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BANDWIDTH SELECTION IN DECONVOLUTION
KERNEL DISTRIBUTION ESTIMATORS DEFINED BY

STOCHASTIC APPROXIMATION METHOD WITH
LAPLACE ERRORS

Yousri Slaoui*

In this paper we consider the kernel estimators of a distribution function defined
by the stochastic approximation algorithm when the observation are contamined
by measurement errors. It is well known that this estimators depends heavily on
the choice of a smoothing parameter called the bandwidth. We propose a specific
second generation plug-in method of the deconvolution kernel distribution estimators
defined by the stochastic approximation algorithm. We show that, using the proposed
bandwidth selection and the stepsize which minimize the MISE (Mean Integrated
Squared Error), the proposed estimator will be better than the classical one for small
sample setting when the error variance is controlled by the noise to signal ratio. We
corroborate these theoretical results through simulations and a real dataset.

Key words and phrases: Bandwidth selection, deconvolution, distribution estima-
tion, plug-in methods, stochastic approximation algorithm.

1. Introduction

We suppose that we observe the contamined data Y1, . . . , Yn instead of the
uncontamined data X1, . . . , Xn, where Y1, . . . , Yn are generated from an additive
measurement error model

Yi = Xi + εi, i = 1, . . . , n

and where X1, . . . , Xn are independent, identically distributed random variables,
and let fX and FX denote respectively the probability density and the distri-
bution function of X1, the errors ε1, . . . , εn are identically distributed random
variables. We assume that X and ε are mutually independent. The distribu-
tion function of ε is denoted by Fε, assumed known. This problem is motivated
by a wide set of practical applications in different fields such as, for example,
astronomy, public health, and econometrics. In the classical deconvolution lit-
erature, the error distributions are classified into two classes: Ordinary smooth
distribution and supersmooth distribution Fan (1991). Examples of ordinary
smooth distributions include Laplacian, gamma, and symmetric gamma; exam-
ples of supersmooth distributions are normal, mixture normal and Cauchy. From
a theoretical point of view, the rate of convergence cannot be faster than loga-
rithmic for supersmooth errors, whereas for ordinary smooth errors the rate of
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convergence of FX is of a much better polynomial rate. For a practical point of
view, Delaigle and Gijbels (2004) noted that the deconvolution estimators that
assume Laplace error always gives better results than the Gaussian case, and
as an application, they consider data from the second National Health and Nu-
trition Examination Survey (NHANES), which is a cohort study consisting of
thousands of women who were investigated about their nutrition habits and then
evaluated for evidence of cancer. The primary variable of interest in the study of
the long-term log daily saturated fat intake which was known to be imprecisely
measured, for more details, see Stefanski and Caroll (1990) and Carroll et al.
(1995). Throught out this paper we suppose that ε is a centred double exponen-
tielly distributed, also called Laplace distribution, and denoted by ε ∼ Ed(σ),
with σ is the scale parameter. To construct a stochastic algorithm, which approx-
imates the function FX at a given point x, we define an algorithm of search of the
zero of the function h : y → FX(x) − y. Following Robbins-Monro’s procedure,
this algorithm is defined by setting F0,X(x) ∈ R, and, for all n ≥ 1,

Fn,X(x) = Fn−1,X(x) + γnWn,

where Wn(x) is an “observation” of the function h at the point Fn−1,X(x), and
the stepsize (γn) is a sequence of positive real numbers that goes to zero. To
define Wn(x), we follow the approach of Révész (1973, 1977), Tsybakov (1990),
Mokkadem et al. (2009a, b), and Slaoui (2013, 2014a, b) and we introduce a
bandwidth (hn) (that is, a sequence of positive real numbers that goes to zero),
and a kernel K (that is, a function satisfying

∫
R
K(x)dx = 1), a function K (that

is, a function defined by K(z) =
∫ z
−∞K(u)du), and a deconvoluting kernel Kε

defined as follows:

Kε(u) =
1

2π

∫
R

e−itu φK(t)

φε

(
t

hn

)dt,(1.1)

with φL the Fourier transform of a function or a random variable L, and sets
Wn(x) = Kε(h−1

n (x − Yn)) − Fn−1,X(x). Then, the estimator Fn,X to estimate
the distribution function FX at the point x can be written as

Fn,X(x) = (1 − γn)Fn−1,X(x) + γnKε(h−1
n (x− Yn)).(1.2)

This estimator was introduced by Slaoui (2014b) in the error-free data. Now, we
suppose that F0(x) = 0, and we let Πn =

∏n
j=1(1 − γj). Then in this paper we

propose to study the following estimator of F at the point x:

Fn,X(x) = Πn

n∑
k=1

Π−1
k γkKε

(
x− Yk

hk

)
.(1.3)

The aim of this paper is to study the properties of the proposed deconvolu-
tion kernel distribution estimator defined by the stochastic approximation algo-
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rithm (1.2), and its comparison with the deconvolution Nadaraya’s kernel distri-
bution estimator defined as

F̃n,X(x) =
1

n

n∑
i=1

Kε

(
x− Yi

hn

)
.(1.4)

This estimator was introduced by Nadaraya (1964) in the error-free data and
whose large and moderate deviation principles were established by Slaoui (2014c)
in the context of error-free data. We first compute the bias and the variance of
the proposed estimator Fn,X defined by (1.2). It turns out that they heavily
depend on the choice of the stepsize (γn), and on the distribution of ε and on the
kernel K. Moreover, we proposed a plug-in estimate which minimize an estimate
of the mean weighted integrated squared error, using the density function as
weight function to implement the bandwith selection of the proposed estimator.

The remainder of the paper is organized as follows. In Section 2, we state our
main results. Section 3 is devoted to our application results, first by simulations
(Subsection 3.1) and second using real dataset through a plug-in method (Sub-
section 3.2), we give our conclusion in Section 4, whereas the technical details
are deferred to Section 5.

2. Assumptions and main results

We define the following class of regularly varying sequences.

Definition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence.
We say that (vn) ∈ GS(γ) if

lim
n→+∞

n

[
1 − vn−1

vn

]
= γ.(2.1)

Condition (2.1) was introduced by Galambos and Seneta (1973) to define reg-
ularly varying sequences (see also Bojanic and Seneta (1973), and by Mokkadem
and Pelletier (2007) in the context of stochastic approximation algorithms. Not-
ing that the acronym GS stand for (Galambos and Seneta). Typical sequences
in GS(γ) are, for b ∈ R, nγ(log n)b, nγ(log logn)b, and so on.

The assumptions to which we shall refer are the following
(A1) ε ∼ Ed(σ), i.e. fε(x) = exp(−|x|/σ)/(2σ).
(A2) The function K equal to K(x) = (2π)−1/2 exp(−x2/2).
(A3) i) (γn) ∈ GS(−α) with α ∈ (1/2, 1].

ii) (hn) ∈ GS(−a) with a ∈ (0, 1).
iii) limn→∞(nγn) ∈ (min{2a, (α− 3a)/2},∞].

(A4) fX is bounded, differentiable, and f ′
X is bounded.

Remark 1. Assumption (A3)(iii) on the limit of (nγn) as n goes to infinity
is usual in the framework of stochastic approximation algorithms. It implies
in particular that the limit of ([nγn]−1) is finite.
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Throughout this paper we shall use the following notations:

ξ = lim
n→∞

(nγn)−1,(2.2)

Πn =
n∏

j=1

(1 − γj),

I1 =

∫
R

f2
Y (x)dx, I2 =

∫
R

(f ′
X(x))2fY (x)dx.

Our first result is the following Proposition, which gives the bias and the variance
of the proposed recursive deconvolution kernel distribution function.

Proposition 1 (Bias and variance of Fn,X). Let Assumptions (A1)–(A4)
hold , and assume that f ′

X is continuous at x, then we have
1. If a ∈ (0, α/7], then

E[Fn,X(x)] − FX(x) =
1

2(1 − 2aξ)
h2
nf

′
X(x) + o(h2

n).(2.3)

If a ∈ (α/7, 1), then

E[Fn,X(x)] − FX(x) = o

(√
γnh

−3
n

)
.(2.4)

2. If a ∈ [α/7, 1), then

Var[Fn,X(x)] =
σ4

4
√
π

1

(2 − (α− 3a)ξ)

γn
h3
n

fY (x) + o

(
γn
h3
n

)
.(2.5)

If a ∈ (0, α/7), then

Var[Fn,X(x)] = o(h4
n).(2.6)

3. If limn→∞(nγn) > max{2a, (α− 3a)/2}, then (2.3) and (2.5) hold simulta-
neously.

The bias and the variance of the estimator Fn,X defined by the stochastic
approximation algorithm (1.3) then heavily depend on the choice of the stepsize
(γn). Let us now state the following theorem, which gives the weak convergence
rate of the estimator Fn,X defined in (1.3).

Theorem 1 (Weak pointwise convergence rate). Let Assumptions (A1)–
(A4) hold , and assume that f ′

X is continuous at x.
1. If there exists c ≥ 0 such that γ−1

n h7
n → c, then√

γ−1
n h3

n(Fn,X(x) − FX(x))

D→ N
( √

c

2(1 − 2aξ)
f ′
X(x),

σ4

4
√
π

1

2 − (α− 3a)ξ
fY (x)

)
.
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2. If γ−1
n h7

n → ∞, then

1

h2
n

(Fn,X(x) − FX(x))
P→ 1

2(1 − 2aξ)
f ′
X(x),

where
D→ denotes the convergence in distribution, N the Gaussian-distribution

and
P→ the convergence in probability.

The convergence rate of the proposed estimator (1.3) is smaller than the
ordinary kernel distribution estimator Slaoui (2014b). This is the price paid for
not measuring {εi}ni=1 precisely. In order to measure the quality of our proposed
estimator (1.3), we use the following quantity,

MISE∗[Fn,X ] = E

∫
R

[Fn,X(x) − FX(x)]2fY (x)dx

=

∫
R

(E(Fn,X(x)) − FX(x))2fY (x)dx +

∫
R

Var(Fn,X(x))fY (x)dx.

Moreover, in the case a = α/7, it follows from the Proposition 1 that

AMISE∗[Fn,X ] =
σ4

4
√
π(2 − (α− 3a)ξ)

γnh
−3
n I1 +

1

4(1 − 2aξ)2
h4
nI2.(2.7)

Let us underline that first term in (2.7) can be larger than the variance com-
ponent of the integrated mean squared error of the proposed kernel distribution
estimator with error free data Slaoui (2014b). Corollary 1 gives the AMISE∗ of
the proposed deconvolution kernel estimators (1.2) using the centred double ex-
ponentialle error distribution fε(x) = exp(−|x|/σ)/(2σ). Throughout this paper,
we used the standard normal kernel. The following corollary gives the bandwidth
which minimize the AMISE∗ and the corresponding AMISE∗.

Corollary 1. Let Assumptions (A1)–(A4) hold. To minimize the
AMISE∗ of Fn,X , the stepsize (γn) must be chosen in GS(−1), the bandwidth
(hn) must equal((

3σ4

4
√
π

)1/7
(1 − 2aξ)2/7

(2 − (α− 3a)ξ)1/7

{
I1
I2

}1/7

γ1/7
n

)
.

Then, the asymptotic dominating term of the MISE∗ is

AMISE∗[Fn,X ] =
7

12

(
3σ4

4
√
π

)4/7

(1 − 2aξ)−6/7(2 − (α− 3a)ξ)−4/7I
4/7
1 I

3/7
2 γ4/7

n .

The following corollary shows that, for a special choice of the stepsize (γn) =
(γ0n

−1), which fulfilled that limn→∞ nγn = γ0 and that (γn) ∈ GS(−1), the
optimal value for hn depend on γ0 and then the corresponding AMISE∗ depend
on γ0.
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Corollary 2. Let Assumptions (A1)–(A4) hold. To minimize the
AMISE∗ of Fn,X , the stepsize (γn) must be chosen in GS(−1), limn→∞ nγn = γ0,
and the bandwidth (hn) must equal((

3σ4

8
√
π

)1/7

(γ0 − 2/7)1/7
{
I1
I2

}1/7

n−1/7

)
.(2.8)

Then, the asymptotic dominating term of the MISE∗ is

AMISE∗[Fn,X ] =
7

12

(
3σ4

8
√
π

)4/7
γ2

0

(γ0 − 2/7)10/7
I

4/7
1 I

3/7
2 n−4/7.

Moreover, the minimum of γ2
0(γ0 − 2/7)−10/7 is reached at γ0 = 1; then the

bandwidth (hn) must equal(
0.7634σ4/7

{
I1
I2

}1/7

n−1/7

)
.(2.9)

Then, the asymptotic dominating term of the MISE∗ is

AMISE∗[Fn,X ] = 0.3883σ16/7I
4/7
1 I

3/7
2 n−4/7.(2.10)

In order to estimate the optimal bandwidth (2.9), we must estimate I1 and I2.
We followed the approach of Altman and Leger (1995), which is called the plug-in
estimate, and we use the following kernel estimator of I1 introduced in Slaoui
(2014a) to implement the bandwidth selection in recursive kernel estimator of
probability density function in the error-free context and in Slaoui (2014b) to
implement the bandwidth selection in recursive kernel estimator of distribution
function also in the error-free data context:

Î1 =
Πn

n

n∑
i,k=1

Π−1
k γkb

−1
k Kε

b

(
Yi − Yk

bk

)
,(2.11)

where Kε
b is a deconvoluting kernel and b is the associated bandwidth. In practice,

we take

bn = n−β min

{
ŝ,

Q3 −Q1

1.349

}
, β ∈ (0, 1)(2.12)

(see Silverman (1986)) with ŝ the sample standard deviation, and Q1, Q3 de-
noting the first and third quartiles, respectively. We followed simlar steps as in
the previous works (Slaoui (2014a, 2015a)), we prove that in order to minimize
the MISE of Î1, the pilot bandwidth (bn) should belong to GS(−2/9), and the
stepsize (γn) should be equal to (1.93n−1). Then to estimate I1, we use Î1, with
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bn equal to (2.12), and β = 2/9. Furthermore, to estimate I2, we followed the
approach of Slaoui (2014a) and we introduced the following kernel estimator:

Î2 =
Π2

n

n

n∑
i,j,k=1
j �=k

Π−1
j Π−1

k γjγkb
′−2
j b′−2

k K
ε(1)
b′

(
Yi − Yj

b′j

)
K

ε(1)
b′

(
Yi − Yk

b′k

)
,(2.13)

where K
ε(1)
b′ is the first order derivative of a deconvoluting kernel Kb′ , and b′ the

associated bandwidth. Following similar steps as in the previous works (Slaoui
(2014a, 2015a)), we prove that in order to minimize the MISE of Î2, the pilot
bandwidth (bn) should belong to GS(−1/6), and the stepsize (γn) should be
equal to (1.736n−1). Then to estimate I2, we use Î2, with bn equal to (2.12), and
β = 1/6.

Finally, the plug-in estimator of the bandwidth (hn) using the proposed
algorithm (1.3) must be equal to0.7634σ4/7

{
Î1

Î2

}1/7

n−1/7

 .(2.14)

Then, it follows from (2.10) that the asymptotic dominating term of the MISE∗

can be estimated by

̂AMISE∗[Fn,X ] = 0.3883σ16/7Î
4/7
1 Î

3/7
2 n−4/7.

Now, let us recall that under the assumptions (A1), (A2), (A3)ii) and (A4),
the asymptotic dominating term of the MISE∗ of the deconvolution Nadaraya’s
kernel distribution estimator F̃n,X is given by

AMISE∗[F̃n,X ] =
σ4

4
√
π

1

nh3
n

I1 +
1

4
h4
nI2.

Lemma 1 gives the AMISE∗ of the deconvolution Nadaraya’s kernel disti-
bution (1.4) estimator using the centred double exponentialle error distribution.

Lemma 1. Let Assumptions (A1), (A2), (A3)ii) and (A4) hold. To mini-
mize the AMISE∗ of F̃n,X , the bandwidth (hn) must equal(

0.884σ4/7

{
I1
I2

}1/7

n−1/7

)
.(2.15)

Then, the asymptotic dominating term of the MISE∗ is

AMISE∗[F̃n,X ] = 0.357σ16/7I
4/7
1 I

3/7
2 n−4/7.(2.16)
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To estimate the optimal bandwidth (2.15), we must estimate I1 and I2. As
suggested by Hall and Maron (1987), we use the following kernel estimator of I1:

Ĩ1 =
1

n(n− 1)bn

n∑
i,j=1
i�=j

Kε
b

(
Yi − Yj

bn

)
.(2.17)

where (bn) equal to (2.12), with β = 2/9. and to estimate I2, we use the following
kernel estimator:

Ĩ2 =
1

n3b4n

n∑
i,j,k=1
j �=k

K
ε(1)
b′

(
Yi − Yj

b′n

)
K

ε(1)
b′

(
Yi − Yk

b′n

)
,(2.18)

where (b′n) equal to (2.12), with β = 1/6. Finally, the plug-in estimator of the
bandwidth (hn) using the deconvolution Nadaraya’s kernel distribution estima-
tor (1.4) must be equal to0.884σ4/7

{
Ĩ1

Ĩ2

}1/7

n−1/7

 .(2.19)

Then, it follows from (2.16) that the asymptotic dominating term of the MISE∗

can be estimated by

AMISE∗[F̃n,X ] = 0.357σ16/7Ĩ
4/7
1 Ĩ

3/7
2 n−4/7.

The following Theorem gives the conditions under which the expected
AMISE∗ of the proposed estimator Fn,X will be smaller than the expected

AMISE∗ of the deconvolution Nadaraya’s kernel distribution estimator F̃n,X .
Following similar steps as in Slaoui (2014a) and Slaoui (2015a), we prove the
following Theorem:

Theorem 2. Let the assumptions (A1)–(A4) hold , and the stepsize (γn) =
(n−1). We have

E[AMISE∗[Fn,X ]]

E[AMISE∗[F̃n,X ]]
< 1 for small sample setting(2.20)

Then, the expected AMISE∗ of the proposed estimator defined by (1.3) is smaller
than the expected AMISE∗ of the deconvolution Nadaraya’s kernel distribution
estimator defined by (1.4) for small sample setting.

3. Applications

The aim of our applications is to compare the performance of the decon-
volution Nadaraya’s kernel estimator defined in (1.4) with that of the proposed
deconvolution distribution kernel estimators defined in (1.2).
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3.1. Simulations
The aim of our simulation study is to compare the performance of the decon-

volution Nadaraya’s kernel estimator defined in (1.4) with that of the proposed
deconvolution distribution kernel estimators defined in (1.3).
When applying Fn,X one need to choose three quantities:

• The function K, we choose the standard normal kernel.
• The stepsize (γn) = ([2/3 + c]n−1), with c ∈ [0, 1].
• The bandwidth (hn) is chosen to be equal to (2.8). To estimate I1, we

use the estimator Î1 given in (2.11), with Kε
b is the standard normal

kernel, the pilot bandwidth (bn) is chosen to be equal to (2.12), with
β = 2/9, and (γn) = (1.93n−1). Moreover, to estimate I2, we use the
estimator Î2 given in (2.13), with Kε

b′ is the standard normal kernel,
the pilot bandwidth (b′n) is chosen to be equal to (2.12), with β = 1/6,
and (γn) = (1.736n−1).

When applying F̃n one need to choose two quantities:
• The function K, we use the normal kernel.
• The bandwidth (hn) is chosen to be equal to (2.15). To estimate I1, we

used the estimator Ĩ1 given in (2.17), with Kε
b is the standard normal

kernel, the pilot bandwidth (bn) is chosen to be equal to (2.12), with
β = 2/9. Moreover, to estimate I2, we used the estimator Ĩ2 given
in (2.18), with Kε

b′ is the standard normal kernel, the pilot bandwidth
(b′n) is chosen to be equal to (2.12), with β = 1/6.

In order to investigate the comparison between the two estimators, we consider
ε ∼ Ed(σ) (i.e. centred double exponentielle with the scale parameter σ). The
error variance was controlled by the noise to signal ratio, denoted by NSR and
defined by NSR = Var(ε)/Var(X). We consider three sample sizes: n = 25,
n = 50 and 150, and five distribution functions: normal N (0, 1/2) (see Table 1),
standard normal N (0, 1) (see Table 2), normal N (0, 2) distribution (see Table 3),
the normal mixture 1

2N (1/2, 1) + 1
2N (−1/2, 1) (see Table 4), the exponential

distribution of parameter 1/2 E(1/2) (see Table 5). For each of these five cases,
500 samples of sizes n = 25, n = 50 and 150 were generated. For each fixed
NSR ∈ [5%, 30%], the number of simulations is 500. We denote by F ∗

i the reference
distribution, and by Fi the test distribution, and then we compute the following
measures: Robust Mean Relative Error (RMRE = n−1

∑
i,|Fi|>ε | Fi

F ∗
i
−1|), (which

simply is the mean relative error obtained by removing the observations close to
zero) and the linear Correlation (Cor = Cov(Fi, F

∗
i )σ(Fi)

−1σ(F ∗
i )−1).

From Tables 1, 2, 3, 4 and 5, we conclude that
(i) in all the cases, the RMRE of the proposed distribution estimator (1.2),

with the choice of the stepsize (γn) = (n−1) is smaller than the deconvolu-
tion Nadaraya’s kernel distribution estimator (1.4).

(ii) the RMRE decrease as the sample size increase.
(iii) the RMRE increase as the value of NSR increase.
(iv) the CPU time are approximately two times faster using the proposed dis-

tribution estimator (1.2) compared to the deconvolution Nadaraya’s kernel
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Table 1. Quantitative comparison between the deconvolution Nadaraya’s estimator (1.4)

and four proposed estimators; estimator 1 correspond to the estimator (1.2) with the choice

of (γn) = ([2/3]n−1), estimator 2 correspond to the estimator (1.2) with the choice of

(γn) = (n−1), estimator 3 correspond to the estimator (1.2) with the choice of (γn) = ([4/3]n−1)

and estimator 4 correspond to the estimator (1.2) with the choice of (γn) = ([5/3]n−1). Here

we consider the normal distribution X ∼ N (0, 1/2) with NSR = 5% in the first block, NSR = 10%

in the second block and NSR = 20% in the last block, we consider three sample sizes n = 25,

n = 50 and n = 150, the number of simulations is 500, and we compute the robust mean relative

error (RMRE), the linear correlation (Cor) and the CPU time in seconds.

Nadaraya estimator 1 estimator 2 estimator 3 estimator 4

n = 25 NSR = 5%

RMRE 0.1109 0.1148 0.1089 0.1085 0.1094

Cor 0.993 0.993 0.993 0.993 0.993

CPU 13 7 7 7 7

n = 50

RMRE 0.0764 0.0791 0.0756 0.0759 0.0766

Cor 0.996 0.996 0.996 0.996 0.996

CPU 41 23 24 23 22

n = 150

RMRE 0.0395 0.0422 0.0394 0.0395 0.0399

Cor 0.999 0.999 0.999 0.999 0.999

CPU 395 216 212 213 215

n = 25 NSR = 10%

RMRE 0.1170 0.1209 0.1151 0.1150 0.1163

Cor 0.993 0.993 0.993 0.993 0.993

CPU 11 6 6 6 6

n = 50

RMRE 0.0801 0.0835 0.0792 0.0794 0.0803

Cor 0.996 0.996 0.996 0.996 0.996

CPU 41 24 23 24 23

n = 150

RMRE 0.0413 0.0430 0.0411 0.0414 0.0417

Cor 0.999 0.999 0.999 0.999 0.999

CPU 394 222 224 221 218

n = 25 NSR = 20%

RMRE 0.1225 0.1269 0.1207 0.1203 0.1215

Cor 0.992 0.992 0.992 0.992 0.993

CPU 9 5 5 5 5

n = 50

RMRE 0.0838 0.0873 0.0835 0.0836 0.0842

Cor 0.996 0.996 0.996 0.996 0.996

CPU 39 21 21 22 23

n = 150

RMRE 0.0421 0.0452 0.0422 0.0426 0.0431

Cor 0.998 0.998 0.998 0.998 0.998

CPU 388 209 207 205 209
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Table 2. Quantitative comparison between the deconvolution Nadaraya’s estimator (1.4)

and four estimators; estimator 1 correspond to the estimator (1.2) with the choice of

(γn) = ([2/3]n−1), estimator 2 correspond to the estimator (1.2) with the choice of

(γn) = (n−1), estimator 3 correspond to the estimator (1.2) with the choice of (γn) = ([4/3]n−1)

and estimator 4 correspond to the estimator (1.2) with the choice of (γn) = ([5/3]n−1). Here

we consider the standard normal distribution X ∼ N (0, 1) with NSR = 5% in the first block,

NSR = 10% in the second block and NSR = 20% in the last block, we consider three sample sizes

n = 25, n = 50 and n = 150, the number of simulations is 500, and we compute the robust

mean relative error (RMRE), the linear correlation (Cor) and the CPU time in seconds.

Nadaraya estimator 1 estimator 2 estimator 3 estimator 4

n = 25 NSR = 5%

RMRE 0.0975 0.1024 0.0934 0.0942 0.0968

Cor 0.993 0.993 0.993 0.993 0.993

CPU 7 4 4 4 4

n = 50

RMRE 0.0779 0.0811 0.0745 0.0745 0.0755

Cor 0.997 0.997 0.997 0.997 0.997

CPU 38 20 21 20 21

n = 150

RMRE 0.0357 0.0379 0.0349 0.0345 0.0346

Cor 0.999 0.999 0.999 0.999 0.999

CPU 374 194 195 193 196

n = 25 NSR = 10%

RMRE 0.1150 0.1180 0.1133 0.1130 0.1139

Cor 0.993 0.993 0.993 0.993 0.993

CPU 8 4 4 4 4

n = 50

RMRE 0.0797 0.0805 0.0772 0.0773 0.0778

Cor 0.997 0.997 0.997 0.997 0.997

CPU 35 18 17 16 20

n = 150

RMRE 0.0374 0.0394 0.0363 0.0366 0.0370

Cor 0.999 0.999 0.999 0.999 0.999

CPU 369 189 187 186 191

n = 25 NSR = 20%

RMRE 0.1137 0.1176 0.1127 0.1139 0.1158

Cor 0.993 0.993 0.993 0.993 0.993

CPU 8 4 4 4 4

n = 50

RMRE 0.0834 0.0864 0.0832 0.0842 0.0851

Cor 0.996 0.996 0.996 0.996 0.996

CPU 37 19 18 20 21

n = 150

RMRE 0.0397 0.0419 0.0393 0.0395 0.0397

Cor 0.999 0.999 0.999 0.999 0.999

CPU 379 203 202 203 205
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Table 3. Quantitative comparison between the deconvolution Nadaraya’s estimator (1.4)

and four estimators; estimator 1 correspond to the estimator (1.2) with the choice of

(γn) = ([2/3]n−1), estimator 2 correspond to the estimator (1.2) with the choice of

(γn) = (n−1), estimator 3 correspond to the estimator (1.2) with the choice of (γn) = ([4/3]n−1)

and estimator 4 correspond to the estimator (1.2) with the choice of (γn) = ([5/3]n−1). Here

we consider the normal distribution X ∼ N (0, 2) with NSR = 5% in the first block, NSR = 10%

in the second block and NSR = 20% in the last block, we consider three sample sizes n = 25,

n = 50 and n = 150, the number of simulations is 500, and we compute the robust mean relative

error (RMRE) and the linear correlation (Cor), and the CPU time in seconds.

Nadaraya estimator 1 estimator 2 estimator 3 estimator 4

n = 25 NSR = 5%

RMRE 0.0948 0.0982 0.0903 0.0915 0.0940

Cor 0.995 0.995 0.995 0.995 0.995

CPU 10 5 5 5 5

n = 50

RMRE 0.0768 0.0789 0.0751 0.0753 0.0760

Cor 0.997 0.997 0.997 0.997 0.997

CPU 43 25 24 23 24

n = 150

RMRE 0.0357 0.0373 0.0344 0.0340 0.0341

Cor 0.998 0.998 0.998 0.998 0.998

CPU 403 215 213 212 216

n = 25 NSR = 10%

RMRE 0.0946 0.1030 0.0927 0.0916 0.0931

Cor 0.994 0.994 0.994 0.994 0.994

CPU 11 6 6 6 6

n = 50

RMRE 0.0803 0.0808 0.0749 0.0748 0.0755

Cor 0.997 0.997 0.997 0.997 0.997

CPU 42 23 23 24 25

n = 150

RMRE 0.0497 0.0490 0.0467 0.0469 0.0469

Cor 0.998 0.998 0.998 0.998 0.998

CPU 401 206 205 208 205

n = 25 NSR = 20%

RMRE 0.0993 0.1049 0.0940 0.0921 0.0932

Cor 0.993 0.993 0.993 0.993 0.993

CPU 10 5 5 5 5

n = 50

RMRE 0.0812 0.0837 0.0805 0.0805 0.0809

Cor 0.997 0.996 0.996 0.996 0.996

CPU 43 25 24 23 23

n = 150

RMRE 0.0762 0.0709 0.0685 0.0675 0.0666

Cor 0.998 0.998 0.998 0.998 0.998

CPU 394 202 204 203 201
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Table 4. Quantitative comparison between the deconvolution Nadaraya’s estimator (1.4)

and four estimators; estimator 1 correspond to the estimator (1.2) with the choice of

(γn) = ([2/3]n−1), estimator 2 correspond to the estimator (1.2) with the choice of

(γn) = (n−1), estimator 3 correspond to the estimator (1.2) with the choice of (γn) = ([4/3]n−1)

and estimator 4 correspond to the estimator (1.2) with the choice of (γn) = ([5/3]n−1). Here

we consider the normal mixture distribution X ∼ 1/2N (1/2, 1)+1/2N (−1/2, 1) with NSR = 5%

in the first block, NSR = 10% in the second block and NSR = 20% in the last block, we consider

three sample sizes n = 25, n = 50 and n = 150, the number of simulations is 500, and we

compute the robust mean relative error (RMRE), the linear correlation (Cor) and the CPU time

in seconds.

Nadaraya estimator 1 estimator 2 estimator 3 estimator 4

n = 25 NSR = 5%

RMRE 0.0831 0.0888 0.0790 0.0795 0.0817

Cor 0.994 0.994 0.994 0.994 0.994

CPU 13 7 7 7 7

n = 50

RMRE 0.0494 0.0522 0.0486 0.0489 0.0497

Cor 0.996 0.996 0.996 0.996 0.996

CPU 45 25 24 23 24

n = 150

RMRE 0.0163 0.0180 0.0149 0.0143 0.0141

Cor 0.999 0.999 0.999 0.999 0.999

CPU 423 228 224 225 226

n = 25 NSR = 10%

RMRE 0.0841 0.0895 0.0807 0.0818 0.0844

Cor 0.992 0.992 0.992 0.992 0.992

CPU 12 7 7 7 7

n = 50

RMRE 0.0547 0.0579 0.0540 0.0539 0.0544

Cor 0.994 0.994 0.994 0.994 0.994

CPU 44 24 23 23 24

n = 150

RMRE 0.0213 0.0246 0.0211 0.0218 0.0225

Cor 0.997 0.997 0.997 0.997 0.997

CPU 425 226 225 225 229

n = 25 NSR = 20%

RMRE 0.0846 0.0907 0.0808 0.0806 0.0828

Cor 0.991 0.991 0.991 0.991 0.991

CPU 13 7 7 7 7

n = 50

RMRE 0.0582 0.0616 0.0580 0.0581 0.0587

Cor 0.993 0.993 0.993 0.993 0.993

CPU 45 23 24 24 23

n = 150

RMRE 0.0219 0.0249 0.0213 0.0222 0.0228

Cor 0.995 0.995 0.995 0.995 0.995

CPU 435 232 228 229 230
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Table 5. Quantitative comparison between the deconvolution Nadaraya’s estimator (1.4)

and four estimators; estimator 1 correspond to the estimator (1.2) with the choice of

(γn) = ([2/3]n−1), estimator 2 correspond to the estimator (1.2) with the choice of

(γn) = (n−1), estimator 3 correspond to the estimator (1.2) with the choice of (γn) = ([4/3]n−1)

and estimator 4 correspond to the estimator (1.2) with the choice of (γn) = ([5/3]n−1). Here we

consider the exponetial distribution X ∼ E(1/2) with NSR = 5% in the first block, NSR = 10% in

the second block and NSR = 20% in the last block, we consider three sample sizes n = 25, n = 50

and n = 150, the number of simulations is 500, and we compute the robust mean relative error

(RMRE), the linear correlation (Cor) and the CPU time in seconds.

Nadaraya estimator 1 estimator 2 estimator 3 estimator 4

n = 25 NSR = 5%

RMRE 0.1298 0.1336 0.1239 0.1242 0.1265

Cor 0.955 0.954 0.953 0.952 0.952

CPU 9 5 5 5 5

n = 50

RMRE 0.1263 0.1274 0.1217 0.1217 0.1224

Cor 0.965 0.964 0.964 0.963 0.962

CPU 38 20 21 20 21

n = 150

RMRE 0.0808 0.0790 0.0759 0.0751 0.0748

Cor 0.984 0.984 0.985 0.983 0.982

CPU 384 198 199 197 198

n = 25 NSR = 10%

RMRE 0.1350 0.1403 0.1300 0.1297 0.1317

Cor 0.939 0.938 0.938 0.939 0.939

CPU 9 5 5 5 5

n = 50

RMRE 0.1284 0.1311 0.1250 0.1249 0.1257

Cor 0.950 0.949 0.949 0.948 0.948

CPU 39 20 19 20 21

n = 150

RMRE 0.1190 0.1092 0.1073 0.1064 0.1054

Cor 0.942 0.944 0.954 0.954 0.953

CPU 392 204 203 202 204

n = 25 NSR = 20%

RMRE 0.1669 0.1525 0.1509 0.1494 0.1479

Cor 0.934 0.934 0.944 0.943 0.943

CPU 9 5 5 5 5

n = 50

RMRE 0.1363 0.1382 0.1289 0.1289 0.1305

Cor 0.944 0.944 0.948 0.949 0.949

CPU 37 19 21 21 20

n = 150

RMRE 0.1258 0.1213 0.1160 0.1151 0.11508

Cor 0.933 0.938 0.937 0.937 0.938

CPU 378 195 197 194 194
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Figure 1. Qualitative comparison between the deconvolution Nadaraya’s estimator (1.4) and

the proposed estimator (1.2) with the choice of the stepsize (γn) = (n−1), for 500 samples of

size 200, with NSR equal respectively to 5% (in the top left panel), equal to 10% (in the top

right panel), equal to 20% (in the down left panel) and equal to 30% (in the down right panel)

for the normal distribution X ∼ N (0, 1/2).

distribution estimator (1.4).
(v) the Cor increase as the sample size increase.
(vi) the RMRE decrease as the value of NSR increase.

From Figs. 1, 2, 3, 4 and 5, we conclude that, our proposed kernel distribution
estimator (1.2), with the choice of the stepsize (γn) = (n−1) can be closer to the
true distribution function as compared to the deconvolution Nadaraya’s kernel
distribution estimator (1.4), especially for small NSR. For our last choice of
distribution function (see Fig. 5), even when the value of NSR is equal to 30% our
proposed estimator is closer to the true distribution function.

3.2. Real dataset
Salmon Dataset: This data is from Simonoff (1996). It concerns the size of
the annual spawning stock and its production of new catchable-sized fish for 1940
through 1967 for the Skeena river sockeye salmon stock (in thousands of fish).
The dataset was available in the R package idr and contained 28 observations
on the following three variables; year, spawness and recruits, for more details
see Simonoff (1996). In order to investigate the comparison between the two
estimators, we consider the annual recruits: for 500 samples of Laplacian errors
ε ∼ Ed(σ), with NSR ∈ [5%, 30%]. For each fixed NSR, we computed the mean
(over the 500 samples) of I1, I2, hn and AMISE∗. The plug-in estimators (2.14),
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Figure 2. Qualitative comparison between the deconvolution Nadaraya’s estimator (1.4) and

the proposed estimator (1.2) with the choice of the stepsize (γn) = (n−1), for 500 samples of

size 200, with NSR equal respectively to 5% (in the top left panel), equal to 10% (in the top

right panel), equal to 20% (in the down left panel) and equal to 30% (in the down right panel)

for the standard normal distribution X ∼ N (0, 1).

(2.19) requires two kernels to estimate I1 and I2. In both cases we use the normal
kernel with bn and b′n are given in (2.12), with β equal respectively to 2/9 and
1/6.

From the Table 6, we conclude that, the ̂AMISE
∗

of proposed estimator is

quite better than the ˜AMISE
∗

of the deconvolution Nadaraya’s kernel distribu-
tion estimator. From the Fig. 6, we conclude that the two estimators present a
quite similar behavior for all the fixed NSR.

4. Conclusion

This paper propose an automatic selection of the bandwidth of a distribu-
tion function in the case of deconvolution kernel estimators with Laplace mea-
surement errors. The estimators are compared to the deconvolution distribution
estimator (1.4). We showed that using the selected bandwidth and the stepsizes
(γn) = (n−1), the proposed estimator will be better than the estimator (1.4) for
small sample setting and when the error variance is controlled by the noise to sig-
nal ratio. The simulation study corroborated these theoretical results. Moreover,
the simulation results indicate that the proposed estimator was more computing
efficiency than the estimator (1.4).

In conclusion, the proposed estimators allowed us to obtain quite better



BANDWIDTH SELECTION IN DECONVOLUTION KERNEL DISTRIBUTION 17

Figure 3. Qualitative comparison between the deconvolution Nadaraya’s estimator (1.4) and

the proposed estimator (1.2) with the choice of the stepsize (γn) = (n−1), for 500 samples of

size 200, with NSR equal respectively to 5% (in the top left panel), equal to 10% (in the top

right panel), equal to 20% (in the down left panel) and equal to 30% (in the down right panel)

for the normal distribution X ∼ N (0, 2).

results then the deconvolution Nadaraya’s estimator. Moreover, we plan to make
an extensions of our method in future and to consider the case of a regression
function (see Mokkadem et al. (2009b) and Slaoui (2015a, b, c, 2016)) in the
error-free context, and to consider the case of supersmooth measurements error
distribution (e.g. normal distribution).

5. Technical proofs

Throughout this section we use the following notations:

Zn(x) = K
(
x−Xn

hn

)
Zε
n(x) = Kε

(
x− Yn

hn

)
(5.1)

µ2(K) =

∫
R

z2K(z)dz

ψ(K) =

∫
R

zK(z)K(z)dz(5.2)

Let us first state the following technical lemma.
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Figure 4. Qualitative comparison between the deconvolution Nadaraya’ estimator (1.4) and

the proposed estimator (1.2) with the choice of the stepsize (γn) = (n−1), for 500 samples of

size 200, with NSR equal respectively to 5% (in the top left panel), equal to 10% (in the top

right panel), equal to 20% (in the down left panel) and equal to 30% (in the down right panel)

for the normal mixture distribution X ∼ 1/2N (1/2, 1) + 1/2N (−1/2, 1).

Lemma 2. Let (vn) ∈ GS(v∗), (γn) ∈ GS(−α), and m > 0 such that m −
v∗ξ > 0 where ξ is defined in (2.2). We have

lim
n→+∞

vnΠm
n

n∑
k=1

Π−m
k

γk
vk

=
1

m− v∗ξ
.

Moreover , for all positive sequence (αn) such that limn→+∞ αn = 0, and all
δ ∈ R,

lim
n→+∞

vnΠm
n

[
n∑

k=1

Π−m
k

γk
vk

αk + δ

]
= 0.

Lemma 2 is widely applied throughout the proofs. Let us underline that it
is its application, which requires Assumption (A3)(iii) on the limit of (nγn) as n
goes to infinity.

Our proofs are organized as follows. Proposition 1 in Subsection 5.1, Theo-
rem 1 in Subsection 5.2.
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Figure 5. Qualitative comparison between the deconvolution Nadaraya’s estimator (1.4) and

the proposed estimator (1.2) with the choice of the stepsize (γn) = (n−1), for 500 samples of

size 200, with NSR equal respectively to 5% (in the top left panel), equal to 10% (in the top

right panel), equal to 20% (in the down left panel) and equal to 30% (in the down right panel)

for the exponetial distribution X ∼ E(1/2).

5.1. Proof of Proposition 1
Proof. In view of (1.3) and (5.1), we have

Fn,X(x) − FX(x)(5.3)

= (1 − γn)(Fn−1,X(x) − FX(x)) + γn(Zε
n(x) − FX(x))

=

n−1∑
k=1

 n∏
j=k+1

(1 − γj)

 γk(Z
ε
k(x) − FX(x)) + γn(Zε

n(x) − FX(x))

+

 n∏
j=1

(1 − γj)

 (F0,X(x) − FX(x))

= Πn

n∑
k=1

Π−1
k γk(Z

ε
k(x) − FX(x)) + Πn(F0,X(x) − FX(x)).

It follows that

E(Fn,X(x))−FX(x) = Πn

n∑
k=1

Π−1
k γk(E(Zε

k(x))−FX(x))+Πn(F0,X(x)−FX(x)).
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Table 6. The comparison between the AMISE∗ of the deconvolution Nadaraya’s distribution

estimator (1.4) and the AMISE∗ of the proposed distribution estimator (1.2) with the choice

of the stepsize (γn) = (n−1) via the Salvister data of the package kerdiest and through a

plug-in method, with NSR equal to 5% in the first block, 10% in the second block, 20% in the

third block and 30% in the last block the number of simulations is 500.

I1 I2 hn AMISE∗

NSR = 5%

Nadaraya 1.14e−01 5.47e−04 0.661 6.09e−04

Proposed estimator 1.15e−01 1.24e−02 0.368 2.49e−04

NSR = 10%

Nadaraya 1.11e−01 4.84e−04 0.825 5.66e−04

Proposed estimator 1.12e−01 4.05e−04 0.819 1.52e−04

NSR = 20%

Nadaraya 1.07e−01 4.31e−04 1.025 5.17e−04

Proposed estimator 1.08e−01 3.67e−04 1.020 3.13e−04

NSR = 30%

Nadaraya 1.03e−01 4.16e−04 1.167 4.95e−04

Proposed estimator 1.05e−01 3.83e−04 1.150 4.86e−04

Moreover, an interchange of expectation and integration, justified by Fubini’s
Theorem and assumptions (A1) and (A2), shows that

E{Zε
k(x) | Xk} = Zk(x),

which ensure that
E[Zε

k(x)] = E[Zk(x)].

Moreover, by integration by parts, we have

E[Zk(x)] =

∫
R

K
(
x− y

hk

)
fX(y)dy(5.4)

=

∫
R

K(z)FX(x + zhk)dz.

It follows that

E[Zk(x)] − F (x) =

∫
R

K(z)[FX(x + zhk) − FX(x)]dz(5.5)

=
h2
k

2
f ′
X(x)µ2(K) + βk(x),

with

βk(x) =

∫
R

K(z)

[
FX(x + zhk) − FX(x) − zhkfX(x) − 1

2
z2h2

kf
′
X(x)

]
dz,

and, since FX is bounded and continuous at x, we have limk→∞ βk(x) = 0. In
the case a ≤ α/7, we have limn→∞(nγn) > 2a; the application of Lemma 2 then
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Figure 6. Qualitative comparison between the deconvolution Nadaraya’s kernel estimator (1.4)

and the proposed estimator (1.2) with the choice of the stepsize (γn) = (n−1), for 500 samples

of Laplacian errors with NSR equal respectively to 5% (in the top left panel), equal to 10% (in

the top right panel), equal to 20% (in the down left panel) and equal to 30% (in the down right

panel) for the salmon data of the package idr and through a plug-in method.

gives

E[Fn,X(x)] − FX(x) =
1

2
f ′
X(x)

∫
R

z2K(z)dzΠn

n∑
k=1

Π−1
k γkh

2
k[1 + o(1)]

+ Πn(F0,X(x) − FX(x))

=
1

2(1 − 2aξ)
f ′
X(x)µ2(K)[h2

n + o(1)],

and (2.3) follows. In the case a > α/7, we have h2
n = o(

√
γnh

−3
n ), and

limn→∞(nγn) > (α− 3a)/2, then Lemma 2 ensures that

E[Fn,X(x)] − FX(x) = Πn

n∑
k=1

Π−1
k γko(

√
γkhk) + O(Πn)

= o(
√

γnhn).
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which gives (2.4). Now, we have

Var[Fn,X(x)] = Π2
n

n∑
k=1

Π−2
k γ2

k Var[Zε
k(x)](5.6)

= Π2
n

n∑
k=1

Π−2
k γ2

k(E((Zε
k(x))2) − (E(Zk(x)))2).

Moreover, by integration by parts, we have

E((Zε
k(x))2) =

∫
R

(
Kε

(
x− y

hk

))2

fY (y)dy(5.7)

= 2

∫
R

Kε(z)Kε(−z)FY (x + zhk)dz

= FY (x) − hkfY (x)ψ(Kε) + νk(x),

with

νk(x) = 2

∫
R

Kε(z)Kε(−z)[FY (x + zhk) − FY (x) − zhkfY (x)]dz.

Let us now state the following lemma:

Lemma 3. Let Assumptions (A1)–(A2) hold , then we have

ψ(Kε) = − 1

4
√
π

((
σ

hk

)4

+ o(1)

)
.

Proof. First, under the assumptions (A1) and (A2), we have φε(t) =
(1 + σ2t2)−1 and φK(t) = exp(−t2/2), then, it follows from (1.1), that

Kε(u) =
1

2π

∫
R

exp(−itu) exp(−t2/2)

(
1 + t2

σ2

h2
n

)
dt

=
1

2π

{∫
R

exp(−(itu + t2/2))dt +
σ2

h2
n

∫
R

t2 exp(−(itu + t2/2))dt

}
.

Moreover, it is easy to check that
∫
R

exp(−(itu + t2/2))dt =
√

2π and∫
R
t2 exp(−(itu + t2/2))dt =

√
2π exp(−u2/2)(1 − u2), then, it follows that

Kε(u) =
1√
2π

exp(−u2/2)

(
1 +

σ2

h2
n

(1 − u2)

)
.(5.8)

Now, we let φ(u) = 1√
2π

∫ u
−∞ exp(−t2/2)dt, then, we can check that

Kε(u) = φ(u) +
1√
2π

σ2

h2
n

u exp(−u2/2).(5.9)
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The combinations of equations (5.2), (5.8) and (5.9) leads to

ψ(Kε) =
1√
2π

∫
R

u exp(−u2/2)φ(u)du +
1√
2π

σ2

h2
n

∫
R

(u− u3) exp(−u2/2)φ(u)du

+
1

2π

σ2

h2
n

∫
R

u2 exp(−u2)du +
1

2π

σ4

h4
n

∫
R

(u2 − u4) exp(−u2)du

=
1

2π

σ4

h4
n

∫
R

(u2 − u4) exp(−u2)du + o

(
σ4

h4
n

)
.

Moreover, since
∫
R
u2 exp(−u2)du =

√
π/2 and

∫
R
u4 exp(−u2)du = 3

4

√
π, we

conclude the proof of Lemma 3.

Moreover, it follows from (5.4), that

E[Zk(x)] = FX(x) +

∫
R

K(z)[FX(x + zhk) − FX(x)]dz(5.10)

= FX(x) + ν̃k(x),

with

ν̃k(x) =

∫
R

K(z)[FX(x + zhk) − FX(x)]dz.

Then, it follows from (5.6), (5.7) and (5.10), that

Var[Fn,X(x)] = (FY (x) − F 2
X(x))Π2

n

n∑
k=1

Π−2
k γ2

k(5.11)

− fY (x)Π2
n

n∑
k=1

Π−2
k γ2

khkψ(Kε)

+ (νk(x) − 2F (x)ν̃k(x) − ν̃2
k(x))Π2

n

n∑
k=1

Π−2
k γ2

k .

Since FX and FY is bounded continuous, we have limk→∞ νk(x) = 0 and
limk→∞ ν̃k(x) = 0. In the case a ≥ α/7, we have limn→∞(nγn) > (α − 3a)/2,
and the application of Lemma 2 gives

Var[Fn,X(x)] =
γn

2 − αξ
(FY (x) − F 2

X(x)) +
σ4

√
π

γnh
−3
n

2 − (α− 3a)ξ
fY (x) + o(γnh

−3
n ),

which proves (2.5). Now, in the case a < α/7, we have γnh
−3
n = o(h4

n), and
limn→∞(nγn) > 2a, then the application of Lemma 2 gives

Var[Fn,X(x)] = Π2
n

n∑
k=1

Π−2
k γko(h

4
k)

= o(h4
n),

which proves (2.6).



24 YOUSRI SLAOUI

5.2. Proof of Theorem 1
Proof. Let us at first assume that, if a ≥ α/7 then√

γ−1
n h3

n(Fn,X(x) − E[Fn,X(x)])
D→ N

(
0,

σ4

4
√
π(2 − (α− 3a)ξ)

fY (x)

)
.(5.12)

In the case when a > α/7, Part 1 of Theorem 1 follows from the combination
of (2.4) and (5.12). In the case when a = α/7, Parts 1 and 2 of Theorem 1 follow
from the combination of (2.3) and (5.12). In the case a < α/7, (2.6) implies that

h−2
n (Fn,X(x) − E(Fn,X(x)))

P→ 0,

and the application of (2.3) gives Part 2 of Theorem 1.
We now prove (5.12). In view of (1.3), we have

Fn,X(x) − E[Fn,X(x)] = (1 − γn)(Fn−1,X(x) − E[Fn−1,X(x)])

+ γn(Zε
n(x) − E[Zn(x)])

= Πn

n∑
k=1

Π−1
k γk(Z

ε
k(x) − E[Zk(x)]).

Set
Yk(x) = Π−1

k γk(Z
ε
k(x) − E(Zk(x))).

The application of Lemma 2 ensures that

v2
n =

n∑
k=1

Var(Yk(x))

=

n∑
k=1

Π−2
k γ2

k Var(Zε
k(x))

=

n∑
k=1

Π−2
k γ2

k

[
σ4

4
√
π
h−3
k fY (x) + o(1)

]
=

γn
h3
nΠ2

n

[
σ4

4
√
π

1

(2 − (α− 3a)ξ)
fY (x) + o(1)

]
.

On the other hand, we have, for all p > 0,

E[|Zε
k(x)|2+p] = O(1),

and, since limn→∞(nγn) > α/2, there exists p > 0 such that limn→∞(nγn) >
1+p
2+pα. Applying Lemma 2, we get

n∑
k=1

E[|Yk(x)|2+p] = O

(
n∑

k=1

Π−2−p
k γ2+p

k E[|Zk(x)|2+p]

)

= O

(
n∑

k=1

Π−2−p
k γ2+p

k

)

= O

(
γ1+p
n

Π2+p
n

)
,



BANDWIDTH SELECTION IN DECONVOLUTION KERNEL DISTRIBUTION 25

and we thus obtain

1

v2+p
n

n∑
k=1

E[|Yk(x)|2+p] = O(γp/2n h3+(3/2)p
n ) = o(1).

The convergence in (5.12) then follows from the application of Lyapounov’s The-
orem.
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