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Abstract

In this paper we generalize the Mumford system which describes for any fixed g all linear
flows on all hyperelliptic Jacobians of dimension g. The phase space of the Mumford system
consists of triples of polynomials, subject to certain degree constraints, and is naturally seen as
an affine subspace of the loop algebra of s[(2). In our generalizations to an arbitrary simple Lie
algebra g the phase space consists of dim g polynomials, again subject to certain degree constraints.
This phase space and its multi-Hamiltonian structure is obtained by a Poisson reduction along a
subvariety N of the loop algebra g((A=!)) of g. Since N is not a Poisson subvariety for the whole
multi-Hamiltonian structure we prove an (algebraic) Poisson reduction theorem for reduction along
arbitrary subvarieties of an affine Poisson variety; this theorem is similar in spirit to the Marsden-
Ratiu reduction theorem.

We also give a different perspective on the multi-Hamiltonian structure of the Mumford system
(and its generalizations) by introducing a master symmetry; this master symmetry can be described
on the loop algebra g((A™!)) as the derivative in the direction of A and is shown to survive the
Poisson reduction. When acting (as a Lie derivative) on one of the Poisson structures of the system
it produces a next one, similarly when acting on one of the Hamiltonians (in involution) or their
(commuting) vector fields it produces a next one. In this way we arrive at several multi-Hamiltonian
hierarchies, built up by a master symmetry.
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1. Introduction

In its original form the Mumford system consists, for every positive integer g, of a family of
vector fields on an affine space (of dimension 3g + 1) of triples of polynomials (U(X), V(A), W()\))
(see [Mum] p. 3.43). The simplest member of this family has the form

(),
W) + (A = Uyer + W)U (L.1)

=<

V() =
W) = —(A=Uy_r + W)V (N).

The three polynomials are subject to the restrictions that U and W are monic of degrees g and
g + 1, while V has degree less than g. Uj; is the coefficient of A’ in U()\) and similarly for V and
W. A simple computation shows that

(UMW) +V3N) =0

for the above vector field, and similarly for the other members of the family. It follows that if one
associates an algebraic curve (of genus g) to every point (U(X), V(X), W (X)) of phase space by the
equation

p? =UNWQ) + V2N, (1.2)

then this curve is invariant under the flow of these vector fields. This property is “explained” by
Mumford who shows that the generic orbit, traced out by the flow of these vector fields, is an affine
part of the Jacobian of the curve (1.2) associated to any of its points (U(A), V(A), W(\)) and that
the flows of these vector fields are linear (the Jacobian of a curve is a complex torus, hence has a
linear structure). Note that this implies automatically that these vector fields commute, a property
reminiscent of integrable systems. Upon introducing a Hamiltonian structure for which Mumford’s
vector fields are Hamiltonian it turns out that the Mumford system is indeed an example of an
integrable system (such a Hamiltonian structure was however only introduced later).

It turns out that the Mumford system and some of its generalizations appear in many different
contexts, although sometimes in a disguised form and often without reference to its Hamiltonian
structure. It appears in the description of rings of commuting differential operators, going back to
the early papers of Burchnall and Chaundy (see [BC] or [Prel; for a different but equivalent de-
scription see [Sch]), it is a limit of the classical Schlesinger equations which describe isomonodromy
deformation (see [Gar]), many classical integrable systems are isomorphic to a subsystem of the
Mumford system, sometimes up to a cover (see [Van3]) and the Mumford system appears as the
simplest of a large class of integrable systems on the moduli space of Higgs bundles on a Riemann
surface, the latter being in this case just the Riemann sphere (see [DM]).

The purpose of this paper is to combine the ideas in [MM], [MR/], [RS3] and [Sch] to generalize
the Mumford system and to describe the symmetries and the multi-Hamiltonian structure of its
generalizations. Let us describe these ideas.

(1) The main idea from [RS3], which is recalled in Section 2.1, is that the loop algebra g =
g((A™1)) of any semi-simple Lie algebra has a (multi-) Hamiltonian structure which restricts to the
finite-dimensional spaces Qi of polynomials with leading term BA™, where § € g. A natural class

of functions in involution leads, in many cases, to an integrable system on Qg /G where G is the
isotropy group of 3. We will show that for well-chosen 3 a Poisson reduction on an affine subspace
N of g, with respect to a subgroup G of G will lead to the generalization of the Mumford system:
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while QZ /G g is never an affine space the quotient which we describe will be a space of (dim g)-tuples
of polynomials with degree constraints, precisely as in the case of the Mumford system.

(2) The multi-Hamiltonian structure on QZ, which is given as a family of compatible Poisson
brackets, does not restrict to any subvariety of QZ (although some brackets do). Therefore we prove
a general (algebraic) Poisson reduction theorem which is similar in spirit to the Marsden-Ratiu
reduction theorem (see [MR]). In our theorem we consider a subvariety N of a Poisson variety M
on which an affine Poisson group G acts (leaving N invariant). Assuming that the action is Poisson
we give a necessary and sufficient condition for the Poisson structure on M to descend to a Poisson
structure on N/G. The reduction theorem will be proven in Section 3.

(3) The next question then, which turns out to be Lie-algebraic in nature, is how to pick the
subspace N and the group Gg such that the quotient is an affine space which can be naturally
identified with a subspace of N. If we pick in the case of s[(r + 1) the leading coefficient 3 to be
a generic lower triangular matrix, then our condition for Poisson reducibility implies that we can
only reduce along the hyperplane N C gn which is obtained by fixing one of the entries (the entry
at position (1,7 + 1)) of the coefficient of A»~!. In this case the quotient N/Gs is an affine space
if and only if this entry has been fixed to a value different from 0. Notice that in this case a + 3 is
regular, where

0o ... 01
0O ... 0 0
“=1. - .
0O ... 00

The precise Lie-algebraic condition imposed on [ is that it is a principal nilpotent element; since
all principal nilpotent elements of a simple Lie algebra are conjugate we may take 8 to be given
by 6 = E:  Fi, where {H;, E;, Fi}i=1,. - is a Weyl basis of g. Then the condition which defines

N C gn is that its elements SA\" + Ez 0 :U@X satisfy Ilyx,_1 = a; a is any non-zero top-element
in the gradation GB,L__kgZ of g, which is associated to the Weyl basis, i.e., 0 # « € g; and 1l is
the projection onto g,. This leads to the proper Lie algebraic setup for a first generalization of the
Mumford system to any simple Lie algebra. Indeed, if we define «, 8 and n in the above way for
an arbitrary simple Lie algebra g then the whole multi-Hamiltonian hierarchy of Poisson structures
and the algebra of functlons in involution descend to the quotient which is naturally identified with
an affine subspace Ny of g Notice that the group by which we reduce is in this case the full
group G, which is Abelian, and that the action is Hamiltonian. In the case of s[(2) we recover
the Mumford system, while in the case of s[(r + 1) we find a generalization of the Mumford system
due to Donagi-Markman (see [DM]).

(4) When S is not a principal nilpotent element then the whole structure theory of simple Lie
algebras comes into play. Indeed, we will rely heavily on the beautiful paper [Kosl] by Kostant.
As we learned from A. Schwarz, for any d coprime to r + 1, the space of matrices in s[(r + 1) of

the form
0 0\ \n * Mg\ \n- 1y i
<Ir+1_d 0) A"+ (* ) A Zml)\ (1.3)

where My is any lower triangular matrix of size d with ones on the diagonal, appears in the
description of the solutions to the string equation [P, Q] = 1, or, in an analogous way, of the solutions
to the commutativity equation [P, Q] = 0; in these equations P and @ are differential operators
. . . . . 1,
subject to certain normalizations (see [Sch] and [KV]). Notice that the matrix ( I 0 Od >,
r+l—d
which is obtained from the leading coefficients, is regular due to the fact that d and r + 1 are



coprime. Applying our reduction theorem to the subspace N of matrices of the form (1.3) we
find that the multi-Hamiltonian hierarchy reduces and that the quotient space can be naturally
identified with an affine subspace of N. A key information which we also learned from Schwarz’
description is that we should not act with the full isotropy group Gg but with the subgroup G5 of
lower triangular matrices in Gg (with ones on the diagonal). In Section 4 we implement these ideas
in the case of an arbitrary simple Lie algebra g and find for any homogeneous [ the corresponding
subspaces IV of @Z to which the multi-Hamiltonian hierarchies reduce; moreover we give the choices
of B which lead to a quotient which is affine, thereby giving the Lie algebraic interpretation of the
coprime condition which appears in the case of s[(r + 1). Notice that in this more general case Gy
is not Abelian; moreover it can be shown that the action is not Hamiltonian.

(5) Another idea, which we learned from [MM], is that multi-Hamiltonian structures are often
built up from a basic one by applying a master symmetry, i.e., there is a basic Poisson structure
whose successive Lie derivatives with respect to a certain vector field V provides a linear basis for
all the Poisson structures. This vector field V is given on @5 by

. 0
X() = 52X (),

and it generates all the Hamiltonians and commuting vector fields starting from a few basic ones.
We show that, as a consequence of our reduction theorem, the vector field V projects on the quotient
to a master symmetry which builds up the multi-Hamiltonian structure on the quotient space Ny.
Since the operations of reduction and taking the Lie derivative commute it follows that it suffices
to compute the reduction of one Poisson structure on QZ (in fact precisely the unique linear one)
and apply successive Lie derivatives to it to find the other reduced Poisson structures. The basic
properties of the vector field V will be given in Section 2.2, we discuss the reduction of symmetries
at the end of Section 3 and we find the reduced master symmetry in the case of the loop algebra
in Section 4.2.

We will end this paper with a list of examples (Section 5). We will first show how our con-
struction specializes in the case of s[(2) to the Mumford system. In this case we will explicitly
compute all reduced brackets. We will give an explicit description of the quotient space (as a space
of polynomials) for the classical Lie algebras and for Gs.

In conclusion we have a complete description of the multi-Hamiltonian structure of the Mum-
ford system and its generalizations to arbitrary simple Lie algebras. It seems non-trivial but inter-
esting to do the same for the even master system (see [Vanl]), which also describes all linear flows
on all hyperelliptic Jacobians by equations which are similar to (1.1). A proof of the integrability
of the systems on the reduced space Ny involves algebraic geometric arguments, revealing also their
algebraic complete integrability (this is done for the case of sl(n) in [DM]); we leave this and a
study of the algebraic geometry of the fibers of the Hamiltonians — some of which are certainly
interesting Abelian varieties — for the future.
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related discussions. Among them we wish to mention Mark Adler, Francesco Bottacin, Paolo
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Serge Parmentier, Alexei Reyman, Albert Schwarz, Michael Semenov-Tian-Shansky and Pierre van
Moerbeke. Special thanks are due to Franco Magri, who started this project with us, and to
Beltram Kostant who provided us with a proof of Proposition 4.8. The support of MURST and of
the GNFM of the Italian CNR is also greatly acknowledged. The first author thanks the Université
Catholique de Louvain and the University of California at Davis for their hospitality.



2. Multi-Hamiltonian hierarchies and master symmetries on loop
algebras

In this section we introduce a large class of multi-Hamiltonian hierarchies on the loop alge-
bra g = g((A™!)), where g is a finite-dimensional Lie algebra, which is equipped with an ad-invariant
non-degenerate inner product. The multi-Hamiltonian structure of interest here was first introduced
in [RS3] by using several R-brackets and is recalled in Paragraph 2.1. We exhibit several multi-
Hamiltonian hierarchies, whose Hamiltonians are seen to be in involution by the classical R-matrix
argument; we provide an alternative proof which uses the classical Lenard-Magri scheme. Follow-
ing an idea of [MM] we show in Paragraph 2.2 that the different Poisson brackets which make up
the multi-Hamiltonian structure are connected by the Lie derivative along a master symmetry V,
thereby giving another, more geometric, construction of these brackets. The vector field V allows
one to pass from one Hamiltonian (and its vector field with respect to any of the Poisson brackets)
to another, hence playing a similar role as the recursion operator in the case of Poisson-Nijenhuis
manifolds (see [KM]).

2.1. The loop algebra g = g((A\7!)) and its Poisson brackets

Let g be a (finite-dimensional) Lie algebra and (-, -) g @ non-degenerate inner product which
is ad-invariant, (z, [y,z])Q = ([m,y],z)g. We fix a basis {e,}qer for g and define linear forms
a9 = Chby &, = (, ea>g. We look at g as an affine (algebraic) variety, in particular we consider

O(g) = C[&u] s as its algebra of (regular) functions. For any F' € O(g), its gradient VF(z) at
x € g is defined by

(VF(z), y>g F(z + ty) Yy € g.

~ di =0

For any a € I and F € O(g) the map z — (VF(m),ea>g belongs to O(g). It follows that for any
F,G € O(g) the Poisson bracket {F, G}, defined by

{F,G}(z) = (z,[VF(2), VG (x)]) g, (2.1)

also belongs to O(g), making O(g) into a Poisson algebra.

From g we construct the loop algebra g = g((A™")) = g[A\]| ® A""g[[A"]]. Elements of the
loop algebra will be denoted by capital letters; for an element X = X(\) = Y x;\* € g we write
X = X4 + X_ according to the above (vector space) decomposition. The inner product (-, -) g on

¢ leads to an inner product (-,-) on g via

(XALY) = > (iyi)g

itj=—1

By a slight abuse of notation one often writes Res (X (A),Y (X)) g for the above right hand side;
here Res Y z;\* = x_;. Clearly (-,-) is ad-invariant and non-degenerate just as (-,->g is. For
a € I, i € Z we define elements E° = e, \* of § and linear functions ¢! = <-,Ea_i_1>. We wish to
introduce an algebra O(g) of functions on g for which we can define a gradient and a Poisson bracket
as in the case of g, but which is large enough to contain functions of the type X (\) — Res H(X ()\))
(for H € O(g)), which will be important later. To do this we first define on g,, = A"g[[A™']] an
algebra of functions by

O(8<,) = C[&] oer

- i<n



and obtain from it the following algebra of functions on g:
0@ ={F:8—C|¥WmeZ:Fg_ 0@}

Thus, elements of O(g) restrict to polynomials on all subspaces g.,,. As in the case of g the
gradient VF(X) of a function F € O(g) at X € g is defined by

d

(VEXO)Y) =g

F(X +tY) VY €§. (2.2)

Proposition 2.1 For any X € g and F € O(g), VF(X) is well-defined by (2.2) and belongs
to g. For any F,G € O(g) the Poisson bracket {F,G}, defined by

{F,G}HX) = (X, [VF(X), VG(X)]) ,

belongs to O(g), making O(g) into a Poisson algebra.

Proof
The fact that the gradient is well-defined follows from non-degeneracy of (-, -); in fact, for any
j € Z the coefficient (VF(X)); € g is given by

d

(VE(X));, ea) dt ji=0

(VF(X),E;77') = F(X +tE;77h).

g:

If X € g, then F(X +tEJ) is independent of ¢ for j sufficiently small, since Fg_ isapolynomial.
= <n

Thus, (VF(X)), is zero for j sufficiently large and VF(X) € §. Further, X — (VF(X),E?)
belongs to O(g) for any j € Z since the restriction to any g, of the map

XL F(X +tE7)
dt |t=0

is just a polynomial (in this formula, use F| g where m = max{n,j}). As a corollary, if F, G €
<m

O(g) then the map
X — (X,[VF(X),VG(X)])

belongs to O(g), giving a bracket {-,-} : O(g) x O(g) — O(g). The fact that it satisfies the Jacobi
identity follows from the fact that (2.1) satisfies the Jacobi identity. "

Following [RS3] we introduce a family R; of endomorphisms of g by

R:g—g:X— X, —X_|
R :§—g:X— RMNX).

Proposition 2.2 ([RS3]) For anyl € Z a Poisson bracket on O(g) is defined by

(X, [RIVF(X),VG(X)] + [VF(X),RiVG(X)]) .

DN | =

{F7 G}Z(X) =



Moreover the brackets {-,-}i, 1 € Z form a family of compatible Poisson brackets, i.e., any linear
combination of these brackets is a Poisson bracket.

As above these brackets are taken as brackets on O(g). We call them R-brackets and call {-,-}
the canonical Lie-Poisson bracket on g. If we denote the structure constants of g with respect to
the basis {e,}aer by C%, L., [ea,e5] = 2. Coyec, then one easily finds by using V¢, = E; "1

that o - L
{&.8h=q ) oo, (2.3)
cel
where efj =1ifs,7 <1 and efj = —1if 4,5 > [; otherwise efj = 0. The R-brackets have two

remarkable properties which make them more relevant for integrable systems than the canonical
Lie-Poisson bracket on g. The first property, which follows immediately from (2.3), is that if
—p <1< q+1 then {-,-}; restricts to the following natural finite-dimensional subspace of g,

q
9 o= D =N |zcg;y. (2.4)

i=—p

Since multiplication by AP induces an isomorphism (§_, ., {-,-}1) — (80psq {*+-}i4p) we may
restrict ourselves to the spaces go,n of matrices which are polynomial (in A) of degree at most n.
In fact we will be interested in the affine subspaces of g, defined by

ggz{in)\i€§|xn:ﬁ}, (2.5)
i=0

where (3 is any fixed element in g. The family of R-brackets which restricts to @Z is also computed
at once from (2.3) and is given in the following proposition.

Proposition 2.3  If 8 is not a central element in g then the Poisson structure Y o __ af-, }h
restricts to @g if and only if ¢, =0 for 1 <0 and forl > n.

The second remarkable property of the R-brackets is that the Ad-invariant functions on g lead
to a large subalgebra A of O(g) which is involutive with respect to all these brackets. Indeed,
a function H € O(g) induces a function H : § — C((A71)) and hence leads for any i € Z to a
function H; on g, defined by
H(X(A)

H;(X()\)) =Res N

(2.6)
Clearly any such function H; belongs to O(g).

Proposition 2.4 ([RS3]) Let H and K be two Ad-invariant functions in O(g). Then for any
i, j € Z the functions H; and K; are in involution with respect to all R-brackets {-,-};.

Proof
Ad-invariant functions in O(g) are those functions which are invariant for the adjoint action of
a Lie group G for which g = LieG. It may be impossible! to pick G algebraic but this is irrelevant

1 1f g is semi-simple then G is algebraic, see [OV], p.29.



here because we only use the fact that such a function H € O(g) satisfies the infinitesimal condition
[z, VH(z)] = 0. To show the latter, use ad-invariance of (-, -)g and Ad-invariance of H to find

([x, VH(z)],y) = (VH(z),[y,z]) = %|t:0H($ + tly, z]) = %n:oH(Adz(t) x) =0,

when setting z(t) = expty. In particular, if H € O(g) is Ad-invariant then, for any ¢ € Z, the
function H; € O(g) defined by (2.6) is Ad-invariant and [X, VH;(X)] = 0. It follows that if H and
K are Ad-invariant functions on g then for any i,75,l € Z

DN =

showing that all functions on O(g) which come from Ad-invariant functions on g are in involution
with respect to all R-brackets. ]

The algebra of Ad-invariant functions on g is denoted by O(g)¢ and the involutive algebra
generated by all H;, i € Z, H € O(g)% is denoted by A. If we define for any F' € O(g) a vector
field on g by Xp = {-, F'}¢ then the i-th vector field Xy, (i € Z) which comes from an Ad-invariant
function H € O(g)% is given by the Lax equation

. 1
X = —3 [X,RVH;(X)]. (2.7)
Two alternative ways to write this are
X = —[X, (VH(X)),] = [X, (VH;(X))_). (2.8)

The vector fields X, are in fact Hamiltonian with respect to all brackets {-,-};. To see this, check
that for any H € O(g),

d HX +tY) d H(X +t)\Y)
& Res i TH) _ 4 g HATIAT)
Ao Nt Ao > n+2

showing that VH;(X) = AVH;1(X). It follows that (2.7) can be written in Lax form with
respect to all endomorphisms R; and that for any H € O(g)¢ the functions { H; };cz form a multi-
Hamiltonian hierarchy in the sense that

{wHito={Hitih (i, € Z). (2.9)

The relations (2.9), which are called Lenard relations, can be used to give an alternative proof of
Proposition 2.4. For functions belonging to the same hierarchy the classical argument applies (see,
e.g., [CMP]), giving {H;, H;}; = {H;, H;}; = 0. For members of different hierarchies, coming from
different functions H, K € O(g)® some care is needed since none of the H; or K, is a Casimir
for any of the R-brackets. However, we see from (2.8) that for any X € g the Hamiltonian vector
field Xy, vanishes at X for s large enough since then (VH (X)), = 0. Thus also in this case the
Lenard relations give (e.g., for the zeroth R-bracket)

{H;, Kj}o(X) = {Hs, Kj—s1i}o(X) = 0.
which shows that functions which belong to different hierarchies are also in involution.
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2.2. Master symmetries and the deformation property

In this paragraph we show how the Poisson brackets {-,-}; are related by a vector field V which
is a master symmetry? for the involutive algebra A (introduced after Proposition 2.4). We mean
by this that V has the property [[V, Xr|,Xg] = 0 for all F, G € A (a symmetry has the stronger
property [V, Xr| =0 for all F' € A). The vector field V has in addition the deformation property
with respect to the brackets {-,-};; this means that the Lie derivative of any bracket {-,-}; in the
direction of V is also a Poisson bracket®. As was shown in [MM] this implies that any bracket {-, -},
is compatible with its Lie derivative in the direction of V.

The vector field V is defined as the infinitesimal generator of the action of C on g given by

“shift in A",
(s, Z:EQC‘) — sz()\ + 5);
here we use for negative powers of A the formal expansion
A +s)7t =D (-1)isAT
i>0

which is actually convergent for small s, in particular it is the right definition if one wants to
consider the fundamental vector field V of this action: the latter is easily computed as

. o . ) ) )
X\ = aX(A) Le. Ly& = (j+ 1),
where £y denotes the Lie derivative along V. The two mentioned properties of V are given by the
following proposition.

Proposition 2.5 Leti,l € Z and H € O(g)® be arbitrary.
a) V has the deformation property with respect to all brackets {-,-};, more precisely the

relation

Ly{F,G} —{LyF,G}y —{F,LyG}; = —I{F,G};_1 (2.10)
holds, i.e., the Lie derivative of the I-th R-bracket is (up to a factor —l) the (I — 1)-th
R-bracket;

b) ,CVHz - (Z + 1)HZ'+1,'
C) [V’ XHZ] = XCvHi = (Z + I)XH1‘+1;
d) V is a master symmetry for A.

Proof
It suffices to verify a) for F' = ¢, and G = &) with say i < j. We can use (2.3); since for this
particular F and G all terms in (2.10) are proportional to Y. C¢ &7 =1+2 it actually suffices to
keep track of the coefficients and the proof of (2.10) amounts to the verification of the following
identity, N o . N
(i+j—1+2)ed — i+ D)™™ — G+ 1)t = —1e .

2 The concept of a master symmetry was first introduced by Fuchssteiner (see [Fuc]). The notion
we use here is slightly more general.

3 In many important examples the master symmetries for an algebra which is involutive with
respect to some Poisson bracket have the deformation property with respect to this Poisson bracket,
however these two properties are independent in general.



As for b),

LyHi(X) = d%ls_o Res H(X>\(i>;r;t 5))
= Res Nl d)\H(X(A))
d (H(X(X L H(X(A
= Res [5 (%) —i—(z—i—l)%
- (i+1)Resw7

which is precisely (i + 1)H;41(X). For c¢) we substitute [ = 0 and G = H; in part a) to find
Ly{F,H;}o = {LyF,H;}o + {F,LyvHi}o,

which can also be written as Ly (X, (F)) = Xu,(LyF) + Xz, g, (F'); using b) we conclude ¢). In
order to show d) first notice that [Xr, Xg] = —X(p g}, = 0 for any F,G € A. Then c) implies that
[V, Xn,], Xg] = 0 for any H € O(g)% and for any G € A. By the Jacobi identity we also have that
[V, Xa], Xr,] = 0. The more general statement that [V, Xg], Xr] = 0 for any F,G € A follows
from b) upon using the fact that A is generated by the functions H; where ¢ runs over Z and H
runs over O(g)¢. "

Picking any two Poisson structures such as {-,-}p and {-,-}; the relations (2.9) and Proposi-
tion 2.5 can be depicted in the following diagram (we omit the coefficients; Eﬁ, :=Lyo Ei,_l),

5, 5,
H; — Hiyy — Hiiy

k3

Remark 2.6 An R-bracket on a Lie algebra g leads also to a quadratic and a cubic bracket,
assuming that the Lie algebra derives from an associative algebra, with a pairing (-, -) g which
derives from a traceform (see [LP] and [OR]). Explicitly the quadratic bracket {-,-}¢ and the cubic
bracket {-,-}¢ are given for F, G € O(g) by

{F,G}q(z) = %([{E, VF(z)], R(zVG(x) + VG(:E):E))g — %([{E, VG(z)], R(zVF(x) + VF(.’E)LE»Q
{F,G}o(x) = ([z, VF(2)], R(zVG(z)r)) g — ([z, VG (2)], R(zVF (2)z)) g

When applied to the R-bracket on the loop algebra g of g = gl(IV) we get a quadratic and a cubic
Poisson bracket on O(g). It was shown in [LP] that the linear, the quadratic and the cubic bracket
are related by the vector field Uy () = X 2(\). It is easy to prove that U is a master symmetry for
the algebra A, which is in the case g = gl(N) generated by the functions

Tr X*(\)

IZ(X) = Res W,

1> 0, 5 €Z;
[LP] gives Lenard relations for the functions I;; with respect to these brackets. Using the fact that
U and V commute it is easy to show that V also has the deformation property with respect to both

the quadratic and the cubic brackets, e.g., the Lie derivative in the direction of V of the quadratic
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bracket which corresponds to R; is (—! times) the quadratic bracket which corresponds to R;_1;
this leads in particular to another set of Lenard relations for the functions I;;. It follows that on
the loop algebra g the cubic and the quadratic bracket have all properties which the R-brackets
have: A is involutive with respect to these brackets, the corresponding Hamiltonian vector fields
are multi-Hamiltonian with respect to these brackets and the brackets are connected by the Lie
derivative with respect to the vector fields & and V which are master symmetries for 4. The higher
order brackets differ however from the linear structures in one crucial aspect: as it is easy to see
they do not restrict to any of the finite-dimensional spaces g_, , defined in (2.4). Similarly the
vector field U clearly does not restrict to any of the subspaces g (except in the trivial case

—b,q
p=q=0).
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3. Poisson reduction and reduction of symmetries

In order to comstruct our examples we need a reduction theorem which leads to a Poisson
structure in the following situation: for N a subvariety of an affine Poisson variety (M, {-,-}) with
an algebraic group G acting on it (leaving N stable) we want an inherited Poisson structure on
the quotient space N/G. By an affine Poisson variety we mean an affine variety whose algebra of
regular functions is equipped with the structure of a Poisson algebra. We will assume that our
group G also carries a Poisson structure (which may be trivial).

If N is a Poisson subvariety of M then a Poisson structure on N/G, or, more precisely, on the
ring O(N)¢ of G-invariant regular functions on N, will exist if the map x : G x N — N is a Poisson
map with respect to some Poisson structure on G; such an action is called a Poisson action* and
the bracket is called a reduced bracket. If N is not a Poisson subvariety of M then N/G may still
inherit a bracket from M: we will give below necessary and sufficient conditions for this to happen.

The following notation will be useful: the algebra of regular functions on M which restrict
to G-invariant functions on N is denoted by O(M, N)%; we have a natural restriction® map p :
O(M,N)¢ — O(N)¢. The ideal of N is denoted by I(NN) and we have an inclusion map ¢ : N — M.
Also, if ¢ : My — M> is a regular map between affine varieties then we denote by ¢* the induced
map O(Msz) — O(M;) defined by ¢*(f) = f o ¢.

Definition 3.1 Let (M,{-,-}) be an affine Poisson variety, x : G x M — M a Poisson action
and N a subvariety of M which is G-stable. Then the triple (M, G, N) is called Poisson-reducible
if O(M, N)@ is a Poisson subalgebra of O(M) and if there exists a Poisson bracket on O(N)% such
that

{p(F1), p(F2)}onye = piFr, Fo} (3.1)
holds for all Fy, F, € O(M,N)C.

Formula (3.1) says that in order to compute the Poisson bracket of two G-invariant functions
on N one computes the Poisson bracket of any extensions to M and then restricts the result to V.
Note also that (3.1) uniquely defines a bracket on O(N) (if it exists) since p is surjective. In the
following theorem, which is similar in spirit to the Marsden-Ratiu reduction theorem (see [MR]),
we give necessary and sufficient conditions for (M, G, N) to be Poisson-reducible.

Theorem 3.2  Let (M,{-,-}) be an affine Poisson variety, x : G x M — M a Poisson action
and N a subvariety of M which is G-stable. Then (M,G, N) is Poisson-reducible if and only if

p{O(M, N)F, I(N)} =0: (3:2)

it 4s implicit in this condition that its left hand side makes sense.

Proof
Suppose first that condition (3.2) is satisfied. We proceed to show that

{O(M,N)¢,0(M,N)°} c O(M,N)“.

* Some authors, e.g., [LM] use this term in the more restricted sense in which G is given the
trivial Poisson structure; then y being a Poisson action means that for any ¢ € G the induced map
Xg : N — N is a Poisson map.

5 This restriction map is onto, although the restriction map O(M)% — O(N)% is not onto in
general.
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If we denote by my y the projection G x N — N onto the second factor then G-invariance of a
function f € O(N) is conveniently expressed by the formula x*f = 75 5 f. Thus we need to show
that ’

XA, B} = my yi™{Fy, Fa} (3.3)

for any Fy, F» € O(M,N )G. Since x and 7y n are the restrictions to G x N of the corresponding
maps x and 7wy a7 on G x M and since these maps are Poisson maps, (3.3) is equivalent to

(1 x0)* ({X*F1, X" FoYaxam — {m5 yrFr w5y Fataxar) =0, (3.4)

where 1g is the identity map on G. For ¢ € G and n € N we define maps x, : M — M and
Xn : G — M by inserting g resp. n in x. Then x F is constant for any F € O(M, N)% so that

XL, X By — 3y Fataxa(9,m) = X, F1, X Fe — Fa} (n) + {x. F1, X P2 — Fa(n) }a(9)
= {X;FDX;FZ - F2}(n)a

which vanishes by the assumption (3.2). Therefore
(Lo X o)"{X"F1, X" F> — 53y Fotaxm =0, (3.5)

and similarly
(1 x 0)"{x"F1 — 73 01 F1, 75 pr Fotaxm = 0. (3.6)

Summing (3.5) and (3.6) we find (3.4) which shows that {F;, Fb} € O(M, N)¢.
It follows that we can actually use (3.1) to define {-, -}o(ny)c: on the one hand p is surjective,
on the other hand the bracket on O(N)¥ given by (3.1) is well-defined since if p(Fy) = p(F) then

z*{Fl,ﬁ'z — F»} = 0, another application of (3.2). From the definition it is also immediate that
{-,-}o(w)c satisfies the Jacobi identity so we get a Poisson bracket on O(N)® which satisfies (3.1).

This shows the if part; the only if part is trivial since p(I(N)) = 0. "

Remark 3.3 Suppose that all algebras under consideration are finitely generated. Then O(N)“
is the algebra of functions on an affine variety N/G which can be considered as the quotient of N
by G. Similarly O(M, N)% corresponds then to an affine variety (M, N)/G, obtained by taking the
quotient of M with respect to G but along N only, i.e., only N is shrunk inside M into its orbit
space N/G while the other points of M remain intact. In geometric terms formula (3.2) states
that the Hamiltonian vector fields which are associated to functions on M which are G-invariant
on N, are tangent to N (at points of N). It follows from the proof of Theorem 3.2 that if condition
(3.2) holds then (M, N)/G inherits a Poisson bracket from M and in turn N/G inherits a Poisson
bracket from (M, N)/G, the latter because all Hamiltonian vector fields on (M, N)/G are tangent
to N/G.

As an application of this theorem let us show that if a vector field V which descends to the
quotient has the deformation property with respect to some Poisson-reducible bracket then this
deformation property is conserved after the reduction. We need the following lemma.

Lemma 3.4 Let M be an affine variety, V a vector field on M and G a linear algebraic group
acting on M; let N be an affine subvariety, stable for G, and suppose that V is tangent to N,
W =V|n. Then

LwO(N)Y c O(N)¢ (3.7)
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s equivalent to

LyO(M,N)¢ c O(M,N)¢ (3.8)
and implies the commutativity of the following diagram.
OM,N)¢ L OWN)¢

,cvl lzw (3.9)

O(M,N)¢ 7 O(N)¢

Proof

Let 7% : O(N)¢ — O(N) denote the inclusion map (which may be thought of as coming
from the quotient map my : N — N/G) and note the obvious relation ¢* = 7} p, which holds on
O(M, N)¥. Then formula (3.8) follows from (3.7),

*LyO(M,N)¢ = L1*O(M,N)C = LyynyO(N)¢ = 1 LwO(N)¢ C nO(N)C;
for the proof of the other direction surjectivity of p is essential:
N LwO(N)Y = Lyyrip O(M,N)¢ =" LyO(M,N)¢ C *O(M,N)¢ = 73 O(N)C.
Moreover, for F' € O(M, N)% we have
TNLEwp(F) = Ly p(F) = Lwi"F = 1" LyF = mypLyF,

which shows that the diagram is commutative. ]

Theorem 3.5 Let (M,G, N) be Poisson-reducible with respect to a Poisson bracket {-,-} on M
and suppose that V is a vector field on M which is tangent to N, W = V|y, and which has the
deformation property with respect to {-,-}. If LyyO(N)¢ C O(N)Y then

a) (M,G,N) is Poisson-reducible with respect to {-,-}', the Lie derivative of {-,-} in the

direction of V;

b) W has the deformation property with respect to {-,-}o(n)e;

c) the Lie derivative of {-,-}o(nye in the direction of W is the reduced bracket of {-,-}'.
Thus the deformation property survives the reduction and the operations of reduction and deforma-
tion commute.

Proof
To show that (M, G, N) is Poisson-reducible with respect to {-,-}’, we use the necessary and
sufficient condition (3.2) of Theorem 3.2. Since

{F,G} = Ly{F,G} —{LyvF,G} — {F,LyG},
we have that
plO(M,N)¥ I(N)} = pLy{O(M,N)%, I(N)} = p{LyO(M,N)®, I(N)} = p{O(M,N)¥, LyI(N)}
and each term of the right hand side vanishes because (M, G, N) is Poisson-reducible with respect
to {-,-}: for the first term use commutativity of (3.9), for the second one use (3.8) and the last is

zero because V is tangent to N, Ly I(N) = 0.
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Next we show that the Lie derivative of {-,-}o(y)o in the direction of W is the reduced bracket
{"'},(')(N)G of {-,-}. This means that if f1, fo € O(N)¢ then

{f1: f2Yone = Lw{f1, foroye = {Lw i1, f2Yoye — {f1: Lw f2}omne- (3.10)

Let f1 = p(F}), fo = p(F>) and use (3.1) and commutativity of (3.9):

{f1. f2Yon)e = p{F1, P2}
= pLy{F1, Fo} — p{LyFy, Fo} — p{F1, Ly Fp}
= Lwif1, f2Yomwe —{Lwfi, f2romwye — {f1, Lwf2lomve-

G

Since we have proved that {-, },(')( nyc is a Poisson bracket on O(N)“ we have shown in particular

that £yy has the deformation property with respect to {-,-}o(n)c and we are done. ]

Remark 3.6 Under the conditions of Remark 3.3 the conditions (3.7) and (3.8) mean that the
vector fields W and V are tangent to the quotient spaces N/G and (M,N)/G.

Remark 3.7 The conditions of Theorem 3.5 are also sufficient to conclude that a master symme-
try for a subalgebra A C O(M, N)% descends to a master symmetry on the quotient. To prove this
let F € O(M,N)% and note that Xz = {-, F'} is tangent to N. If we denote by Y the restriction
of Xr to N then Yr is given as a derivation of O(N)% by Vr = {p(F)}o(nye and we have that
Yrp = pXr. Using (3.9), written as Wp = pV, we get

[va [yg,W]]P = p[XFv [‘XG?V]] =0,

since V is a master symmetry for A. Since p is surjective W is a master symmetry for p(.A).
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4. Reduction for simple Lie algebras

In this section we apply our two reduction theorems to the finite-dimensional subspaces Qi of
g, defined in (2.5), in case g is the loop algebra of a complex simple Lie algebra g C gl(N) of rank
r (see [Hum] and [Ser]). We denote by G any algebraic group whose Lie algebra equals g. We fix a
Weyl basis {H;, E;, F;}7_, of g, i.e., a collection of 3r generators for g such that H; spans a Cartan
subalgebra b, and the following commutation relations® hold:

(B, Fj] = 0i5Fi,  [Hi, Bj] = njiBy,  [Hy, Fj] = —njiFj.

Here (n;;) is the Cartan matrix of g and the indices 4, j take values between 1 and r. The Weyl
basis leads to a gradation g = ®F__, g, of g: g, = h and for 4 positive (negative) g; is spanned
by the i-fold commutators of the elements Ei,...,E, (Fi,...,F.). An element of g, is called a
homogeneous element of degree ¢ and h = k+1 is called the Coxeter number of g. The projection of

g on g, is denoted by IT;. We will also use the decomposition g = n~@®h@n*, where n* = @f:kilgi.
We will consider a set {I4,...,I.} of Chevalley invariants of g. They are homogeneous polynomials

which generate the algebra O(g)® of invariants for the adjoint action of G on g (see [Var] p. 333).
We denote the degree of I; by d; and call the numbers ¢; = d; — 1 the exponents of g. We will
always assume the invariants I; to be ordered by degree. Then the exponents bear the following
relations (see [Kosl]):

l=q1 <@<@<-<q¢g_1<¢ =k (4.1)

The Chevalley invariants lead to the following G-invariant functions on g:

1;(X)

I;;(X) = Res L

which by definition generate the involutive algebra A introduced in Section 2.

4.1. Poisson reduction

Let o and B be homogeneous elements of g such that dega — deg S = h. We put deg f = —d
and we define, as in Paragraph 2.1,

@g: {in)j €g|$n:ﬁ}a
=0

together with the following affine subspace

N = {sz)\’ € Qg | ILj(zp—1 —a)=01if j > dega} .
i=0

Lemma 4.1  Let gg be the isotropy algebra of 3 and let g5 = gg Nn~. Then the action of

Gz =expgy on @g leaves N invariant.

6 Our definition of a Weyl basis differs from the one in [Ser] by a transposition in the Cartan
matrix, i.e., [Ser| takes [H;, E;] = n;;Ej; our choice simplifies the explicit formulas for the Weyl
bases given in the examples.
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Proof
It suffices to show that if IT;(z,—1 — «) vanishes for all j > deg a then the same holds true for
II;(Adexpy ©r,—1 — @) when v € n~. The result follows at once from Adey,, = expad, . "

Recall from Proposition 2.3 that the brackets {-, -}; restrict to QZ for 0 <1 < n. Notice however
that the bracket {-,-},, does not restrict to N: if e, is a basis element such that dege, = dega
then &7~ — &, (a) belongs to the ideal I(N) of N but {¢7~1, &)}, = C,£°, which is non-zero for
at least one value of b since g is simple. Therefore we are precisely in the case of the reduction
theorem (Theorem 3.2).

Theorem 4.2  The triple (Qi, GE, N) 1s Poisson-reducible with respect to each Poisson structure
Z?:O cl{' ) '}l'
Proof

We first show that the action of G5 on QZ is Poisson. To do this we take the trivial Poisson
structure on G, we fix any [ € Z and show that (Ady)*{f1, fo}; = {(Ady)* f1, (Ady)* f2}; for any
g € G and any f1, fo € O(g). It is sufficient to show this for f; and f, linear; then (Adgy)* f1 and

(Ady)* f2 are linear too and their gradients do not depend on X € g (in particular we can omit the
argument). Since

a
dt |t=0

we find that (V(Ady)* f1,Y) = (Ad,-1 V f1,Y) giving V(Ad,)*f1 = Ad,~: V f1. Then

fl(Adg(X +tY)) = fl(Adg Y) = (VflaAdg Y>

{(Ady)" f1, (Ady)* fo}1(X) = (X, [Ady—1 V f1,Ady-1 Vfalr,)
= (Ady X, [V 1,V f2]R,)
= {f1, f2}1(Ady X)
= (Adg)*{fl,fz}l(X)-

We will see in Proposition 4.4 that in certain interesting cases the action is even Hamiltonian.
We now verify condition (3.2). The ideal I(N) of N is generated by those elements of the form
=1 — ¢, (a) for which dege, < d—h. For [ =0,...,n — 1 these elements are Casimirs of {-,-};.

Indeed, if X € §° andbe I and 0 < k < n — 1 then

{7 an(X) =g et (X) =0

c

for k # [, while if £ = then
{gg_laé.ll)}l(X) = C;bgg(X) = Cgb<ecaﬁ>g = ([eaaeb]vﬁ>g = ([ﬁa 6a],6b>g =0.

We used in the last equality that [3,e,] = 0 if dege, < d — h, which follows from deg[s3,e,] < —h.

This shows that (3.2) is satisfied when [ # n. As for the n-th bracket, let ' € 0(@5, N)%s and let
a be such that dege, < d — h; notice that if F' restricts to a Gg invariant function on N then F
satisfies the infinitesimal condition

(VF(X),X],v) =0, VX €N,V e g;.
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We need to show that {¢7"~1, F},,(X) =0 for any X € N. But

{71 FYa(X) = 5 (X, [ea, VE(X)] + AN "eq, RA"VEF(X))])

(X, leq, VF(X)] + [\ "eq, \"VF(X) —2(\"VF(X))_])

_Llix
2
1
2
(X, [ea, VF(X)]) = (X, [A\""eq, A" VF(X))_]).

For the first term we have (X, [e,, VF(X)]) = (e, [VF(X), X]) = 0 since e, € gj, again because
[B,e,] = 0. Similarly we find that the second term vanishes:

(X, A "eq, (\"VF(X))-]) = (B, [ea, A"VF(X))-1])g = 0.

If B is a generic nilpotent element then the action of G5 is Hamiltonian, a fact that can be
used to give an alternative proof of Theorem 4.2 for such 8. The proof of this depends on several
facts about simple Lie algebras which we will recall now (see [Kosl] for details). A nilpotent
element is called principal when its isotropy algebra has dimension r; in this case the isotropy
algebra is Abelian. A generic nilpotent element is principal and all principal nilpotent elements
are conjugate to 3 = Y.._, F; whose isotropy algebra g3 is contained in n~. Notice that as a

consequence G; = Gg and thus that it suffices to prove that the action of Gg on @g is Hamiltonian
for 8 =3"._, F;. We will use the following lemma about the gradients of the Chevalley invariants.

Lemma 4.3 If =) ._, F; then the gradient of the i-th Chevalley invariant I; at 3 is homoge-
neous of degree —(d; — 1) and the gradients VIi((),...,VI.(B) are linearly independent.

Proof

For the first claim it suffices to show that (VI;(8),y)g = 0 for ally € g; with j # (d; — 1), since
(gl,gm)g =0 if I +m # 0. To show this we introduce for all z € g the operator d, : O(g) — O(g)
defined by

(0:f)(2) =(Vf(2),z) = —

t

and we observe that g(z) = 5(97"g)(0) for any homogeneous polynomial g of degree m. Then, for
z =0 and f = I;, we get

1

@ B n)0)

(VI (8),y) = 0,1;(B) =

But the proof of Lemma 14 in [Kos2] shows that (8gi_18yli)(0) =0ify € g; with j # d; — L.
Finally, the elements VI;(3) are linearly independent since dim gz = r (see [Kos2], Theorem 9). u

Proposition 4.4 If3=>"._, F, then the adjoint action of Gg on QZ 1s Hamiltonian with respect
to every Poisson structure {-,-};, 1 =0,...,n. We can choose a basis {b;}]_, of g5 in such a way
that the corresponding infinitesimal generators X; of the action are the Hamiltonian vector fields

X = {'aIi,n(di—l)—l}O = {'7Ii,n(di—1)+l—1}l7 l =0,...,n, 2=1,...,m
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Proof
We first show that for any X € QZ andi=1,...,r

b; == (VIi,n(di—l)—l(X))+ (4-2)

is independent of X as well as of A and belongs to gz. To see this, take z € g to find that

d Li(X + tza™)
1 i
<VIi,n(di—1)—l(X)7$>‘ > = E|t:0 Res An(di—1)
1 d —1
= Res Ii(ﬂ)\"+...+x0+t$>\ ),

AP (di=1) dt |=0
d

=Res\"— LB+ z,_ 1A 4. FaoAT" HtzAT")
dt |t=0

=Res \"UVL(B+zp 1A + ..+ zoA""), 7)g-

Developing VI; in a Taylor series at § we find (taking [ > 2) that b; is independent of A, and
(taking [ = 1) that b; = VI;(8), independent of X. From this description we may conclude on the
one hand that the elements b; are independent, as a corollary of Lemma 4.3; on the other hand we
may conclude that each b; belongs to the isotropy algebra g4 of 3, since

16,b)] = [6, VE(8)] = 0

by Ad-invariance of I;. Since dimgg = r, it follows that the b; (i = 1,...,7) span gg.

The corresponding generators are clearly the vector fields X; defined by X = [b;, X], where

X e gﬁ But using (2.8) and the definition of b; it is easily seen that A&; is the Hamiltonian vector
field associated with I; ,,(4,—1)—1 by means of {-,-}o. Moreover, since their Hamiltonians are of the
form I;; the action of Gg is actually Hamiltonian with respect to any of the Poisson structures

{,-h(=0,...,n). 1

4.2. Reduction of the master symmetry

We now turn our attention to the vector field V on g which was shown to be a master symmetry
for A and to have the deformation property with respect to the brackets {-,-};. We will now show
that V descends to a master symmetry which has the deformation property. We will use the same

notation {-,-}; for the reduced brackets (on O(N)%s) as for the original ones (on (’)(QZ))

Proposition 4.5  The master symmetry V is tangent to @g and LyyO(N)%s C O(N)% , where

W denotes the restriction of V to N. Therefore, the brackets {-,-}; and {-,-};—1 on (’)(Q,’f) which
are connected by the Lie derivative with respect to V reduce to two brackets {-,-}; and {-,-}i—1 on

(’)(N)GE which are connected by the Lie derivative with respect to W. Moreover W is a master
symmetry for p(A).

Proof
The flow of V is given by
¢s : X(A) = X (A +5);
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if X(A) € N, X(A) = BA" + 2,_1 A" "L 4., then

XA+38)=BA+8)"+zp_1(A+s)" "4+ (43)
= BA" + (nsf+ Tp_ )N 4 - '
belongs to N since 8 € n_, showing that V' is tangent to N. Also it is clear that EW(’)(N)GE C

O(N)% because G acts by simultaneous conjugation on the coefficients of A in X(A), hence
commutes with £yy. Thus Theorem 3.5 applies to yield the first statement. The fact that W is a
master symmetry for p(A) follows from Remark 3.7. "

4.3. The reduced space N/G; as a linear subspace Ny C N

We now show that when a + 3 is regular then the algebra O(N)%s is finitely generated
(although Gj is not reductive) and that the quotient space N/ G can be identified in a natural
way with an affine subspace Ny of N. By naturality we mean here that under the identification
which we will construct the involutive algebra A C O(N/Gj5) = O(N )%s and the vector field W
correspond to their restriction to Ny, hence can easily be computed. Note however that the Poisson
structures {-,-}; on Ny are not obtained by restriction.

We will assume, as in Paragraph 4.1, that « and  are homogeneous with deg o — deg 3 = h.
We put d = — deg 8 and we assume that v = a4 is regular, meaning that the isotropy subalgebra
of v is a Cartan subalgebra. We will give at the end of this section for every simple Lie algebra g
an important class of pairs («,3) such that « + (3 is regular. The only property that we will use
about the regularity of o + 3 is contained in the following lemma.

Lemma 4.6  Let o and 3 be as above. Then g, N gy = {0}.

Proof
If z € g, Ngs, then z belongs to the isotropy algebra of & + 3, which is a Cartan subalgebra,
hence z is semisimple. On the other hand z € n™ hence it is nilpotent. Therefore x = 0. ]

The space Ny is constructed as follows. Let g, be a subspace of g,, fori =1—d,...,h—d—1,
such that

9;=9;9 [9,3 N gi+d—h7a] . (4.4)

If we denote
0= (0,2 49;) © (&1577:)

then Ny is defined by
Ny = {X EN | Tpol =0+ Tp_1, Tn—1 € C[}

Theorem 4.7 If a+ 3 is reqular then the inclusion 3 : Ng — N induces an algebra isomorphism

O(N)%s =~ O(Ny) so that N/Gyj is an affine space which can be identified with No. The functions in
involution I;; and the master symmetry W on Ny are the restrictions of the corresponding functions
I;; and the master symmetry YW on N.
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Proof
We first define a regular map N — G5 : X — gx which has the property that Adg, X € Ny

for any X € N and equals X for any X € Ny. To determine gx use the fact that g5 Is contained
in n~ to write it as

k

gx =expr, with v = Zl/_j €95 V-;E€83MN9_;.
j=1

Then

(Adgx) 1= Ang Tn—1

n—

=Tp_1+ [Vamn—l] + -

k—d k k—d
= (a—l— Z Hixn_1> + ZV_j,Ol+ Z iz 1| +---,
j=1

i=—k i=—k

which has to be equal to o+ Z?;ll__dd gi+p, with g; € g, and p € @;Zd_kgi. The projection on g,,_

yields a = o while projection on g;_,_; leads to

Iy_g—1Tpn—1 = qh—d—1 — [V—l, Oé] )

from which ¢;_4_1 and v_; are uniquely determined because of the direct sum decomposition

Oh—d—1 = Qp—a—1 D [9,3 Ng_y,ql

and g, N g; = {0} (Lemma 4.6). More generally, the projection on g; (j =h—d—1,...,1 —d)
yields
2,1 + (known stuff) = ¢; — [Vj44-pn, ],

which gives a unique ¢; € q; and a unique Vj1q—p € g3 N @,44—p- This gives us the desired map
N — Gy since all g; and v; are unique, all elements of Ny map to the identity element in G ;. The
map N — G5 is regular because the v; depend linearly on the entries of 2,1 and exp : g5 — G
is a regular map. Notice that only Il;z,_1, 7 =1—d,...,h —d — 1 enter the construction of gx,
so that gx = gx/ if jzp_1 =12),_, for j=1—-d,...,h—d—1.

We thus also have a regular map ¢ : N — Ny given by X — Ad,, X. Let us show that the
image of the induced injective map ¥* : O(Ny) — O(N) is precisely O(N)% . If F € O(N,) then
¢*F is G z-invariant because 1 is G ;-invariant, hence 9" is injective; also, if /' is a G/5-invariant
function then its restriction to Ny maps to F under ¥*, hence the image of ¥* is (’)(N)GE. In
conclusion O(Np) and O(N)s are isomorphic and we can identify Ny as the quotient N/ Gjs.

The functions I;; on N are Gg—invariant hence pass to the quotient Ny. Since the quotient map
was induced by the inclusion map 7 : Ng — N the corresponding functions on Ny are just obtained
by restriction. Formula (4.3) implies that W is tangent to Ny and also that gx(x) = gx(x4s). If we
denote the restriction of W to Ny by W' then it follows that Lyy1)* = 9* Ly, in other words the
projection of W on Ny = N/G/g is just W', the restriction of W to Ny. In conclusion the functions
in involution and their master symmetry have a simple description on the reduced space Ny. (]

We end this section by giving a general rule to select pairs («, 3), with deg & —deg 8 = h, such
that a.+ (3 is regular. We first recall some facts from [Kos1], Theorem 6.7. Let 81 = Y ._, F; and let
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a1 € g, a1 # 0. Then v; = a1 + B is regular, so that h = g, is a Cartan subalgebra. Moreover,
there exists a basis {71,...,7,} of h" with the following properties (here IT* is the projection onto
nt and q; < ¢go... < ¢ are the exponents of g):
1) Bs = I (7,) is homogeneous of degree —qs;
2) ay = II7(y,) is homogeneous of degree h — g;.
The next proposition allows us to determine which pairs («g, 8s) are such that vs = a + 35 is
regular. We are grateful to B. Kostant for providing us with a proof.

Proposition 4.8  The element s is regular if and only if qs is coprime to the Coxeter number h.

Proof
Let Hy be the unique element in h such that [Hy, E;] = E; for all i = 1,...,r (the existence
and uniqueness of Hy follow from the fact that the Cartan matrix of g is invertible). Then it is
easily seen that
[Ho,z] = jx Vzeg;. (4.5)

If we define Py, € G by Py, = exp(%T\/__lHo), then (4.5) implies that Adp, v; = w™%+;, where
w = e™V=I/M In particular we have that Adp,(h') C b’, so that P, belongs to the normalizer
N(H') of H = exph’ in G. We denote the element of N(H')/H' which corresponds to Py by c.
The group W = N(H')/H' is called the Weyl group of g. Clearly each element w € W acts on b’
by the adjoint action; we will use w(xz) to stand for Ad, z, where g € N(H') is any representative
of w. Since g; = 1, it follows from the fact that c(vys) = w %, for s = 1,...,r that the order of ¢
is h.

Now let us suppose that m > 1 is a common divisor of g; and h. Then we can write h = h'm,
qs = ¢,m for some h’, ¢, € N. We show that -, cannot be regular by proving that ¢ is a nontrivial
element of W that leaves v, fixed (see, e.g., [Kna], p.426-427). Indeed,

—qsh’ —hdq,
1 Vs = W qs’)/s ="Ys,

M () =w
and ¢ is not identity because the order of ¢ is h > h'.
Conversely, assume that g, is coprime to h. Then w; = w™% is still a primitive h-root of unity.
If {I;};=1,., are the Chevalley invariants, deg I; = ¢; + 1, then we have that I;(y,) = 0 for all
g < r. Indeed,

Li(7s) = Li(e(ys) = Li(wsys) = w? (),

while (4.1) implies that ¢; +1 < ¢, +1 = h, so that wth # 1 for j < r. On the other hand, I,.(7s)
cannot vanish, because any element of g at which all invariants vanish is nilpotent (see Theorem
9.1 of [Kosl]). Therefore there exists a non-zero b € C such that I;(by;) = I;(v,) for j =1,...,r.
Now, Lemma 9.2 of [Kosl] states that two elements of a Cartan subalgebra at which all invariants
take the same values are W-conjugate. Since ~y; is regular, v, is regular too. ]
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5. Examples

In this section we elaborate on the examples of the classical Lie algebras and G'5. Each will be
realized as a subalgebra of s[(N) and we will use (z,y) g= Tr(zy) as ad-invariant inner product;
the representation will be such that g has a Weyl basis of a simple form. We denote by e;; the
N x N matrix whose only non-zero entry is a one at position (i, j).

5.1. The Mumford system

We first show that when our construction is applied to the case of g = sl(2) we get the Mumford
system. We explicitly describe the reduced brackets, exhibit the multi-Hamiltonian hierarchies and
check the deformation property of the master symmetry.

A Weyl basis for g = sl(2) is given by E = e15, F = ea1, H = €11 — €39, leading to f = ey
and a = ej3. Then gﬁ consists of those matrices

for which w(\) is monic of degree n and both u(A) and v(A) have degree less than n. We will
write u(\) = Z?:_()l u; A" and similarly for v()\) and w(\). The hyperplane N of QZ is defined by
the extra condition that w(A) is monic of degree n — 1, i.e., it is defined by u,_; = 1. The group

G consists of all matrices of the form ((11 (1)> with Lie algebra g5 = C8 = g_;. For 1 =0 the

decomposition (4.4) gives
9o = do ® [g-1, ],

leading to q, = 0. Therefore the quotient space N/G 3 is identified with the affine space Ny of all
matrices

U(A) monic, degU(X\) =n —1,
V(A U such that degV(A) <n-—1
W) =V ’
W (A) monic, deg W(A) = n.
Again we will write U(\) = Z?:_Ol U;\!, where U,,_; = 1, and similarly for V(\) and W (). Since
the algebra of invariant polynomials on g is generated by x — Trz? we find that the algebra A on
@g is generated by the coefficients (in \) of the polynomial

u(Nw(N) + 0% (N),

and on Ny by the coefficients of
UMW) +VZ(N).

In order to describe the reduced Poisson structures on Ny we define u;, U;,... to be zero for all
values for which those variables have not been previously defined (e.g., u—; = u, = 0). Then
formula (2.3) for the brackets {-,-}; (0 <1 < n) gives

_ij

{ui, vt = ¢ uirjr1-1
_ij

{vi,wihi = ¢ Wit j11-1,

_ 9,
{wiauj}l = 2€;" Vitjt1-1,
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and all other brackets (between linear functions) are zero. The map N — G : X — gx sends

oy 2) = (5 )

so that the quotient map N — Ny : X — Ad,, X is given explicitly by

Ui = uy,
Vi:vi—uivn_l, i:(),l,...,n—l. (51)
Wi = w; + 200,71 — uivfb_l,

The reduced brackets are computed by extending the functions at the right hand side of (5.1)
(which are G g-invariant functions on N) to functions on QZ and by taking their bracket; we will”

do this simply by taking the same expressions, but forgetting that u,_; = 1. For example if [ # n
then {V;, W;}; is found from

2 _ g ij 2 ij l
{Uz' — UUp—1, W5 + 21};’%—1 - Ujvn_l}l = € Witj+1—1 — € Uj4j4+1-1Vp_1 T 26[ Vitj+1-1Un—1+ ui5j7

giving {V;,W;}; = efjWi+j+1_l + Ui5§-. In this way the reduced brackets {-,-}; are found to be
given, for [ =0,1,...,n—1, by

U, Vih = 6§jUi+j+1—la {U;,U;}; =0,
Vi,Wihi =€’ Wit + Ui5§~, Vi,V;} =0, (5.2)
(Wi, Ujhi = 26 Vi j11, {Wi, Wik = 26,V; — 205V,

while the bracket {-,-},, is quadratic and is given by

{Us, Vitn = €l Uisjr1-n — UiUj, Ui, Uj}n =0,
{‘/ia Wj}n = 67;;,jVVi+j+1—n - UZWju {VYM ‘/J}n = 07 (53)
{wi, Uj}n = 26;?Vi+j+1—n — 2U;V, Wi, Wj}" = 2VilW; — 2V;W;.

Using these explicit formulas it is easy to verify that V has the deformation property with respect
to all these brackets. For example, for the n-th bracket (which is quadratic) we find

LyAU;, Vitn —{LvU;, Vit — {Us, LyVita

=[(i+i+2-n)gl — G+ D = (G + Ve Uigjzn
= —n€)_Uirjra—n
= —n{U;, Vj}n-1.

" Note that we can e.g. extend v; —u;v,_1 also to the more symmetric expression U, —1v; —U;Vp_1,
but according to Theorem 3.2 the final result is independent of the chosen extensions.
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Similarly (5.2) and (5.3) can be used to compute the Hamiltonian vector fields X, = {-,1;}o on
Ny, where I; is the i-th coefficient of U(M\)W (X) + VZ(\). For example

A (UN) ={UMN), Li}o

n—2
= Y D {ULUWy + V;VihoX
j+k=i 1=0
n—2
= Z Z (2U;Viti11 = ViUksi41 — Ui s Vi) N

j+k=i 1=0
V) U(A)]

—2U()) [ o ] - 2V (\) [ml

If we denote

a=(wiy ) = m= (1 o)

then we recover the Lax equations
A=—[A, (A" A) 4 + B)] (5.4)

of which Mumford’s vector field (1.1) is a special case (up to a factor —2; here n = g+ 1). Another
way to obtain the vector field X7, on Ny is to project the corresponding vector field on N along
the tangent space to the orbits of Gg. Since this is spanned by [A, (], one has to write

[A, (AT A) ] = A+ e(A)[A, 8], A € Ny,

where ¢ is a function on Ny. The entry (1,1) of the coefficient of A"~! of this equation gives
¢(A) = U;, and then (5.4) follows.

5.2. A,

We now discuss the case of s[(r+ 1) and obtain for every positive integer which is smaller than
r 4+ 1 and coprime to r + 1 a generalization of the Mumford system to matrices of size r + 1. We
will label the entries of elements of sl(r + 1) with indices 0, ..., .

A Weyl basis {HiaEi,Fi}@Tzl is defined by HZ = €i—1,-1 — €, EZ = €i,i—1, and Ffb = Ef
Clearly then g, is spanned by the elements e;;,; so that dimg, =r —i+1fors > 0and h =r+ 1.
The elements «; € g,,, and 3; = 2221 F; look as follows:

0
0 0 1 0
0 00
a1 = . : . ﬂl— 0 0
0 00
0 0 1 0

The isotropy algebra of a1 + 1 is the algebra of matrices (a;;) for which a;; = a;41,j4+1, where the
indices 4, j take values in Z, 1. It follows that 8; and ay4 are given by

7 /0 o
ad_(o 0) ﬁd_(Ir+1—d 0>'
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We fix a d coprime to r + 1 and let &« = ag and 8 = 4. Then the space @g consists of polynomials
of degree n with coefficients in g whose top coefficient equals 5. The elements of the subvariety NV
are those for which the second coefficient equals « plus arbitrary terms of degree less than r+1—d.
The Lie algebra g; consists of the strictly lower triangular matrices of the form a;; for which
Qitd,j+d = Qij; here 0 <j <7 <r—d.

Proposition 5.1 If g = sl(r + 1) and d is coprime to h = r + 1 then the quotient space Ny is
given by 8

n—2
B 0 0., 0 I\ \n-1 N[
NO_{(Ih—d 0>>\ +<* *>>\ + g TN |$z€5[(r+1)}.

=0

Proof
Taking into account Theorem 4.7, we need to show that the spaces q,, for 1 —d <7 < h—d—1,

0d,r+1

can be chosen in such a way that the elements of q have the form ( . In other words, if g, is

the span of {e; j+i}tj=d,... .h—1-i we must check that q, ® [gﬁ NGiva_n> ) = g,;. Since 95 NG, = {0}
(by Lemma 4.6), we have that dim[gs N g, 4 p,a] = dim(gz N g;,4_p); then from the explicit
description of g it is easily seen that

dimq; + dim[gz N ;1 4y, ] = dimg,,

so that we are left with showing that q, N [gs N @;14_p,a] = {0}. To this aim, let us suppose that
M€ gsNg;rqp and [M, o] € q;; then [M,a], s4; = 0 for all s = max{—i,0},...,d — 1, that is,

M sviva—n = Mpys—d,s+i for any s =0,...,d — 1, (5.5)

where we have put M;;, = 0 for indices j and % outside the range 0,...,7 = h — 1. Let us define for
t=0,...,h—1 the elements m; = My 41 ;+q—n; then we have that m; =0for0 <t <h—-d—i—1.
Moreover, equation (5.5) takes the form

M = Mith—d fort=0,...,d—1. (5.6)

If 2 <0, it is not difficult to show that this implies m; = 0 for all ¢, that is, M = 0. For i > 1, we
have to use also the fact that M € gg, i.e., that

my = Miyq fort:h—d—z,,h—d—l (57)

Now, equation (5.6) says that we can think of the indices in m; as belonging to Z;_,. We already
know that m; = 0 for 0 <t < h—d—i—1. In order to show that mgy =0for h—d—1 < s < h—d—1,
we fix such an m, and we observe that ms = mgy4 on account of (5.7). If s +d = s; + t1(h — d)
with 0 < s7 < h —d — 1 —1 then we are done. Otherwise, we can add d again to s;, and we are
sure that finally we will obtain an s; such that 0 < s; < h —d — 1 — 1 since the equivalence class of
d is a generator of Zj,_4 (because d and h — d are coprime). "

A set of Chevalley invariant of g is given by the polynomials I; : = + Trz**t! i = 1,...,7,
or, equivalently, by the coefficients of the characteristic polynomial det(z — pId). Therefore the
coefficients of det(X(\) — p1Id) give generators for A.

8 In this formula and in several formulas that follow we use stars as an abbreviation for arbitrary
matrices of the appropriate size; of course it is understood that these “arbitrary” matrices must be
chosen such that the resulting matrix is in g.
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5.3. B, and C,

As usually these two families, which correspond to the symplectic and half of the orthogonal
algebras can be treated simultaneously. The representations which we will choose are the ones for
which the gradation is the restriction of the one for sl(/N); here N = 2r + 1 corresponds to the
orthogonal algebra B, and N = 2r to the symplectic algebra C,.. Let T denote the following N x N

maftrix,
1

-1
T = 1 ie. T = (—I)N_36i+j,N+1a

then g is defined by X'T'+ TX = 0, i.e.
Xyg1op = (DVTRHX G g0

The meaning of this is that the main diagonal and all its parallels at even distance are skew-
symmetric with respect to the secondary diagonal (hence Tr X = () while the other ones are
symmetric. Then dimg = r(2r + 1) where r = [%] is the rank of g. If N = 2r + 1 then we define

E; =e€;it1+ €2rq1-i2r42-45 1=1,...,r—1,
E, = 2(6T,T+1 + eT+1,T+2)7
Fi=eiy1,i+ 2420274145 t=1,...,m

while if N = 27 we define

E; = e it1+ €2r—i2r 414, 1=1,...,r—1,
E, = Crr+1,
and F; = E! for 1 = 1,...,r. In either case, if we introduce H; = [E;, F;] for i = 1,...,r, then

{H;, E;, F;} is a Weyl basis for g. In particular the associated gradation g = &* , g, is the restriction
of the one for s[(N) and we have dimg, = r — [i/2] for i > 1. In both cases the Coxeter number h
equals 2r. The principal nilpotent element (3, is the same one as in the s[(N) case and «; is for N
even respectively for N odd given by

o] = : : : resp. o] = : . :

If N is even then «; + f3; is the same as in the s[(2r) case and therefore its isotropy algebra can
be obtained by means of a simple restriction. In particular ag and §; have the same form as in
the sl(2r) case (but only odd values of d are allowed) and when d is coprime to 2r (i.e., to r) the
quotient space can be identified with a suitable affine subspace Ny. If d = 1 a possible choice for
the coefficient of A» ™1 of the elements in Ny is

0 0 =« * 0 1
* K*  Kk  *x * x 0
* *
* x 0
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If d = 2r — 1 two possible choices are

O 1 0 --- 01 0
0 0 1 0 * L0

) 0

0 1 0 or 0 1 0

* 0 1 0 1

. ..- . * “ '.

0 ~ 0 - 1 00 0 --- 1
* 0 0 *x 0 * 0

When N is odd the isotropy algebra of a; + 31 consists of those elements of the form

o ¢t 0 .- vty 0t 0
ty 0 2¢ 0 - e 2t 0 1
tv 0 2¢ --- 0 e 2ty 0

: ta 0 t; 0 2t 0
t, ta 0 t1 0 ¢
0 t, .- ta 0 t; O

giving immediately the expressions for ay and 34. For d = 1 the coefficient of A»~! in N; can be
chosen as

0O x 0 % --- 0 1 0
* % * *x -+ % 0 1
* 0 ,
* * 0
while for d = 2r — 1 two natural choices are
o 1 0 --- 01 0
0 0 2 0 * 2 0
. 0 O
0 2 0 : -0 2 0
* 0 2 or : 0
. . )
0 x 0 0 2 0 00 O 0 2 0
* 0 x 0 1 x 0 0 0 1
0 ~ 0 0 0 x 0 % 0
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A set of Chevalley invariants, whose degrees are 2,4, ..., 2r is given by the non-zero coefficients
of the characteristic polynomial, viewed as functions on g.

5.4. D,

We realize D, as a subalgebra of s[(IV), N = 2r as follows. Let T" denote the following N x N
matrix,

1

T = . ie. T;;=(-1) = Oitj,N+1,

1
then g is defined as before by X'T' +TX = 0, i.e.

2k—-N-1 <
Xngioip = (=11 Xn_ if — .
N+1-1,k (—1) N—k+1,l; it =7 >0

Thus, up to the £ sign this is the same as in the case of C, and a generic element of D, is
written down by writing down a generic element of C,., putting zeros at the secondary diagonal and
changing all signs under this diagonal, except in the south-east r X r block. In particular Tr X =0
and dimg = r(2r — 1). A Weyl basis for g is in this case given by {£;, F;, H;} where

E; = €41+ €20 +1-i5 1=1,...,r—1,
E, = €r—1,r+1 + Crr42,
F; = E! and H; = [E;, F;] for i = 1,...,r. The associated gradation g = @®*, g, is now slightly

more complicated; the portion above the secondary diagonal of a typical element of g,, ¢ > 0 has
the following snake-shaped form.

(5.8)

Precisely, a basis of g,, ¢ > 0 is given by

€j,i+j + (_1)i_162T—i—j+1,2T—j+17 .7 = ]-7 R A iu
- . . 1
€5—1,i+j + (—1)Z 1€2r—i—j+1,2r—j+2a J= max{2,r -1+ 1}7 RN A |:§:| )
giving dimg; = r —[i/2] for 1 <4 < r and dimg; = r —[i/2] — 1 for ¢ > r. A set of Chevalley
invariants is given by the non-zero coefficients of the characteristic polynomial, with the highest
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order one (the determinant) being replaced with its square root. The elements a; and () take the
form

0
1 0
0 - 10 : -
0 - 01 1 0
ap = L and 01 = 1 0 0
0 0 0 11 0
1 0
and one can show that as,_o = F; + 2 E::_é? E;,+E._1+ E, and
00 --- 0
/627‘—2 - 10 - 0
0 1 0
For d =1 the space q may be taken consisting of all elements in g of the form
0 0 x -+ 0 « x 0 % 0 % - 0 0 O
* kx kx x oo Kk 0 x k k x x -+ K% % 0 0],
* e * e *
the 0 in the second row appearing at position 2 [Tgl]. For d = 2r — 2 a possible choice for q is
0 0 --- e 0
0 0
* 0
* 0
0 0 ’
* 0
0 0
* 0
0 =% 0

where the pair of stars in the first column appear at positions 2[r/2] and 2[r/2] + 1.

5.5. Gy

Finally here is g = g, in the standard representation, as taken from [FH]. A Weyl basis is
given by

0100 0O0 O 00 0 00 0O
000 0 O0O0 O 00 -1.0 0 0 O
000 200 O 00 0 00 O0O0
Ei=10 0 0 0 1 0 01, Ey=10 0 0 0 0 0 0],
0000 O0O0O O 00 0 O0O0T1PO0
0000 0 0 -1 00 0 00 0O
000 0 O0O0 O 00 0 00 00
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F) is obtained by transposing E; and interchanging the middle 1 and 2, F, = E! and H; =
[E;, F;], (i = 1,2). The spaces g, making up the gradation are spanned by the following vectors:

g, : B, Es

9 1 B3 = [E1, By

gs : Ba = [E1,[Er, B9
94 : E5 = [E1, [Er, [E1, Es]]

95 Bo = (o, (v, By, [Bu, o]

the spaces g_,, ¢ > 0, being constructed by using in the above formulas F”’s instead of E’s. The
ring of invariants is generated by Tr X2 and Tr X6, so that the exponents are 1 and 5. The elements
a1 and B are given by a1 = Eg and 8y = F1 + F5, and the isotropy algebra of a; + 3 is spanned
by F| + F» + Eg and Fg + 36, + 72E,. Therefore we also have a5 = 6F; + 12FE, and (35 = Fg/6.
Since

(85, NG_1, 1] = gy,

(95, N9_5, 1] = C[H; + 2H>] = Cdiag[-1,-1,0,0,0,1,1],

the quotient space can for d = 1 be taken as Ny = 61 \" + Z?:n_l ;A" where z,,_; — 1 lies in the
11-dimensional span of the vectors

H27 Ela E27 E37 E47 Fla F27 F37 F47 F57 FG'

For d = 5 we have that g5, =0~ and the quotient space can be taken as Ny = G5 A" + E?:n_l T\
where z,,_; — a5 lies in the span of the vectors F» and Fg.
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