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Abstract. We study fixed point sets for holomorphic automor-
phisms (and endomorphisms) on hyperbolic manifolds. The main
object of our interest is to determine the number and configura-
tion of fixed points that forces an automorphism (endomorphism)
to be the identity. These questions have been examined in a num-
ber of papers for bounded domains in Cn. Here we extend these
results to a finite dimensional hyperbolic manifold. In some impor-
tant cases such extension is not obvious. A bounded domain can
be equipped with an invariant Riemannian (Bergman) metric, and
one can use differential geometry technics to obtain results. Such
a metric is not always available on a general hyperbolic manifold.
To overcome this obstacle we introduce locally a different invariant
Hermitian metric.

0. Introduction

Let M be a hyperbolic manifold. H(M,M) is the set of holomorphic
maps fromM toM , i.e., the set of endomorphisms ofM . A special case
of endomorphisms are automorphisms of M , Aut(M) ⊂ H(M,M).

Definition 0.1. A set K ⊂M is called a determining subset of M with
respect to Aut(D) (H(M,M) resp.) if, whenever g is an automorphism
(endomorphism resp.) such that g(k) = k ∀k ∈ K, then g is the identity
map of M .

The notion of a determining set was first introduced in [FK1]. That
paper was an attempt to find a higher dimensional analog of the fol-
lowing result of classical function theory [PL]: if f : M → M is a
conformal self-mapping of a plane domain M which fixes three distinct
points then f(ζ) = ζ.
This one-dimensional result is true even for endomorphisms of bounded
domains D ⊂⊂ C. To prove this one needs to first use the well known
theorem, stating that if an endomorphism ofD fixes two distinct points,
then it is an automorphism; and then use the above [PL] theorem.
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Determining sets (for automorphisms and endomorphisms) in case of
bounded domains in Cn have been further investigated in the following
papers [FK2], [KK], [Vi1], [Vi2], [FM].

Let Ws(M) denote the set of s-tuples (x1, . . . , xs), where xj ∈ M ,
such that {x1, . . . , xs} is a determining set with respect to Aut(M).

Similarly, Ŵs(M) denotes the set of s-tuples (x1, . . . , xs) such that

{x1, . . . , xs} is a determining set with respect toH(M,M). So Ŵs(M) ⊆
Ws(M) ⊆ M s. We now introduce two numbers s0(M) and ŝ0(M). In
case Aut(M) = id, s0(M) = 0, otherwise s0(M) is the least integer s,
such that Ws(M) 6= ∅. The symbol ŝ0(M) denotes the least integer s

such that Ŵs(M) 6= ∅. Hence, s0(M) ≤ ŝ0(M).
In [Vi2] the estimate ŝ0(D) ≤ n + 1 was established for all bounded
domains in Cn. In Section 2 we generalize this by proving the same
inequality for hyperbolic manifolds of dimension n. This certainly im-
plies same inequality for automorphisms of a hyperbolic manifold M ,
s0(M) ≤ n + 1. However for automorphisms much more information
can be provided.
When M = D a bounded domain in Cn, the above estimate can be
refined (see [FM]) to s0(D) ≤ n for domains that are not biholomor-
phic to the unit ball Bn ⊂ Cn (i.e. the only bounded domains in Cn

for which s0(D) = n + 1 are those biholomorphic to the ball). Also,
s0(D) depends on how large the group Aut(D) is, and corresponding
inequalities have been proved in [FM]. In this paper (Sections 3,4) we
generalize all these estimates on s0(M) for any hyperbolic manifold.
If a positive integer s ≥ s0(M), then Ws(D) 6= ∅, so there are s points
such that if an automorphism of M fixes these points it will fix any
point of M . Now the question arises whether the choice of these s
points is generic. The answer is positive ([Vi1],[FM]) for any bounded
domain D in Cn: Ws(D) ⊆ Ds is open and dense if not empty. Again
we prove here that the same is true for any hyperbolic manifold (section
5). The proof (in [FM]) of this last statement for a bounded domain
used the Bergman metric on that domain. Such a Riemannian metric
is not always available on a hyperbolic manifold. To overcome this
obstacle we had to construct for any point x ∈ M an invariant (with
respect to Aut(M)) Hermitian metric in a neighborhood (open but not
necessarily connected) of that point (see Lemma 1.7).

Similar properties for the determining sets of endomorphisms in gen-
eral do not hold. We address related questions in the concluding part
of section 5.
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1. Preliminary statements

Throughout this section M denotes a hyperbolic manifold of finite
dimension, Aut(M) is its group of holomorphic automorphisms.

Lemma 1.1. Aut(M) is a normal family.

Various versions of this statement have been used before. However,
we cannot find a direct reference to this result in the literature. There-
fore a brief proof is presented here.

Proof. It suffices to prove that if x0 ∈M , if fj ∈ Aut(M) is a sequence
such that the closure Q of the set {fj(x0) : j ∈ N} is compact, and if
K is a compact subset of M , then

S := ∪∞j=1fj(K) ⊂⊂M.

Let d(·, ·) denote the Kobayashi distance. For x ∈M, r > 0 let b(x, r) =
{y ∈ M : d(x, y) < r}. Let ψ(x) = sup{r > 0 : b(x, r) ⊂⊂ M}. Now
we set

m = max{d(x0, x) : x ∈ K}, δ = min{ψ(x) : x ∈ K},

and

P = {x ∈M : d(x,Q) ≤ m,ψ(x) ≥ δ}.
Then P is compact and S ⊂ P . �

Now we note the following. Let a ∈ M , f : M → M a holo-
morphic map such that f(a) = a. Consider a small Kobayashi ball
b = b(a, ε) that is biholomorphic to a bounded domain in Cn, and
whose closure is compact in M . Since the Kobayashi distance is non-
increasing under holomorphic maps, we have f : b→ b. If f ∈ Aut(M),
then f |b∈ Aut(b). The following three statements (cf. [Vi1]) hold for
bounded domains in Cn; by using this remark one can prove them for
any hyperbolic manifold.

Lemma 1.2. Let a ∈ M , f : M → M a holomorphic map such that
f(a) = a and f ′(a) = id. Then f = id.

Lemma 1.3. Let a ∈ M , f ∈ Aut(M) and f(a) = a. Then all
the eigenvalues of f ′(a) are of modulus one, and the matrix f ′(a) is
diagonalizable.

Corollary 1.4. In the assumption of the above Lemma, if f 6= id,
one can find an appropriate power k such that the k-th iteration of f ,
fk = h ∈ Aut(M) will have the following properties: h(a) = a, h′(a)
has at least one eigenvalue with non-positive real part.
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Let z ∈ M . Below we use the notion of an isotropy group Iz(M) =
{g ∈ Aut(M) : g(z) = z}.

Lemma 1.5 (H. Cartan). ([Ca1, p.80]) Let D ⊂⊂ Cn, let z ∈ D, and
let Iz = Iz(D) be the isotropy subgroup at z of the automorphism group
of D. Then there exists a holomorphic map φ : D → Cn such that
φ(z) = 0, φ′(z) = id, and for all f ∈ Iz one has φ ◦ f = f ′(z) ◦ φ.

As in [Vi1, thm 2.3], for the proof of this Lemma, we define φ : D → Cn

by

φ(ζ) =

∫
Gz

f ′(z)−1(f(ζ)− z) dµ(f),

where dµ is the Haar measure on Iz. Then φ(z) = 0, φ′(z) = id (and
therefore φ is locally biholomorphic), and φ◦g = g′(z)◦φ for each g ∈ Iz.

Let M again be a hyperbolic manifold, x ∈ M , TxM the tangent
space of M at x, Ix = Ix(M) is the isotropy subgroup fixing x. The
compact group Ix acts on T as differential maps: for g ∈ Ix , v ∈ T ,
g∗(v) = dg(x)v. Since the above Lemma can be considered in a small
neighborhood of x, and T is isomorphic to Cn the following statement
holds.

Lemma 1.6. For any point x ∈ M there exists a small neighborhood
V 3 x, such that there is an injective holomorphic map φ : V → T
such that g∗ ◦ φ = φ ◦ g for g ∈ Ix, and dφ(x) = id, the identity map of
T = TxM .

Finally we will introduce an Hermitian invariant metric on a neigh-
borhood of any point in M .

Lemma 1.7. Let M be a hyperbolic manifold, let G = Aut(M), and
let x ∈ M . Then there is a neighborhood U of x such that G(U) = U ,
and a C∞ Hermitian metric on U that is invariant under G.

Proof. Since M is hyperbolic, the automorphism group G is a Lie group
(see [Ko]) and the isotropy group Ix is a compact subgroup of G. The
orbit G(x) is an embedded submanifold of M . There is a neighborhood
V of x in M such that G(V ) is naturally homotopic to G(x). Let
T = TxM be the tangent space of M at x. Then T is a complex vector
space and is isomorphic to Cn. The elements of the compact group Ix
act on T as differential maps: for g ∈ Ix, g∗(v) = dg(x)v. Let h be
a Hermitian metric on T invariant under Ix. By Lemma 1.6, if V is
sufficiently small, there is an injective holomorphic map φ : V → T
such that g∗ ◦ φ = φ ◦ g for g ∈ Ix, and dφ(x) = id, the identity
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map of T = TxM . The (real) subspace P of T consisting of vectors
tangent to G(x) is invariant under Ix. So the orthogonal complement
(with respect to the real part of h) Q of P is also invariant under Ix.
Let S1 = {v ∈ Q : ‖v‖ < δ}, where ‖ · ‖ is the norm induced by the
Hermitian metric h, and choose δ > 0 so small that S1 ⊂⊂ φ(V ). Note
that S1 is invariant under Ix. Let S = φ−1(S1). Then Ix(S) = S.
Forthermore, for g ∈ G, g(S) ∩ S 6= ∅ iff g ∈ Ix. The tube G(S)
is diffeomorphic to the the normal bundle of G(x) in M and to the
twisted product G ×Is S. The pull-back h0 = (φ|S)∗h is a Hermitian
metric on the restriction to S of the tangent bundle TM . Now we
define a Hermitian metric h1 on U = G(S) as follows. If y ∈ U and
u, v ∈ Ty, then there is a g ∈ G such that g(y) ∈ S, and we define
h1(u, v) = h0(g∗u, g∗v). One can see that h1 is well-defined, since if
g(y), g′(y) ∈ S, then g′g−1 ∈ Ix. Now h1 is a C∞ metric on U that is
invariant under G. �

2. An estimate for ŝ0(M)

We need the following lemma (Thm. 5.2 in [Vi2])

Lemma 2.1. Let D be a bounded domain in Cn, a ∈ D. Then there
is an open U ⊂ Dn such that (a, ..., a) ∈ U and for all (z1, ..., zn) ∈ U ,

(a, z1, ..., zn) ∈ Ŵn+1(D).

Theorem 2.2. Let M be a hyperbolic manifold of complex dimension
n. Then ŝ0(M) ≤ n+ 1.

Proof. Pick a point a ∈ M . Let f : M → M be a holomorphic map
such that f(a) = a. Consider a small Kobayashi ball b = b(a, ε) whose
closure is compact in M , and such that b is biholomorphic to a bounded
domain D in Cn; let h : b → D be such a biholomorphic map. Note
that since the Kobayashi distance is non-increasing under holomorphic
maps, we have f : b → b, and therefore g = h ◦ f ◦ h−1 : D → D. By
using the preceding lemma, one can pick n points z1, ..., zn ∈ D, such

that Z = (h(a), z1, ..., zn) ∈ Ŵn+1(D). Consider the set of n+ 1 points
h−1(Z) = (a, h−1(z1), ..., h

−1(zn)) ⊂ b. If our function f ∈ H(M,M)
(in addition to a) is also fixing all points h−1(zj), i.e. f |h−1(Z)= id,
then g |Z= id and therefore g = id. We conclude that f |b= id, and

consequently f = id. So, h−1(Z) ∈ Ŵn+1(M), and therefore ŝ0(M) ≤
n+ 1. �

3. Estimates for s0(M)

The goal of this section is to provide estimates for s0(M) for a hy-
perbolic manifold M , dim(M) = n.

5



Since s0(M) ≤ ŝ0(M) theorem 2.2 implies

For any hyperbolic manifold M of complex dimension n, s0(M) ≤ n+1.

Remark. In the next section we prove a refined inequality s0(M) ≤ n
for M not biholomorphic to the unit ball in Cn.

If H is (isomorphic to) a subgroup of the unitary group U(n), let k(H)
denote the least number k of vectors u1, . . . , uk such that if h ∈ H and
if h(uj) = uj for j = 1, . . . , k then h = id. For x ∈ M the isotropy
group Ix(M) is isomorphic to the group of its differentials at x, and
these differentials are unitary with respect to the locally defined Her-
mitian inner product (the existence of which was proved in Lemma 1.7)
on the tangent space Tx(M). So Ix(M) is isomorphic to a subgroup of
U(n).

Theorem 3.1. s0(M) ≤ 1 + min{k(Ix(M)) : x ∈M}.
Proof. Choose x ∈ M so that k(Ix(M)) = min{k(Ix(M)) : x ∈ M}.
Denote that number by k. Let u1, . . . , uk be vectors in TxM such that
if h ∈ Ix(M) and if dh(x)(uj) = uj for j = 1, . . . , k then dh = id (hence
h = id). For each uj, let xj be a point on the geodesic through x in
the direction uj, so close to x that the geodesic is the unique length
minimizing geodesic from x to xj. Let f be an automorphism of M
fixing x, x1, . . . , xk. Then df(x) fixes u1, . . . , uk. It follows that df(z) =
id and f = id. Therefore, s0(M) ≤ 1 + min{k(Ix(M)) : x ∈M}. �

Let G be a subgroup of Aut(M). By s0(M,G) we denote the min-
imum number of distinct points in M such that if g ∈ G, and g fixes
all these points, then g = id. So, s0(M) = s0(M,Aut(M)).

Lemma 3.2. Let M be a hyperbolic manifold, let G be a subgroup of
Aut(M), and let q = dimG. If q ≥ 1, then s0(M,G) ≤ q. If q = 0,
then s0(M,G) ≤ 1.

Proof. First we consider the case where q ≤ 1. Let e denote the identity
element of G, and let Q = G\{e}. For each g ∈ Q, the set {x ∈ M :
g(x) = x} is an analytic set of M of dimension ≤ 2n − 2. The set
W1 := {(g, x) ∈ Q ×M : g(x) = x} is an analytic set of Q ×M of
dimension ≤ (2n − 2) + q ≤ 2n − 1 < dimM . Let W denote the set
of fixed points of nontrivial elements of G. Since W = π(W1), where
π : Q×M → M is the projection, and since dimW1 < dimM , we see
that W 6= M . Therefore, s0(M,G) ≤ 1.

Now we assume that q ≥ 2. There must be an orbit Q of G of
positive dimension. Let x ∈ Q, and let H := Gx be the subgroup of G
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consisting of elements g satisfying g(x) = x. Then dimH < dimG. By
induction hypothesis, s0(M,H) ≤ dimG − 1. Therefore, s0(M,G) ≤
1 + s0(M,H) ≤ dimG. �

As a corollary we get

Theorem 3.3. If dim(Aut(M)) ≥ 1, then s0(M) ≤ dim(Aut(M)). If
dim(Aut(M)) = 0, then s0(M) ≤ 1.

4. A characterization of the ball in Cn

This section is devoted to the proof of the following statement.

Theorem 4.1. Let M be a hyperbolic manifold of dimension n. s0(M) =
n+ 1 if and only if M is biholomorphic to the unit ball Bn in Cn.

The estimate s0(B
n) = n+ 1 can be easily verified (see for example

[FM]).
The rest of this section will be devoted to the proof that s0(M) =

n + 1 implies that M is biholomorphic to the unit ball. To prove this
we need the following two lemmas.

Lemma 4.2. Let M be a hyperbolic manifold and x ∈M . Suppose that
the isotropy group Ix is transitive on the (real) directions at x. Then
M is biholomorphic to the unit ball in Cn.

Proof. Since Ix is transitive on the directions at x, the group Aut(M)
is not finite. Since the automorphism group of a compact hyperbolic
manifold must be finite (see [Ko, p. 70]), we see that M is noncompact.
By the main theorem in [GK], M is biholomorphic to Cn. �

For a subgroup H of the unitary group U(n) we use the notion k(H)
introduced at the beginning of section 3. The following Lemma was
proved in ([FM], Lemma 1.4).

Lemma 4.3. If H is a subgroup of U(n) with n ≥ 2 and if H is not
transitive on S2n−1 then k(H) ≤ n− 1.

We are now ready to prove the remaining portion of Theorem 4.1
(i.e., s0(M) = n+ 1 implies that M is biholomorphic to the unit ball).

Proof. So, let s0(M) = n+ 1. If n = 1 the statement (M is biholomor-
phic to the unit disc B1) is true. Indeed, if M is not biholomorphic to
the disc or the annulus, its automorphism group is discrete. For each
element g ∈ Aut(M), g 6= id the set of fixed points is discrete. There-
fore there is a point x ∈ M that is not a fixed point of any nontrivial
automorphism. This point will then form a determining set, and so,
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s0(M) ≤ 1. For the annulus s0(M) = 1. Therefore if s0(M) = 2, M is
biholomorphic to the unit disc.

Consider now the case where n ≥ 2. Let z ∈M . Suppose that M is
not biholomorphic to Bn. Then Iz(M) is not transitive on the direc-
tions at z, by Lemma 4.2. Since Iz(M) is (isomorphic to) a subgroup
of U(n), by Lemma 4.3, k(Iz(M)) ≤ n−1. It follows (see Theorem 3.1)
that s0(M) ≤ 1 + k(Iz(M)) ≤ n if M is not biholomorphic to Bn. �

5. Determining sets Ws(M) are open and dense

Our aim in this section is to prove the following theorem.

Theorem 5.1. Let M be a hyperbolic manifold and s ≥ 1. Then
Ws(M) ⊂M s is open; if in addition Ws(M) 6= ∅, then Ws(M) is dense
in M s.

Denote W = Ws(M). First we prove that W ⊂M s is open.

Proof. SupposeW is not open. Then one can find a sequence of s-tuples
Zj = (x1, ..., x

j
s) ∈M s that converges to Z = (x1, ..., xs) ∈M s and such

that Zj is not a determining set for M , and Z is. For each j there is an
fj ∈ Aut(M), fj |Zj

= id, but fj 6= id. By Corollary 1.4 (replacing fj by
an appropriate iteration of fj if needed) we may assume that the real

part of at least one eigenvalue of f ′j(x
j
1) is non-positive. Switching again

to a subsequence, if necessary, we find a sequence of automorphisms
whose limit (see Lemma 1.1) is g ∈ Aut(M), such that g |Z= id ,
and one of the eigenvalues of g′(x1) is non-positive. Therefore g 6= id
which contradicts the original assumption that Z is a determining set
for M . �

Remark. The above proof of the theorem for a bounded domain is
given in [Vi1, Thm 3.1]. One can also prove Theorem 5.1 by using the
idea of [FM, Lemma 2.3].

Now suppose that W 6= ∅. We need to prove that W is dense in
M s.
First we introduce some notation. If G is a subgroup of Aut(M),
Ws(M,G) denotes the set of s-tuples (x1, . . . , xs), where xj ∈M , such
that each element g ∈ M satisfying g(xj) = xj for j = 1, . . . , s has to
be the identity.
Let ρx(·, ·) denote the metric introduced in Lemma 1.7 for a point
x ∈ M . Let b(x, r) denote the ball with center x and radius r in that
metric. Let b(x, r) be the closure of b(z, r) in M .
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Lemma 5.2. Suppose that G is a subgroup of Aut(M). If W1(M,G) 6=
∅ then W1(M,G) is dense in M .

Proof. In this proof, let W = W1(M,G). Suppose that W is not dense
in M . Then the closure K of W in M is not equal to M . Let p be a
boundary point of K in M . Denote ρ(·, ·) = ρp(·, ·). Choose r > 0 such
that the closure of b(p, 4r) in U is compact, where U is a neighborhood
from Lemma 1.7 (chosen for the point p), and such that each pair of
points of b(p, 4r) is connected by a unique length-minimizing geodesic
segment in that metric. There exist points z, w such that ρ(z, p) < r,
ρ(w, p) < r, w ∈ W , and z 6∈ K. Note that the orbit of w, G(w) ⊂ W .
Let Q = G(w) ∩ b(p, 4r). Then Q is compact and Q ⊂ W . Let u be
a point of Q nearest to z. Then u is also a point of G(w) nearest to
z, and R := ρ(z, u) ≤ ρ(z, w) < 2r. Choose a point y on the unique
length-minimizing geodesic segment from z to u such that y 6∈ K and
y 6= z. For each point x of G(w), we see that

ρ(z, y) + ρ(y, x) ≥ ρ(z, x) ≥ ρ(z, u),

and that the two equalities hold simultaneously only if x = u. Hence,
ρ(z, y)+ρ(y, x) > ρ(z, u) = R for each x ∈ G(w), x 6= u. It follows that
ρ(y, x) > R−ρ(z, y) = ρ(y, u) for each x ∈ G(w), x 6= u. Therefore, u is
the unique point of G(w) nearest to y. Since y 6∈ K, there is a nontriv-
ial g ∈ G such that g(y) = y. Now ρ(y, u) = ρ(g(y), g(u)) = ρ(y, g(u))
forces g(u) = u. Since u ∈ W , the map g must be the identity, contra-
dicting the fact that g is not trivial. Therefore, W1(M,G) is dense in
M . �

Proof of Theorem 5.1. We have already proved that Ws(M) is open in
M s. Suppose now that Ws(M) 6= ∅. For g ∈ Aut(M) let Qs(g) denote
the mapping

Qs(g) : M s →M s, Qs(g)(z1, . . . , zs) = (g(z1), . . . , g(zs)).

LetG = {Qs(g) : g ∈ Aut(M)}. ThenG ⊂ Aut(M s), andW1(M
s, G) =

Ws(M). By the previous lemma, Ws(M) is dense in M s.

By using the same approach as in Theorem 5.1 in [Vi2] one can es-
tablish the following

Theorem 5.3. If M is a taut manifold then Ŵs(M) is open in M s for
all s ≥ 1.

In general Ŵs(M) does not have to be open in M s (see [FM]), nor be
dense in M s (cf. [Vi2],[FM]).
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