1
k ‖K‖∞ ≤

1. Moreover, we introduce the following notations:

sn =

n
∑

k=n0

γk,

Zn (x) = h−1
n K

(

x − Xn

hn

)

,

Wn (x) = h−1
n YnK

(

x − Xn

hn

)

and, for s > 0,

Πn (s) =

n
∏

j=n0

(1 − sγj) ,

Uk,n (s) = Πn (s)Π−1
k (s) .

Finally, we define the sequences (mn) and (m̃n) by setting

(mn) =

{ (

√

γnh−1
n

)

if limn→∞

(

γnh−5
n

)

= ∞,
(

h2
n

)

otherwise.
(4.1)

(m̃n) =

{ (

√

γnh−1
n lnn

)

if limn→∞

(

γnh−5
n lnn

)

= ∞,
(

h2
n

)

otherwise.
(4.2)

Note that the sequences (mn) and (m̃n) belong to GS (−m∗) with

m∗ = min

{

α − a

2
, 2a

}

. (4.3)

Before giving the outlines of the proofs, we state the following technical lemma,
which is proved in Mokkadem et al. (2009), and which will be used throughout the
demonstrations.

Lemma 4.1.
Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α) with α > 0, and set m > 0. If ms − v∗ξ > 0
(where ξ is defined in (2.2)), then

lim
n→∞

vnΠm
n (s)

n
∑

k=n0

Π−m
k (s)

γk

vk
=

1

ms − v∗ξ
.
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Moreover, for all positive sequence (αn) such that limn→∞ αn = 0, and all C,

lim
n→∞

vnΠm
n (s)

[

n
∑

k=n0

Π−m
k (s)

γk

vk
αk + C

]

= 0.

As explained in the introduction, we note that the stochastic approximation
algorithm (1.5) can be rewritten as:

rn(x) = (1 − γnZn (x)) rn−1(x) + γnWn (x) (4.4)

= (1 − γnf(x)) rn−1(x) + γn (f(x) − Zn(x)) rn−1(x) + γnWn(x).(4.5)

To establish the asymptotic behaviour of (rn) and (r̄n), we introduce the auxiliary
stochastic approximation algorithm defined by setting ρn (x) = r (x) for all n ≤
n0 − 2, ρn0−1 (x) = rn0−1 (x), and, for n ≥ n0,

ρn(x) = (1 − γnf(x)) ρn−1(x) + γn (f(x) − Zn(x)) r (x) + γnWn(x). (4.6)

We first give the asymptotic behaviour of (ρn) and of (ρ̄n) in Section 4.1 and 4.2
respectively (and refer to Section 5 for the proof of the different lemmas). Then, we
show in Section 4.3 how the asymptotic behaviour of (rn) and (r̄n) can be deduced
from that of (ρn) and (ρ̄n) respectively.

4.1. Asymptotic behaviour of ρn. The aim of this section is to give the outlines of
the proof of the three following lemmas.

Lemma 4.2 (Weak pointwise convergence rate of ρn).
Let Assumptions (A1) − (A3) hold for x ∈ R such that f (x) 6= 0.

(1) If there exists c ≥ 0 such that γ−1
n h5

n → c, and if limn→∞(nγn) > (1 −
a)/(2f(x)), then

√

γ−1
n hn (ρn (x) − r (x))

D→ N
(√

cf (x)m(2) (x)

f (x) − 2aξ
,
V ar [Y |X = x] f (x)

(2f (x) − (α − a) ξ)

∫

R

K2 (z)dz

)

. (4.7)

(2) If γ−1
n h5

n → ∞, and if limn→∞(nγn) > 2a/f (x), then

1

h2
n

(ρn (x) − r (x))
P→ f (x) m(2) (x)

(f (x) − 2aξ)
. (4.8)

Lemma 4.3 (Strong pointwise convergence rate of ρn).
Let Assumptions (A1) − (A3) hold for x ∈ R such that f (x) 6= 0.

(1) If there exists c ≥ 0 such that γ−1
n h5

n/ ln (sn) → c, and if limn→∞ (nγn) >
(1 − a) / (2f (x)), then, with probability one, the sequence





√

γ−1
n hn

2 ln (sn)
(ρn (x) − r (x))




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is relatively compact and its limit set is the interval




√

c

2

f (x)m(2) (x)

f (x) − 2aξ
−
√

V ar [Y |X = x] f (x)
∫

R
K2 (z) dz

(2f (x) − (α − a) ξ)
,

√

c

2

f (x) m(2) (x)

f (x) − 2aξ
+

√

V ar [Y |X = x] f (x)
∫

R
K2 (z)dz

(2f (x) − (α − a) ξ)



 .

(2) If γ−1
n h5

n/ ln (sn) → ∞, and if limn→∞ (nγn) > 2a/f (x) then, with proba-
bility one,

lim
n→∞

1

h2
n

(ρn (x) − r (x)) =
f (x)m(2) (x)

f (x) − 2aξ
.

Lemma 4.4 (Strong uniform convergence rate of ρn).
Let I be a bounded open interval on which ϕ = infx∈I f (x) > 0, and let Assumptions
(A1) − (A4) hold for all x ∈ I. If limn→∞ nγn > min {(1 − a)/(2ϕ), 2a/ϕ}, then

sup
x∈I

|ρn (x) − r (x)| = O

(

max

{
√

γnh−1
n lnn, h2

n

})

a.s.

To prove Lemmas 4.2 and 4.3, we first remark that, in view of (4.6), we have,
for n ≥ n0,

ρn(x) − r (x) = (1 − γnf (x)) (ρn−1(x) − r (x)) + γn (Wn (x) − r (x) Zn (x))

= Πn (f (x))

n
∑

k=n0

Π−1
k (f (x)) γk (Wk (x) − r (x)Zk (x))

+Πn (f (x)) (ρn0−1 (x) − r (x))

= T̃n (x) + R̃n (x) , (4.9)

with, since ρn0−1 = rn0−1,

T̃n (x) =

n
∑

k=n0

Uk,n (f (x)) γk (Wk (x) − r (x) Zk (x)) ,

R̃n (x) = Πn (f (x)) (rn0−1 (x) − r (x)) .

Noting that |rn0−1 (x) − r (x)| = O (1) a.s. and applying Lemma 4.1, we get
∣

∣

∣R̃n (x)
∣

∣

∣ = O (Πn (f (x))) a.s.

= o (mn) a.s.

Lemmas 4.2 and 4.3 are thus straightforward consequences of the following lemmas,
which are proved in Sections 5.1 and 5.2, respectively.

Lemma 4.5. The two parts of Lemma 4.2 hold when ρn (x) − r (x) is replaced by

T̃n (x).

Lemma 4.6. The two parts of Lemma 4.3 hold when ρn (x) − r (x) is replaced by

T̃n (x).
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In the same way, we remark that

sup
x∈I

∣

∣

∣R̃n (x)
∣

∣

∣ = O

(

sup
x∈I

Πn (f (x))

)

a.s.

= O (Πn (ϕ)) a.s.

= o (mn) a.s.,

so that Lemma 4.4 is a straightforward consequence of the following lemma, which
is proved in Section 5.3.

Lemma 4.7. Lemma 4.4 holds when ρn − r is replaced by T̃n.

4.2. Asymptotic behaviour of ρ̄n. The purpose of this section is to give the outlines
of the proof of the three following lemmas.

Lemma 4.8 (Weak pointwise convergence rate of ρ̄n).
Let Assumptions (A1) − (A3), (A5) and (A6) hold for x ∈ R such that f (x) 6= 0.

(1) If there exists c ≥ 0 such that nh5
n → c, then

√

nhn (ρ̄n (x) − r (x))

D→ N
(

c
1
2

1 − q

1 − q − 2a
m(2) (x) ,

(1 − q)
2

1 + a − 2q

V ar [Y |X = x]

f (x)

∫

R

K2 (z)dz

)

.

(2) If nh5
n → ∞, then

h−2
n (ρ̄n (x) − r (x))

P→ 1 − q

1 − q − 2a
m(2) (x) .

Lemma 4.9 (Strong pointwise convergence rate of ρ̄n).
Let Assumptions (A1) − (A3), (A5) and (A6) hold for x ∈ R such that f (x) 6= 0.

(1) If there exists c1 ≥ 0 such that nh5
n/ ln lnn → c1, then, with probability one,

the sequence
(
√

nhn

2 ln lnn
(ρ̄n (x) − r (x))

)

is relatively compact and its limit set is the interval




1 − q

1 − q − 2a

√

c1

2
m(2) (x) −

√

(1 − q)
2

1 + a − 2q

V ar [Y/X = x]

f (x)

∫

R

K2 (z)dz,

1 − q

1 − q − 2a

√

c1

2
m(2) (x) +

√

(1 − q)
2

1 + a − 2q

V ar [Y/X = x]

f (x)

∫

R

K2 (z) dz



 .

(2) If nh5
n/ ln lnn → ∞, then

lim
n→∞

h−2
n (ρ̄n (x) − r (x)) =

1 − q

1 − q − 2a
m(2) (x) a.s.
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Lemma 4.10 (Strong uniform convergence rate of ρ̄n).
Let I be a bounded open interval on which ϕ = infx∈I f (x) > 0 and let Assumptions
(A1) − (A6) hold for all x ∈ I. We have

sup
x∈I

|ρ̄n (x) − r (x)| = O
(

max
{
√

n−1h−1
n lnn, h2

n

})

a.s.

To prove Lemmas 4.8-4.10, we note that (4.6) gives, for n ≥ n0,

ρn (x) − ρn−1 (x) = −γnf (x) [ρn−1(x) − r (x)] + γn [Wn (x) − r (x)Zn (x)] ,

and thus

ρn−1(x) − r (x) =
1

f (x)
[Wn (x) − r (x) Zn (x)] − 1

γnf (x)
[ρn(x) − ρn−1(x)] .

It follows that

ρ̄n (x) − r (x) =
1

∑n
k=1 qk

n
∑

k=1

qk [ρk (x) − r (x)]

=
1

f (x)
Tn (x) − 1

f (x)
R(0)

n (x) , (4.10)

with

Tn (x) =
1

∑n
k=1 qk

n
∑

k=n0−1

qk [Wk+1 (x) − r (x)Zk+1 (x)] ,

R(0)
n (x) =

1
∑n

k=1 qk

n
∑

k=n0−1

qk

γk+1
[ρk+1(x) − ρk(x)] .

Let us note that R
(0)
n can be rewritten as

R(0)
n (x)

=
1

∑n
k=1 qk

n
∑

k=n0−1

qk

γk+1
[(ρk+1 (x) − r (x)) − (ρk (x) − r (x))]

=
1

∑n
k=1 qk

n
∑

k=n0

(

qk−1

γk
− qk

γk+1

)

(ρk (x) − r (x))

+
1

∑n
k=1 qk

qn

γn+1
(ρn+1 (x) − r (x)) − 1

∑n
k=1 qk

qn0−1

γn0

(ρn0−1 (x) − r (x))

=
1

∑n
k=1 qk

n
∑

k=n0

qk−1

γk

[

1 − q−1
k−1γk

q−1
k γk+1

]

(ρk (x) − r (x))

+
1

∑n
k=1 qk

qn

γn+1
(ρn+1 (x) − r (x)) − 1

∑n
k=1 qk

qn0−1

γn0

(ρn0−1 (x) − r (x)) .

Since
(

q−1
k−1γk

)

∈ GS (q − α), we have

[

1 − q−1
k−1γk

q−1
k γk+1

]

= 1 −
(

1 − (q − α)

k
+ o

(

1

k

))

= O
(

k−1
)
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and thus

∣

∣

∣R(0)
n (x)

∣

∣

∣ = O

(

1
∑n

k=1 qk

[

n
∑

k=n0

k−1qk−1γ
−1
k |ρk (x) − r (x)| (4.11)

+
qn

γn+1
|ρn+1 (x) − r (x)| + qn0−1

γn0

|ρn0−1 (x) − r (x)|
])

.

The application of Lemma 4.3 ensures that

∣

∣

∣R(0)
n (x)

∣

∣

∣ = O

(

1
∑n

k=1 qk

[

n
∑

k=2

(

k−1qkγ−1
k

)

(

(

γkh−1
k ln (sk)

)
1
2 + h2

k

)

+
qn

γn+1

(

(

γnh−1
n ln (sn)

)
1
2 + h2

n

)

+ 1

])

a.s.

Now, let us recall that, if (un) ∈ GS (−u∗) with u∗ < 1, then we have, for any fixed
k0 ≥ 1,

lim
n→∞

nun
∑n

k=k0
uk

= 1 − u∗ (4.12)

and, if u∗ ≥ 1, then for all ǫ > 0, un = O
(

n−1+ǫ
)

and thus

n
∑

k=1

uk = O (nǫ) . (4.13)

Now, set ǫ ∈ ]0, min {1 − q − 2a, (1 + a) /2 − q}[ (the existence of such an ǫ being
ensured by (A6)); in view of (A5), we get

∣

∣

∣
R(0)

n (x)
∣

∣

∣
= O

(

1

nqn

(

nǫ + qnγ
− 1

2
n h

− 1
2

n (ln (sn))
1
2 + qnγ−1

n h2
n

)

+
1

nγn

(

(

γnh−1
n ln (sn)

)
1
2 + h2

n

)

)

a.s.

= O





nǫ

nqn
+

√

n−1h−1
n

√

nγn (ln (sn))
−1

+
h2

n

nγn



 a.s.

= o
(
√

n−1h−1
n + h2

n

)

a.s.

In view of (4.10), Lemmas 4.8 and 4.9 are thus straightforward consequences of
the two following lemmas, which are proved in Sections 5.4 and 5.5 respectively.

Lemma 4.11 (Weak pointwise convergence rate of Tn).

The two parts of Lemma 4.8 hold when ρ̄n (x)− r (x) is replaced by [f (x)]
−1

Tn (x)
.

Lemma 4.12 (Strong pointwise convergence rate of Tn).

The two parts of Lemma 4.9 hold when ρ̄n (x)− r (x) is replaced by [f (x)]
−1

Tn (x)
.
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Now, in view of (4.11), the application of Lemma 4.4 ensures that

sup
x∈I

∣

∣

∣R(0)
n (x)

∣

∣

∣ = O

(

1
∑n

k=1 qk

[

n
∑

k=n0

k−1qkγ−1
k sup

x∈I
|ρk (x) − r (x)|

+
qn

γn+1
sup
x∈I

|ρn+1 (x) − r (x)|
])

a.s.

= O

(

1
∑n

k=1 qk

[

n
∑

k=n0

(

k−1qkγ−1
k

)

(

(

γkh−1
k

)
1
2 ln k + h2

k

)

+
qn

γn+1

(

(

γnh−1
n

)
1
2 lnn + h2

n

)

])

a.s.

Setting ǫ ∈ ]0, min {1 − q − 2a, (1 + a) /2 − q}[ again, we get, in view of (A5),

sup
x∈I

∣

∣

∣R(0)
n (x)

∣

∣

∣ = O

(

1

nqn

(

nǫ + qnγ
− 1

2
n h

− 1
2

n lnn + qnγ−1
n h2

n

)

+
1

nγn

(

(

γnh−1
n

)
1
2 lnn + h2

n

)

)

a.s.

= O

(

nǫ

nqn
+

√

n−1h−1
n lnn√

nγn
+

h2
n

nγn

)

a.s.

= o
(
√

n−1h−1
n lnn + h2

n

)

a.s.

In view of (4.10), Lemma 4.10 is thus a straightforward consequence of the
following lemma, which is proved in Section 5.6.

Lemma 4.13 (Strong uniform convergence rate of Tn).
Lemma 4.10 holds when ρ̄n − r is replaced by Tn .

4.3. How to deduce the asymptotic behaviour of rn and r̄n from that of ρn and ρ̄n.
Set

∆n (x) = rn (x) − ρn (x)

and

∆̄n (x) =
1

∑n
k=1 qk

n
∑

k=1

qk∆k (x)

= r̄n (x) − ρ̄n (x) .

To deduce the asymptotic behaviour of rn (respectively r̄n) from that of ρn (respec-
tively ρ̄n), we prove that ∆n (respectively ∆̄n) is negligible in front of ρn (respec-
tively ρ̄n). Note that, in view of (4.5) and (4.6), and since ρn0−1 (x) = rn0−1 (x),
we have, for n ≥ n0,

∆n (x) = (1 − γnf (x)) ∆n−1 (x) + γn (f (x) − Zn (x)) (rn−1 (x) − r (x))

=

n
∑

k=n0

Uk,n (f (x)) (f (x) − Zk (x)) (rk−1 (x) − r (x)) . (4.14)

The difficulty which appears here is that ∆n is expressed in function of the terms
rk − r, so that an upper bound of rn − r is necessary for the obtention of an upper
bound of ∆n. Now, the key to overcome this difficulty is the following property
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(P) : if (rn − r) is known to be bounded almost surely by a sequence (wn), then
it can be shown that (∆n) is bounded almost surely by a sequence (w′

n) such
that limn→∞ w′

nw−1
n = 0, which may allow to upper bound rn − r by a sequence

smaller than (wn). To deduce the asymptotic behaviour of rn (respectively r̄n)
from that of ρn (respectively ρ̄n), we thus proceed as follows. We first establish a
rudimentary upper bound of (rn − r). Then, applying Property (P) several times,
we successively improve our upper bound of (rn − r), and this until we obtain an
upper bound, which allows to prove that ∆n (respectively ∆̄n) is negligible in front
of ρn (respectively ρ̄n).
We first establish the pointwise results on rn and r̄n (that is, Theorems 2.3, 2.4, 2.6,
and 2.7) in Section 4.3.1, and then the uniform ones (that is, Theorems 2.5 and 2.8)
in Section 4.3.2.

4.3.1. Proof of Theorems 2.3, 2.4, 2.6 and 2.7. The proof of Theorems 2.3, 2.4, 2.6
and 2.7 relies on the repeted application of the following lemma, which is proved
in Section 5.7.

Lemma 4.14. Let Assumptions (A1) − (A3) hold, and assume that there exists
(wn) ∈ GS (w∗) such that |rn (x) − r (x)| = O (wn) a.s.

(1) If the sequence (nγn) is bounded, if limn→∞ nγn > min{(1 − a)/(2f(x)),
2a/f(x)}, and if w∗ ≥ 0, then, for all δ > 0,

|∆n (x)| = O
(

mnwn (lnn)
(1+δ)

2

)

+ o (mn) a.s.

(2) If limn→∞ (nγn) = ∞, then, for all δ > 0,

|∆n (x)| = O

(

mnwn

(

n1+δγn

)

(1+δ)
2

)

a.s.

We first establish a preliminary upper bound for rn (x) − r (x). Then, we suc-
cessively prove Theorems 2.3 and 2.4 in the case (nγn) is bounded, Theorems 2.3
and 2.4 in the case limn→∞ (nγn) = ∞, and finally Theorems 2.6 and 2.7.

Preliminary upper bound of rn (x) − r (x).
Since 0 ≤ 1 − γnZn (x) ≤ 1 for all n ≥ n0, it follows from (4.4) that, for n ≥ n0,

|rn (x)| ≤ |rn−1 (x)| + γn |Yn|h−1
n ‖K‖∞

≤ |rn0−1 (x)| +
(

sup
k≤n

|Yk|
)

‖K‖∞
n
∑

k=1

γkh−1
k . (4.15)

Since

P

(

sup
k≤n

|Yk| > n2

)

≤ nP
(

|Y | > n2
)

≤ n−3
E

(

|Y |2
)

,

we have supk≤n |Yk| ≤ n2 a.s. Moreover, since
(

γnh−1
n

)

∈ GS (−α + a) with 1 −
α + a > 0, we note that

∑n
k=1 γkh−1

k = O
(

nγnh−1
n

)

. We thus deduce that

|rn (x) − r (x)| = O
(

n3γnh−1
n

)

a.s. (4.16)
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Proof of Theorems 2.3 and 2.4 in the case the sequence (nγn) is bounded.

In this case, α = 1, and Lemmas 4.3 and 4.14 imply that:

• |ρn (x) − r (x)| = O (mn lnn) a.s. (4.17)

• If ∃ (wn) ∈ GS (w∗) , w∗ ≥ 0, such that |rn (x) − r (x)| = O (wn) a.s.,

then |∆n (x)| = O (mnwn lnn) + o (mn) a.s. (4.18)

Set p0 = max {p such that − m∗p + 2 + a ≥ 0}, set j ∈ {0, 1, . . . , p0 − 1} and
assume that

|rn (x) − r (x)| = O
(

mj
n

(

n3γnh−1
n

)

(lnn)
j
)

a.s. (4.19)

Since the sequence (wn) =
(

mj
n

(

n3γnh−1
n

)

(lnn)
j
)

belongs to GS (−m∗j + 2 + a)

with −m∗j + 2 + a > 0, the application of (4.18) implies that

|∆n (x)| = O
(

mj+1
n

(

n3γnh−1
n

)

(lnn)
j+1
)

+ o (mn) a.s.

Since
(

mj+1
n

(

n3γnh−1
n

)

(lnn)j+1
)

∈ GS (−m∗ (j + 1) + 2 + a) with −m∗ (j + 1) +

2 + a ≥ 0, whereas (mn) ∈ GS (−m∗) with −m∗ < 0, it follows that

|∆n (x)| = O
(

mj+1
n

(

n3γnh−1
n

)

(lnn)
j+1
)

a.s.,

and the application of (4.17) leads to

|rn (x) − r (x)| ≤ |ρn (x) − r (x)| + |∆n (x)|
= O

(

mj+1
n

(

n3γnh−1
n

)

(lnn)
j+1
)

a.s.

Since (4.16) ensures that (4.19) is satisfied for j = 0, we have proved by induction
that

|rn (x) − r (x)| = O
(

mp0
n

(

n3γnh−1
n

)

(lnn)p0
)

a.s.

Applying (4.18) with (wn) =
(

mp0
n

(

n3γnh−1
n

)

(lnn)
p0
)

and then (4.17), we obtain

|rn (x) − r (x)| = O
(

mp0+1
n

(

n3γnh−1
n

)

(lnn)
p0+1

)

+ O (mn lnn) a.s.

Since the sequences
(

mp0+1
n

(

n3γnh−1
n

)

(lnn)
p0+1

)

and (mn lnn) are in GS(−m∗(p0+

1)+2+a) with −m∗ (p0 + 1)+2+a < 0 and GS (−m∗) with −m∗ < 0 respectively,
it follows that

|rn (x) − r (x)| = O
(

(lnn)
−2
)

a.s.

Applying once more (4.18) with (wn) =
(

(lnn)
−2
)

∈ GS (0), we get

|∆n (x)| = O
(

mn (ln n)
−1
)

+ o (mn) = o (mn) a.s.

Theorem 2.3 (respectively Theorem 2.4) in the case (nγn) is bounded then follows
from the application of Lemma 4.2 (respectively Lemma 4.3).
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Proof of Theorems 2.3 and 2.4 in the case limn→∞ (nγn) = ∞.

In this case, Lemmas 4.3 and 4.14 imply that, for all δ > 0,

• |ρn (x) − r (x)| = O (m̃n) a.s. (4.20)

• If there exists (wn) ∈ GS (w∗) such that |rn (x) − r (x)| = O (wn) a.s.,

then |∆n (x)| = O

(

mn

(

n1+δγn

)

1+δ
2 wn

)

a.s. (4.21)

Now, set δ > 0 such that c (δ) = −m∗ + (1 + δ) (1 + δ − α) /2 < 0 (the existence of
such a δ being ensured by (A2)). In view of (4.16), the application of (4.21) with
(wn) =

(

n3γnh−1
n

)

ensures that

|∆n (x)| = O

(

mn

(

n1+δγn

)

1+δ
2 n3γnh−1

n

)

a.s.

and, in view of (4.20), it follows that

|rn (x) − r (x)| = O (m̃n) + O

(

mn

(

n1+δγn

)

1+δ
2 n3γnh−1

n

)

a.s.

Set p ≥ 1, and assume that

|rn (x) − r (x)| = O (m̃n) + O

(

mp
n

(

n1+δγn

)p( 1+δ
2 )

n3γnh−1
n

)

a.s.

The application of (4.21) with (wn) = (m̃n) and with

(wn) =

(

mp
n

(

n1+δγn

)p( 1+δ
2 )

n3γnh−1
n

)

ensures that

|∆n (x)| = O

(

mn

(

n1+δγn

)

1+δ
2 m̃n

)

+O

(

mp+1
n

(

n1+δγn

)(p+1) 1+δ
2 n3γnh−1

n

)

a.s.

The sequence

(

mn

(

n1+δγn

)
1+δ
2

)

being in GS (c (δ)) with c (δ) < 0, it follows that

|∆n (x)| = o (m̃n) + O

(

mp+1
n

(

n1+δγn

)(p+1) 1+δ
2 n3γnh−1

n

)

a.s.

and, in view of (4.20), we obtain

|rn (x) − r (x)| = O (m̃n) + O

(

mp+1
n

(

n1+δγn

)(p+1) 1+δ
2 n3γnh−1

n

)

a.s.

We have thus proved by induction that, for all p ≥ 1,

|rn (x) − r (x)| = O (m̃n) + O

(

mp
n

(

n1+δγn

)p( 1+δ
2 )

n3γnh−1
n

)

a.s.

By setting p large enough, we deduce that

|rn (x) − r (x)| = O (m̃n) a.s.

Applying once more (4.21) with (wn) = (m̃n), we get

|∆n (x)| = O

(

mn

(

n1+δγn

)

1+δ
2 m̃n

)

a.s. (4.22)

= o (mn) a.s.
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Theorem 2.3 (respectively Theorem 2.4) in the case limn→∞ (nγn) = ∞ then follows
from the application of Lemma 4.2 (respectively Lemma 4.3).

Proof of Theorems 2.6 and 2.7.

In view of (4.22), and applying (4.12) and (4.13), we get, for all δ > 0,

∣

∣∆̄n (x)
∣

∣ = O

(

1
∑n

k=1 qk

n
∑

k=1

qkm̃2
k

(

k1+δγk

)

1+δ
2

)

a.s.

= O

(

1

nqn

[

nδ + nqnm̃2
n

(

n1+δγn

)

1+δ
2

])

a.s.

= O

(

nδ−1q−1
n + m̃2

n

(

n1+δγn

)

1+δ
2

)

a.s. (4.23)

• Let us first consider the case when the sequence
(

nh5
n

)

is bounded. In this case,
we have a ≥ 1/5, so that a ≥ α/5 and m∗ = (α − a) /2. Noting that (A2) implies
a < 3α − 2, and applying (A6), we can set δ > 0 such that

δ − (1 + a)

2
+ q < 0 and

(1 − a)

2
− 2m∗ +

(1 + δ)

2
(1 + δ − α) < 0.

In view of (4.23), we then obtain
√

nhn

∣

∣∆̄n (x)
∣

∣ = o (1) a.s.

The first part of Theorem 2.6 (respectively of Theorem 2.7) then follows from the
application of the first part of Lemma 4.8 (respectively of Lemma 4.9).
• Let us now consider the case when limn→∞

(

nh5
n

)

= ∞. Noting that (A2) then
ensures that 6a < 3α − 1, and applying (A6), we can set δ > 0 such that

2a + δ − 1 + q < 0 and 2a − 2m∗ +
(1 + δ)

2
(1 + δ − α) < 0.

It then follows from (4.23) that

h−2
n

∣

∣∆̄n (x)
∣

∣ = o (1) a.s.

The second part of Theorem 2.6 (respectively of Theorem 2.7) then follows from
the application of the second part of Lemma 4.8 (respectively of Lemma 4.9).

4.3.2. Proof of Theorems 2.5 and 2.8. Set

Bn = nγnh−1
n lnn. (4.24)

The proof of Theorems 2.5 and 2.8 relies on the repeted application of the fol-
lowing lemma, which is proved in Section 5.8.

Lemma 4.15. Let I be a bounded open interval on which ϕ = infx∈I f (x) > 0,
let Assumptions (A1) − (A4) hold for all x ∈ I, and assume that there exists
(wn) ∈ GS (w∗) such that supx∈I |rn (x) − r (x)| = O (wn) a.s. Moreover,
• in the case when (nγn) is bounded, assume that limn→∞ nγn > m∗/ϕ and that
w∗ ≥ 0;

• in the case when limn→∞ nγn = ∞, assume that (w−1
n Bn

√

γnh−1
n lnn) is a

bounded sequence. Then, we have

sup
x∈I

|∆n (x)| = O
(

mnwn

√
lnn

)

a.s.
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We first establish a preliminary upper bound of supx∈I (|rn (x) − r (x)|) (which
is better than the pointwise upper bound (4.16) since the random variables Yk are
assumed to have a finite exponential moment in Theorems 2.5 and 2.8). Then, we
successively prove Theorem 2.5 in the case when (nγn) is bounded, Theorem 2.5 in
the case when limn→∞ (nγn) = ∞, and finally Theorem 2.8.

Preliminary upper bound.

Proceeding as for the proof of (4.16), we note that, for all n ≥ n0,

sup
x∈I

|rn (x)| ≤ sup
x∈I

|rn0−1 (x)| +
(

sup
k≤n

|Yk|
)

‖K‖∞
n
∑

k=1

γkh−1
k ,

with, this time, in view of (A4),

P

[

sup
k≤n

|Yk| >
3

t∗
lnn

]

≤ nP
[

exp (t∗ |Y |) > n3
]

≤ n−2
E (exp (t∗|Y |)) .

We deduce that

sup
x∈I

|rn (x) − r (x)| = O (Bn) a.s.

Proof of Theorem 2.5 in the case (nγn) is bounded.

In this case, we have α = 1, (Bn) ∈ GS (a) (with a > 0); the application of
Lemma 4.15 with (wn) = (Bn) ensures that

sup
x∈I

|∆n (x)| = O
(

mnBn

√
lnn

)

a.s.

Applying Lemma 4.4, we get

sup
x∈I

|rn (x) − r (x)| ≤ sup
x∈I

|ρn (x) − r (x)| + sup
x∈I

|∆n (x)|

= O
(

mnBn

√
lnn

)

a.s.

Since
(

mnBn

√
lnn

)

∈ GS (−m∗ + a) (with −m∗ + a < 0), it follows that

sup
x∈I

|rn (x) − r (x)| = O
(

[lnn]
−1
)

a.s.

Applying once more Lemma 4.15 with (wn) =
(

[lnn]−1
)

, we get

sup
x∈I

|∆n (x)| = O
(

mn (lnn)
− 1

2

)

a.s.

= o (m̃n) a.s.

Theorem 2.5 in the case when (nγn) is bounded then follows from the application
of Lemma 4.4.

Proof of Theorem 2.5 in the case limn→∞ (nγn) = ∞.

The sequence
(

√

γnh−1
n lnn

)

being clearly bounded, we can apply Lemma 4.15

with (wn) = (Bn); we then obtain

sup
x∈I

|∆n (x)| = O
(

mnBn

√
lnn

)

a.s.
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The application of Lemma 4.4 then ensures that

sup
x∈I

|rn (x) − r (x)| = O (m̃n) + O
(

mnBn

√
lnn

)

a.s.

= O
(

mnBn

√
lnn

)

a.s.

Since
(

mnBn

√
lnn

)−1

Bn

√

γnh−1
n lnn = m−1

n

√

γnh−1
n = O (1), we can apply once

more Lemma 4.15 with (wn) =
(

mnBn

√
lnn

)

; we get

sup
x∈I

|∆n (x)| = O
(

m2
nBn lnn

)

a.s. (4.25)

Noting that (mnBn lnn) ∈ GS (−m∗ + 1 − α + a) with, in view of (A4) iii), −m∗+
1 − α + a < 0, it follows that

sup
x∈I

|∆n (x)| = o (mn) a.s.

Theorem 2.5 in the case when limn→∞ (nγn) = ∞ then follows from the application
of Lemma 4.4.

Proof of Theorem 2.8.

• In the case when the sequence
(

nh5
n/ lnn

)

is bounded, we have, in view of (4.25),
√

nhn (lnn)−1 sup
x∈I

|∆n (x)| = O
(

√

nhnm2
nBn

)

a.s.

Now, in this case, we have a ≥ 1/5 ≥ α/5 and thus m∗ = (α − a) /2. It follows
that

(√
nhnm2

nBn

)

∈ GS (3 (1 + a) /2 − 2α) with 3 (1 + a) /2 − 2α < 0, and thus

sup
x∈I

|∆n (x)| = O
(
√

n−1h−1
n lnn

)

a.s.

The first part of Theorem 2.8 then follows from the application of Lemma 4.10.
• In the case when limn→∞

(

nh5
n/ lnn

)

= ∞, (4.25) ensures that

h−2
n sup

x∈I
|∆n (x)| = O

(

h−2
n m2

nBn lnn
)

a.s.,

with
(

h−2
n m2

nBn lnn
)

∈ GS (3a − 2m∗ + 1 − α). Noting that the assumptions of
Theorem 2.8 ensure that 3a − 2m∗ + 1 − α < 0, we deduce that

sup
x∈I

|∆n (x)| = O
(

h2
n

)

a.s.

The second part of Theorem 2.8 then follows from the application of Lemma 4.10.

5. Proof of Lemmas

5.1. Proof of Lemma 4.5. We establish that, under the condition limn→∞ (nγn) >
(α − a) / (2f (x)),

• if a ≥ α/5, then

√

γ−1
n hn

(

T̃n (x) − E

(

T̃n (x)
))

D→ N
(

0,
V ar [Y |X = x] f (x)

(2f (x) − (α − a) ξ)

∫

R

K2 (z)dz

)

, (5.1)

• if a > α/5, then

√

γ−1
n hnE

(

T̃n (x)
)

→ 0, (5.2)
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and prove that, under the condition limn→∞ (nγn) > 2a/f (x),

• if a ≤ α/5, then h−2
n E

(

T̃n (x)
)

→ f (x)m(2) (x)

f (x) − 2aξ
, (5.3)

• if a < α/5, then h−2
n

(

T̃n (x) − E

(

T̃n (x)
))

P→ 0. (5.4)

As a matter of fact, the combination of (5.1) and (5.2) (respectively, of (5.1)
and (5.3)) gives Part 1 of Lemma 4.5 in the case a > α/5 (respectively, a = α/5),
that of (5.3) and (5.4) (respectively, of (5.1) and (5.3)) gives Part 2 of Lemma 4.5
in the case a < α/5 (respectively, a = α/5). We prove (5.1), (5.4), (5.3), and (5.2)
successively.

Proof of (5.1). Set

η̃k (x) = Π−1
k (f (x)) γk [(Wk (x) − r (x) Zk (x))] , (5.5)

so that T̃n (x) − E

(

T̃n (x)
)

= Πn (f (x))
∑n

k=n0
[η̃k (x) − E (η̃k (x))]. We have

V ar (η̃k (x)) = Π−2
k (f (x)) γ2

k

[

V ar (Wk (x)) + r2 (x) V ar (Zk (x))

−2r (x)Cov (Wk (x) , Zk (x))] .

In view of (A3), classical computations give

V ar (Wk (x)) =
1

hk

[

E
[

Y 2|X = x
]

f (x)

∫

R

K2 (z) dz + o (1)

]

, (5.6)

V ar (Zk (x)) =
1

hk

[

f (x)

∫

R

K2 (z)dz + o (1)

]

, (5.7)

Cov (Wk (x) , Zk (x)) =
1

hk

[

r (x) f (x)

∫

R

K2 (z) dz + o (1)

]

. (5.8)

It follows that

V ar (η̃k (x)) =
Π−2

k (f (x)) γ2
k

hk

[

V ar [Y |X = x] f (x)

∫

R

K2 (z) dz + o (1)

]

, (5.9)

and, since limn→∞ (nγn) > (α − a) / (2f (x)), Lemma 4.1 ensures that

v2
n =

n
∑

k=n0

V ar (η̃k (x))

=
n
∑

k=n0

Π−2
k (f (x)) γ2

k

hk

[

V ar [Y |X = x] f (x)

∫

R

K2 (z)dz + o (1)

]

=
γnΠ−2

n (f(x))

hn[2f(x) − (α − a)ξ]

[

V ar[Y |X = x]f(x)

∫

R

K2(z)dz + o(1)

]

.(5.10)
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For all p ∈ ]0, 1] and in view of (A3), we have

E

(

|Yk − r (x)|2+p K2+p

(

x − Xk

hk

))

= hk

∫

R2

|y − r (x)|2+p K2+p (s) g (x − hks, y)dyds

≤ 21+phk

∫

R

{∫

R

|y|2+p
g (x − hks, y) dy + |r (x)|2+p

∫

R

g (x − hks, y)dy

}

K2+p (s) ds

= O (hk) . (5.11)

Now, set p ∈ ]0, 1] such that limn→∞ (nγn) > (1 + p) (α − a) / ((2 + p) f (x)). Ap-
plying Lemma 4.1, we get

n
∑

k=n0

E

[

|η̃k (x)|2+p
]

= O

(

n
∑

k=n0

Π−2−p
k (f (x)) γ2+p

k

h2+p
k

E

(

|Yk − r (x)|2+p
K2+p

(

x − Xk

hk

))

)

= O

(

n
∑

k=n0

Π−2−p
k (f (x)) γ2+p

k

h1+p
k

)

= O

(

1

Π2+p
n (f (x))

γ1+p
n

h1+p
n

)

. (5.12)

Using (5.10), we deduce that

1

v2+p
n

n
∑

k=n0

E

[

|η̃k (x)|2+p
]

= O

(

(

γn

hn

)
p
2

)

= o (1) ,

and (5.1) follows by application of Lyapounov Theorem.

Proof of (5.4). In view of (5.9), and since a < α/5 and limn→∞ (nγn) > 2a/f (x),
the application of Lemma 4.1 ensures that

V ar
(

T̃n (x)
)

= Π2
n (f (x))

n
∑

k=n0

Π−2
k (f (x)) γ2

k

hk

[

V ar [Y |X = x] f (x)

∫

R

K2 (z)dz + o (1)

]

= Π2
n (f (x))

n
∑

k=n0

Π−2
k (f (x)) γko

(

h4
k

)

= o
(

h4
n

)

,

which gives (5.4).

Proof of (5.3). We have

E

(

T̃n(x)
)

= Πn (f(x))

n
∑

k=n0

Π−1
k (f(x))γk [(E (Wk(x)) − a(x) − r(x) (E (Zk(x)) − f(x))] .
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In view of (A3) we obtain

E (Wk (x)) − a (x) =
1

2
h2

k

∫

R

y
∂2g

∂x2
(x, y) dy [1 + o (1)]

∫

R

z2K (z)dz, (5.13)

E (Zk (x)) − f (x) =
1

2
h2

k

∫

R

∂2g

∂x2
(x, y) dy [1 + o (1)]

∫

R

z2K (z)dz. (5.14)

Since limn→∞ (nγn) > 2a/f (x), it follows from the application of Lemma 4.1 that

E

(

T̃n (x)
)

= Πn (f (x))

n
∑

k=n0

Π−1
k (f (x)) γkh2

k

∫

R

z2K (z)dz

[

1

2

(∫

R

y
∂2g

∂x2
(x, y) dy − r (x)

∫

R

∂2g

∂x2
(x, y) dy

)

+ o (1)

]

= Πn (f (x))

n
∑

k=n0

Π−1
k (f (x)) γkh2

k

[

m(2) (x) f (x) + o (1)
]

=
1

f (x) − 2aξ
h2

n

[

m(2) (x) f (x) + o (1)
]

,

which gives (5.3).

Proof of (5.2). Since a > α/5 and limn→∞ (nγn) > (1 − a) / (2f (x)), we have

E

(

T̃n (x)
)

= Πn (f (x))

n
∑

k=n0

Π−1
k (f (x)) γko

(

√

γkh−1
k

)

= o

(
√

γnh−1
n

)

,

which gives (5.2).

5.2. Proof of Lemma 4.6. Set

Sn (x) =

n
∑

k=n0

[η̃k (x) − E (η̃k (x))] ,

where η̃k is defined in (5.5).

• Let us first consider the case a ≥ α/5 (in which case limn→∞ nγn > (α −
a)/(2f(x))). We set H2

n (f (x)) = Π2
n (f (x)) γ−1

n hn, and note that, since
(

γ−1
n hn

)

∈
GS (α − a), we have

ln
(

H−2
n (f (x))

)

= −2 ln (Πn(f(x))) + ln

(

n
∏

k=n0

γ−1
k−1hk−1

γ−1
k hk

)

+ ln
(

γn0−1h
−1
n0−1

)

= −2

n
∑

k=n0

ln (1 − f (x) γk) +

n
∑

k=n0

ln

(

1 − α − a

k
+ o

(

1

k

))

+ ln
(

γn0−1h
−1
n0−1

)

=

n
∑

k=n0

(2f (x) γk + o (γk)) −
n
∑

k=n0

((α − a) ξγk + o (γk)) + ln
(

γn0−1h
−1
n0−1

)

= (2f (x) − ξ (α − a)) sn + o (sn) . (5.15)
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Since 2f (x)− ξ (α − a) > 0, it follows in particular that limn→∞ H−2
n (f (x)) = ∞.

Moreover, we clearly have limn→∞ H2
n (f (x)) /H2

n−1 (f (x)) = 1, and by (5.10),

lim
n→∞

H2
n (f (x))

n
∑

k=n0

V ar [η̃k (x)]

= [2f (x) − (α − a) ξ]−1 V ar [Y |X = x] f (x)

∫

R

K2 (z) dz

and, in view of (5.11),

E

[

|η̃n (x)|3
]

= O
(

Π−3
n (f (x)) γ3

nh−2
n

)

.

Now, since
(

γ−1
n hn

)

∈ GS (α − a), applying Lemma 4.1 and (5.15), we get

1

n
√

n

n
∑

k=n0

E

(

|Hn (f (x)) η̃k (x)|3
)

= O

(

H3
n (f (x))

n
√

n

(

n
∑

k=n0

Π−3
k (f (x)) γ3

k

h2
k

))

= O

(

Π3
n (f (x)) γ

− 3
2

n h
3
2
n

n
√

n

(

n
∑

k=n0

Π−3
k (f (x)) γko

(

(

γkh−1
k

)
3
2

)

))

= o

(

1

n
√

n

)

= o
(

[

ln
(

H−2
n (f (x))

)]−1
)

.

The application of Theorem 1 in Mokkadem and Pelletier (2008) then ensures
that, with probability one, the sequence





Hn (f (x))Sn (x)
√

2 ln ln
(

H−2
n (f (x))

)



 =





√

γ−1
n hn

(

T̃n (x) − E

(

T̃n (x)
))

√

2 ln ln
(

H−2
n (f (x))

)





is relatively compact and its limit set is the interval

[

−
√

V ar[Y |X = x]f(x)

2f(x) − (α − a)ξ

∫

R

K2(z)dz,

√

V ar[Y |X = x]f(x)

2f(x) − (α − a)ξ

∫

R

K2(z)dz

]

. (5.16)

In view of (5.15), we have limn→∞ ln ln
(

H−2
n (f (x))

)

/ ln sn = 1. It follows that,

with probability one, the sequence
(

√

γ−1
n hn

(

T̃n (x) − E

(

T̃n (x)
))

/
√

2 ln sn

)

is

relatively compact, and its limit set is the interval given in (5.16). The application
of (5.2) (respectively of (5.3)) concludes the proof of Lemma 4.6 in the case a > α/5
(respectively a = α/5).

• Let us now consider the case a < α/5 (in which case limn→∞ (nγn) > 2a/f (x)).

Set H−2
n (f (x)) = Π−2

n (f (x))h4
n

(

ln ln
(

Π−2
n (f (x))h4

n

))−1
, and note that, since
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(

h−4
n

)

∈ GS (4a), we have

ln
(

Π−2
n (f (x))h4

n

)

= −2 ln (Πn (f (x))) + ln

(

n
∏

k=n0

h−4
k−1

h−4
k

)

+ ln
(

h4
n0−1

)

= −2
n
∑

k=n0

ln (1 − γkf (x)) +
n
∑

k=n0

ln

(

1 − 4a

k
+ o

(

1

k

))

+ ln
(

h4
n0−1

)

=

n
∑

k=n0

(2γkf (x) + o (γk)) −
n
∑

k=n0

(4aξγk + o (γk)) + ln
(

h4
n0−1

)

= (2f (x) − 4aξ) sn + o (sn) . (5.17)

Since 2f(x) − 4aξ > 0, it follows in particular that limn→∞ Π−2
n (f(x))h4

n = ∞,
and thus limn→∞ H−2

n (f(x)) = ∞. Moreover, we clearly have limn→∞ H2
n(f(x))/

H2
n−1(f(x)) = 1. Now, set ǫ ∈]0, α − 5a[ such that limn→∞ nγn > 2a/f(x) + ǫ/2;

in view of (5.10), and applying Lemma 4.1, we get

H2
n (f (x))

n
∑

k=n0

V ar [η̃k (x)]

= O

(

Π2
n (f (x))h−4

n ln ln
(

Π−2
n (f (x))h4

n

)

n
∑

k=n0

Π−2
k (f (x)) γ2

k

hk

)

= O

(

Π2
n (f (x))h−4

n ln ln
(

Π−2
n (f (x))h4

n

)

n
∑

k=n0

Π−2
k (f (x)) γko

(

h4
kk−ǫ

)

)

= o (1) .

Moreover, in view of (5.11) we have

E

[

|η̃n (x)|3
]

= O
(

Π−3
n (f (x)) γ3

nh−2
n

)

,

and thus in view of (5.17), we get

1

n
√

n

n
∑

k=n0

E

(

|Hn (f (x)) η̃k (x)|3
)

= O

(

Π3
n (f (x))h−6

n

n
√

n

(

ln ln
(

Π−2
n (f (x))h4

n

))
3
2

(

n
∑

k=n0

Π−3
k (f (x)) γ3

k

h2
k

))

= O

(

Π3
n (f (x))h−6

n

n
√

n

(

ln ln
(

Π−2
n (f (x))h4

n

))
3
2

(

n
∑

k=n0

Π−3
k (f (x)) γko

(

h6
k

)

))

= o





(

ln ln
(

Π−2
n (f (x)) h4

n

))
3
2

n
√

n





= o
(

[

ln
(

H−2
n (f (x))

)]−1
)

.
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The application of Theorem 1 in Mokkadem and Pelletier (2008) then ensures
that, with probability one,

lim
n→∞

Hn (f (x))Sn (x)
√

2 ln ln
(

H−2
n (f (x))

)

= lim
n→∞

h−2
n

√

ln ln
(

Π−2
n (f (x))h4

n

)

√

2 ln ln
(

H−2
n (f (x))

)

(

T̃n (x) − E

(

T̃n (x)
))

= 0.

Noting that (5.17) ensures that

lim
n→∞

ln ln
(

H−2
n (f (x))

)

/ ln ln
(

Π−2
n (f (x))h4

n

)

= 1,

we get

lim
n→∞

h−2
n

[

T̃n (x) − E

(

T̃n (x)
)]

= 0 a.s.

and Lemma 4.6 in the case a < α/5 follows from (5.3).

5.3. Proof of Lemma 4.7. Let us write

T̃n (x) = T̃ (1)
n (x) − r (x) T̃ (2)

n (x) ,

with

T̃ (1)
n (x) =

n
∑

k=n0

Uk,n (f (x)) γkh−1
k YkK

(

x − Xk

hk

)

,

T̃ (2)
n (x) =

n
∑

k=n0

Uk,n (f (x)) γkh−1
k K

(

x − Xk

hk

)

.

Lemma 4.7 is proved by showing that, for i ∈ {1, 2}, under the condition limn→∞

nγn > (α − a)/(2ϕ),

• if a ≥ α/5, then sup
x∈I

∣

∣

∣T̃ (i)
n (x) − E

(

T̃ (i)
n (x)

)∣

∣

∣ = O

(
√

γnh−1
n lnn

)

a.s.,(5.18)

• if a > α/5, then sup
x∈I

∣

∣

∣E

(

T̃n (x)
)∣

∣

∣ = o

(
√

γnh−1
n lnn

)

(5.19)

and by proving that, under the condition limn→∞ (nγn) > 2a/ϕ,

• if a < α/5, then sup
x∈I

∣

∣

∣T̃ (i)
n (x) − E

(

T̃ (i)
n (x)

)∣

∣

∣ = o
(

h2
n

)

a.s., (5.20)

• if a ≤ α/5, then sup
x∈I

E

(

T̃n (x)
)

= O
(

h2
n

)

. (5.21)

As a matter of fact, Lemma 4.7 follows from the combination of (5.18) and (5.19)
in the case a > α/5, from that of (5.18) and (5.21) in the case a = α/5, and from
that of (5.20) and (5.21) in the case a < α/5.

The proof of (5.19) and (5.21) is similar to that of (5.2) and (5.3), and is omitted.
Moreover the proof of (5.18) and (5.20) for i = 2 is similar to that for i = 1, and is
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omitted too. To prove simultaneously (5.18) and (5.20) for i = 1, we introduce the
sequence (vn) defined as

(vn) =







(

√

γ−1
n hn

)

if a ≥ α/5,
(

h−2
n (lnn)

2
)

if a < α/5.
(5.22)

As a matter of fact, (5.18) and (5.20) are proved for i = 1 by establishing that

sup
x∈I

∣

∣

∣T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣ = O
(

v−1
n lnn

)

a.s. (5.23)

To this end we first state the following lemma.

Lemma 5.1. There exists s > 0 such that, for all C > 0,

sup
x∈I

P

[ vn

lnn

∣

∣

∣T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣ ≥ C
]

= O
(

n−C
s

)

.

We first show how (5.23) can be deduced from Lemma 5.1. Set (Mn) ∈ GS (m̃)
with m̃ > 0, and note that, for all C > 0, we have

P

[

vn

lnn
sup
x∈I

∣

∣

∣T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣ ≥ C

]

≤ P

[

vn

lnn
sup
x∈I

∣

∣

∣T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣ ≥ C and sup
k≤n

|Yk| ≤ Mn

]

+P

[

sup
k≤n

|Yk| ≥ Mn

]

. (5.24)

Let (dn) be a positive sequence satisfying dn < 1 for all n and limn→∞ γ−1
n dn = 0.

Let I
(n)
i be N (n) intervals of length dn such that ∪N(n)

i=1 I
(n)
i = I, and for all i ∈

{1, . . . , N (n)}, set x
(n)
i ∈ I

(n)
i . We have

P

[

vn

lnn
sup
x∈I

∣

∣

∣T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣ ≥ C and sup
k≤n

|Yk| ≤ Mn

]

≤
N(n)
∑

i=1

P





vn

lnn
sup

x∈I
(n)
i

∣

∣

∣T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣ ≥ C and sup
k≤n

|Yk| ≤ Mn



 .

Let us prove that there exists c∗ such that, for all x, y ∈ I such that |x − y| ≤ dn,
and on

{

supk≤n |Yk| ≤ Mn

}

,
∣

∣

∣T̃ (1)
n (x) − T̃ (1)

n (y)
∣

∣

∣ ≤ c∗Mnh−1
n γ−1

n dn. (5.25)

To this end, we write
∣

∣

∣T̃ (1)
n (x) − T̃ (1)

n (y)
∣

∣

∣ ≤ An,1 (x, y) + An,2 (x, y) ,

with

An,1 (x, y) =

∣

∣

∣

∣

∣

n
∑

k=n0

Uk,n (f (x)) γkh−1
k Yk

[

K

(

x − Xk

hk

)

− K

(

y − Xk

hk

)]

∣

∣

∣

∣

∣

,

An,2 (x, y) =

∣

∣

∣

∣

∣

n
∑

k=n0

Uk,n (f (y)) γkh−1
k YkK

(

y − Xk

hk

)[

Uk,n (f (x))

Uk,n (f (y))
− 1

]

∣

∣

∣

∣

∣

.
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• Since K is Lipschitz-continuous, and by application of Lemma 4.1, there exist
k∗, c∗1 > 0 such that, for all x, y ∈ R satisfying |x − y| ≤ dn and on {supk≤n |Yk| ≤
Mn}, we have:

An,1 (x, y) ≤ k∗Mn

n
∑

k=n0

Uk,n (ϕ) γkh−2
k dn

≤ c∗1Mnh−2
n dn. (5.26)

• Now, let c∗i be positive constants; for j ≥ n0 and for p ∈ {1, 2} we have

(

1 − γjf (x)

1 − γjf (y)

)p

=

(

1 +
γj (f (y) − f (x))

1 − γjf (y)

)p

≤
(

1 +
c∗2γjdn

1 − γj‖f‖∞

)p

≤ (1 + 2c∗2γjdn)
p

≤ 1 + c∗3γjdn. (5.27)

We deduce that, for k and n such that n0 ≤ k ≤ n,

[

Up
k,n (f (x))

Up
k,n (f (y))

− 1

]

=





n
∏

j=k+1

1 − γjf (x)

1 − γjf (y)





p

− 1

≤





n
∏

j=k+1

exp (c∗3γjdn)



− 1

≤ exp



c∗3dnγ−1
n

n
∑

j=k+1

γjγn



− 1

≤ exp



c∗4dnγ−1
n

∑

n≥1

γ2
n



− 1

≤ exp
[

c∗5dnγ−1
n

]

− 1

≤ c∗5dnγ−1
n exp

[

c∗5dnγ−1
n

]

≤ c∗6dnγ−1
n . (5.28)

The application of (5.28) with p = 1 and of Lemma 4.1 ensures that, for all x, y ∈ I
satisfying |x − y| ≤ dn, and on

{

supk≤n |Yk| ≤ Mn

}

, we have:

An,2 (x, y) ≤ ‖K‖∞Mn

n
∑

k=n0

Uk,n (ϕ) γkh−1
k

(

c∗6dnγ−1
n

)

≤ c∗7Mnh−1
n γ−1

n dn. (5.29)

The upper bound (5.25) follows from the combination of (5.26) and (5.29).

Now, it follows from (5.25) that, for all x ∈ I
(n)
i and on

{

supk≤n |Yk| ≤ Mn

}

, we
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have
∣

∣

∣T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣

≤
∣

∣

∣
T̃ (1)

n (x) − T̃ (1)
n

(

x
(n)
i

)∣

∣

∣
+
∣

∣

∣
T̃ (1)

n

(

x
(n)
i

)

− E

(

T̃ (1)
n

(

x
(n)
i

))∣

∣

∣

+
∣

∣

∣E

(

T̃ (1)
n

(

x
(n)
i

))

− E

(

T̃ (1)
n (x)

)∣

∣

∣

≤ 2c∗Mnh−1
n γ−1

n dn +
∣

∣

∣T̃ (1)
n

(

x
(n)
i

)

− E

(

T̃ (1)
n

(

x
(n)
i

))∣

∣

∣ .

In view of (5.24), we obtain, for all C > 0,

P

[

vn

lnn
sup
x∈I

∣

∣

∣T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣ ≥ C

]

≤
N(n)
∑

i=1

P

[ vn

lnn

∣

∣

∣T (1)
n

(

x
(n)
i

)

− E

(

T (1)
n

(

x
(n)
i

))∣

∣

∣+ 2c∗Mn
vn

lnn
h−1

n γ−1
n dn ≥ C

]

+nP [|Y | ≥ Mn] .

Now, note that, in view of (5.22), (vn) ∈ GS (m∗) where m∗ is defined in (4.3). Set

(dn) ∈ GS (− (m̃ + m∗ + a + α)) such that, for all n, 2c∗Mnvn (lnn)−1 h−1
n γ−1

n dn ≤
C/2; in view of Lemma 5.1 and Assumption (A4) ii), there exists s > 0 such that

P

[

vn

lnn
sup
x∈I

∣

∣

∣
T̃ (1)

n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣
≥ C

]

≤ N (n) sup
x∈I

P

[

vn

lnn

∣

∣

∣
T̃ (1)

n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣
≥ C

2

]

+ n exp (−t∗Mn) E (exp (t∗ |Y |))
= O

(

d−1
n n− C

2s + n exp (−t∗Mn)
)

.

Since (Mn) ∈ GS (m̃) with m̃ > 0, and since
(

d−1
n

)

∈ GS (m̃ + m∗ + a + α), we can
choose C large enough so that

∑

n≥0

P

[

vn

lnn
sup
x∈I

∣

∣

∣T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

)∣

∣

∣ ≥ C

]

< ∞,

which gives (5.23).
It remains to prove Lemma 5.1. For all x ∈ I and all s > 0, we have

P

[ vn

lnn

(

T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

))

≥ C
]

= P

[

exp
[

s−1vn

(

T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

))]

≥ n
C
s

]

≤ n−C
s E

(

exp
[

s−1vn

(

T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

))])

≤ n−C
s

n
∏

k=n0

E
(

exp
(

s−1Vk,n (x)
))

, (5.30)

with

Vk,n (x) = vnUk,n (f (x)) γkh−1
k

[

YkK

(

x − Xk

hk

)

− E

(

YkK

(

x − Xk

hk

))]

.
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For k and n such that n0 ≤ k ≤ n, set

αk,n = vnUk,n (ϕ) γkh−1
k .

We have, for all x ∈ I,

E
(

exp
[

s−1Vk,n (x)
])

≤ 1 +
1

2
E
[

s−2V 2
k,n (x)

]

+ E
(

s−3
∣

∣V 3
k,n (x)

∣

∣

)

exp [|Vk,n (x)|]

≤ 1 +
1

2
s−2α2

k,nV ar

[

YkK

(

x − Xk

hk

)]

+s−3α3
k,n‖K‖3

∞E

[(

|Yk|3 + (E (|Yk|))3
)

exp
(

s−1αk,n‖K‖∞ (|Yk| + E (|Yk|))
)

]

.

Now, note that αk,n can be rewritten as:

αk,n =
vnΠn (ϕ)

vkΠk (ϕ)
vkγkh−1

k .

Since (vn) ∈ GS (m∗) with ϕ − m∗ξ > 0 (where ξ is defined in (2.2)), we have

Πn (ϕ)

Πn−1 (ϕ)

vn

vn−1
= (1 − γnϕ)

(

1 + m∗ 1

n
+ o

(

1

n

))

= (1 − γnϕ) (1 + m∗ξγn + o (γn))

= 1 − (ϕ − m∗ξ) γn + o (γn)

≤ 1 for n large enough.

Writing

vnΠn (ϕ)

vkΠk (ϕ)
=

n−1
∏

i=k

vi+1Πi+1 (ϕ)

viΠi (ϕ)
,

we obtain

sup
n0≤k≤n

vnΠn (ϕ)

vkΠk (ϕ)
< ∞

and, since limn→∞ vkγkhk = 0, we deduce that supn0≤k≤n αk,n < ∞. Thus, in view
of Assumption (A4) ii), there exist s > 0 and c∗ > 0 such that, for all k and n such
that n0 ≤ k ≤ n,

E

[(

|Yk|3 + (E (|Yk|))3
)

exp
(

s−1αk,n‖K‖∞ (|Yk| + E (|Yk|))
)

]

≤ c∗.

From classical computations, we have supx∈I V ar
[

YkK
(

(x − Xk)h−1
k

)]

= O (hk).
We then deduce that there exist C∗

1 , C∗
2 > 0 such that, for all x ∈ I, for all k and

n such that n0 ≤ k ≤ n,

E
(

exp
[

s−1Vk,n (x)
])

≤ 1 + C∗
1v2

nU2
n,k (ϕ) γ2

kh−1
k + C∗

2v3
nU3

k,n (ϕ) γ3
kh−3

k

≤ exp
[

C∗
1v2

nU2
k,n (ϕ) γ2

kh−1
k + C∗

2v3
nU3

k,n (ϕ) γ3
kh−3

k

]

.
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Applying Lemma 4.1, we deduce from (5.30) that, for all C > 0,

sup
x∈I

P

[ vn

lnn

(

T̃ (1)
n (x) − E

(

T̃ (1)
n (x)

))

≥ C
]

≤ n−C
s exp

[

C∗
1v2

n

n
∑

k=n0

U2
k,n (ϕ) γkO

(

v−2
k

)

+ C∗
2v3

n

n
∑

k=n0

U3
k,n (ϕ) γkO

(

v−3
k

)

]

= O
(

n−C
s

)

.

We establish exactly in the same way that, for all C > 0,

sup
x∈I

P

[ vn

lnn

(

E

(

T̃ (1)
n (x)

)

− T̃ (1)
n (x)

)

≥ C
]

= O
(

n−C
s

)

,

which concludes the proof of Lemma 5.1.

5.4. Proof of Lemma 4.11. Set

ηk (x) = (Wk+1 (x) − r (x)Zk+1 (x)) . (5.31)

In order to prove Lemma 4.11, we first establish a central limit theorem for

Tn (x) − E (Tn (x)) =
1

∑n
k=1 qk

n
∑

k=n0−1

qk [ηk (x) − E (ηk (x))] .

In view of (5.6)-(5.8) and since hk/hk+1 = 1 + o (1), we have

V ar (ηk(x))

= V ar (Wk+1(x)) + r2(x)V ar (Zk+1(x)) − 2r(x)Cov (Wk+1(x), Zk+1(x))

=
1

hk

[

V ar[Y |X = x]f(x)

∫

R

K2(z)dz + o(1)

]

.

Noting that
(

q2
nh−1

n

)

∈ GS (−2q + a) with q < (1 + a) /2, and using (4.12), we get

v2
n =

n
∑

k=n0−1

q2
kV ar (ηk (x))

=

n
∑

k=n0−1

q2
k

hk

[

V ar [Y |X = x] f (x)

∫

R

K2 (z)dz + o (1)

]

=
nq2

nh−1
n

1 − 2q + a

[

V ar [Y |X = x] f (x)

∫

R

K2 (z)dz + o (1)

]

. (5.32)

Now, set p ∈ ]0, 1] such that q < (1 + a (1 + p)) / (2 + p); it follows from (5.11) that

n
∑

k=n0−1

q2+p
k E

[

|ηk(x)|2+p
]

= O

(

n
∑

k=n0−1

q2+p
k

h2+p
k

E

(

|Yk − r(x)|2+p K2+p

(

x − Xk

hk

))

)

= O

(

n
∑

k=n0−1

q2+p
k

h1+p
k

)

.
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In view of (5.32) and using (4.12), we get

1

v2+p
n

n
∑

k=n0−1

q2+p
k E

[

|ηk (x)|2+p
]

= O

(

nq2+p
n h

−(1+p)
n

(

nq2
nh−1

n

)1+ p
2

)

= O

(

1

n
p
2 h

p
2
n

)

= o (1) .

The application of Lyapounov Theorem gives
∑n

k=1 qk
√

nq2
nh−1

n

(Tn (x) − E [Tn (x)])

D→ N
(

0,
1

1 + a − 2q
V ar [Y |X = x] f (x)

∫

R

K2 (z) dz

)

and applying (4.12), we obtain
√

nhn (Tn(x) − E [Tn(x)])

D→ N
(

0,
(1 − q)2

1 + a − 2q
V ar[Y |X = x]f(x)

∫

R

K2(z)dz

)

. (5.33)

Now, note that

E (Tn(x))

=
1

∑n
k=1 qk

n
∑

k=n0−1

qk [(E (Wk+1(x)) − a(x)) − r(x) (E (Zk+1(x)) − f(x))] .

Since hn+1/hn = 1 + o (1), it follows from (5.13) and (5.14) that

E (Tn (x)) =
1

∑n
k=1 qk

n
∑

k=n0−1

qkh2
k+1

∫

R

z2K (z)dz

[

1

2

(∫

R

y
∂2g

∂x2
(x, y) dy − r (x)

∫

R

∂2g

∂x2
(x, y) dy

)

+ o (1)

]

=
1

∑n
k=1 qk

n
∑

k=n0−1

qkh2
k

[

m(2) (x) f (x) + o (1)
]

.

Applying (4.12), we obtain

lim
n→∞

1

h2
n

E (Tn (x)) =
1 − q

1 − 2a − q
m(2) (x) f (x) (5.34)

and Lemma 4.11 follows from the combination of (5.33) and (5.34).

5.5. Proof of Lemma 4.12. Set

Sn (x) =
n
∑

k=n0−1

qk [ηk (x) − E (ηk (x))]

where ηk is defined in (5.31), and H−2
n = nh−1

n q2
n. Let us first note that, since

(

nh−1
n q2

n

)

∈ GS (1 + a − 2q) with 1 + a − 2q > 0, we have limn→∞ H−2
n = ∞.
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Moreover, we have limn→∞ H2
n/H2

n−1 = 1 and, by (5.32),

lim
n→∞

H2
n

n
∑

k=n0−1

q2
kV ar [ηk (x)] = [1 + a − 2q]

−1
V ar [Y |X = x] f (x)

∫

R

K2 (z)dz

and, by (5.11), E

[

|qnηn (x)|3
]

= O
(

q3
nh−2

n

)

. Since, for all ǫ > 0,

1

n
√

n

n
∑

k=n0−1

E

(

|Hnqkηk (x)|3
)

= O

(

H3
n

n
√

n

n
∑

k=n0−1

q3
k

h2
k

)

= O
(

n−3h
3
2
n q−3

n

(

nǫ + nq3
nh−2

n

)

)

,

we have

1

n
√

n

n
∑

k=n0−1

E

(

|Hnqkηk (x)|3
)

= o
(

[

ln
(

H−2
n

)]−1
)

.

The application of Theorem 1 of Mokkadem and Pelletier (2008) ensures that, with
probability one, the sequence





HnSn (x)
√

2 ln ln
(

H−2
n

)



 =





∑n
k=1 qk

nqn

√
nhn (Tn (x) − E (Tn (x)))

√

2 ln ln
(

H−2
n

)





is relatively compact and its limit set is the interval
[

−
√

1

1 + a − 2q
σ(x),

√

1

1 + a − 2q
σ(x)

]

,

with σ(x) = V ar [Y |X = x] f (x)
∫

R
K2 (z)dz. Since limn→∞ ln ln

(

H−2
n

)

/ ln lnn =

1, and using (4.12), it follows that, with probability one, the sequence (
√

nhn(Tn(x)−
E(Tn(x)))/

√
2 ln lnn) is relatively compact, and its limit set is the interval



−
√

(1 − q)
2

1 + a − 2q
σ(x),

√

(1 − q)
2

1 + a − 2q
σ(x)



 .

The application of (5.34) concludes the proof of Lemma 4.12.

5.6. Proof of Lemma 4.13. Let us write Tn (x) as

Tn (x) = Tn,1 (x) − r (x) Tn,2 (x)

with

Tn,1 (x) =
1

∑n
k=1 qk

n
∑

k=n0−1

qk

hk+1
Yk+1K

(

x − Xk+1

hk+1

)

Tn,2 (x) =
1

∑n
k=1 qk

n
∑

k=n0−1

qk

hk+1
K

(

x − Xk+1

hk+1

)

.

Lemma 4.13 is proved by showing that, for i ∈ {1, 2},

sup
x∈I

|Tn,i (x) − E (Tn,i (x))| = O
(
√

n−1h−1
n lnn

)

a.s. (5.35)



100 Abdelkader Mokkadem, Mariane Pelletier and Yousri Slaoui

and that

sup
x∈I

|E (Tn,1 (x)) − r (x) E (Tn,2 (x))| = O
(

h2
n

)

. (5.36)

The proof of (5.36) relies on classical computations and is omitted. Moreover the
proof of (5.35) for i = 2 is similar to that for i = 1, and is omitted too. We now
prove (5.35) for i = 1. To this end, we first state the following lemma.

Lemma 5.2. There exists s > 0 such that, for all C > 0,

sup
x∈I

P

[√
nhn

lnn
|Tn,1 (x) − E (Tn,1 (x))| ≥ C

]

= O
(

n−C
s

)

.

We first show how (5.35) for i = 1 can be deduced from Lemma 5.2, and then
prove Lemma 5.2. Set (Mn) ∈ GS (m̃) with m̃ > 0, and note that, for all C > 0,
we have

P

[√
nhn

lnn
sup
x∈I

|Tn,1 (x) − E (Tn,1 (x))| ≥ C

]

≤ P

[√
nhn

lnn
sup
x∈I

|Tn,1 (x) − E (Tn,1 (x))| ≥ C and sup
k≤n

|Yk+1| ≤ Mn

]

+P

[

sup
k≤n

|Yk+1| ≥ Mn

]

.

Let I
(n)
i be N (n) intervals of length dn such that ∪N(n)

i=1 I
(n)
i = I, and for all i ∈

{1, . . . , N (n)}, set x
(n)
i ∈ I

(n)
i . We have

P

[√
nhn

lnn
sup
x∈I

|Tn,1 (x) − E (Tn,1 (x))| ≥ C

]

≤
N(n)
∑

i=1

P





√
nhn

lnn
sup

x∈I
(n)
i

|Tn,1 (x) − E (Tn,1 (x))| ≥ C and sup
k≤n

|Yk+1| ≤ Mn





+ P

[

sup
k≤n

|Yk+1| ≥ Mn

]

. (5.37)

Since K is Lipschitz-continuous, there exist k∗, c∗ > 0, such that, for all x, y ∈ R

satisfying |x − y| ≤ dn and on
{

supk≤n |Yk+1| ≤ Mn

}

, we have:

|Tn,1 (x) − Tn,1 (y)|

=

∣

∣

∣

∣

∣

1
∑n

k=1 qk

n
∑

k=n0−1

qkh−1
k+1Yk+1

[

K

(

x − Xk+1

hk+1

)

− K

(

y − Xk+1

hk+1

)]

∣

∣

∣

∣

∣

≤ k∗Mndn
1

∑n
k=1 qk

n
∑

k=1

qkh−2
k+1

≤ c∗Mnh−2
n dn.
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It follows that, for all x ∈ I
(n)
i , on

{

supk≤n |Yk+1| ≤ Mn

}

, we have

|Tn,1 (x) − E (Tn,1 (x))|
≤

∣

∣

∣Tn,1 (x) − Tn,1

(

x
(n)
i

)∣

∣

∣+
∣

∣

∣Tn,1

(

x
(n)
i

)

− E

(

Tn,1

(

x
(n)
i

))∣

∣

∣

+
∣

∣

∣E

(

Tn,1

(

x
(n)
i

))

− E (Tn,1 (x))
∣

∣

∣

≤ 2c∗Mnh−2
n dn +

∣

∣

∣Tn,1

(

x
(n)
i

)

− E

(

Tn,1

(

x
(n)
i

))∣

∣

∣ .

In view of (5.37), we obtain, for all C > 0,

P

[√
nhn

lnn
sup
x∈I

|Tn,1 (x) − E (Tn,1 (x))| ≥ C

]

≤
N(n)
∑

i=1

P

[√
nhn

lnn

∣

∣

∣Tn,1

(

x
(n)
i

)

− E

(

Tn,1

(

x
(n)
i

))∣

∣

∣+ 2c∗Mn

√
nhn

lnn
h−2

n dn ≥ C

]

+nP [|Y | ≥ Mn] .

Now, set (dn) ∈ GS
(

− 1
2 − 3

2a − m̃
)

such that, for all n, 2c∗Mn

√
nhn(ln n)−1h−2

n dn

≤ C/2; in view of Lemma 5.2 and Assumption (A4) ii), there exists s > 0 such that

P

[√
nhn

lnn
sup
x∈I

|Tn,1 (x) − E (Tn,1 (x))| ≥ C

]

≤ N (n) sup
x∈I

P

[√
nhn

lnn
|Tn,1 (x) − E (Tn,1 (x))| ≥ C

2

]

+ n exp (−t∗Mn) E (exp (t∗ |Y |))
= O

(

d−1
n n− C

2s + n exp (−t∗Mn)
)

.

Since
(

d−1
n

)

∈ GS
(

1
2 + 3

2a + m̃
)

and since (Mn) ∈ GS (m̃) with m̃ > 0, we can
choose C large enough so that

∑

n≥0

P

[√
nhn

lnn
sup
x∈I

|Tn,1 (x) − E (Tn,1 (x))| ≥ C

]

< ∞,

which gives (5.35) for i = 1.
It remains to prove Lemma 5.2. For all x ∈ I and all s > 0, we have

P

[√
nhn

lnn
(Tn,1 (x) − E (Tn,1 (x))) ≥ C

]

(5.38)

= P

[

exp
[

s−1
√

nhn (Tn,1 (x) − E (Tn,1 (x)))
]

≥ n
C
s

]

≤ n−C
s E

(

exp
[

s−1
√

nhn (Tn,1 (x) − E (Tn,1 (x)))
])

≤ n−C
s

n
∏

k=n0−1

E
(

exp
(

s−1Uk,n (x)
))

, (5.39)

with

Uk,n (x)

=

√
nhn

∑n
k=1 qk

qk

hk+1

[

Yk+1K

(

x − Xk+1

hk+1

)

− E

((

Yk+1K

(

x − Xk+1

hk+1

)))]

.



102 Abdelkader Mokkadem, Mariane Pelletier and Yousri Slaoui

For k and n such that k ≤ n, set

αk,n =

√
nhn

∑n
k=1 qk

qk

hk+1
.

We have, for all x ∈ I,

E
(

exp
[

s−1Uk,n (x)
])

≤ 1 +
1

2
E
[

s−2U2
k,n (x)

]

+ E
[

s−3
∣

∣U3
k,n (x)

∣

∣

]

exp [|Uk,n (x)|]

≤ 1 +
1

2
s−2α2

k,nV ar

[

Yk+1K

(

x − Xk+1

hk+1

)]

+
{

s−3α3
k,n‖K‖3

∞

E

[(

|Yk+1|3 + (E(|Yk+1|))3
)

exp
(

s−1αk,n‖K‖∞ (|Yk+1| + E (|Yk+1|))
)

]}

.

Now, note that

αk,n =

(

nqn
∑n

k=1 qk

) qk

√

kh−1
k

qn

√

nh−1
n

√

k−1hkh−2
k+1

=

(

nqn
∑n

k=1 qk

)





n−1
∏

j=k

qj

√

jh−1
j

qj+1

√

(j + 1)h−1
j+1





√

k−1hkh−2
k+1.

Since
(

qj

√

jh−1
j

)

∈ GS (−q + (1 + a) /2) with −q + (1 + a) /2 > 0, we have

qj

√

jh−1
j

qj+1

√

(j + 1)h−1
j+1

= 1 −
(

−q +
1 + a

2

)

1

j
+ o

(

1

j

)

≤ 1 for j large enough.

It follows that supk≤n αk,n < ∞. Consequently, in view of Assumption (A4) ii),
there exist s > 0 and c∗ > 0 such that, for all k and n such that k ≤ n,

E

[(

|Yk+1|3 + (E (|Yk+1|))3
)

exp
(

s−1αk,n‖K‖∞ (|Yk+1| + E (|Yk+1|))
)

]

≤ c∗.

Recall that supx∈I V ar
[

YkK
(

(x − Xk) h−1
k

)]

= O (hk). We then deduce that there
exist positive constants C∗

i , such that, for all x ∈ I, and for all k and n such that
k ≤ n,

E
(

exp
[

s−1Uk,n (x)
])

≤ 1 + C∗
1

nhn

(
∑n

k=1 qk)
2

q2
k

hk
+ C∗

2

(nhn)
3
2

(
∑n

k=1 qk)
3

q3
k

h3
k

≤ exp

[

C∗
3

hn

nq2
n

q2
k

hk
+ C∗

4

h
3
2
n

n
3
2 q3

n

q3
k

h3
k

]

.

Then, it follows from (5.38) that, for all C > 0,

sup
x∈I

P

[√
nhn

lnn
(Tn,1 (x) − E (Tn,1 (x))) ≥ C

]

≤ n−C
s exp

[

C∗
3

hn

nq2
n

n
∑

k=1

q2
k

hk
+ C∗

4

h
3
2
n

n
3
2 q3

n

n
∑

k=1

q3
k

h3
k

]

= O
(

n−C
s

)

.
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We establish exactly in the same way that, for all C > 0,

sup
x∈I

P

[√
nhn

lnn
(E (Tn,1 (x)) − Tn,1 (x)) ≥ C

]

= O
(

n−C
s

)

,

which concludes the proof of Lemma 5.2.

5.7. Proof of Lemma 4.14. In view of (4.14), we have

∆n (x) = ∆(1)
n (x) + ∆(2)

n (x) ,

with

∆(1)
n (x) =

n
∑

k=n0

Uk,n(f(x)t)γk (E [Zk(x)] − Zk(x)) (rk−1(x) − r(x)) , (5.40)

∆(2)
n (x) =

n
∑

k=n0

Uk,n(f(x))γk (f(x) − E [Zk(x)]) (rk−1(x) − r(x)) . (5.41)

Let us first note that, in view of (5.14) and by application of Lemma 4.1, we have

∣

∣

∣∆(2)
n (x)

∣

∣

∣ = O

(

Πn (f (x))

n
∑

k=n0

Π−1
k (f (x)) γkh2

kwk

)

a.s.

= O

(

Πn (f (x))
n
∑

k=n0

Π−1
k (f (x)) γkO (mk)wk

)

a.s.

= O (mnwn) a.s.

Let us now bound ∆
(1)
n (x). To this end, we set

εk (x) = E (Zk (x)) − Zk (x) ,

Gk (x) = rk (x) − r (x) ,

Sn (x) =

n
∑

k=1

Π−1
k (f (x)) γkεk (x)Gk−1 (x)

and Fk = σ ((X1, Y1) , . . . , (Xk, Yk)). In view of (5.7) and of Lemma 4.1, the in-
creasing process of the martingale (Sn (x)) satisfies

< S >n (x) =
n
∑

k=n0

E
[

Π−2
k (f (x)) γ2

kε2
k (x) G2

k−1 (x) |Fk−1

]

=

n
∑

k=n0

Π−2
k (f (x)) γ2

kG2
k−1 (x) V ar [Zk (x)]

= O

(

n
∑

k=n0

Π−2
k (f (x)) γ2

kw2
k

1

hk

)

a.s.

= O

(

n
∑

k=n0

Π−2
k (f (x)) γkm2

kw2
k

)

a.s.

= O
(

Π−2
n (f (x))m2

nw2
n

)

a.s.
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• Let us first consider the case the sequence (nγn) is bounded. We then have
(

Π−1
n (f (x)) ∈ GS

(

ξ−1f (x)
))

, and thus ln (< S >n (x)) = O (lnn) a.s. Theorem
1.3.15 in Duflo (1997) then ensures that, for any δ > 0,

|Sn (x)| = o
(

< S >
1
2
n (x) (ln < S >n (x))

1+δ
2

)

+ O (1) a.s.

= o
(

Π−1
n (f (x))mnwn (lnn)

1+δ
2

)

+ O (1) a.s.

It follows that, for any δ > 0,
∣

∣

∣∆(1)
n (x)

∣

∣

∣ = o
(

mnwn (lnn)
1+δ
2

)

+ O (Πn (f (x))) a.s.

= o
(

mnwn (lnn)
1+δ
2

)

+ o (mn) a.s.,

which concludes the proof of Lemma 4.14 in this case.
• Let us now consider the case limn→∞ (nγn) = ∞. In this case, for all δ > 0, we
have

ln
(

Π−2
n (f (x))

)

=

n
∑

k=n0

ln (1 − γkf (x))
−2

=

n
∑

k=n0

(2γkf (x) + o (γk))

= O

(

n
∑

k=1

γkkδ

)

.

Since
(

γnnδ
)

∈ GS (− (α − δ)) with (α − δ) < 1, we have

lim
n→∞

n
(

γnnδ
)

∑n
k=1 γkkδ

= 1 − (α − δ) .

It follows that ln
(

Π−2
n (f (x))

)

= O
(

n1+δγn

)

. The sequence (mnwn) being in
GS (−m∗ + w∗), we deduce that, for all δ > 0, we have

ln (< S >n (x)) = O
(

n1+δγn

)

a.s.

Theorem 1.3.15 in Duflo (1997) then ensures that, for any δ > 0,

|Sn (x)| = o
(

< S >
1
2
n (x) (ln < S >n (x))

1+δ
2

)

+ O (1) a.s.

= o

(

Π−1
n (f (x))mnwn

(

n1+δγn

)

1+δ
2

)

+ O (1) a.s.

It follows from the application of Lemma 4.1 that, for any δ > 0,

∣

∣

∣∆(1)
n (x)

∣

∣

∣ = o

(

mnwn

(

n1+δγn

)

1+δ
2

)

+ O (Πn (f (x))) a.s.

= o

(

mnwn

(

n1+δγn

)

1+δ
2

)

a.s.,

which concludes the proof of Lemma 4.14.
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5.8. Proof of Lemma 4.15. Let us first note that, in view of (5.41), and by appli-
cation of Lemma 4.1, we have

sup
x∈I

∣

∣

∣∆(2)
n (x)

∣

∣

∣ = O

(

n
∑

k=n0

(

sup
x∈I

Uk,n (f (x))

)

γkh2
kwk

)

a.s.

= O

(

n
∑

k=n0

Uk,n (ϕ) γkmkwk

)

a.s.

= O (mnwn) a.s.

Now, set

An =
3

t∗
lnn (5.42)

(where t∗ is defined in (A4) ii)) and write ∆
(1)
n (defined in (5.40)) as

∆(1)
n (x) = Πn (f (x))M (n)

n (x) + Πn (f (x))Sn (x) ,

with

Sn(x) =
n
∑

k=n0

Π−1
k (f(x))γk (E [Zk(x)] − Zk(x)) (rk−1(x) − r(x)) 1supl≤k−1 |Yl|>An

,

M
(n)
k (x) =

k
∑

j=n0

Π−1
j (f(x))γj (E[Zj(x)] − Zj(x)) (rj−1(x) − r(x))1supl≤j−1 ‖Yl|≤An

.

Let us first prove a uniform strong upper bound for Sn. For any c > 0, we have

∑

n≥0

P

[

sup
x∈I

m−1
n w−1

n |Sn (x)| ≥ c

]

= O





∑

n≥0

P

(

sup
l≤n−1

|Yl| > An

)





= O





∑

n≥0

nP (|Y | > An)





= O





∑

n≥0

n exp (−t∗An)





< ∞.

It follows that

sup
x∈I

|Sn (x)| = O (mnwn) a.s.

To establish the strong uniform bound of M
(n)
n , we shall apply the following result

given in Duflo (1997, page 209).

Lemma 5.3.

Let
(

M
(n)
k

)

k
be a martingale such that, for all k ≤ n,

∣

∣

∣M
(n)
k − M

(n)
k−1

∣

∣

∣ ≤ cn, and

set
Φc (λ) = c−2

(

eλc − 1 − λc
)

. For all λn such that λncn ≤ 1 and all αn > 0, we have

P

(

λn

(

M (n)
n − M

(n)
0

)

≥ Φcn
(λn) < M (n) >n +αnλn

)

≤ e−αnλn .
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In view of (4.15), there exists C∗ > 0 such that, on
{

supl≤k |Yl| ≤ An

}

,

|rk (x) − r (x)| ≤ C∗kγkh−1
k An.

Consequently, there exists C1 > 0 such that
∣

∣

∣
M

(n)
k (x) − M

(n)
k−1 (x)

∣

∣

∣

≤ Π−1
k (f (x)) γk |Zk (x) − E (Zk (x))|

∣

∣

∣(rk−1 (x) − r (x))1supl≤k−1|Yl|≤An

∣

∣

∣

≤ Π−1
k (f (x)) γk

(

2h−1
k ‖K‖∞

) (

C∗ (k − 1) γk−1h
−1
k−1An

)

≤ C1Π
−1
k (f (x)) kγ2

kh−2
k An.

• In the case limn→∞ (nγn) = ∞, since
(

nγ2
nh−2

n

)

∈ GS (1 − 2α + 2a) there exists
(uk) → 0 such that

(k − 1) γ2
k−1h

−2
k−1

kγ2
kh−2

k

= 1 − [1 − 2α + 2a]
1

k
+ o

(

1

k

)

= 1 + ukγk.

It follows that there exists k0 ≥ n0 such that, for all k ≥ k0 and for all x ∈ I,

Π−1
k−1 (f (x)) (k − 1) γ2

k−1h
−2
k−1

Π−1
k (f (x)) kγ2

kh−2
k

= (1 − γkf (x)) (1 + ukγk)

= 1 − γkf (x) + ukγk (1 − γkf (x))

≤ 1 − γkϕ + ukγk (1 + γk‖f‖∞)

≤ 1.

Consequently, there exists C > 0 such that, for all x ∈ I and all k ≤ n,
∣

∣

∣
M

(n)
k (x) − M

(n)
k−1 (x)

∣

∣

∣
≤ CΠ−1

n (f (x))nγ2
nh−2

n An. (5.43)

• In the case limn→∞ (nγn) < ∞ (in which case α = 1), we set ǫ ∈]0, min{(1 −
3a)/2; ϕξ−1 − m∗}[ (where m∗ is defined in (4.3)), and write

∣

∣

∣M
(n)
k (x) − M

(n)
k−1 (x)

∣

∣

∣ ≤ C1

[

Π−1
k (f (x)) k−ǫmk

]

An

[

m−1
k k1+ǫγ2

kh−2
k

]

.

Since
(

m−1
n n1+ǫγ2

nh−2
n

)

∈ GS (m∗ + 1 + ǫ − 2α + 2a) with

m∗ + 1 + ǫ − 2α + 2a ≤ 1 − a

2
+ ǫ − 1 + 2a

≤ ǫ − 1

2
(1 − 3a) < 0,

the sequence
(

m−1
n n1+ǫγ2

nh−2
n

)

is bounded. On the other hand, since (n−ǫmn) ∈
GS (−ǫ− m∗), there exists (uk) → 0 and k0 ≥ n0 such that, for all k ≥ k0 and for
all x ∈ I,

Π−1
k−1 (f (x)) (k − 1)

−ǫ
mk−1

Π−1
k (f (x)) k−ǫmk

= (1 − γkf (x))

(

1 + (m∗ + ǫ)
1

k
+ o

(

1

k

))

= (1 − γkf (x)) (1 + (m∗ + ǫ) ξγk + ukγk)

≤ (1 − γkϕ) (1 + (m∗ + ǫ) ξγk + |uk| γk)

≤ 1 − (ϕ − (m∗ + ǫ) ξ) γk

2
≤ 1.
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It follows that there exists C > 0 such that, for all x ∈ I and all k ≤ n,
∣

∣

∣M
(n)
k (x) − M

(n)
k−1 (x)

∣

∣

∣ ≤ CΠ−1
n (f (x))n−ǫmnAn. (5.44)

From now on, we set

cn (x) =

{

CΠ−1
n (f (x)) nγ2

nh−2
n An if limn→∞ (nγn) = ∞,

CΠ−1
n (f (x)) mnn−ǫAn if limn→∞ (nγn) < ∞,

so that in view of (5.43) and (5.44), for all x ∈ I and all k ≤ n, we have
∣

∣

∣M
(n)
k (x) − M

(n)
k−1 (x)

∣

∣

∣ ≤ cn (x) .

Now, let (un) be a positive sequence such that, for all n,
{

un ≤ C−1n−1γ−2
n h2

nA−1
n if limn→∞ (nγn) = ∞,

un ≤ C−1m−1
n nǫA−1

n if limn→∞ (nγn) < ∞ (5.45)

and set

λn (x) = unΠn (f (x)) .

Let us at first assume that the following lemma holds.

Lemma 5.4.
There exist C2 > 0 and ρ > 0 such that for all x, y ∈ I such that |x − y| ≤ C2n

−ρ,
we have

∣

∣

∣λn (x)M (n)
n (x) − λn (y)M (n)

n (y)
∣

∣

∣ ≤ 1,
∣

∣

∣
Φcn(x) (λn (x)) < M (n) >n (x) − Φcn(y) (λn (y)) < M (n) >n (y)

∣

∣

∣
≤ 1.

Set

dn = C2n
−ρ,

Vn (x) = λn (x)M (n)
n (x) − Φcn(x) (λn (x)) < M (n) >n (x) ,

αn (x) =
(ρ + 2) lnn

λn (x)
.

Let I
(n)
i be N (n) intervals of length dn such that ∪N(n)

i=1 = I, and for all i ∈
{1, . . . , N (n)}, set x

(n)
i ∈ I

(n)
i . Applying Lemma 5.4, we get, for n large enough,

P

[

sup
x∈I

Vn (x) ≥ 2 (ρ + 2) lnn

]

≤
N(n)
∑

i=1

P



 sup
x∈I

(n)
i

Vn (x) ≥ 2 (ρ + 2) ln n





≤
N(n)
∑

i=1

P

[

Vn

(

x
(n)
i

)

+ 2 ≥ 2 (ρ + 2) lnn
]

≤ N (n) sup
x∈I

P [Vn (x) ≥ (ρ + 2) lnn] .

Now, the application of Lemma 5.3 ensures that, for all x ∈ I,

P [Vn (x) ≥ (ρ + 2) lnn]

≤ P

[

λn (x) M (n)
n (x) − Φcn(x) (λn (x)) < M (n) >n (x) ≥ αn (x) λn (x)

]

≤ exp [−αn (x) λn (x)]

≤ n−(ρ+2).
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It follows that

∑

n≥1

P

[

sup
x∈I

Vn(x) ≥ 2(ρ + 2) lnn

]

= O





∑

n≥1

n−2



 < +∞

and, applying Borel-Cantelli Lemma, we obtain

sup
x∈I

λn (x) M (n)
n (x) ≤ sup

x∈I
Φcn(x) (λn (x)) < M (n) >n (x) + 2 (ρ + 2) lnn a.s.

Since Φc (λ) ≤ λ2 as soon as λc ≤ 1, and since λn (x) = unΠn (f (x)), it follows
that

un sup
x∈I

Πn(f(x))M (n)
n (x) ≤ u2

n sup
x∈I

Π2
n(f(x)) < M (n) >n (x) + 2(ρ + 2) lnn a.s.

Establishing the same upper bound for the martingale
(

−M
(n)
k

)

, we obtain

sup
x∈I

Πn(f(x))
∣

∣

∣M (n)
n (x)

∣

∣

∣ ≤ un sup
x∈I

Π2
n(f(x)) < M (n) >n (x) + 2

(ρ + 2) lnn

un
a.s.

Now, since supx∈I V ar (Zk (x)) = O
(

h−1
k

)

, we have

sup
x∈I

Π2
n (f (x)) < M (n) >n (x)

= O

(

n
∑

k=n0

sup
x∈I

U2
k,n (f (x)) γ2

k sup
x∈I

|rk−1 (x) − r (x)|2 sup
x∈I

(V ar [Zk (x)])

)

= O

(

n
∑

k=n0

U2
k,n (ϕ) γ2

kh−1
k w2

k

)

a.s. (5.46)

• Let us first consider the case when the sequence (nγn) is bounded. In this
case, (5.46) and Lemma 4.1 imply that

sup
x∈I

Π2
n (f (x)) < M (n) >n (x) = O

(

n
∑

k=n0

U2
k,n (ϕ) γkm2

kw2
k

)

a.s.

= O
(

m2
nw2

n

)

a.s.

In this case, we have thus proved that, for all positive sequence (un) satisfy-
ing (5.45), we have

sup
x∈I

Πn (f (x))
∣

∣

∣M (n)
n (x)

∣

∣

∣ = O

(

unm2
nw2

n +
lnn

un

)

a.s. (5.47)

Now, since the sequence
([

m−1
n w−1

n

√
lnn

]

mnn−ǫAn

)

belongs to GS (− (w∗ + ǫ))

with w∗ + ǫ > 0, there exists u0 > 0 such that, for all n,

u0m
−1
n w−1

n

√
lnn ≤ C−1m−1

n nǫA−1
n

(where C is defined in (5.45)). Applying (5.47) with (un) =
(

u0m
−1
n w−1

n

√
lnn

)

,

we obtain

sup
x∈I

Πn (f (x))
∣

∣

∣M (n)
n (x)

∣

∣

∣ = O
(

mnwn

√
lnn

)

a.s.,
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which concludes the proof of Lemma 4.15 in this case.
• Let us now consider the case limn→∞ (nγn) = ∞. In this case, (5.46) implies that

sup
x∈I

Π2
n (f (x)) < M >(n)

n (x) = O
(

γnh−1
n w2

n

)

a.s.

In this case, we have thus proved that, for all positive sequence (un) satisfy-
ing (5.45), we have

sup
x∈I

Πn (f (x))
∣

∣

∣M (n)
n (x)

∣

∣

∣ = O

(

unγnh−1
n w2

n +
lnn

un

)

a.s. (5.48)

Now, in view of (4.24), of (5.42), and of the assumptions of Lemma 4.15, we have
[
√

γ−1
n hn lnn w−1

n

]

[

nγ2
nh−2

n An

]

= O

(
√

γnh−1
n lnn w−1

n Bn

)

= O (1) .

Thus, there exists u0 > 0 such that, for all n,

u0

√

γ−1
n hn lnnw−1

n ≤ C−1n−1γ−2
n h2

nA−1
n .

Applying (5.48) with (un) =
(

u0

√

γ−1
n hn lnn w−1

n

)

, we obtain

sup
x∈I

Πn (f (x))
∣

∣

∣M (n)
n (x)

∣

∣

∣ = O

(
√

γnh−1
n lnn wn

)

a.s.

= O
(

mnwn

√
lnn

)

a.s.,

which concludes the proof of Lemma 4.15.

Proof of Lemma 5.4. Let (δn) ∈ GS(−δ∗), set x, y ∈ I such that |x − y| ≤ δn,
and let c∗i denote generic constants. Let us first note that |Zk (x) − Zk (y)| ≤
c∗1δnh−2

k , that |Zk (x)| ≤ c∗2h
−1
k , that

|V ar [Zk (x)] − V ar [Zk (y)]| = |E {(Zk(x) − Zk(y) − [E(Zk(x)) − E(Zk(y))])

(Zk(x) + Zk(y) − [E(Zk(x)) + E(Zk(y))])}|
≤ 8c∗2h

−1
k E [|Zk (x) − Zk (y)|]

≤ c∗3h
−3
k δn

and that, in view of (4.15), on
{

supl≤k |Yl| ≤ An

}

,

|rk (x) − r (x)| ≤ c∗4kγkh−1
k An.

Now, in view of (4.4), we have

rk (x) − r (x) = [1 − γkZk (x)] [rk−1 (x) − r (x)] + γk [Wk (x) − r (x) Zk (x)] ,

so that

[rk (x) − r (x)] − [rk (y) − r (y)]

= [1 − γkZk (x)] [rk−1 (x) − r (x)] − [1 − γkZk (y)] [rk−1 (y) − r (y)]

+γk ([Wk (x) − Wk (y)] − [r (x)Zk (x) − r (y)Zk (y)])

= [1 − γkZk (x)] ([rk−1 (x) − r (x)] − [rk−1 (y) − r (y)])

−γk [Zk (x) − Zk (y)] [rk−1 (y) − r (y)]

+γk ([Wk (x) − Wk (y)] − r (x) [Zk (x) − Zk (y)] − Zk (y) [r (x) − r (y)]) .
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For k ≥ n0, we have |1 − γkZk (x)| ≤ 1. It follows that, for k ≥ n0 and on
{

supl≤k |Yl| ≤ An

}

,

|[rk (x) − r (x)] − [rk (y) − r (y)]|
≤ |[rk−1 (x) − r (x)] − [rk−1 (y) − r (y)]| + γk |Zk (x) − Zk (y)| |rk−1 (y) − r (y)|

+γk (|Yk| + |r (x)|) |Zk (x) − Zk (y)| + γk |Zk (y)| |r (x) − r (y)|
≤ |[rk−1 (x) − r (x)] − [rk−1 (y) − r (y)]| +

(

c∗5kγ2
kh−3

k δnAn

)

+
(

c∗6γkAnh−2
k δn

)

+
(

c∗7γkh−1
k δn

)

≤ |[rk−1 (x) − r (x)] − [rk−1 (y) − r (y)]| + c∗8kγ2
kh−3

k δnAn

≤ c∗9

k
∑

j=1

jγ2
j h−3

j δnAn

≤ c∗10k
2γ2

kh−3
k δnAn.

Moreover, we note that, on
{

supl≤k |Yl| ≤ An

}

,

∣

∣

∣[rk (x) − r (x)]
2 − [rk (y) − r (y)]

2
∣

∣

∣

≤ |[rk (x) − r (x)] − [rk (y) − r (y)]| |[rk (x) − r (x)] + [rk (y) − r (y)]|
≤ c∗11k

3γ2
kh−4

k δnA2
n.

Using all the previous upper bounds, as well as (5.28) with p = 1, we get

∣

∣

∣λn (x) M (n)
n (x) − λn (y)M (n)

n (y)
∣

∣

∣

= un

∣

∣

∣

∣

∣

n
∑

k=n0

Uk,n (f (x)) γk (E [Zk (x)] − Zk (x)) [rk−1 (x) − r (x)]

−
n
∑

k=n0

Uk,n (f (y)) γk (E [Zk (y)] − Zk (y)) [rk−1 (y) − r (y)]

∣

∣

∣

∣

∣

1supl≤k−1|Yl|≤An

≤ un

n
∑

k=n0

{Uk,n (f (x)) γk |E [Zk (x)] − Zk (x)|

|(rk−1 (x) − r (x)) − (rk−1 (y) − r (y))|1supl≤k−1|Yl|≤An

}

+un

n
∑

k=n0

{Uk,n (f (x)) γk |rk−1 (y) − r (y)|

(|Zk (x) − Zk (y)| + E [|Zk (x) − Zk (y)|])1supl≤k−1|Yl|≤An

}

+un

n
∑

k=n0

{

Uk,n (f (y))

∣

∣

∣

∣

Uk,n (f (x))

Uk,n (f (y))
− 1

∣

∣

∣

∣

γk |rk−1 (y) − r (y)|

(|Zk (x)| + E [|Zk (x)|])1supl≤k−1|Yl|≤An

}
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≤ c∗12un

n
∑

k=n0

Uk,n (ϕ) γk

(

h−1
k

) (

k2γ2
kh−3

k δnAn

)

+ c∗13un

n
∑

k=n0

Uk,n (ϕ) γk(kγkh−1
k An)

(

δnh−2
k

)

+ c∗14un

n
∑

k=n0

Uk,n (ϕ)
(

δnγ−1
n

)

γk(kγkh−1
k An)

(

h−1
k

)

≤ c∗15unn2γ2
nh−4

n δnAn + c∗16unnγnh−3
n δnAn + c∗17unnh−2

n δnAn.

In view of (5.42) and (5.45), it follows that there exist s∗1 > 0 and S̃
(1)
n ∈ GS(s∗1)

such that

∣

∣

∣
λn (x)M (n)

n (x) − λn (y)M (n)
n (y)

∣

∣

∣
≤ δnS̃(1)

n . (5.49)

Now, we have

Φcn(x) (λn (x)) < M (n) >n (x) − Φcn(y) (λn (y)) < M (n) >n (y)

=
Φcn(x) (λn(x))

λ2
n(x)

λ2
n(x) < M (n) >n (x) − Φcn(y) (λn(y))

λ2
n(y)

λ2
n(y) < M (n) >n (y)

=
Φcn(x) (λn (x))

λ2
n (x)

[

λ2
n (x) < M (n) >n (x) − λ2

n (y) < M (n) >n (y)
]

+

[

Φcn(x) (λn (x))

λ2
n (x)

− Φcn(y) (λn (y))

λ2
n (y)

]

λ2
n (y) < M (n) >n (y) .

Since cn (x)λn (x) = cn (y)λn (y) = B̃n, we have

Φcn(x) (λn (x))

λ2
n (x)

= B̃−2
n

(

exp
(

B̃n

)

− 1 − B̃n

)

=
Φcn(y) (λn (y))

λ2
n (y)

.

Using the fact that Φc (λ) ≤ λ2 for λc ≤ 1, and applying (5.28) with p = 2, we
deduce that

∣

∣

∣
Φcn(x) (λn (x)) < M (n) >n (x) − Φcn(y) (λn (y)) < M (n) >n (y)

∣

∣

∣

≤
∣

∣

∣λ2
n (x) < M (n) >n (x) − λ2

n (y) < M (n) >n (y)
∣

∣

∣

≤ u2
n

∣

∣

∣

∣

∣

n
∑

k=n0

U2
k,n (f (x)) γ2

kV ar [Zk (x)] [rk−1 (x) − r (x)]2

−
n
∑

k=n0

U2
k,n (f (y)) γ2

kV ar [Zk (y)] [rk−1 (y) − r (y)]2

∣

∣

∣

∣

∣

1supl≤k−1|Yl|≤An
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≤ u2
n

n
∑

k=n0

{

U2
k,n (f (x)) γ2

kV ar [Zk (x)]

∣

∣

∣(rk−1 (x) − r (x))
2 − (rk−1 (y) − r (y))

2
∣

∣

∣1supl≤k−1|Yl|≤An

}

+u2
n

n
∑

k=n0

{

U2
k,n (f (x)) γ2

k (rk−1 (y) − r (y))
2

|V ar [Zk (x)] − V ar [Zk (y)]|1supl≤k−1|Yl|≤An

}

+u2
n

n
∑

k=n0

{

U2
k,n (f (y))

∣

∣

∣

∣

∣

U2
k,n (f (x))

U2
k,n (f (y))

− 1

∣

∣

∣

∣

∣

γ2
k (rk−1 (y) − r (y))

2

V ar [Zk (y)]1supl≤k−1|Yl|≤An

}

≤ c∗18u
2
n

n
∑

k=n0

U2
k,n (ϕ) γ2

k

(

h−1
k

) (

k3γ2
kh−4

k δnA2
n

)

+c∗19u
2
n

n
∑

k=n0

U2
k,n (ϕ) γ2

k

(

k2γ2
kh−2

k A2
n

) (

δnh−3
k

)

+c∗20u
2
n

n
∑

k=n0

U2
k,n (ϕ)

(

δnγ−1
n

)

γ2
k

(

k2γ2
kh−2

k A2
n

)

h−1
k .

In view of (5.42) and (5.45), it follows that there exist s∗2 > 0 and S̃
(2)
n ∈ GS(s∗2)

such that
∣

∣

∣Φcn(x) (λn (x)) < M (n) >n (x) − Φcn(y) (λn (y)) < M (n) >n (y)
∣

∣

∣ ≤ δnS̃(2)
n .

(5.50)
Lemma 5.4 follows from the combination of (5.49) and (5.50).
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(1996). MR1612815.

M. Duflo. Random iterative models. In Applications of Mathematics. Springer
(1997). MR1485774.

V. Fabian. Stochastic approximation of minima with improved asymptotic speed.
Ann. Math. Statist. 38, 191–200 (1967). MR0207136.

J. Galambos and E. Seneta. Regularly varying sequences. Proc. Amer. Math. Soc.
41, 110–116 (1973). MR0323963.

L. Györfi, M. Kohler, A. Krzyzak and H. Walk. A distribution-free theory of non-
parametric regression. Springer-Verlag, New York (2002). MR1920390.

P. Hall. Effect of bias estimation on coverage accuracy of bootstrap confidence
intervals for a probability density. Ann. Statist. 20, 675–694 (1992). MR1165587.

P. Hall and C. C. Heyde. Martingale limit theory and its application. Academic
Press Inc, New York-London (1980). MR0624435.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. Ann. Math. Statist. 23, 462–466 (1952). MR0050243.

H. J. Kushner and D. S. Clark. Stochastic approximation methods for constrained
and unconstrained systems. Springer, New York (1978). MR0499560.

H. J. Kushner and J. Yang. Stochastic approximation with averaging of the iterates:
optimal asymptotic rate of convergence for general processes. SIAM J. Control
Optim. 31, 1045–1062 (1993). MR1227546.

A. Le Breton. About the averaging approach schemes for stochastic approximation.
Math. Meth. Statist. 2, 295–315 (1993). .

A. Le Breton and A. Novikov. Some results about averaging in stochastic approxi-
mation. Metrika 42, 153–171 (1995). MR1360979.

L. Ljung, G. Pflug and H. Walk. Stochastic approximation and optimization of
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