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Abstra
t

In this paper we generalize the Mumford system whi
h des
ribes for any �xed g all linear


ows on all hyperellipti
 Ja
obians of dimension g. The phase spa
e of the Mumford system


onsists of triples of polynomials, subje
t to 
ertain degree 
onstraints, and is naturally seen as

an aÆne subspa
e of the loop algebra of sl(2). In our generalizations to an arbitrary simple Lie

algebra g the phase spa
e 
onsists of dimg polynomials, again subje
t to 
ertain degree 
onstraints.

This phase spa
e and its multi-Hamiltonian stru
ture is obtained by a Poisson redu
tion along a

subvariety N of the loop algebra g((�

�1

)) of g. Sin
e N is not a Poisson subvariety for the whole

multi-Hamiltonian stru
ture we prove an (algebrai
) Poisson redu
tion theorem for redu
tion along

arbitrary subvarieties of an aÆne Poisson variety; this theorem is similar in spirit to the Marsden-

Ratiu redu
tion theorem.

We also give a di�erent perspe
tive on the multi-Hamiltonian stru
ture of the Mumford system

(and its generalizations) by introdu
ing a master symmetry; this master symmetry 
an be des
ribed

on the loop algebra g((�

�1

)) as the derivative in the dire
tion of � and is shown to survive the

Poisson redu
tion. When a
ting (as a Lie derivative) on one of the Poisson stru
tures of the system

it produ
es a next one, similarly when a
ting on one of the Hamiltonians (in involution) or their

(
ommuting) ve
tor �elds it produ
es a next one. In this way we arrive at several multi-Hamiltonian

hierar
hies, built up by a master symmetry.
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1. Introdu
tion

In its original form the Mumford system 
onsists, for every positive integer g, of a family of

ve
tor �elds on an aÆne spa
e (of dimension 3g + 1) of triples of polynomials (U(�); V (�);W (�))

(see [Mum℄ p. 3.43). The simplest member of this family has the form

_

U(�) = V (�);

_

V (�) =

1

2

[�W (�) + (�� U

g�1

+W

g

)U(�)℄;

_

W (�) = �(�� U

g�1

+W

g

)V (�):

(1:1)

The three polynomials are subje
t to the restri
tions that U and W are moni
 of degrees g and

g + 1, while V has degree less than g. U

i

is the 
oeÆ
ient of �

i

in U(�) and similarly for V and

W . A simple 
omputation shows that

(U(�)W (�) + V

2

(�))

�

= 0

for the above ve
tor �eld, and similarly for the other members of the family. It follows that if one

asso
iates an algebrai
 
urve (of genus g) to every point (U(�); V (�);W (�)) of phase spa
e by the

equation

�

2

= U(�)W (�) + V

2

(�); (1:2)

then this 
urve is invariant under the 
ow of these ve
tor �elds. This property is \explained" by

Mumford who shows that the generi
 orbit, tra
ed out by the 
ow of these ve
tor �elds, is an aÆne

part of the Ja
obian of the 
urve (1.2) asso
iated to any of its points (U(�); V (�);W (�)) and that

the 
ows of these ve
tor �elds are linear (the Ja
obian of a 
urve is a 
omplex torus, hen
e has a

linear stru
ture). Note that this implies automati
ally that these ve
tor �elds 
ommute, a property

reminis
ent of integrable systems. Upon introdu
ing a Hamiltonian stru
ture for whi
h Mumford's

ve
tor �elds are Hamiltonian it turns out that the Mumford system is indeed an example of an

integrable system (su
h a Hamiltonian stru
ture was however only introdu
ed later).

It turns out that the Mumford system and some of its generalizations appear in many di�erent


ontexts, although sometimes in a disguised form and often without referen
e to its Hamiltonian

stru
ture. It appears in the des
ription of rings of 
ommuting di�erential operators, going ba
k to

the early papers of Bur
hnall and Chaundy (see [BC℄ or [Pre℄; for a di�erent but equivalent de-

s
ription see [S
h℄), it is a limit of the 
lassi
al S
hlesinger equations whi
h des
ribe isomonodromy

deformation (see [Gar℄), many 
lassi
al integrable systems are isomorphi
 to a subsystem of the

Mumford system, sometimes up to a 
over (see [Van3℄) and the Mumford system appears as the

simplest of a large 
lass of integrable systems on the moduli spa
e of Higgs bundles on a Riemann

surfa
e, the latter being in this 
ase just the Riemann sphere (see [DM℄).

The purpose of this paper is to 
ombine the ideas in [MM℄, [MR℄, [RS3℄ and [S
h℄ to generalize

the Mumford system and to des
ribe the symmetries and the multi-Hamiltonian stru
ture of its

generalizations. Let us des
ribe these ideas.

(1) The main idea from [RS3℄, whi
h is re
alled in Se
tion 2.1, is that the loop algebra

~

g =

g((�

�1

)) of any semi-simple Lie algebra has a (multi-) Hamiltonian stru
ture whi
h restri
ts to the

�nite-dimensional spa
es

~

g

�

n

of polynomials with leading term ��

n

, where � 2 g. A natural 
lass

of fun
tions in involution leads, in many 
ases, to an integrable system on

~

g

�

n

=G

�

where G

�

is the

isotropy group of �. We will show that for well-
hosen � a Poisson redu
tion on an aÆne subspa
e

N of

~

g

�

n

with respe
t to a subgroup G

�

�

of G

�

will lead to the generalization of the Mumford system:

1



while

~

g

�

n

=G

�

is never an aÆne spa
e the quotient whi
h we des
ribe will be a spa
e of (dimg)-tuples

of polynomials with degree 
onstraints, pre
isely as in the 
ase of the Mumford system.

(2) The multi-Hamiltonian stru
ture on

~

g

�

n

, whi
h is given as a family of 
ompatible Poisson

bra
kets, does not restri
t to any subvariety of

~

g

�

n

(although some bra
kets do). Therefore we prove

a general (algebrai
) Poisson redu
tion theorem whi
h is similar in spirit to the Marsden-Ratiu

redu
tion theorem (see [MR℄). In our theorem we 
onsider a subvariety N of a Poisson variety M

on whi
h an aÆne Poisson group G a
ts (leaving N invariant). Assuming that the a
tion is Poisson

we give a ne
essary and suÆ
ient 
ondition for the Poisson stru
ture on M to des
end to a Poisson

stru
ture on N=G. The redu
tion theorem will be proven in Se
tion 3.

(3) The next question then, whi
h turns out to be Lie-algebrai
 in nature, is how to pi
k the

subspa
e N and the group G

�

�

su
h that the quotient is an aÆne spa
e whi
h 
an be naturally

identi�ed with a subspa
e of N . If we pi
k in the 
ase of sl(r + 1) the leading 
oeÆ
ient � to be

a generi
 lower triangular matrix, then our 
ondition for Poisson redu
ibility implies that we 
an

only redu
e along the hyperplane N �

~

g

�

n

whi
h is obtained by �xing one of the entries (the entry

at position (1; r + 1)) of the 
oeÆ
ient of �

n�1

. In this 
ase the quotient N=G

�

is an aÆne spa
e

if and only if this entry has been �xed to a value di�erent from 0. Noti
e that in this 
ase �+ � is

regular, where

� =

0

B

B

�

0 : : : 0 1

0 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

0 : : : 0 0

1

C

C

A

:

The pre
ise Lie-algebrai
 
ondition imposed on � is that it is a prin
ipal nilpotent element; sin
e

all prin
ipal nilpotent elements of a simple Lie algebra are 
onjugate we may take � to be given

by � =

P

r

i=1

F

i

, where fH

i

; E

i

; F

i

g

i=1;:::;r

is a Weyl basis of g. Then the 
ondition whi
h de�nes

N �

~

g

�

n

is that its elements ��

n

+

P

n�1

i=0

x

i

�

i

satisfy �

k

x

n�1

= �; � is any non-zero top-element

in the gradation �

k

i=�k

g

i

of g, whi
h is asso
iated to the Weyl basis, i.e., 0 6= � 2 g

k

and �

k

is

the proje
tion onto g

k

. This leads to the proper Lie algebrai
 setup for a �rst generalization of the

Mumford system to any simple Lie algebra. Indeed, if we de�ne �; � and n in the above way for

an arbitrary simple Lie algebra g then the whole multi-Hamiltonian hierar
hy of Poisson stru
tures

and the algebra of fun
tions in involution des
end to the quotient whi
h is naturally identi�ed with

an aÆne subspa
e N

0

of

~

g

�

n

. Noti
e that the group by whi
h we redu
e is in this 
ase the full

group G

�

, whi
h is Abelian, and that the a
tion is Hamiltonian. In the 
ase of sl(2) we re
over

the Mumford system, while in the 
ase of sl(r+1) we �nd a generalization of the Mumford system

due to Donagi-Markman (see [DM℄).

(4) When � is not a prin
ipal nilpotent element then the whole stru
ture theory of simple Lie

algebras 
omes into play. Indeed, we will rely heavily on the beautiful paper [Kos1℄ by Kostant.

As we learned from A. S
hwarz, for any d 
oprime to r + 1, the spa
e of matri
es in sl(r + 1) of

the form

�

0 0

I

r+1�d

0

�

�

n

+

�

? M

d

? ?

�

�

n�1

+

n�2

X

i=0

x

i

�

i

; (1:3)

where M

d

is any lower triangular matrix of size d with ones on the diagonal, appears in the

des
ription of the solutions to the string equation [P;Q℄ = 1, or, in an analogous way, of the solutions

to the 
ommutativity equation [P;Q℄ = 0; in these equations P and Q are di�erential operators

subje
t to 
ertain normalizations (see [S
h℄ and [KV℄). Noti
e that the matrix

�

0 I

d

I

r+1�d

0

�

,

whi
h is obtained from the leading 
oeÆ
ients, is regular due to the fa
t that d and r + 1 are
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oprime. Applying our redu
tion theorem to the subspa
e N of matri
es of the form (1.3) we

�nd that the multi-Hamiltonian hierar
hy redu
es and that the quotient spa
e 
an be naturally

identi�ed with an aÆne subspa
e of N . A key information whi
h we also learned from S
hwarz'

des
ription is that we should not a
t with the full isotropy group G

�

but with the subgroup G

�

�

of

lower triangular matri
es in G

�

(with ones on the diagonal). In Se
tion 4 we implement these ideas

in the 
ase of an arbitrary simple Lie algebra g and �nd for any homogeneous � the 
orresponding

subspa
es N of

~

g

�

n

to whi
h the multi-Hamiltonian hierar
hies redu
e; moreover we give the 
hoi
es

of � whi
h lead to a quotient whi
h is aÆne, thereby giving the Lie algebrai
 interpretation of the


oprime 
ondition whi
h appears in the 
ase of sl(r+1). Noti
e that in this more general 
ase G

�

�

is not Abelian; moreover it 
an be shown that the a
tion is not Hamiltonian.

(5) Another idea, whi
h we learned from [MM℄, is that multi-Hamiltonian stru
tures are often

built up from a basi
 one by applying a master symmetry, i.e., there is a basi
 Poisson stru
ture

whose su

essive Lie derivatives with respe
t to a 
ertain ve
tor �eld V provides a linear basis for

all the Poisson stru
tures. This ve
tor �eld V is given on

~

g

�

n

by

_

X(�) =

�

��

X(�);

and it generates all the Hamiltonians and 
ommuting ve
tor �elds starting from a few basi
 ones.

We show that, as a 
onsequen
e of our redu
tion theorem, the ve
tor �eld V proje
ts on the quotient

to a master symmetry whi
h builds up the multi-Hamiltonian stru
ture on the quotient spa
e N

0

.

Sin
e the operations of redu
tion and taking the Lie derivative 
ommute it follows that it suÆ
es

to 
ompute the redu
tion of one Poisson stru
ture on

~

g

�

n

(in fa
t pre
isely the unique linear one)

and apply su

essive Lie derivatives to it to �nd the other redu
ed Poisson stru
tures. The basi


properties of the ve
tor �eld V will be given in Se
tion 2.2, we dis
uss the redu
tion of symmetries

at the end of Se
tion 3 and we �nd the redu
ed master symmetry in the 
ase of the loop algebra

in Se
tion 4.2.

We will end this paper with a list of examples (Se
tion 5). We will �rst show how our 
on-

stru
tion spe
ializes in the 
ase of sl(2) to the Mumford system. In this 
ase we will expli
itly


ompute all redu
ed bra
kets. We will give an expli
it des
ription of the quotient spa
e (as a spa
e

of polynomials) for the 
lassi
al Lie algebras and for G

2

.

In 
on
lusion we have a 
omplete des
ription of the multi-Hamiltonian stru
ture of the Mum-

ford system and its generalizations to arbitrary simple Lie algebras. It seems non-trivial but inter-

esting to do the same for the even master system (see [Van1℄), whi
h also des
ribes all linear 
ows

on all hyperellipti
 Ja
obians by equations whi
h are similar to (1.1). A proof of the integrability

of the systems on the redu
ed spa
e N

0

involves algebrai
 geometri
 arguments, revealing also their

algebrai
 
omplete integrability (this is done for the 
ase of sl(n) in [DM℄); we leave this and a

study of the algebrai
 geometry of the �bers of the Hamiltonians | some of whi
h are 
ertainly

interesting Abelian varieties | for the future.
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2. Multi-Hamiltonian hierar
hies and master symmetries on loop

algebras

In this se
tion we introdu
e a large 
lass of multi-Hamiltonian hierar
hies on the loop alge-

bra

~

g = g((�

�1

)), where g is a �nite-dimensional Lie algebra, whi
h is equipped with an ad-invariant

non-degenerate inner produ
t. The multi-Hamiltonian stru
ture of interest here was �rst introdu
ed

in [RS3℄ by using several R-bra
kets and is re
alled in Paragraph 2.1. We exhibit several multi-

Hamiltonian hierar
hies, whose Hamiltonians are seen to be in involution by the 
lassi
al R-matrix

argument; we provide an alternative proof whi
h uses the 
lassi
al Lenard-Magri s
heme. Follow-

ing an idea of [MM℄ we show in Paragraph 2.2 that the di�erent Poisson bra
kets whi
h make up

the multi-Hamiltonian stru
ture are 
onne
ted by the Lie derivative along a master symmetry V,

thereby giving another, more geometri
, 
onstru
tion of these bra
kets. The ve
tor �eld V allows

one to pass from one Hamiltonian (and its ve
tor �eld with respe
t to any of the Poisson bra
kets)

to another, hen
e playing a similar role as the re
ursion operator in the 
ase of Poisson-Nijenhuis

manifolds (see [KM℄).

2.1. The loop algebra

~

g = g((�

�1

)) and its Poisson bra
kets

Let g be a (�nite-dimensional) Lie algebra and h�; �i

g

a non-degenerate inner produ
t whi
h

is ad-invariant, hx; [y; z℄i

g

= h[x; y℄; zi

g

. We �x a basis fe

a

g

a2I

for g and de�ne linear forms

�

a

:g ! C by �

a

= h�; e

a

i

g

. We look at g as an aÆne (algebrai
) variety, in parti
ular we 
onsider

O(g) = C [�

a

℄

a2I

as its algebra of (regular) fun
tions. For any F 2 O(g), its gradient rF (x) at

x 2 g is de�ned by

hrF (x); yi

g

=

d

dt

jt=0

F (x+ ty) 8y 2 g:

For any a 2 I and F 2 O(g) the map x 7! hrF (x); e

a

i

g

belongs to O(g). It follows that for any

F;G 2 O(g) the Poisson bra
ket fF;Gg, de�ned by

fF;Gg(x) = hx; [rF (x);rG(x)℄i

g

; (2:1)

also belongs to O(g), making O(g) into a Poisson algebra.

From g we 
onstru
t the loop algebra

~

g = g((�

�1

)) = g[�℄ � �

�1

g[[�

�1

℄℄: Elements of the

loop algebra will be denoted by 
apital letters; for an element X = X(�) =

P

x

i

�

i

2

~

g we write

X = X

+

+X

�

a

ording to the above (ve
tor spa
e) de
omposition. The inner produ
t h� ; �i

g

on

g leads to an inner produ
t h� ; �i on

~

g via

hX(�); Y (�)i =

X

i+j=�1

hx

i

; y

j

i

g

:

By a slight abuse of notation one often writes Res hX(�); Y (�)i

g

for the above right hand side;

here Res

P

x

i

�

i

= x

�1

. Clearly h� ; �i is ad-invariant and non-degenerate just as h� ; �i

g

is. For

a 2 I; i 2 Z we de�ne elements E

i

a

= e

a

�

i

of

~

g and linear fun
tions �

i

a

=




�; E

�i�1

a

�

. We wish to

introdu
e an algebra O(

~

g) of fun
tions on

~

g for whi
h we 
an de�ne a gradient and a Poisson bra
ket

as in the 
ase of g, but whi
h is large enough to 
ontain fun
tions of the type X(�) 7! ResH(X(�))

(for H 2 O(g)), whi
h will be important later. To do this we �rst de�ne on

~

g

�n

= �

n

g[[�

�1

℄℄ an

algebra of fun
tions by

O(

~

g

�n

) = C

�

�

i

a

�

a2I

i�n

4



and obtain from it the following algebra of fun
tions on

~

g:

O(

~

g) =

n

F :

~

g! C j 8n 2 Z : F

j

~

g

�n

2 O(

~

g

�n

)

o

:

Thus, elements of O(

~

g) restri
t to polynomials on all subspa
es

~

g

�n

. As in the 
ase of g the

gradient rF (X) of a fun
tion F 2 O(

~

g) at X 2

~

g is de�ned by

hrF (X); Y i =

d

dt

jt=0

F (X + tY ) 8Y 2

~

g: (2:2)

Proposition 2.1 For any X 2

~

g and F 2 O(

~

g), rF (X) is well-de�ned by (2.2) and belongs

to

~

g. For any F;G 2 O(

~

g) the Poisson bra
ket fF;Gg, de�ned by

fF;Gg(X) = hX; [rF (X);rG(X)℄i ;

belongs to O(

~

g), making O(

~

g) into a Poisson algebra.

Proof

The fa
t that the gradient is well-de�ned follows from non-degenera
y of h�; �i; in fa
t, for any

j 2 Z the 
oeÆ
ient (rF (X))

j

2 g is given by

h(rF (X))

j

; e

a

i

g

=




rF (X); E

�j�1

a

�

=

d

dt

jt=0

F (X + tE

�j�1

a

):

If X 2

~

g

�n

then F (X+ tE

j

a

) is independent of t for j suÆ
iently small, sin
e F

j

~

g

�n

is a polynomial.

Thus, (rF (X))

j

is zero for j suÆ
iently large and rF (X) 2

~

g. Further, X 7!




rF (X); E

j

a

�

belongs to O(

~

g) for any j 2 Z sin
e the restri
tion to any

~

g

�n

of the map

X 7!

d

dt

jt=0

F (X + tE

j

a

)

is just a polynomial (in this formula, use F

j

~

g

�m

where m = maxfn; jg). As a 
orollary, if F; G 2

O(

~

g) then the map

X 7! hX; [rF (X);rG(X)℄i

belongs to O(

~

g), giving a bra
ket f� ; �g : O(

~

g)�O(

~

g)! O(

~

g). The fa
t that it satis�es the Ja
obi

identity follows from the fa
t that (2.1) satis�es the Ja
obi identity.

Following [RS3℄ we introdu
e a family R

l

of endomorphisms of

~

g by

R :

~

g!

~

g : X 7! X

+

�X

�

;

R

l

:

~

g!

~

g : X 7! R(�

l

X):

Proposition 2.2 ([RS3℄) For any l 2 Z a Poisson bra
ket on O(

~

g) is de�ned by

fF;Gg

l

(X) =

1

2

hX; [R

l

rF (X);rG(X)℄ + [rF (X); R

l

rG(X)℄i :

5



Moreover the bra
kets f� ; �g

l

; l 2 Z form a family of 
ompatible Poisson bra
kets, i.e., any linear


ombination of these bra
kets is a Poisson bra
ket.

As above these bra
kets are taken as bra
kets on O(

~

g). We 
all them R-bra
kets and 
all f� ; �g

the 
anoni
al Lie-Poisson bra
ket on

~

g. If we denote the stru
ture 
onstants of g with respe
t to

the basis fe

a

g

a2I

by C




ab

, i.e., [e

a

; e

b

℄ =

P


2I

C




ab

e




, then one easily �nds by using r�

i

a

= E

�i�1

a

that

f�

i

a

; �

j

b

g

l

= �

ij

l

X


2I

C




ab

�

i+j+1�l




; (2:3)

where �

ij

l

= 1 if i; j < l and �

ij

l

= �1 if i; j � l; otherwise �

ij

l

= 0. The R-bra
kets have two

remarkable properties whi
h make them more relevant for integrable systems than the 
anoni
al

Lie-Poisson bra
ket on

~

g. The �rst property, whi
h follows immediately from (2.3), is that if

�p � l � q + 1 then f� ; �g

l

restri
ts to the following natural �nite-dimensional subspa
e of

~

g,

~

g

�p;q

=

8

<

:

q

X

i=�p

x

i

�

i

j x

i

2 g

9

=

;

: (2:4)

Sin
e multipli
ation by �

p

indu
es an isomorphism

�

~

g

�p;q

; f� ; �g

l

�

�!

�

~

g

0;p+q

; f� ; �g

l+p

�

we may

restri
t ourselves to the spa
es

~

g

0;n

of matri
es whi
h are polynomial (in �) of degree at most n.

In fa
t we will be interested in the aÆne subspa
es of

~

g

0;n

de�ned by

~

g

�

n

=

(

n

X

i=0

x

i

�

i

2

~

g j x

n

= �

)

; (2:5)

where � is any �xed element in g. The family of R-bra
kets whi
h restri
ts to

~

g

�

n

is also 
omputed

at on
e from (2.3) and is given in the following proposition.

Proposition 2.3 If � is not a 
entral element in g then the Poisson stru
ture

P

1

l=�1




l

f� ; �g

l

restri
ts to

~

g

�

n

if and only if 


l

= 0 for l < 0 and for l > n.

The se
ond remarkable property of the R-bra
kets is that the Ad-invariant fun
tions on g lead

to a large subalgebra A of O(

~

g) whi
h is involutive with respe
t to all these bra
kets. Indeed,

a fun
tion H 2 O(g) indu
es a fun
tion H :

~

g ! C((�

�1

)) and hen
e leads for any i 2 Z to a

fun
tion H

i

on

~

g, de�ned by

H

i

(X(�)) = Res

H(X(�))

�

i+1

: (2:6)

Clearly any su
h fun
tion H

i

belongs to O(

~

g).

Proposition 2.4 ([RS3℄) Let H and K be two Ad-invariant fun
tions in O(g). Then for any

i; j 2 Z the fun
tions H

i

and K

j

are in involution with respe
t to all R-bra
kets f� ; �g

l

.

Proof

Ad-invariant fun
tions in O(g) are those fun
tions whi
h are invariant for the adjoint a
tion of

a Lie group G for whi
h g = LieG. It may be impossible

1

to pi
k G algebrai
 but this is irrelevant

1

If g is semi-simple then G is algebrai
, see [OV℄, p.29.
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here be
ause we only use the fa
t that su
h a fun
tion H 2 O(g) satis�es the in�nitesimal 
ondition

[x;rH(x)℄ = 0. To show the latter, use ad-invarian
e of h�; �i

g

and Ad-invarian
e of H to �nd

h[x;rH(x)℄ ; yi = hrH(x); [y; x℄i =

d

dt

jt=0

H(x+ t[y; x℄) =

d

dt

jt=0

H(Ad

z(t)

x) = 0;

when setting z(t) = exp ty. In parti
ular, if H 2 O(g) is Ad-invariant then, for any i 2 Z, the

fun
tion H

i

2 O(

~

g) de�ned by (2.6) is Ad-invariant and [X;rH

i

(X)℄ = 0. It follows that if H and

K are Ad-invariant fun
tions on g then for any i; j; l 2 Z

fH

i

;K

j

g

l

(X) =

1

2

hX; [R

l

rH

i

(X);rK

j

(X)℄ + [rH

i

(X); R

l

rK

j

(X)℄i = 0;

showing that all fun
tions on O(

~

g) whi
h 
ome from Ad-invariant fun
tions on g are in involution

with respe
t to all R-bra
kets.

The algebra of Ad-invariant fun
tions on g is denoted by O(g)

G

and the involutive algebra

generated by all H

i

; i 2 Z; H 2 O(g)

G

is denoted by A. If we de�ne for any F 2 O(

~

g) a ve
tor

�eld on

~

g by X

F

= f�; Fg

0

then the i-th ve
tor �eld X

H

i

(i 2 Z) whi
h 
omes from an Ad-invariant

fun
tion H 2 O(g)

G

is given by the Lax equation

_

X = �

1

2

[X;RrH

i

(X)℄ : (2:7)

Two alternative ways to write this are

_

X = �[X; (rH

i

(X))

+

℄ = [X; (rH

i

(X))

�

℄: (2:8)

The ve
tor �elds X

H

i

are in fa
t Hamiltonian with respe
t to all bra
kets f� ; �g

l

. To see this, 
he
k

that for any H 2 O(g),

d

dt

jt=0

Res

H(X + tY )

�

i+1

=

d

dt

jt=0

Res

H(X + t�Y )

�

i+2

;

showing that rH

i

(X) = �rH

i+1

(X). It follows that (2.7) 
an be written in Lax form with

respe
t to all endomorphisms R

l

and that for any H 2 O(g)

G

the fun
tions fH

i

g

i2Z

form a multi-

Hamiltonian hierar
hy in the sense that

f�;H

i

g

0

= f�;H

i+l

g

l

(i; l 2 Z): (2:9)

The relations (2.9), whi
h are 
alled Lenard relations, 
an be used to give an alternative proof of

Proposition 2.4. For fun
tions belonging to the same hierar
hy the 
lassi
al argument applies (see,

e.g., [CMP℄), giving fH

i

;H

j

g

l

= fH

j

;H

i

g

l

= 0: For members of di�erent hierar
hies, 
oming from

di�erent fun
tions H; K 2 O(g)

G

some 
are is needed sin
e none of the H

i

or K

j

is a Casimir

for any of the R-bra
kets. However, we see from (2.8) that for any X 2

~

g the Hamiltonian ve
tor

�eld X

H

s

vanishes at X for s large enough sin
e then (rH

s

(X))

+

= 0. Thus also in this 
ase the

Lenard relations give (e.g., for the zeroth R-bra
ket)

fH

i

;K

j

g

0

(X) = fH

s

;K

j�s+i

g

0

(X) = 0:

whi
h shows that fun
tions whi
h belong to di�erent hierar
hies are also in involution.
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2.2. Master symmetries and the deformation property

In this paragraph we show how the Poisson bra
kets f� ; �g

l

are related by a ve
tor �eld V whi
h

is a master symmetry

2

for the involutive algebra A (introdu
ed after Proposition 2.4). We mean

by this that V has the property [[V;X

F

℄ ;X

G

℄ = 0 for all F; G 2 A (a symmetry has the stronger

property [V;X

F

℄ = 0 for all F 2 A). The ve
tor �eld V has in addition the deformation property

with respe
t to the bra
kets f� ; �g

l

; this means that the Lie derivative of any bra
ket f� ; �g

l

in the

dire
tion of V is also a Poisson bra
ket

3

. As was shown in [MM℄ this implies that any bra
ket f� ; �g

l

is 
ompatible with its Lie derivative in the dire
tion of V.

The ve
tor �eld V is de�ned as the in�nitesimal generator of the a
tion of C on

~

g given by

\shift in �",

�

s;

X

x

i

�

i

�

7!

X

x

i

(�+ s)

i

;

here we use for negative powers of � the formal expansion

(�+ s)

�1

=

X

i�0

(�1)

i

s

i

�

�i�1

;

whi
h is a
tually 
onvergent for small s, in parti
ular it is the right de�nition if one wants to


onsider the fundamental ve
tor �eld V of this a
tion: the latter is easily 
omputed as

_

X(�) =

�

��

X(�) i.e. L

V

�

j

a

= (j + 1)�

j+1

a

;

where L

V

denotes the Lie derivative along V. The two mentioned properties of V are given by the

following proposition.

Proposition 2.5 Let i; l 2 Z and H 2 O(g)

G

be arbitrary.

a) V has the deformation property with respe
t to all bra
kets f� ; �g

l

, more pre
isely the

relation

L

V

fF;Gg

l

� fL

V

F;Gg

l

� fF;L

V

Gg

l

= �lfF;Gg

l�1

(2:10)

holds, i.e., the Lie derivative of the l-th R-bra
ket is (up to a fa
tor �l) the (l � 1)-th

R-bra
ket;

b) L

V

H

i

= (i+ 1)H

i+1

;


) [V;X

H

i

℄ = X

L

V

H

i

= (i+ 1)X

H

i+1

;

d) V is a master symmetry for A.

Proof

It suÆ
es to verify a) for F = �

i

a

and G = �

j

b

with say i � j. We 
an use (2.3); sin
e for this

parti
ular F and G all terms in (2.10) are proportional to

P




C




ab

�

i+j�l+2




it a
tually suÆ
es to

keep tra
k of the 
oeÆ
ients and the proof of (2.10) amounts to the veri�
ation of the following

identity,

(i+ j � l + 2)�

ij

l

� (i+ 1)�

i+1;j

l

� (j + 1)�

i;j+1

l

= �l�

ij

l�1

:

2

The 
on
ept of a master symmetry was �rst introdu
ed by Fu
hssteiner (see [Fu
℄). The notion

we use here is slightly more general.

3

In many important examples the master symmetries for an algebra whi
h is involutive with

respe
t to some Poisson bra
ket have the deformation property with respe
t to this Poisson bra
ket,

however these two properties are independent in general.
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As for b),

L

V

H

i

(X) =

d

ds

js=0

Res

H(X(�+ s))

�

i+1

= Res

1

�

i+1

d

d�

H(X(�))

= Res

�

d

d�

�

H(X(�))

�

i+1

�

+ (i+ 1)

H(X(�))

�

i+2

�

= (i+ 1)Res

H(X(�))

�

i+2

;

whi
h is pre
isely (i+ 1)H

i+1

(X). For 
) we substitute l = 0 and G = H

i

in part a) to �nd

L

V

fF;H

i

g

0

= fL

V

F;H

i

g

0

+ fF;L

V

H

i

g

0

;

whi
h 
an also be written as L

V

(X

H

i

(F )) = X

H

i

(L

V

F ) + X

L

V

H

i

(F ); using b) we 
on
lude 
). In

order to show d) �rst noti
e that [X

F

;X

G

℄ = �X

fF;Gg

0

= 0 for any F;G 2 A. Then 
) implies that

[[V;X

H

i

℄;X

G

℄ = 0 for any H 2 O(g)

G

and for any G 2 A. By the Ja
obi identity we also have that

[[V;X

G

℄;X

H

i

℄ = 0: The more general statement that [[V;X

G

℄;X

F

℄ = 0 for any F;G 2 A follows

from b) upon using the fa
t that A is generated by the fun
tions H

i

where i runs over Z and H

runs over O(g)

G

.

Pi
king any two Poisson stru
tures su
h as f� ; �g

0

and f� ; �g

l

the relations (2.9) and Proposi-

tion 2.5 
an be depi
ted in the following diagram (we omit the 
oeÆ
ients; L

l

V

:= L

V

Æ L

l�1

V

),

: : :

H

i

L

l

V

�! H

i+l

L

l

V

�! H

i+2l

0

?

?

y

.
l

0

?

?

y

.
l

0

?

?

y

X

H

i

L

l

V

�! X

H

i+l

L

l

V

�! X

H

i+2l

: : :

Remark 2.6 An R-bra
ket on a Lie algebra g leads also to a quadrati
 and a 
ubi
 bra
ket,

assuming that the Lie algebra derives from an asso
iative algebra, with a pairing h� ; �i

g

whi
h

derives from a tra
eform (see [LP℄ and [OR℄). Expli
itly the quadrati
 bra
ket f� ; �g

Q

and the 
ubi


bra
ket f� ; �g

C

are given for F; G 2 O(g) by

fF;Gg

Q

(x) =

1

2

h[x;rF (x)℄; R(xrG(x) +rG(x)x)i

g

�

1

2

h[x;rG(x)℄; R(xrF (x) +rF (x)x)i

g

fF;Gg

C

(x) = h[x;rF (x)℄; R(xrG(x)x)i

g

� h[x;rG(x)℄; R(xrF (x)x)i

g

:

When applied to the R-bra
ket on the loop algebra

~

g of g = gl(N) we get a quadrati
 and a 
ubi


Poisson bra
ket on O(

~

g). It was shown in [LP℄ that the linear, the quadrati
 and the 
ubi
 bra
ket

are related by the ve
tor �eld U

X(�)

= X

2

(�). It is easy to prove that U is a master symmetry for

the algebra A, whi
h is in the 
ase g = gl(N) generated by the fun
tions

I

ij

(X) = Res

TrX

i

(�)

�

j+1

; i > 0; j 2 Z;

[LP℄ gives Lenard relations for the fun
tions I

ij

with respe
t to these bra
kets. Using the fa
t that

U and V 
ommute it is easy to show that V also has the deformation property with respe
t to both

the quadrati
 and the 
ubi
 bra
kets, e.g., the Lie derivative in the dire
tion of V of the quadrati
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bra
ket whi
h 
orresponds to R

l

is (�l times) the quadrati
 bra
ket whi
h 
orresponds to R

l�1

;

this leads in parti
ular to another set of Lenard relations for the fun
tions I

ij

. It follows that on

the loop algebra

~

g the 
ubi
 and the quadrati
 bra
ket have all properties whi
h the R-bra
kets

have: A is involutive with respe
t to these bra
kets, the 
orresponding Hamiltonian ve
tor �elds

are multi-Hamiltonian with respe
t to these bra
kets and the bra
kets are 
onne
ted by the Lie

derivative with respe
t to the ve
tor �elds U and V whi
h are master symmetries for A. The higher

order bra
kets di�er however from the linear stru
tures in one 
ru
ial aspe
t: as it is easy to see

they do not restri
t to any of the �nite-dimensional spa
es

~

g

�p;q

, de�ned in (2.4). Similarly the

ve
tor �eld U 
learly does not restri
t to any of the subspa
es

~

g

�p;q

(ex
ept in the trivial 
ase

p = q = 0).
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3. Poisson redu
tion and redu
tion of symmetries

In order to 
onstru
t our examples we need a redu
tion theorem whi
h leads to a Poisson

stru
ture in the following situation: for N a subvariety of an aÆne Poisson variety (M; f� ; �g) with

an algebrai
 group G a
ting on it (leaving N stable) we want an inherited Poisson stru
ture on

the quotient spa
e N=G. By an aÆne Poisson variety we mean an aÆne variety whose algebra of

regular fun
tions is equipped with the stru
ture of a Poisson algebra. We will assume that our

group G also 
arries a Poisson stru
ture (whi
h may be trivial).

If N is a Poisson subvariety of M then a Poisson stru
ture on N=G, or, more pre
isely, on the

ring O(N)

G

of G-invariant regular fun
tions on N , will exist if the map � : G�N ! N is a Poisson

map with respe
t to some Poisson stru
ture on G; su
h an a
tion is 
alled a Poisson a
tion

4

and

the bra
ket is 
alled a redu
ed bra
ket. If N is not a Poisson subvariety of M then N=G may still

inherit a bra
ket fromM : we will give below ne
essary and suÆ
ient 
onditions for this to happen.

The following notation will be useful: the algebra of regular fun
tions on M whi
h restri
t

to G-invariant fun
tions on N is denoted by O(M;N)

G

; we have a natural restri
tion

5

map � :

O(M;N)

G

! O(N)

G

. The ideal of N is denoted by I(N) and we have an in
lusion map { : N !M .

Also, if � : M

1

! M

2

is a regular map between aÆne varieties then we denote by �

�

the indu
ed

map O(M

2

)! O(M

1

) de�ned by �

�

(f) = f Æ �.

De�nition 3.1 Let (M; f� ; �g) be an aÆne Poisson variety, � : G �M ! M a Poisson a
tion

and N a subvariety of M whi
h is G-stable. Then the triple (M;G;N) is 
alled Poisson-redu
ible

if O(M;N)

G

is a Poisson subalgebra of O(M) and if there exists a Poisson bra
ket on O(N)

G

su
h

that

f�(F

1

); �(F

2

)g

O(N)

G = �fF

1

; F

2

g (3:1)

holds for all F

1

; F

2

2 O(M;N)

G

.

Formula (3.1) says that in order to 
ompute the Poisson bra
ket of two G-invariant fun
tions

on N one 
omputes the Poisson bra
ket of any extensions to M and then restri
ts the result to N .

Note also that (3.1) uniquely de�nes a bra
ket on O(N)

G

(if it exists) sin
e � is surje
tive. In the

following theorem, whi
h is similar in spirit to the Marsden-Ratiu redu
tion theorem (see [MR℄),

we give ne
essary and suÆ
ient 
onditions for (M;G;N) to be Poisson-redu
ible.

Theorem 3.2 Let (M; f� ; �g) be an aÆne Poisson variety, � : G �M ! M a Poisson a
tion

and N a subvariety of M whi
h is G-stable. Then (M;G;N) is Poisson-redu
ible if and only if

�

�

O(M;N)

G

; I(N)

	

= 0; (3:2)

it is impli
it in this 
ondition that its left hand side makes sense.

Proof

Suppose �rst that 
ondition (3.2) is satis�ed. We pro
eed to show that

�

O(M;N)

G

;O(M;N)

G

	

� O(M;N)

G

:

4

Some authors, e.g., [LM℄ use this term in the more restri
ted sense in whi
h G is given the

trivial Poisson stru
ture; then � being a Poisson a
tion means that for any g 2 G the indu
ed map

�

g

: N ! N is a Poisson map.

5

This restri
tion map is onto, although the restri
tion map O(M)

G

! O(N)

G

is not onto in

general.
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If we denote by �

2;N

the proje
tion G � N ! N onto the se
ond fa
tor then G-invarian
e of a

fun
tion f 2 O(N) is 
onveniently expressed by the formula �

�

f = �

�

2;N

f . Thus we need to show

that

�

�

{

�

fF

1

; F

2

g = �

�

2;N

{

�

fF

1

; F

2

g (3:3)

for any F

1

; F

2

2 O(M;N)

G

. Sin
e � and �

2;N

are the restri
tions to G�N of the 
orresponding

maps � and �

2;M

on G�M and sin
e these maps are Poisson maps, (3.3) is equivalent to

(1

G

� {)

�

�

f�

�

F

1

; �

�

F

2

g

G�M

� f�

�

2;M

F

1

; �

�

2;M

F

2

g

G�M

�

= 0; (3:4)

where 1

G

is the identity map on G. For g 2 G and n 2 N we de�ne maps �

g

: M ! M and

�

n

: G!M by inserting g resp. n in �. Then �

�

n

F is 
onstant for any F 2 O(M;N)

G

so that

f�

�

F

1

; �

�

F

2

� �

�

2;M

F

2

g

G�M

(g; n) = f�

�

g

F

1

; �

�

g

F

2

� F

2

g(n) + f�

�

n

F

1

; �

�

n

F

2

� F

2

(n)g

G

(g)

= f�

�

g

F

1

; �

�

g

F

2

� F

2

g(n);

whi
h vanishes by the assumption (3.2). Therefore

(1

G

� {)

�

f�

�

F

1

; �

�

F

2

� �

�

2;M

F

2

g

G�M

= 0; (3:5)

and similarly

(1

G

� {)

�

f�

�

F

1

� �

�

2;M

F

1

; �

�

2;M

F

2

g

G�M

= 0: (3:6)

Summing (3.5) and (3.6) we �nd (3.4) whi
h shows that fF

1

; F

2

g 2 O(M;N)

G

.

It follows that we 
an a
tually use (3.1) to de�ne f� ; �g

O(N)

G : on the one hand � is surje
tive,

on the other hand the bra
ket on O(N)

G

given by (3.1) is well-de�ned sin
e if �(

~

F

2

) = �(F

2

) then

{

�

fF

1

;

~

F

2

� F

2

g = 0; another appli
ation of (3.2). From the de�nition it is also immediate that

f� ; �g

O(N)

G satis�es the Ja
obi identity so we get a Poisson bra
ket on O(N)

G

whi
h satis�es (3.1).

This shows the if part; the only if part is trivial sin
e �(I(N)) = 0.

Remark 3.3 Suppose that all algebras under 
onsideration are �nitely generated. Then O(N)

G

is the algebra of fun
tions on an aÆne variety N=G whi
h 
an be 
onsidered as the quotient of N

by G. Similarly O(M;N)

G


orresponds then to an aÆne variety (M;N)=G, obtained by taking the

quotient of M with respe
t to G but along N only, i.e., only N is shrunk inside M into its orbit

spa
e N=G while the other points of M remain inta
t. In geometri
 terms formula (3.2) states

that the Hamiltonian ve
tor �elds whi
h are asso
iated to fun
tions on M whi
h are G-invariant

on N , are tangent to N (at points of N). It follows from the proof of Theorem 3.2 that if 
ondition

(3.2) holds then (M;N)=G inherits a Poisson bra
ket from M and in turn N=G inherits a Poisson

bra
ket from (M;N)=G, the latter be
ause all Hamiltonian ve
tor �elds on (M;N)=G are tangent

to N=G.

As an appli
ation of this theorem let us show that if a ve
tor �eld V whi
h des
ends to the

quotient has the deformation property with respe
t to some Poisson-redu
ible bra
ket then this

deformation property is 
onserved after the redu
tion. We need the following lemma.

Lemma 3.4 Let M be an aÆne variety, V a ve
tor �eld on M and G a linear algebrai
 group

a
ting on M ; let N be an aÆne subvariety, stable for G, and suppose that V is tangent to N ,

W = V

jN

. Then

L

W

O(N)

G

� O(N)

G

(3:7)

12



is equivalent to

L

V

O(M;N)

G

� O(M;N)

G

(3:8)

and implies the 
ommutativity of the following diagram.

O(M;N)

G

�

�! O(N)

G

L

V

?

?

y

?

?

y

L

W

O(M;N)

G

�!

�

O(N)

G

(3:9)

Proof

Let �

�

N

: O(N)

G

! O(N) denote the in
lusion map (whi
h may be thought of as 
oming

from the quotient map �

N

: N ! N=G) and note the obvious relation {

�

= �

�

N

�, whi
h holds on

O(M;N)

G

. Then formula (3.8) follows from (3.7),

{

�

L

V

O(M;N)

G

= L

W

{

�

O(M;N)

G

= L

W

�

�

N

O(N)

G

= �

�

N

L

W

O(N)

G

� �

�

N

O(N)

G

;

for the proof of the other dire
tion surje
tivity of � is essential:

�

�

N

L

W

O(N)

G

= L

W

�

�

N

� O(M;N)

G

= {

�

L

V

O(M;N)

G

� {

�

O(M;N)

G

= �

�

N

O(N)

G

:

Moreover, for F 2 O(M;N)

G

we have

�

�

N

L

W

�(F ) = L

W

�

�

N

�(F ) = L

W

{

�

F = {

�

L

V

F = �

�

N

�L

V

F;

whi
h shows that the diagram is 
ommutative.

Theorem 3.5 Let (M;G;N) be Poisson-redu
ible with respe
t to a Poisson bra
ket f� ; �g on M

and suppose that V is a ve
tor �eld on M whi
h is tangent to N; W = V

jN

, and whi
h has the

deformation property with respe
t to f� ; �g. If L

W

O(N)

G

� O(N)

G

then

a) (M;G;N) is Poisson-redu
ible with respe
t to f� ; �g

0

, the Lie derivative of f� ; �g in the

dire
tion of V;

b) W has the deformation property with respe
t to f� ; �g

O(N)

G
;


) the Lie derivative of f� ; �g

O(N)

G in the dire
tion of W is the redu
ed bra
ket of f� ; �g

0

.

Thus the deformation property survives the redu
tion and the operations of redu
tion and deforma-

tion 
ommute.

Proof

To show that (M;G;N) is Poisson-redu
ible with respe
t to f� ; �g

0

, we use the ne
essary and

suÆ
ient 
ondition (3.2) of Theorem 3.2. Sin
e

fF;Gg

0

= L

V

fF;Gg � fL

V

F;Gg � fF;L

V

Gg;

we have that

�fO(M;N)

G

; I(N)g

0

= �L

V

fO(M;N)

G

; I(N)g��fL

V

O(M;N)

G

; I(N)g��fO(M;N)

G

;L

V

I(N)g

and ea
h term of the right hand side vanishes be
ause (M;G;N) is Poisson-redu
ible with respe
t

to f� ; �g: for the �rst term use 
ommutativity of (3.9), for the se
ond one use (3.8) and the last is

zero be
ause V is tangent to N; L

V

I(N) = 0.

13



Next we show that the Lie derivative of f� ; �g

O(N)

G in the dire
tion ofW is the redu
ed bra
ket

f� ; �g

0

O(N)

G

of f� ; �g

0

. This means that if f

1

; f

2

2 O(N)

G

then

ff

1

; f

2

g

0

O(N)

G

= L

W

ff

1

; f

2

g

O(N)

G � fL

W

f

1

; f

2

g

O(N)

G � ff

1

;L

W

f

2

g

O(N)

G : (3:10)

Let f

1

= �(F

1

); f

2

= �(F

2

) and use (3.1) and 
ommutativity of (3.9):

ff

1

; f

2

g

0

O(N)

G

= �fF

1

; F

2

g

0

= �L

V

fF

1

; F

2

g � �fL

V

F

1

; F

2

g � �fF

1

;L

V

F

2

g

= L

W

ff

1

; f

2

g

O(N)

G � fL

W

f

1

; f

2

g

O(N)

G � ff

1

;L

W

f

2

g

O(N)

G :

Sin
e we have proved that f� ; �g

0

O(N)

G

is a Poisson bra
ket on O(N)

G

we have shown in parti
ular

that L

W

has the deformation property with respe
t to f� ; �g

O(N)

G and we are done.

Remark 3.6 Under the 
onditions of Remark 3.3 the 
onditions (3.7) and (3.8) mean that the

ve
tor �elds W and V are tangent to the quotient spa
es N=G and (M;N)=G.

Remark 3.7 The 
onditions of Theorem 3.5 are also suÆ
ient to 
on
lude that a master symme-

try for a subalgebra A � O(M;N)

G

des
ends to a master symmetry on the quotient. To prove this

let F 2 O(M;N)

G

and note that X

F

= f�; Fg is tangent to N . If we denote by Y

F

the restri
tion

of X

F

to N then Y

F

is given as a derivation of O(N)

G

by Y

F

= f�; �(F )g

O(N)

G and we have that

Y

F

� = �X

F

. Using (3.9), written as W� = �V, we get

[Y

F

; [Y

G

;W℄℄ � = � [X

F

; [X

G

;V℄℄ = 0;

sin
e V is a master symmetry for A. Sin
e � is surje
tive W is a master symmetry for �(A).
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4. Redu
tion for simple Lie algebras

In this se
tion we apply our two redu
tion theorems to the �nite-dimensional subspa
es

~

g

�

n

of

~

g, de�ned in (2.5), in 
ase

~

g is the loop algebra of a 
omplex simple Lie algebra g � gl(N) of rank

r (see [Hum℄ and [Ser℄). We denote by G any algebrai
 group whose Lie algebra equals g. We �x a

Weyl basis fH

i

; E

i

; F

i

g

r

i=1

of g, i.e., a 
olle
tion of 3r generators for g su
h that H

i

spans a Cartan

subalgebra h, and the following 
ommutation relations

6

hold:

[E

i

; F

j

℄ = Æ

ij

F

i

; [H

i

; E

j

℄ = n

ji

E

j

; [H

i

; F

j

℄ = �n

ji

F

j

:

Here (n

ij

) is the Cartan matrix of g and the indi
es i; j take values between 1 and r. The Weyl

basis leads to a gradation g = �

k

i=�k

g

i

of g: g

0

= h and for i positive (negative) g

i

is spanned

by the i-fold 
ommutators of the elements E

1

; : : : ; E

r

(F

1

; : : : ; F

r

). An element of g

i

is 
alled a

homogeneous element of degree i and h = k+1 is 
alled the Coxeter number of g. The proje
tion of

g on g

i

is denoted by �

i

. We will also use the de
omposition g = n

�

�h�n

+

, where n

�

= �

�k

i=�1

g

i

.

We will 
onsider a set fI

1

; : : : ; I

r

g of Chevalley invariants of g. They are homogeneous polynomials

whi
h generate the algebra O(g)

G

of invariants for the adjoint a
tion of G on g (see [Var℄ p. 333).

We denote the degree of I

j

by d

j

and 
all the numbers q

j

= d

j

� 1 the exponents of g. We will

always assume the invariants I

j

to be ordered by degree. Then the exponents bear the following

relations (see [Kos1℄):

1 = q

1

< q

2

� q

3

� � � � � q

r�1

< q

r

= k: (4:1)

The Chevalley invariants lead to the following G-invariant fun
tions on

~

g:

I

ij

(X) = Res

I

i

(X)

�

j+1

;

whi
h by de�nition generate the involutive algebra A introdu
ed in Se
tion 2.

4.1. Poisson redu
tion

Let � and � be homogeneous elements of g su
h that deg�� deg � = h. We put deg � = �d

and we de�ne, as in Paragraph 2.1,

~

g

�

n

=

(

n

X

i=0

x

i

�

i

2

~

g j x

n

= �

)

;

together with the following aÆne subspa
e

N =

(

n

X

i=0

x

i

�

i

2

~

g

�

n

j �

j

(x

n�1

� �) = 0 if j � deg�

)

:

Lemma 4.1 Let g

�

be the isotropy algebra of � and let g

�

�

= g

�

\ n

�

. Then the a
tion of

G

�

�

= exp g

�

�

on

~

g

�

n

leaves N invariant.

6

Our de�nition of a Weyl basis di�ers from the one in [Ser℄ by a transposition in the Cartan

matrix, i.e., [Ser℄ takes [H

i

; E

j

℄ = n

ij

E

j

; our 
hoi
e simpli�es the expli
it formulas for the Weyl

bases given in the examples.

15



Proof

It suÆ
es to show that if �

j

(x

n�1

��) vanishes for all j � deg� then the same holds true for

�

j

(Ad

exp �

x

n�1

� �) when � 2 n

�

. The result follows at on
e from Ad

exp �

= exp ad

�

:

Re
all from Proposition 2.3 that the bra
kets f� ; �g

l

restri
t to

~

g

�

n

for 0 � l � n. Noti
e however

that the bra
ket f� ; �g

n

does not restri
t to N : if e

a

is a basis element su
h that deg e

a

= deg�

then �

n�1

a

� �

a

(�) belongs to the ideal I(N) of N but f�

n�1

a

; �

0

b

g

n

= C




ab

�

0




, whi
h is non-zero for

at least one value of b sin
e g is simple. Therefore we are pre
isely in the 
ase of the redu
tion

theorem (Theorem 3.2).

Theorem 4.2 The triple

�

~

g

�

n

; G

�

�

; N

�

is Poisson-redu
ible with respe
t to ea
h Poisson stru
ture

P

n

l=0




l

f� ; �g

l

.

Proof

We �rst show that the a
tion of G

�

�

on

~

g

�

n

is Poisson. To do this we take the trivial Poisson

stru
ture on G, we �x any l 2 Z and show that (Ad

g

)

�

ff

1

; f

2

g

l

= f(Ad

g

)

�

f

1

; (Ad

g

)

�

f

2

g

l

for any

g 2 G and any f

1

; f

2

2 O(

~

g). It is suÆ
ient to show this for f

1

and f

2

linear; then (Ad

g

)

�

f

1

and

(Ad

g

)

�

f

2

are linear too and their gradients do not depend on X 2

~

g (in parti
ular we 
an omit the

argument). Sin
e

d

dt

jt=0

f

1

(Ad

g

(X + tY )) = f

1

(Ad

g

Y ) = hrf

1

;Ad

g

Y i

we �nd that hr(Ad

g

)

�

f

1

; Y i =




Ad

g

�1
rf

1

; Y

�

giving r(Ad

g

)

�

f

1

= Ad

g

�1
rf

1

. Then

f(Ad

g

)

�

f

1

; (Ad

g

)

�

f

2

g

l

(X) =




X; [Ad

g

�1
rf

1

;Ad

g

�1
rf

2

℄

R

l

�

= hAd

g

X; [rf

1

;rf

2

℄

R

l

i

= ff

1

; f

2

g

l

(Ad

g

X)

= (Ad

g

)

�

ff

1

; f

2

g

l

(X):

We will see in Proposition 4.4 that in 
ertain interesting 
ases the a
tion is even Hamiltonian.

We now verify 
ondition (3.2). The ideal I(N) of N is generated by those elements of the form

�

n�1

a

� �

a

(�) for whi
h deg e

a

� d � h. For l = 0; : : : ; n� 1 these elements are Casimirs of f� ; �g

l

.

Indeed, if X 2

~

g

�

n

and b 2 I and 0 � k � n� 1 then

f�

n�1

a

; �

k

b

g

l

(X) = �

n�1;k

l

C




ab

�

n+k�l




(X) = 0

for k 6= l, while if k = l then

f�

n�1

a

; �

l

b

g

l

(X) = C




ab

�

n




(X) = C




ab

he




; �i

g

= h[e

a

; e

b

℄; �i

g

= h[�; e

a

℄; e

b

i

g

= 0:

We used in the last equality that [�; e

a

℄ = 0 if deg e

a

� d� h, whi
h follows from deg[�; e

a

℄ � �h.

This shows that (3.2) is satis�ed when l 6= n. As for the n-th bra
ket, let F 2 O(

~

g

�

n

; N)

G

�

�

and let

a be su
h that deg e

a

� d � h; noti
e that if F restri
ts to a G

�

�

invariant fun
tion on N then F

satis�es the in�nitesimal 
ondition

h[rF (X);X℄; �i = 0; 8X 2 N; 8� 2 g

�

�

:
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We need to show that f�

n�1

a

; Fg

n

(X) = 0 for any X 2 N . But

f�

n�1

a

; Fg

n

(X) =

1

2




X; [e

a

;rF (X)℄ + [�

�n

e

a

; R(�

n

rF (X))℄

�

=

1

2




X; [e

a

;rF (X)℄ + [�

�n

e

a

; �

n

rF (X) � 2(�

n

rF (X))

�

℄

�

= hX; [e

a

;rF (X)℄i �




X; [�

�n

e

a

; (�

n

rF (X))

�

℄

�

:

For the �rst term we have hX; [e

a

;rF (X)℄i = he

a

; [rF (X);X℄i = 0 sin
e e

a

2 g

�

�

, again be
ause

[�; e

a

℄ = 0. Similarly we �nd that the se
ond term vanishes:




X; [�

�n

e

a

; (�

n

rF (X))

�

℄

�

= h�; [e

a

; (�

n

rF (X))

�1

℄i

g

= 0:

If � is a generi
 nilpotent element then the a
tion of G

�

�

is Hamiltonian, a fa
t that 
an be

used to give an alternative proof of Theorem 4.2 for su
h �. The proof of this depends on several

fa
ts about simple Lie algebras whi
h we will re
all now (see [Kos1℄ for details). A nilpotent

element is 
alled prin
ipal when its isotropy algebra has dimension r; in this 
ase the isotropy

algebra is Abelian. A generi
 nilpotent element is prin
ipal and all prin
ipal nilpotent elements

are 
onjugate to � =

P

r

i=1

F

i

whose isotropy algebra g

�

is 
ontained in n

�

. Noti
e that as a


onsequen
e G

�

�

= G

�

and thus that it suÆ
es to prove that the a
tion of G

�

on

~

g

�

n

is Hamiltonian

for � =

P

r

i=1

F

i

. We will use the following lemma about the gradients of the Chevalley invariants.

Lemma 4.3 If � =

P

r

i=1

F

i

then the gradient of the i-th Chevalley invariant I

i

at � is homoge-

neous of degree �(d

i

� 1) and the gradients rI

1

(�); : : : ;rI

r

(�) are linearly independent.

Proof

For the �rst 
laim it suÆ
es to show that hrI

i

(�); yi

g

= 0 for all y 2 g

j

with j 6= (d

i

�1), sin
e

hg

l

;g

m

i

g

= 0 if l+m 6= 0. To show this we introdu
e for all x 2 g the operator �

x

: O(g)! O(g)

de�ned by

(�

x

f)(z) = hrf(z); xi =

d

dt

jt=0

f(z + tx);

and we observe that g(x) =

1

m!

(�

m

x

g)(0) for any homogeneous polynomial g of degree m. Then, for

x = � and f = I

i

, we get

hrI

i

(�); yi = �

y

I

i

(�) =

1

(d

i

� 1)!

(�

d

i

�1

�

�

y

I

i

)(0):

But the proof of Lemma 14 in [Kos2℄ shows that (�

d

i

�1

�

�

y

I

i

)(0) = 0 if y 2 g

j

with j 6= d

i

� 1.

Finally, the elements rI

i

(�) are linearly independent sin
e dimg

�

= r (see [Kos2℄, Theorem 9).

Proposition 4.4 If � =

P

r

i=1

F

r

then the adjoint a
tion of G

�

on

~

g

�

n

is Hamiltonian with respe
t

to every Poisson stru
ture f� ; �g

l

; l = 0; : : : ; n. We 
an 
hoose a basis fb

i

g

r

i=1

of g

�

in su
h a way

that the 
orresponding in�nitesimal generators X

i

of the a
tion are the Hamiltonian ve
tor �elds

X

i

= f�; I

i;n(d

i

�1)�1

g

0

= f�; I

i;n(d

i

�1)+l�1

g

l

; l = 0; : : : ; n; i = 1; : : : ; r:
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Proof

We �rst show that for any X 2

~

g

�

n

and i = 1; : : : ; r

b

i

:=

�

rI

i;n(d

i

�1)�1

(X)

�

+

(4:2)

is independent of X as well as of � and belongs to g

�

. To see this, take x 2 g to �nd that




rI

i;n(d

i

�1)�1

(X); x�

�l

�

=

d

dt

jt=0

Res

I

i

(X + tx�

�l

)

�

n(d

i

�1)

= Res

1

�

n(d

i

�1)

d

dt

jt=0

I

i

(��

n

+ : : :+ x

0

+ tx�

�l

);

= Res �

n

d

dt

jt=0

I

i

(� + x

n�1

�

�1

+ : : :+ x

0

�

�n

+ tx�

�l�n

)

= Res �

�l

hrI

i

(� + x

n�1

�

�1

+ : : :+ x

0

�

�n

); xi

g

:

Developing rI

i

in a Taylor series at � we �nd (taking l � 2) that b

i

is independent of �, and

(taking l = 1) that b

i

= rI

i

(�), independent of X. From this des
ription we may 
on
lude on the

one hand that the elements b

i

are independent, as a 
orollary of Lemma 4.3; on the other hand we

may 
on
lude that ea
h b

i

belongs to the isotropy algebra g

�

of �, sin
e

[�; b

i

℄ = [�;rI

i

(�)℄ = 0

by Ad-invarian
e of I

i

. Sin
e dimg

�

= r, it follows that the b

i

(i = 1; : : : ; r) span g

�

.

The 
orresponding generators are 
learly the ve
tor �elds X

i

de�ned by

_

X = [b

i

;X℄, where

X 2

~

g

�

n

. But using (2.8) and the de�nition of b

i

it is easily seen that X

i

is the Hamiltonian ve
tor

�eld asso
iated with I

i;n(d

i

�1)�1

by means of f� ; �g

0

. Moreover, sin
e their Hamiltonians are of the

form I

ij

the a
tion of G

�

is a
tually Hamiltonian with respe
t to any of the Poisson stru
tures

f� ; �g

l

(l = 0; : : : ; n).

4.2. Redu
tion of the master symmetry

We now turn our attention to the ve
tor �eld V on

~

g whi
h was shown to be a master symmetry

for A and to have the deformation property with respe
t to the bra
kets f� ; �g

l

. We will now show

that V des
ends to a master symmetry whi
h has the deformation property. We will use the same

notation f� ; �g

l

for the redu
ed bra
kets (on O(N)

G

�

�

) as for the original ones (on O(

~

g

�

n

)).

Proposition 4.5 The master symmetry V is tangent to

~

g

�

n

and L

W

O(N)

G

�

�

� O(N)

G

�

�

, where

W denotes the restri
tion of V to N . Therefore, the bra
kets f� ; �g

l

and f� ; �g

l�1

on O(

~

g

�

n

) whi
h

are 
onne
ted by the Lie derivative with respe
t to V redu
e to two bra
kets f� ; �g

l

and f� ; �g

l�1

on

O(N)

G

�

�

whi
h are 
onne
ted by the Lie derivative with respe
t to W. Moreover W is a master

symmetry for �(A).

Proof

The 
ow of V is given by

�

s

: X(�) 7! X(�+ s);
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if X(�) 2 N; X(�) = ��

n

+ x

n�1

�

n�1

+ � � �, then

X(�+ s) = �(�+ s)

n

+ x

n�1

(�+ s)

n�1

+ � � �

= ��

n

+ (ns� + x

n�1

)�

n�1

+ � � �

(4:3)

belongs to N sin
e � 2 n

�

, showing that V is tangent to N . Also it is 
lear that L

W

O(N)

G

�

�

�

O(N)

G

�

�

be
ause G

�

�

a
ts by simultaneous 
onjugation on the 
oeÆ
ients of � in X(�), hen
e


ommutes with L

W

. Thus Theorem 3.5 applies to yield the �rst statement. The fa
t that W is a

master symmetry for �(A) follows from Remark 3.7.

4.3. The redu
ed spa
e N=G

�

�

as a linear subspa
e N

0

� N

We now show that when � + � is regular then the algebra O(N)

G

�

�

is �nitely generated

(although G

�

�

is not redu
tive) and that the quotient spa
e N=G

�

�


an be identi�ed in a natural

way with an aÆne subspa
e N

0

of N . By naturality we mean here that under the identi�
ation

whi
h we will 
onstru
t the involutive algebra A � O(N=G

�

�

)

�

=

O(N)

G

�

�

and the ve
tor �eld W


orrespond to their restri
tion to N

0

, hen
e 
an easily be 
omputed. Note however that the Poisson

stru
tures f� ; �g

l

on N

0

are not obtained by restri
tion.

We will assume, as in Paragraph 4.1, that � and � are homogeneous with deg�� deg � = h.

We put d = �deg � and we assume that 
 = �+� is regular, meaning that the isotropy subalgebra

of 
 is a Cartan subalgebra. We will give at the end of this se
tion for every simple Lie algebra g

an important 
lass of pairs (�; �) su
h that � + � is regular. The only property that we will use

about the regularity of �+ � is 
ontained in the following lemma.

Lemma 4.6 Let � and � be as above. Then g

�

\ g

�

�

= f0g.

Proof

If x 2 g

�

\ g

�

�

, then x belongs to the isotropy algebra of �+ �, whi
h is a Cartan subalgebra,

hen
e x is semisimple. On the other hand x 2 n

�

hen
e it is nilpotent. Therefore x = 0.

The spa
e N

0

is 
onstru
ted as follows. Let q

i

be a subspa
e of g

i

, for i = 1� d; : : : ; h� d� 1,

su
h that

g

i

= q

i

�

�

g

�

\ g

i+d�h

; �

�

: (4:4)

If we denote

q =

�

�

�d

i=�k

g

i

�

�

�

�

h�d�1

i=1�d

q

i

�

;

then N

0

is de�ned by

N

0

= fX 2 N j x

n�1

= �+ ~x

n�1

; ~x

n�1

2 qg:

Theorem 4.7 If �+� is regular then the in
lusion | : N

0

! N indu
es an algebra isomorphism

O(N)

G

�

�

�

=

O(N

0

) so that N=G

�

�

is an aÆne spa
e whi
h 
an be identi�ed with N

0

: The fun
tions in

involution I

ij

and the master symmetry W on N

0

are the restri
tions of the 
orresponding fun
tions

I

ij

and the master symmetry W on N .
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Proof

We �rst de�ne a regular map N ! G

�

�

: X 7! g

X

whi
h has the property that Ad

g

X

X 2 N

0

for any X 2 N and equals X for any X 2 N

0

. To determine g

X

use the fa
t that g

�

�

is 
ontained

in n

�

to write it as

g

X

= exp �; with � =

k

X

j=1

�

�j

2 g

�

; �

�j

2 g

�

\ g

�j

:

Then

(Ad

g

X

)

n�1

= Ad

g

X

x

n�1

= x

n�1

+ [�; x

n�1

℄ + � � �

=

 

�+

k�d

X

i=�k

�

i

x

n�1

!

+

2

4

k

X

j=1

�

�j

; �+

k�d

X

i=�k

�

i

x

n�1

3

5

+ � � � ;

whi
h has to be equal to �+

P

h�1�d

i=1�d

q

i

+p; with q

i

2 q

i

and p 2 �

�d

i=�k

g

i

. The proje
tion on g

h�d

yields � = � while proje
tion on g

h�d�1

leads to

�

h�d�1

x

n�1

= q

h�d�1

� [�

�1

; �℄ ;

from whi
h q

h�d�1

and �

�1

are uniquely determined be
ause of the dire
t sum de
omposition

g

h�d�1

= q

h�d�1

�

�

g

�

\ g

�1

; �

�

and g

�

\ g

�

�

= f0g (Lemma 4.6). More generally, the proje
tion on g

j

(j = h � d � 1; : : : ; 1 � d)

yields

�

j

x

n�1

+ (known stu�) = q

j

� [�

j+d�h

; �℄ ;

whi
h gives a unique q

j

2 q

j

and a unique �

j+d�h

2 g

�

\ g

j+d�h

. This gives us the desired map

N ! G

�

�

; sin
e all q

j

and �

i

are unique, all elements of N

0

map to the identity element in G

�

�

. The

map N ! G

�

�

is regular be
ause the �

i

depend linearly on the entries of x

n�1

and exp : g

�

�

! G

�

�

is a regular map. Noti
e that only �

j

x

n�1

; j = 1 � d; : : : ; h � d � 1 enter the 
onstru
tion of g

X

;

so that g

X

= g

X

0

if �

j

x

n�1

= �

j

x

0

n�1

for j = 1� d; : : : ; h� d� 1.

We thus also have a regular map  : N ! N

0

given by X 7! Ad

g

X

X. Let us show that the

image of the indu
ed inje
tive map  

�

: O(N

0

)! O(N) is pre
isely O(N)

G

�

�

. If F 2 O(N

0

) then

 

�

F is G

�

�

-invariant be
ause  is G

�

�

-invariant, hen
e  

�

is inje
tive; also, if F is a G

�

�

-invariant

fun
tion then its restri
tion to N

0

maps to F under  

�

, hen
e the image of  

�

is O(N)

G

�

�

. In


on
lusion O(N

0

) and O(N)

G

�

�

are isomorphi
 and we 
an identify N

0

as the quotient N=G

�

�

.

The fun
tions I

ij

on N are G

�

�

-invariant hen
e pass to the quotient N

0

. Sin
e the quotient map

was indu
ed by the in
lusion map | : N

0

! N the 
orresponding fun
tions on N

0

are just obtained

by restri
tion. Formula (4.3) implies that W is tangent to N

0

and also that g

X(�)

= g

X(�+s)

. If we

denote the restri
tion of W to N

0

by W

0

then it follows that L

W

 

�

=  

�

L

W

0

, in other words the

proje
tion of W on N

0

= N=G

�

�

is justW

0

, the restri
tion of W to N

0

. In 
on
lusion the fun
tions

in involution and their master symmetry have a simple des
ription on the redu
ed spa
e N

0

.

We end this se
tion by giving a general rule to sele
t pairs (�; �), with deg��deg � = h, su
h

that �+� is regular. We �rst re
all some fa
ts from [Kos1℄, Theorem 6.7. Let �

1

=

P

r

i=1

F

i

and let
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�

1

2 g

k

, �

1

6= 0. Then 


1

= �

1

+ �

1

is regular, so that h

0

= g




1

is a Cartan subalgebra. Moreover,

there exists a basis f


1

; : : : ; 


r

g of h

0

with the following properties (here �

�

is the proje
tion onto

n

�

and q

1

� q

2

: : : � q

r

are the exponents of g):

1) �

s

= �

�

(


s

) is homogeneous of degree �q

s

;

2) �

s

= �

+

(


s

) is homogeneous of degree h� q

s

.

The next proposition allows us to determine whi
h pairs (�

s

; �

s

) are su
h that 


s

= �

s

+�

s

is

regular. We are grateful to B. Kostant for providing us with a proof.

Proposition 4.8 The element 


s

is regular if and only if q

s

is 
oprime to the Coxeter number h.

Proof

Let H

0

be the unique element in h su
h that [H

0

; E

i

℄ = E

i

for all i = 1; : : : ; r (the existen
e

and uniqueness of H

0

follow from the fa
t that the Cartan matrix of g is invertible). Then it is

easily seen that

[H

0

; x℄ = jx 8 x 2 g

j

: (4:5)

If we de�ne P

0

2 G by P

0

= exp(

2�

p

�1

h

H

0

), then (4.5) implies that Ad

P

0




i

= !

�q

i




i

, where

! = e

2�

p

�1=h

. In parti
ular we have that Ad

P

0

(h

0

) � h

0

, so that P

0

belongs to the normalizer

N(H

0

) of H

0

= exph

0

in G. We denote the element of N(H

0

)=H

0

whi
h 
orresponds to P

0

by 
.

The group W = N(H

0

)=H

0

is 
alled the Weyl group of g. Clearly ea
h element w 2 W a
ts on h

0

by the adjoint a
tion; we will use w(x) to stand for Ad

g

x, where g 2 N(H

0

) is any representative

of w. Sin
e q

1

= 1, it follows from the fa
t that 
(


s

) = !

�q

s




s

for s = 1; : : : ; r that the order of 


is h.

Now let us suppose that m > 1 is a 
ommon divisor of q

s

and h. Then we 
an write h = h

0

m,

q

s

= q

0

s

m for some h

0

; q

0

s

2 N. We show that 


s


annot be regular by proving that 


h

0

is a nontrivial

element of W that leaves 


s

�xed (see, e.g., [Kna℄, p.426{427). Indeed,




h

0

(


s

) = !

�q

s

h

0




s

= !

�hq

0

s




s

= 


s

;

and 


h

0

is not identity be
ause the order of 
 is h > h

0

.

Conversely, assume that q

s

is 
oprime to h. Then !

s

= !

�q

s

is still a primitive h-root of unity.

If fI

j

g

j=1;:::;r

are the Chevalley invariants, deg I

j

= q

j

+ 1, then we have that I

j

(


s

) = 0 for all

j < r. Indeed,

I

j

(


s

) = I

j

(
(


s

)) = I

j

(!

s




s

) = !

q

j

+1

s

I

j

(


s

);

while (4.1) implies that q

j

+1 < q

r

+1 = h, so that !

q

j

+1

s

6= 1 for j < r. On the other hand, I

r

(


s

)


annot vanish, be
ause any element of g at whi
h all invariants vanish is nilpotent (see Theorem

9.1 of [Kos1℄). Therefore there exists a non-zero b 2 C su
h that I

j

(b


1

) = I

j

(


s

) for j = 1; : : : ; r.

Now, Lemma 9.2 of [Kos1℄ states that two elements of a Cartan subalgebra at whi
h all invariants

take the same values are W -
onjugate. Sin
e 


1

is regular, 


s

is regular too.
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5. Examples

In this se
tion we elaborate on the examples of the 
lassi
al Lie algebras and G

2

. Ea
h will be

realized as a subalgebra of sl(N) and we will use hx; yi

g

= Tr(xy) as ad-invariant inner produ
t;

the representation will be su
h that g has a Weyl basis of a simple form. We denote by e

ij

the

N �N matrix whose only non-zero entry is a one at position (i; j).

5.1. The Mumford system

We �rst show that when our 
onstru
tion is applied to the 
ase of g = sl(2) we get the Mumford

system. We expli
itly des
ribe the redu
ed bra
kets, exhibit the multi-Hamiltonian hierar
hies and


he
k the deformation property of the master symmetry.

A Weyl basis for g = sl(2) is given by E = e

12

; F = e

21

; H = e

11

� e

22

, leading to � = e

21

and � = e

12

: Then

~

g

�

n


onsists of those matri
es

�

v(�) u(�)

w(�) �v(�)

�

for whi
h w(�) is moni
 of degree n and both u(�) and v(�) have degree less than n. We will

write u(�) =

P

n�1

i=0

u

i

�

i

and similarly for v(�) and w(�). The hyperplane N of

~

g

�

n

is de�ned by

the extra 
ondition that u(�) is moni
 of degree n � 1, i.e., it is de�ned by u

n�1

= 1. The group

G

�


onsists of all matri
es of the form

�

1 0

a 1

�

with Lie algebra g

�

= C� = g

�1

. For i = 0 the

de
omposition (4.4) gives

g

0

= q

0

� [g

�1

; �℄;

leading to q

0

= 0. Therefore the quotient spa
e N=G

�

is identi�ed with the aÆne spa
e N

0

of all

matri
es

�

V (�) U(�)

W (�) �V (�)

�

su
h that

8

>

<

>

:

U(�) moni
, degU(�) = n� 1;

deg V (�) < n� 1;

W (�) moni
, degW (�) = n:

Again we will write U(�) =

P

n�1

i=0

U

i

�

i

, where U

n�1

= 1; and similarly for V (�) and W (�). Sin
e

the algebra of invariant polynomials on g is generated by x 7! Trx

2

we �nd that the algebra A on

~

g

�

n

is generated by the 
oeÆ
ients (in �) of the polynomial

u(�)w(�) + v

2

(�);

and on N

0

by the 
oeÆ
ients of

U(�)W (�) + V

2

(�):

In order to des
ribe the redu
ed Poisson stru
tures on N

0

we de�ne u

i

; U

i

; : : : to be zero for all

values for whi
h those variables have not been previously de�ned (e.g., u

�1

= u

n

= 0). Then

formula (2.3) for the bra
kets f� ; �g

l

(0 � l � n) gives

fu

i

; v

j

g

l

= �

ij

l

u

i+j+1�l

;

fv

i

; w

j

g

l

= �

ij

l

w

i+j+1�l

;

fw

i

; u

j

g

l

= 2�

ij

l

v

i+j+1�l

;
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and all other bra
kets (between linear fun
tions) are zero. The map N ! G

�

: X 7! g

X

sends

�

v(�) u(�)

w(�) �v(�)

�

7!

�

1 0

v

n�1

1

�

so that the quotient map N ! N

0

: X 7! Ad

g

X

X is given expli
itly by

U

i

= u

i

;

V

i

= v

i

� u

i

v

n�1

;

W

i

= w

i

+ 2v

i

v

n�1

� u

i

v

2

n�1

;

i = 0; 1; : : : ; n� 1: (5:1)

The redu
ed bra
kets are 
omputed by extending the fun
tions at the right hand side of (5.1)

(whi
h are G

�

-invariant fun
tions on N) to fun
tions on

~

g

�

n

and by taking their bra
ket; we will

7

do this simply by taking the same expressions, but forgetting that u

n�1

= 1: For example if l 6= n

then fV

i

;W

j

g

l

is found from

fv

i

� u

i

v

n�1

; w

j

+ 2v

j

v

n�1

� u

j

v

2

n�1

g

l

= �

ij

l

w

i+j+1�l

� �

ij

l

u

i+j+1�l

v

2

n�1

+ 2�

ij

l

v

i+j+1�l

v

n�1

+ u

i

Æ

l

j

;

giving fV

i

;W

j

g

l

= �

ij

l

W

i+j+1�l

+ U

i

Æ

l

j

: In this way the redu
ed bra
kets f� ; �g

l

are found to be

given, for l = 0; 1; : : : ; n� 1, by

fU

i

; V

j

g

l

= �

ij

l

U

i+j+1�l

;

fV

i

;W

j

g

l

= �

ij

l

W

i+j+1�l

+ U

i

Æ

l

j

;

fW

i

; U

j

g

l

= 2�

ij

l

V

i+j+1�l

;

fU

i

; U

j

g

l

= 0;

fV

i

; V

j

g

l

= 0;

fW

i

;W

j

g

l

= 2Æ

l

i

V

j

� 2Æ

l

j

V

i

;

(5:2)

while the bra
ket f� ; �g

n

is quadrati
 and is given by

fU

i

; V

j

g

n

= �

ij

n

U

i+j+1�n

� U

i

U

j

;

fV

i

;W

j

g

n

= �

ij

n

W

i+j+1�n

� U

i

W

j

;

fW

i

; U

j

g

n

= 2�

ij

n

V

i+j+1�n

� 2U

j

V

i

;

fU

i

; U

j

g

n

= 0;

fV

i

; V

j

g

n

= 0;

fW

i

;W

j

g

n

= 2V

i

W

j

� 2V

j

W

i

:

(5:3)

Using these expli
it formulas it is easy to verify that V has the deformation property with respe
t

to all these bra
kets. For example, for the n-th bra
ket (whi
h is quadrati
) we �nd

L

V

fU

i

; V

j

g

n

� fL

V

U

i

; V

j

g

n

� fU

i

;L

V

V

j

g

n

= [(i+ j + 2� n)�

ij

n

� (i+ 1)�

i+1;j

n

� (j + 1)�

i;j+1

n

℄U

i+j+2�n

= �n�

ij

n�1

U

i+j+2�n

= �nfU

i

; V

j

g

n�1

:

7

Note that we 
an e.g. extend v

i

�u

i

v

n�1

also to the more symmetri
 expression u

n�1

v

i

�u

i

v

n�1

,

but a

ording to Theorem 3.2 the �nal result is independent of the 
hosen extensions.
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Similarly (5.2) and (5.3) 
an be used to 
ompute the Hamiltonian ve
tor �elds X

I

i

= f� ; I

i

g

0

on

N

0

, where I

i

is the i-th 
oeÆ
ient of U(�)W (�) + V

2

(�). For example

X

i

(U(�)) = fU(�); I

i

g

0

=

X

j+k=i

n�2

X

l=0

fU

l

; U

j

W

k

+ V

j

V

k

g

0

�

l

=

X

j+k=i

n�2

X

l=0

(2U

j

V

k+l+1

� V

j

U

k+l+1

� U

l+j+1

V

k

)�

l

= 2U(�)

�

V (�)

�

i+1

�

+

� 2V (�)

�

U(�)

�

i+1

�

+

:

If we denote

A =

�

V (�) U(�)

W (�) �V (�)

�

and B

i

=

�

0 0

�U

i

0

�

then we re
over the Lax equations

_

A = �[A; (�

�i�1

A)

+

+B

i

℄ (5:4)

of whi
h Mumford's ve
tor �eld (1.1) is a spe
ial 
ase (up to a fa
tor �2; here n = g+1). Another

way to obtain the ve
tor �eld X

I

i

on N

0

is to proje
t the 
orresponding ve
tor �eld on N along

the tangent spa
e to the orbits of G

�

. Sin
e this is spanned by [A; �℄, one has to write

[A; (�

�i�1

A)

�

℄ =

_

A+ 
(A)[A; �℄; A 2 N

0

;

where 
 is a fun
tion on N

0

. The entry (1,1) of the 
oeÆ
ient of �

n�1

of this equation gives


(A) = U

i

, and then (5.4) follows.

5.2. A

r

We now dis
uss the 
ase of sl(r+1) and obtain for every positive integer whi
h is smaller than

r + 1 and 
oprime to r + 1 a generalization of the Mumford system to matri
es of size r + 1. We

will label the entries of elements of sl(r + 1) with indi
es 0; : : : ; r.

A Weyl basis fH

i

; E

i

; F

i

g

r

i=1

is de�ned by H

i

= e

i�1;i�1

� e

i;i

, E

i

= e

i;i�1

, and F

i

= E

t

i

.

Clearly then g

i

is spanned by the elements e

j;i+j

so that dimg

i

= r� i+1 for i > 0 and h = r+1.

The elements �

1

2 g

r+1

and �

1

=

P

r

i=1

F

i

look as follows:

�

1

=

0

B

B

�

0 � � � 0 1

0 � � � 0 0

.

.

.

.

.

.

.

.

.

0 � � � 0 0

1

C

C

A

�

1

=

0

B

B

B

B

B

�

0 � � � 0

1 0

0 1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � 0 1 0

1

C

C

C

C

C

A

:

The isotropy algebra of �

1

+ �

1

is the algebra of matri
es (a

ij

) for whi
h a

ij

= a

i+1;j+1

, where the

indi
es i; j take values in Z

r+1

. It follows that �

d

and �

d

are given by

�

d

=

�

0 I

d

0 0

�

�

d

=

�

0 0

I

r+1�d

0

�

:
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We �x a d 
oprime to r+1 and let � = �

d

and � = �

d

. Then the spa
e

~

g

�

n


onsists of polynomials

of degree n with 
oeÆ
ients in g whose top 
oeÆ
ient equals �. The elements of the subvariety N

are those for whi
h the se
ond 
oeÆ
ient equals � plus arbitrary terms of degree less than r+1�d.

The Lie algebra g

�

�


onsists of the stri
tly lower triangular matri
es of the form a

ij

for whi
h

a

i+d;j+d

= a

ij

; here 0 � j < i � r � d:

Proposition 5.1 If g = sl(r + 1) and d is 
oprime to h = r + 1 then the quotient spa
e N

0

is

given by

8

N

0

=

(

�

0 0

I

h�d

0

�

�

n

+

�

0 I

d

? ?

�

�

n�1

+

n�2

X

i=0

x

i

�

i

j x

i

2 sl(r + 1)

)

:

Proof

Taking into a

ount Theorem 4.7, we need to show that the spa
es q

i

, for 1�d � i � h�d�1,


an be 
hosen in su
h a way that the elements of q have the form

�

0

d;r+1

?

�

. In other words, if q

i

is

the span of fe

j;j+i

g

j=d;:::;h�1�i

, we must 
he
k that q

i

� [g

�

\g

i+d�h

; �℄ = g

i

. Sin
e g

�

�

\g

a

= f0g

(by Lemma 4.6), we have that dim[g

�

\ g

i+d�h

; �℄ = dim(g

�

\ g

i+d�h

); then from the expli
it

des
ription of g

�

�

it is easily seen that

dimq

i

+ dim[g

�

\ g

i+d�h

; �℄ = dimg

i

;

so that we are left with showing that q

i

\ [g

�

\ g

i+d�h

; �℄ = f0g. To this aim, let us suppose that

M 2 g

�

\ g

i+d�h

and [M;�℄ 2 q

i

; then [M;�℄

s;s+i

= 0 for all s = maxf�i; 0g; : : : ; d� 1, that is,

M

s;s+i+d�h

=M

h+s�d;s+i

for any s = 0; : : : ; d� 1; (5:5)

where we have put M

jk

= 0 for indi
es j and k outside the range 0; : : : ; r = h� 1. Let us de�ne for

t = 0; : : : ; h� 1 the elements m

t

=M

t;t+i+d�h

; then we have that m

t

= 0 for 0 � t � h� d� i� 1.

Moreover, equation (5.5) takes the form

m

t

= m

t+h�d

for t = 0; : : : ; d� 1: (5:6)

If i � 0, it is not diÆ
ult to show that this implies m

t

= 0 for all t, that is, M = 0. For i � 1, we

have to use also the fa
t that M 2 g

�

, i.e., that

m

t

= m

t+d

for t = h� d� i; : : : ; h� d� 1: (5:7)

Now, equation (5.6) says that we 
an think of the indi
es in m

t

as belonging to Z

h�d

. We already

know that m

t

= 0 for 0 � t � h�d�i�1. In order to show thatm

s

= 0 for h�d�i � s � h�d�1,

we �x su
h an m

s

and we observe that m

s

= m

s+d

on a

ount of (5.7). If s+ d = s

1

+ t

1

(h � d)

with 0 � s

1

� h � d � i � 1 then we are done. Otherwise, we 
an add d again to s

1

, and we are

sure that �nally we will obtain an s

i

su
h that 0 � s

i

� h� d� i� 1 sin
e the equivalen
e 
lass of

d is a generator of Z

h�d

(be
ause d and h� d are 
oprime).

A set of Chevalley invariant of g is given by the polynomials I

i

: x 7! Trx

i+1

; i = 1; : : : ; r,

or, equivalently, by the 
oeÆ
ients of the 
hara
teristi
 polynomial det(x � � Id). Therefore the


oeÆ
ients of det(X(�) � � Id) give generators for A.

8

In this formula and in several formulas that follow we use stars as an abbreviation for arbitrary

matri
es of the appropriate size; of 
ourse it is understood that these \arbitrary" matri
es must be


hosen su
h that the resulting matrix is in g.
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5.3. B

r

and C

r

As usually these two families, whi
h 
orrespond to the symple
ti
 and half of the orthogonal

algebras 
an be treated simultaneously. The representations whi
h we will 
hoose are the ones for

whi
h the gradation is the restri
tion of the one for sl(N); here N = 2r + 1 
orresponds to the

orthogonal algebra B

r

and N = 2r to the symple
ti
 algebra C

r

. Let T denote the following N�N

matrix,

T =

0

B

B

B

�

1

�1

1

�1

.

.

.

1

C

C

C

A

i.e. T

ij

= (�1)

N�j

Æ

i+j;N+1

;

then g is de�ned by X

t

T + TX = 0; i.e.

X

N+1�l;k

= (�1)

N+k+l

X

N+1�k;l

:

The meaning of this is that the main diagonal and all its parallels at even distan
e are skew-

symmetri
 with respe
t to the se
ondary diagonal (hen
e TrX = 0) while the other ones are

symmetri
. Then dimg = r(2r + 1) where r =

�

N

2

�

is the rank of g. If N = 2r + 1 then we de�ne

E

i

= e

i;i+1

+ e

2r+1�i;2r+2�i

; i = 1; : : : ; r � 1;

E

r

= 2(e

r;r+1

+ e

r+1;r+2

);

F

i

= e

i+1;i

+ e

2r+2�i;2r+1�i

; i = 1; : : : ; r;

while if N = 2r we de�ne

E

i

= e

i;i+1

+ e

2r�i;2r+1�i

; i = 1; : : : ; r � 1;

E

r

= e

r;r+1

;

and F

i

= E

t

i

for i = 1; : : : ; r. In either 
ase, if we introdu
e H

i

= [E

i

; F

i

℄ for i = 1; : : : ; r, then

fH

i

; E

i

; F

i

g is a Weyl basis for g. In parti
ular the asso
iated gradation g = �

k

�k

g

i

is the restri
tion

of the one for sl(N) and we have dimg

i

= r � [i=2℄ for i � 1. In both 
ases the Coxeter number h

equals 2r. The prin
ipal nilpotent element �

1

is the same one as in the sl(N) 
ase and �

1

is for N

even respe
tively for N odd given by

�

1

=

0

B

B

�

0 � � � 0 1

0 � � � 0 0

.

.

.

.

.

.

.

.

.

0 � � � 0 0

1

C

C

A

resp. �

1

=

0

B

B

�

0 � � � 1 0

0 � � � 0 1

.

.

.

.

.

.

.

.

.

0 � � � 0 0

1

C

C

A

:

If N is even then �

1

+ �

1

is the same as in the sl(2r) 
ase and therefore its isotropy algebra 
an

be obtained by means of a simple restri
tion. In parti
ular �

d

and �

d

have the same form as in

the sl(2r) 
ase (but only odd values of d are allowed) and when d is 
oprime to 2r (i.e., to r) the

quotient spa
e 
an be identi�ed with a suitable aÆne subspa
e N

0

. If d = 1 a possible 
hoi
e for

the 
oeÆ
ient of �

n�1

of the elements in N

0

is

0

B

B

B

B

�

0 ? 0 ? � � � ? 0 1

? ? ? ? � � � ? ? 0

? � � � � � � ?

.

.

.

.

.

.

? � � � � � � ? 0

1

C

C

C

C

A

:
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If d = 2r � 1 two possible 
hoi
es are

0

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 � � �

0 0 1 0 � � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1 0

? 0 1

.

.

. .

.

.

.

.

.

0 ? 0 � � � 1

? 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

A

or

0

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 � � �

? 0 1 0 � � �

0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 1 0

.

.

. 0 1

?

.

.

.

.

.

.

0 0 0 � � � 1

? 0 ? � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

When N is odd the isotropy algebra of �

1

+ �

1


onsists of those elements of the form

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 t

r

0 � � � � � � t

2

0 t

1

0

t

1

0 2t

r

0 � � � � � � 2t

2

0 t

1

0 t

1

0 2t

r

� � � 0 � � � 2t

2

0

t

2

.

.

.

.

.

.

.

.

.

.

.

.

� � � t

2

0 t

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. t

2

0 t

1

0 2t

r

0

t

r

t

2

0 t

1

0 t

r

0 t

r

� � � t

2

0 t

1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

giving immediately the expressions for �

d

and �

d

. For d = 1 the 
oeÆ
ient of �

n�1

in N

0


an be


hosen as

0

B

B

B

B

�

0 ? 0 ? � � � 0 1 0

? ? ? ? � � � ? 0 1

? � � � � � � 0

.

.

.

.

.

.

? � � � � � � ? 0

1

C

C

C

C

A

;

while for d = 2r � 1 two natural 
hoi
es are

0

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 � � �

0 0 2 0 � � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 2 0

? 0 2

.

.

. .

.

.

.

.

.

0 ? 0

.

.

.

0 2 0

? 0 ? 0 1

0 ? 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

or

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 1 0 � � �

? 0 2 0 � � �

0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 2 0

.

.

. 0 2

?

.

.

.

.

.

.

0 0 0 � � � 0 2 0

? 0 0 � � � 0 1

0 ? 0 ? 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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A set of Chevalley invariants, whose degrees are 2; 4; : : : ; 2r is given by the non-zero 
oeÆ
ients

of the 
hara
teristi
 polynomial, viewed as fun
tions on g.

5.4. D

r

We realize D

r

as a subalgebra of sl(N); N = 2r as follows. Let T denote the following N �N

matrix,

T =

0

B

B

B

�

1

�1

.

.

.

�1

1

1

C

C

C

A

i.e. T

ij

= (�1)

jj�ij+1

2

Æ

i+j;N+1

;

then g is de�ned as before by X

t

T + TX = 0; i.e.

X

N+1�l;k

= �(�1)

k�l

X

N�k+1;l

; if

2k �N � 1

2l �N � 1

<

> 0:

Thus, up to the � sign this is the same as in the 
ase of C

r

and a generi
 element of D

r

is

written down by writing down a generi
 element of C

r

, putting zeros at the se
ondary diagonal and


hanging all signs under this diagonal, ex
ept in the south-east r� r blo
k. In parti
ular TrX = 0

and dimg = r(2r � 1). A Weyl basis for g is in this 
ase given by fE

i

; F

i

;H

i

g where

E

i

= e

i;i+1

+ e

2r�i;2r+1�i

; i = 1; : : : ; r � 1;

E

r

= e

r�1;r+1

+ e

r;r+2

;

F

i

= E

t

i

and H

i

= [E

i

; F

i

℄ for i = 1; : : : ; r: The asso
iated gradation g = �

k

�k

g

i

is now slightly

more 
ompli
ated; the portion above the se
ondary diagonal of a typi
al element of g

i

; i > 0 has

the following snake-shaped form.

?

.

.

.

? ?

?

.

.

.

?

(5:8)

Pre
isely, a basis of g

i

; i > 0 is given by

e

j;i+j

+ (�1)

i�1

e

2r�i�j+1;2r�j+1

; j = 1; : : : ; r � i;

e

j�1;i+j

+ (�1)

i�1

e

2r�i�j+1;2r�j+2

; j = maxf2; r � i+ 1g; : : : ; r �

�

i

2

�

;

giving dimg

i

= r � [i=2℄ for 1 � i < r and dimg

i

= r � [i=2℄ � 1 for i � r. A set of Chevalley

invariants is given by the non-zero 
oeÆ
ients of the 
hara
teristi
 polynomial, with the highest
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order one (the determinant) being repla
ed with its square root. The elements �

1

and �

1

take the

form

�

1

=

0

B

B

�

0 � � � 1 0

0 � � � 0 1

.

.

.

.

.

.

.

.

.

0 � � � 0 0

1

C

C

A

and �

1

=

0

B

B

B

B

B

B

B

B

B

B

B

�

0

1 0

.

.

.

.

.

.

1 0

1 0 0

1 1 0

.

.

.

.

.

.

1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

and one 
an show that �

2r�2

= E

1

+ 2

P

r�2

i=2

E

i

+E

r�1

+E

r

and

�

2r�2

=

0

B

B

�

0 0 � � � 0

.

.

.

.

.

.

.

.

.

1 0 � � � 0

0 1 � � � 0

1

C

C

A

:

For d = 1 the spa
e q may be taken 
onsisting of all elements in g of the form

0

�

0 ? 0 ? � � � 0 ? ? 0 ? 0 ? � � � 0 0 0

? ? ? ? � � � ? 0 ? ? ? ? ? � � � ? ? 0 0

? � � � ? � � � ?

1

A

;

the 0 in the se
ond row appearing at position 2

�

r+1

2

�

. For d = 2r � 2 a possible 
hoi
e for q is

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 0 � � � � � � 0

? 0 � � � � � �

0 0

.

.

.

.

.

.

.

.

.

? 0

? 0 � � � � � �

0 0 � � � � � �

.

.

.

.

.

.

? 0

.

.

.

0 0

? 0 � � � � � �

0 ? � � � � � � 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

where the pair of stars in the �rst 
olumn appear at positions 2[r=2℄ and 2[r=2℄ + 1.

5.5. G

2

Finally here is g = g

2

in the standard representation, as taken from [FH℄. A Weyl basis is

given by

E

1

=

0

B

B

B

B

B

B

B

�

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 �1

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

A

; E

2

=

0

B

B

B

B

B

B

B

�

0 0 0 0 0 0 0

0 0 �1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

A

;
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F

1

is obtained by transposing E

1

and inter
hanging the middle 1 and 2, F

2

= E

t

2

and H

i

=

[E

i

; F

i

℄; (i = 1; 2). The spa
es g

i

making up the gradation are spanned by the following ve
tors:

g

1

: E

1

; E

2

g

2

: E

3

= [E

1

; E

2

℄

g

3

: E

4

= [E

1

; [E

1

; E

2

℄℄

g

4

: E

5

= [E

1

; [E

1

; [E

1

; E

2

℄℄℄

g

5

: E

6

= [E

2

; [E

1

; [E

1

; [E

1

; E

2

℄℄℄℄

the spa
es g

�i

; i > 0, being 
onstru
ted by using in the above formulas F 's instead of E's. The

ring of invariants is generated by TrX

2

and TrX

6

, so that the exponents are 1 and 5. The elements

�

1

and �

1

are given by �

1

= E

6

and �

1

= F

1

+ F

2

, and the isotropy algebra of �

1

+ �

1

is spanned

by F

1

+ F

2

+E

6

and F

6

+ 36E

1

+ 72E

2

. Therefore we also have �

5

= 6E

1

+ 12E

2

and �

5

= F

6

=6.

Sin
e

[g

�

1

\ g

�1

; �

1

℄ = g

4

;

[g

�

1

\ g

�5

; �

1

℄ = C[H

1

+ 2H

2

℄ = Cdiag [�1;�1; 0; 0; 0; 1; 1℄;

the quotient spa
e 
an for d = 1 be taken as N

0

= �

1

�

n

+

P

0

i=n�1

x

i

�

i

where x

n�1

��

1

lies in the

11-dimensional span of the ve
tors

H

2

; E

1

; E

2

; E

3

; E

4

; F

1

; F

2

; F

3

; F

4

; F

5

; F

6

:

For d = 5 we have that g

�

�

5

= n

�

and the quotient spa
e 
an be taken as N

0

= �

5

�

n

+

P

0

i=n�1

x

i

�

i

where x

n�1

� �

5

lies in the span of the ve
tors F

2

and F

6

.
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