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Abstract. Given a constant skew-symmetric matrix A, it is a difficult open

problem whether the associated Lotka-Volterra system is integrable or not.
We solve this problem in a special case when A is a Toepliz matrix where

all off-diagonal entries are plus or minus one. In this case, the associated
Lotka-Volterra system turns out to be a reduction of Liouville integrable sys-

tems, whose integrability was shown by Bogoyavlenskij and Itoh. We prove

that the reduced systems are also Liouville integrable and that they are also
non-commutative integrable by constructing a set of independent first inte-

grals, having the required involutive properties (with respect to the Poisson

bracket). These first integrals fall into two categories. One set consists of
polynomial functions that are restriction of the Bogoyavlenskij-Itoh integrals;

their involutivity was already pointed out by Bogoyavlenskij. The other set

consists of rational functions which are obtained through a Poisson map from
the first integrals of some recently discovered superintegrable Lotka-Volterra

systems. The fact that these polynomial and rational first integrals, combined,

have the required properties for Liouville and non-commutative integrability is
quite remarkable; the quite technical proof of functional independence of the

first integrals is given in detail.
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1. Introduction

The Lotka-Volterra model is a basic model of predator-prey interactions. The

model was developed independently by A. Lotka [20], and V. Volterra [25]. It forms

the basis for many models used today in the analysis of population dynamics.

The most general form of Lotka-Volterra equations in dimension n is

ẋi = εixi +

n∑
j=1

Ai,jxixj , i = 1, 2, . . . , n . (1.1)

By now, many systems of the form (1.1) have been introduced and studied, often

from the point of (Liouville, Darboux or algebraic) integrability [3, 4, 14, 24, 22,

11, 17, 8, 6] or Lie theory [3, 4, 9, 2, 7], but also in relation with other integrable

systems [23, 10].

For the systems which will be considered here, all constants εi are zero (no linear

terms) and the constant matrix A is skew-symmetric. It is well-known that (1.1) is

then a Hamiltonian system with Poisson structure defined by

{xi, xj} := Ai,jxixj , (1.2)

and Hamiltonian function H := x1 +x2 + · · ·+xn. We will, more precisely, only be

concerned in this paper with the n skew-symmetric matrices A0, . . . , An−1 of the

Toeplitz1 form

Ak =



0 1 1 · · · 1 −1 −1 · · · −1 −1
−1 0 1 · · · 1 1 −1 · · · −1 −1

−1 −1 0 · · · 1 1 1
. . . −1 −1

...
...

. . .
...

...
...

. . .
. . .

...
−1 −1 −1 · · · · · · · · · · · · · · · 1 −1
1 −1 −1 · · · · · · · · · · · · · · · 1 1
...

...
. . .

...
...

...
. . .

...
...

1 1 1 · · · −1 −1 −1 · · · 0 1
1 1 1 · · · 1 −1 −1 · · · 1 0


, (1.3)

with −1 appearing k times on the first row. The size of the matrix Ak is n, which

we sometimes indicate explicitly by writing A
(n)
k for Ak. Also, the Poisson structure

which corresponds to Ak, as in (1.2), is denoted by πk or π
(n)
k . The corresponding

Lotka-Volterra system (1.1) will be denoted by LV(n, k).

Two families of Lotka-Volterra systems LV(n, k) have already been studied from

the point of view of integrability. The first one, which we will refer to as the

Bogoyavlenskij-Itoh case, is when n = 2k + 1. Notice that Ak is then a circulant2

1Recall that a Toeplitz matrix is a matrix in which each descending diagonal from left to right

is constant; when such a matrix is skew-symmetric, it is entirely determined by its first row.
2A circulant matrix of size n is a Toeplitz matrix A satisfying the additional property that

Ai,n = Ai+1,1 for i = 1, . . . n− 1, so that each row is obtained from the previous row by rotating

it by one element to the right.
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matrix and the system has a symmetry of order n, given by permuting the vari-

ables in a cyclic way. In [15], Y. Itoh gives explicit combinatorial formulas for k+ 1

independent first integrals K0,K1, . . . ,Kk of LV(2k + 1, k), where Ki is a homo-

geneous polynomial of degree 2i + 1; in particular, K0 is the linear Hamiltonian

H. An alternative construction of these first integrals was given in [3] by O. Bo-

goyavlenskij, who obtains them as spectral invariants of a Lax operator which he

constructs. Next, Y. Itoh shows in [16] by a beautiful combinatorial argument that

the integrals K0,K1, . . . ,Kk are pairwise in involution (Poisson commute). Since

the rank of the Poisson structure π
(2k+1)
k is 2k, this shows that LV(2k + 1, k) is

integrable in the sense of Liouville, for all k.

More recently, another family of Lotka-Volterra systems came up in the study

of some polynomials (so-called multi-sums of products) which appear as invariants

of a discretization of some integrable equations, such as the modified Korteweg-de

Vries equation. This family consists of all LV(n, 0), i.e., they correspond to the

matrix A0, whose upper-triangular entries are all equal to 1. It was shown in [23]

that these systems have
[
n+1
2

]
independent first integrals which are pairwise in

involution. Again, this shows that LV(n, 0) is integrable in the sense of Liouville,

since the rank of the Poisson structure π
(n)
0 is n when n is even, and n−1 otherwise.

In addition, it is shown in [23] that LV(n, 0) is also superintegrable, i.e., it has n−1

independent (rational) first integrals. This alternative viewpoint of the integrability

of these systems exhibits the integral curves of the Hamiltonian vector field (1.1)

as being confined to tori which are of lower dimension than what is expected from

Liouville integrability. This property has important implications to the dynamics

of the Hamiltonian system.

The starting point of the present paper is the observation that LV(n, 0) is a

reduction of the Bogoyavlenskij-Itoh system LV(2n − 1, n − 1): setting the last

n − 1 variables of the latter system equal to zero, we get a Poisson submanifold

linearly isomorphic to Rn, the restricted Poisson structure is π0 and the Hamiltonian

of LV(2n − 1, n − 1), restricted to the submanifold, is precisely the Hamiltonian

of LV(n, 0). This does not mean that the Liouville integrability of LV(n, 0) is a

consequence of the Liouville integrability of LV(2n − 1, n − 1); on the contrary,

except for the Hamiltonian H = K0 each one of the first integrals Ki becomes

trivial (zero) under the reduction; in particular, the rational integrals of LV(n, 0)

cannot be obtained from the polynomial first integrals of LV(2n − 1, n − 1). The

natural question which arizes is the integrability of the systems that interpolate

between LV(2n− 1, n− 1) and LV(n, 0). In fact, it is easy to see that starting from

LV(2n− 1, n− 1) and setting successively the last surviving variable equal to zero,

one gets the following string of Lotka-Volterra systems:

LV(2n− 1, n− 1)→ LV(2n− 2, n− 2)→ · · · → LV(n+ 1, 1)→ LV(n, 0) ,
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with corresponding Poisson structures πn−1, πn−2, . . . , π1, π0 (in the appropriate

dimensions). In each step, precisely one of the polynomial first integrals becomes

trivial (namely, the one of highest degree), yet we will show that these Lotka-

Volterra systems are Liouville integrable by constructing, at each step, a sufficient

number of independent rational first integrals, which are themselves pairwise in in-

volution, but are also in involution with the (restricted) polynomial first integrals.

But what happens with superintegrability? Non-commutative integrability, which

interpolates between Liouville integrability and superintegrability is the answer!

Quickly stated (see Definition 5.1 below for a precise formulation), a Hamiltonian

system on an n-dimensional Poisson manifold is a non-commutative integrable sys-

tem of rank r if it has n− r independent first integrals, r of which are in involution

with all n− r first integrals (so the Hamiltonian is among them). Clearly, superin-

tegrability corresponds to r = 1; also, Liouville integrability correspond to the case

in which r is half the rank of the Poisson manifold (all n− r first integrals are then

pairwise in involution). For the original definition of non-commutative integrability,

and its application to the study of the Euler equations on Lie algebras, see [21]; for

further developments on non-commutative integrability, in particular the existence

of action-angle variables, see [12, 13, 18].

We can now state the main theorem of this paper. Fix n and k with n > 2k+ 1.

For i = 0, 1, . . . , k let K
(n,k)
i denote the restriction of the polynomial first integral

Ki of LV(2n− 2k− 1, n− k− 1) to LV(n, k). Also, for ` = 1, . . . , n− 2k− 2 denote

by H
(n,k)
` the n − 2k − 2 rational3 first integrals of LV(n − 2k, 0), pulled back to

LV(n, k) (using the Poisson map in Proposition 2.3).

Theorem 1.1. Consider the Lotka-Volterra system LV(n, k), where n > 2k + 1.

(1) It is non-commutative integrable of rank k + 1, with first integrals

H = K
(n,k)
0 ,K

(n,k)
1 . . . ,K

(n,k)
k , H

(n,k)
1 , H

(n,k)
2 , . . . ,H

(n,k)
n−2k−2 . (1.4)

The first k + 1 functions of this list have independent Hamiltonian vector

fields and are in involution with every function of the complete list (1.4).

(2) It is Liouville integrable with first integrals

H = K
(n,k)
0 ,K

(n,k)
1 . . . ,K

(n,k)
k , H

(n,k)
1 , H

(n,k)
2 , . . . ,H

(n,k)
r−1 ,

where r :=
[
n+1
2

]
− k.

As was pointed out by the anonymous referee, the LV(n, k) systems which we

consider here are particular examples of Hamiltonian systems that are obtained

by the method of descent, applied to the Bogoyavlenskij-Itoh systems (see [5]).

It is an interesting open problem to prove the Liouville and/or non-commutative

3The pullback of the Hamiltonian H of LV(n − 2k, 0) is excluded from this list because it is

equal to K
(n,k)
k .
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integrability of the other Lotka-Volterra systems that are obtained in [5] by the

method of descent.

2. Quadratic Poisson structures and Poisson maps

We first introduce the Poisson structures which appear in the Lotka-Volterra

systems which we will construct in the next section. For any k with 0 6 k < n we

define a skew-symmetric Toeplitz matrix A
(n)
k of size n by setting, for 1 6 i < j 6 n,(

A
(n)
k

)
i,j

:= εn+ik+j where εm` :=

{
1 m > ` ,

−1 m 6 ` .
(2.1)

It is fully determined by its first row, which is given by (0, 1, 1, . . . , 1,−1,−1, . . . ,−1),

with −1 appearing k times (at the end). When its size is clear from the context,

we also write Ak for A
(n)
k , and similarly for the entries of this matrix. Using Ak we

consider the quadratic Poisson structure π
(n)
k = πk on Rn, defined by the following

brackets:

{xi, xj}k = (Ak)i,j xixj = εn+ik+jxixj . (2.2)

It is well-known that such quadratic brackets always satisfy the Jacobi identity,

hence they are indeed Poisson brackets (for a quick proof, see [5]). The rank of the

Poisson structures πk is given by the following elementary proposition.

Proposition 2.1. The rank of πk = π
(n)
k is n when n is even and n− 1 when n is

odd. In the latter case,

C := x1x2 . . . xk
xk+1xk+3 . . . xn−k
xk+2xk+4 . . . xn−k−1

xn−k+1 . . . xn−1xn (2.3)

is a Casimir function of πk.

Proof. It is well-known (see e.g. [19, Example 8.14]) that the rank of the quadratic

Poisson structure πk (at a generic point) is equal to the rank of its defining ma-

trix Ak. Let us first show that the rank of Ak is n when n is even. To do this, we

show that the determinant of Ak is 1 modulo 2. This is done by replacing in Ak the

i-th row by the sum (modulo 2) of its i-th and (i+ 1)-th rows, for i = 1, . . . , n− 1;

also, we replace the last row by the sum (modulo 2) of all the other rows of Ak.

The resulting matrix is upper triangular, with all its diagonal entries equal to 1

modulo 2. This proves that when n is even, Ak is of rank n. When n is odd, Ak

cannot be of rank n because Ak is skew-symmetric, but the top left principal minor

of Ak is invertible, since it is of the above form (modulo 2), hence the rank of Ak

is n − 1. To prove that C is a Casimir of πk when n is odd it suffices to show

that {xi, C} = 0 for i = 1, . . . , n, which is easily done by direct computation, using

(2.2). Alternatively, one checks using (2.1) that the following vector

(1, 1, . . . , 1︸ ︷︷ ︸
k

, 1,−1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
n−2k−1

, 1, 1, 1, . . . , 1︸ ︷︷ ︸
k

)
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is a null vector of Ak. �

We show in the following two propositions how the Poisson structures πk are

related.

Proposition 2.2. For ` = 0, . . . , n, consider the inclusion map

ı` : Rn → Rn+1

(x1, x2, . . . , xn) 7→ (x1, x2, . . . , x`, 0, x`+1, x`+2, . . . , xn) .
(2.4)

For any k with 0 6 k 6 n, the linear subspace ı`Rn is a Poisson submanifold

of (Rn+1, πk), and so ı` is a Poisson map, when Rn is equipped with the reduced

Poisson structure:

a) If k < ` 6 n− k, then the reduced Poisson structure (on ı`Rn ' Rn) is πk;

b) If k = 0, then the reduced Poisson structure is π0;

c) If ` = n and k > 0, then the reduced Poisson structure is πk−1.

In each one of these cases, the Hamiltonian system on (Rn+1, πk) defined by a

function H restricts on ı`Rn to a Hamiltonian system, with the restriction of H as

Hamiltonian.

Proof. Recall that a submanifold N of a Poisson manifold (M,Π) is a Poisson

submanifold if all Hamiltonian vector fields of (M,Π) are tangent to N (at points

of N). In our case N is the submanifold of M := Rn+1, defined by y`+1 = 0, where

we denote by y1, . . . , yn+1 the standard coordinates on Rn+1. Let F be a function

on M and consider its Hamiltonian vector field, which is given by XF := {· , F}.
Thanks to the diagonal nature of the brackets π

(n+1)
k , we see that XF [y`+1] =

{y`+1, F} = y`+1G, for some function G on Rn+1, hence the bracket vanishes on N .

So, XF is tangent to N and N is a Poisson submanifold of (M,Π). If we denote by

p` the natural projection of Rn+1 on ı`Rn ' Rn, then for any function F on N an

extension of F to M is given by F̃ := F ◦ p`, and so the reduced Poisson structure

on N is given by the following brackets:

{xi, xj}N := {xi ◦ p`, xj ◦ p`}(n+1)
k ◦ ı` , 1 6 i, j 6 n . (2.5)

Since xi ◦ p` = yi when i 6 ` and xi ◦ p` = yi+1 when ` < i, the right hand side of

(2.5) is given (for i < j) by

εn+i+1
j+k+1xixj , i 6 ` < j ,

εn+i+1
j+k xixj , j 6 ` or ` < i .

In cases a) and b) both formulas amount to εn+ij+kxixj = {xi, xj}k, while they amount

in case c) to εn+ij+k−1xixj = {xi, xj}k−1. �

Notice that, since the reduced Poisson structure belongs again to our class of

Poisson structures, the use of the proposition can be repeated one or several times.



INTEGRABLE REDUCTIONS OF SOME LOTKA-VOLTERRA SYSTEMS 7

For example, as indicated in the introduction, one can by repeated use of c) realize

LV(n, 0) as a Poisson reduction of LV(2n− 1, n− 1).

Proposition 2.3. For any k with 0 < 2k < n, the map defined by

φk : (Rn, πk) → (Rn−2k, π0)
(x1, x2, . . . , xn) 7→ x1x2 . . . xk(xk+1, xk+2, . . . , xn−k)xn−k+1 . . . xn ,

(2.6)

is a Poisson map.

Proof. Let us denote the natural coordinates on Rn−2k by y1, . . . , yn−2k. We need

to show that

{yi, yj}(n−2k)0 ◦ φk = {yi ◦ φk, yj ◦ φk}(n)k (2.7)

for all i, j with 1 6 i < j 6 n − 2k. Let us denote by Pk the product of the

first and last k coordinates of Rn, Pk = x1x2 . . . xkxn−k+1xn−k+2 . . . xn. Then

yi ◦ φk = Pkxi+k, and so the right hand side of (2.7) is given by

{Pkxi+k, Pkxj+k}(n)k = P 2
k {xi+k, xj+k}

(n)
k +xj+kPk {xi+k, Pk}(n)k −xi+kPk {xj+k, Pk}

(n)
k .

The first term in this expression is the left hand side of (2.7), since both are

equal to P 2
kxi+kxj+k (no signs!); the second and third terms are both equal to

zero, because {x`, x1x2 . . . xk}(n)k = −kx`x1x2 . . . xk, and {x`, xn−k+1 . . . xn}(n)k =

kx`xn−k+1 . . . xn, for any ` with k < ` 6 n− k. �

We will also make use of the involution ψ : Rn → Rn, defined by

ψ(x1, x2, . . . , xn) := (xn, . . . , x2, x1) . (2.8)

Clearly it is, for any k with 0 6 k < n, an anti-Poisson map from (Rn, πk) to itself.

3. Definition of the systems LV(n, k) and their first integrals

We now introduce the Lotka-Volterra lattices which will be studied in this

paper. Fix n and k with 0 6 k < n. Let us recall from (2.1) that Ak de-

notes the skew-symmetric n × n Toeplitz matrix, whose first row is given by

(0, 1, 1, . . . , 1,−1,−1, . . . ,−1), with −1 appearing k times. The corresponding

Lotka-Volterra system is given by

ẋi =

n∑
j=1

(Ak)i,jxixj . (3.1)

We will denote this system by LV(n, k). It is a Hamiltonian system, with Hamil-

tonian H := x1 + x2 + · · · + xn and Poisson structure πk. As pointed out in the

introduction, the Liouville and superintegrability of LV(n, 0) have been shown re-

cently by van der Kamp et al., [23] while the Liouville integrability of LV(2k+ 1, k)

has been established by Bogoyavlenskij [4] and Itoh [15, 16]. The systems which
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will be considered here interpolate between these two integrable systems in the fol-

lowing sense. Consider LV(n, k), where n > 2k + 1. On the one hand, setting the

last k coordinates of Rn equal to zero, we arrive at the reduced Hamiltonian system

LV(n−k, 0), which is of the type studied in [23]. On the other hand, LV(n, k) can be

obtained by reduction from the Bogoyavlenskij-Itoh system LV(2n−2k−1, n−k−1)

by setting the last n − 2k − 1 coordinates of R2n−2k−1 equal to zero. In what fol-

lows, it is these systems LV(n, k), with n > 2k + 1, which we will analyze from the

integrable point of view.

For future reference we first give a Lax equation for (3.1). For the special case of

LV(2k+ 1, k) the following Lax equation, with spectral parameter λ, was provided

by Bogoyavlenskij in [3]:

(X + λM)· = [X + λM,B − λMk+1] (3.2)

where for 1 6 i, j 6 2k + 1 the (i, j)-th entry of the matrices X, M and B is

respectively given by

Xi,j := δi,j+kxi , Mi,j := δi+1,j , Bi,j := bi := −δi,j(xi + xi+1 + · · ·+ xi+k) .

(3.3)

In the right hand side of these formulas, all indices are taken modulo 2k + 1 so

that, for example, M2k+1,1 = 1. To check that (3.2) is equivalent to (3.1) (with

n = 2k + 1) it is sufficient to check that (3.1) is equivalent with Ẋ = [X,B] and

(since M is constant) that [M,B]− [X,Mk+1] = 0. For the latter, one finds at once

from (3.3) that

([M,B]− [X,Mk+1])i,j = δi+1,j(bj − bi − xi + xj+k) = 0 .

Also, since B is a diagonal matrix, [X,B]i,j = Xi,j(bj − bi), with non-zero entries

only when j = i− k; for these entries, one has from the Lax equation

ẋi = Ẋi,i−k = [X,B]i,i−k = xi(bi−k − bi) ,

which is the right hand side of (3.1) (recall that n = 2k+ 1). The Lax equation for

the general case (n > 2k + 1) is obtained from this Lax equation by substituting 0

for the last variables.

3.1. The rational first integrals. We will first construct a set of rational first

integrals for LV(n, k), where n > 2k+2. To do this, we will use the map φk, defined

in Proposition 2.3: we construct n−2k−2 rational functions on Rn by pulling back

(using φk) the n−2k−2 independent rational first integrals of LV(n−2k, 0) (except

the Hamiltonian), which were constructed in [23]. We will then show that this yields

n− 2k − 2 independent first integrals of LV(n, k).

We first recall the explicit formulas for the rational first integrals that were in-

troduced in [23]. Setting m := n−2k and r :=
[
m+1
2

]
and denoting the coordinates
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on Rm by y1, . . . , ym, the first set of rational first integrals of LV(n−2k, 0) (roughly

the first half) is given for 1 6 ` 6 r by

F` :=


(y1 + y2 + · · ·+ y2`−1)

y2`+1y2`+3 . . . ym
y2`y2`+2 . . . ym−1

when m is odd,

(y1 + y2 + · · ·+ y2`)
y2`+2y2`+4 . . . ym
y2`+1y2`+3 . . . ym−1

when m is even.

(3.4)

The other rational first integrals are obtained by using the involution ψ (see (2.8)):

set G` := ψ∗F` for 1 6 ` 6 r. It leads to the following m − 1 different (in fact,

functionally independent) functions:

F1 = G1, F2, . . . , Fr−1, G2, . . . , Gr−1, Fr = Gr, when m is odd, (3.5)

F1, . . . , Fr−1, G1, . . . , Gr−1, Fr = Gr, when m is even. (3.6)

We denote the pull-backs via φk of these functions (in that order) by H
(n,k)
1 , H

(n,k)
2 ,

. . . , H
(n,k)
m−1 . In formulas, this means that

H
(n,k)
` := φ∗kH

(n−2k,0)
` , for ` = 1, . . . ,m− 1 , (3.7)

where H
(n−2k,0)
1 , . . . ,H

(n−2k,0)
m−1 stand for the functions in (3.5) or (3.6). In what

follows, we will not consider the last function, to wit H
(n,k)
m−1 = φ∗kFr = φ∗kGr; in fact,

Fr is the Hamiltonian of LV(m, 0), Fr = y1 + . . . , ym, and so φ∗kFr is a polynomial

first integral which we will recover in a different way in the next section, together

with the other polynomial first integrals.

For example, when n is odd, the fact that φ∗kyi = x1x2 . . . xkxi+kxn−k+1 . . . xn−1xn

implies for ` = 1, . . . , r − 1 = n−1
2 − k that

H
(n,k)
` = x1x2 . . . xk (xk+1 + xk+2 + · · ·+ xk+2`−1)

xk+2`+1xk+2`+3 . . . xn−k
xk+2`xk+2`+2 . . . xn−k−1

xn−k+1 . . . xn−1xn ,

= Ĥ
(n,k)
` (xk+1 + xk+2 + · · ·+ xk+2`−1) , (3.8)

where we have introduced in the last line a notation4, which will turn out to be

very useful. The functions H
(n,k)
` and Ĥ

(n,k)
` , with ` = r, . . . , n − 2k − 2 can be

obtained by applying ψ∗ to these functions, because φk and ψ commute.

We will now show that the functions H
(n,k)
` are first integrals of LV(n, k). To do

this, we will use the following lemma:

Lemma 3.1. Let ` = 1, . . . , n− 2k − 2 and let j denote an index which is present

in the sum which appears in H
(n,k)
` (see (3.8)).

(1) If the variable xs appears in xjĤ
(n,k)
` then

{
xs, xjĤ

(n,k)
`

}(n)

k
= 0 ;

(2) If the variable xs does not appear in Ĥ
(n,k)
` then

{
xs, Ĥ

(n,k)
`

}(n)

k
= 0 .

4For n even, Ĥ
(n,k)
` is defined in the same way, to the effect that H

(n,k)
` =

Ĥ
(n,k)
` (xk+1 + xk+2 + · · · + xk+2`) .
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Proof. We give the proof for n odd. Using the involution ψ if necessary, we may

suppose that 1 6 ` 6 n−1
2 − k. Then j satisfies k < j < k + 2`. In order to prove

(1), let us first suppose that 1 6 s 6 k. Then it follows from (2.1) and (2.2) that

{xs, x1x2 . . . xk} = (k − 2s+ 1)xsx1x2 . . . xk ,

{xs, xn−k+1 . . . xn−1xn} = (2s− k − 2)xsxn−k+1 . . . xn−1xn , (3.9)

{xs, xj} = xsxj , and {xs, xt+1/xt} = 0 if t = k + 2`, . . . , n− k − 1 .

It follows from these formulas that
{
xs, xjĤ

(n,k)
`

}
= 0 when 1 6 s 6 k. The proof

for s satisfying n − k + 1 6 s 6 n is essentially the same. When s = j, the above

formulas (3.9) get replaced by

{xs, x1x2 . . . xk} = −kxsx1x2 . . . xk ,

{xs, xn−k+1 . . . xn−1xn} = kxsxn−k+1 . . . xn−1xn , (3.10)

{xs, xj} = 0 , and {xs, xt+1/xt} = 0 if t = k + 2`, . . . , n− k − 1 ,

and one arrives at the same conclusion. Finally, when k + 2` 6 s 6 n − k the

first two formulas and the last formula in (3.10) are still valid, the third one gets

replaced by {xs, xj} = −xsxj , and the last one gets replaced, depending on whether

s is even or odd (in that order) by

{xs, xs+1/xs} = xsxs+1/xs or {xs, xs/xs−1} = x2s/xs−1 .

In either case, it follows again that
{
xs, xjĤ

(n,k)
`

}
= 0. This finishes the proof of

item (1). Item (2) is an immediate consequence of item (1) because if xs does not

appear in Ĥ
(n,k)
` then (still assuming that 1 6 ` 6 n−1

2 + k) k < s < k + 2` and so

0 =
{
xs, xsĤ

(n,k)
`

}
= xs

{
xs, Ĥ

(n,k)
`

}
. �

Proposition 3.2. For any k such that n−2k−2 > 0, the rational functions H
(n,k)
`

with ` = 1, . . . , n− 2k − 2 are first integrals of (3.1).

Proof. Again we give the proof only for m odd. Since (3.1) is the Hamiltonian

vector field associated to H =
∑n
i=1 xi, it suffices to prove that H

(n,k)
` and H are

in involution. This is shown in the following computation, where we use item (1)

of Lemma 3.1 in the second step and item (2) in the fourth step:

{
H

(n,k)
` , H

}
=

{
Ĥ

(n,k)
`

k+2`−1∑
i=k+1

xi,

n∑
i=1

xi

}
=

{
Ĥ

(n,k)
`

k+2`−1∑
i=k+1

xi,

k+2`−1∑
i=k+1

xi

}

=

{
Ĥ

(n,k)
` ,

k+2`−1∑
i=k+1

xi

}
k+2`−1∑
i=k+1

xi = 0 .

�
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3.2. The polynomial first integrals. We will now construct k independent poly-

nomial first integrals for LV(n, k), besides the Hamiltonian H. We do this by using

the polynomial invariants which Bogoyavlenskij constructed for LV(2k+ 1, k) from

the Lax equation (3.2). The characteristic polynomial of X + λM has the form

det(X + λM − µ Id) = λ2k+1 − µ2k+1 +

k∑
i=0

Kiλ
k−iµk−i , (3.11)

where, by homogeneity, each Ki is a homogeneous polynomial (in x1, . . . , x2k+1)

of degree 2i + 1. One has K0 = x1 + x2 + · · · + x2k+1 = H, the Hamiltonian,

and Kk = x1x2 . . . x2k+1, which is a Casimir of LV(2k + 1, k). Being a coefficient

of the characteristic polynomial of the Lax operator X + λM , each one of the Ki

is a first integral of LV(2k + 1, k). In view of Proposition 2.2, the restrictions of

these integrals Ki to LV(2k, k− 1), LV(2k− 1, k− 2), . . . ,LV(k+ 1, 0) lead to first

integrals for these systems, but these restrictions may be trivial (zero). In order to

find simpler formulas for these restrictions and to see when they are zero, we give

a combinatorial description of the polynomials Ki; the description that we give is

a matricial reformulation of Itoh’s original combinatorial description, given in [15].

Fix n and k with 1 < 2k + 1 6 n and consider the matrix Ak := A
(n)
k defined

in (2.1). Fix i ∈ {1, . . . , k} and let m = (m1,m2, . . . ,m2i+1) be an 2i + 1-tuple of

integers, satisfying 1 6 m1 < m2 < · · · < m2i+1 6 n. We view them as indices of

the rows and columns of Ak: we denote by Bm the square submatrix of Ak of size

2i+ 1, corresponding to rows and columns m1,m2, . . . ,m2i+1 of Ak, so that

(Bm)s,t = (Ak)ms,mt
, for s, t = 1, . . . , 2i+ 1 . (3.12)

Let

S
(n,k)
i :=

{
m | Bm = A

(2i+1)
i

}
. (3.13)

As was pointed out by Bogoyavlenskij, the polynomials Ki which appear in the

characteristic polynomial (3.11) can be written as

Ki =
∑

m∈S(2k+1,k)
i

xm1xm2 . . . xmi . . . xm2i+1 . (3.14)

For example, S
(2k+1,k)
0 = {1, 2, . . . , 2k + 1} and S

(2k+1,k)
k = {(1, 2, . . . , 2k + 1)}, so

that K0 = x1 + x2 + · · ·+ x2k+1 and Kk = x1x2 . . . x2k+1, as above.

We use the latter description to give a combinatorial formula for the restrictions

of the integrals Ki, obtained by setting the last few variables equal to zero. Suppose

that we put the last ` 6 k variables x2k−`+2, x2k−`+3, . . . , x2k+1 equal to zero,

which leads us by reduction to LV(2k+ 1− `, k− `). Consider a first integral Ki of

LV(2k+1, k), as defined in (3.14). Since the restriction of Ki to LV(2k+1−`, k−`)
is obtained by replacing the last ` variables x2k−`+2, x2k−`+3, . . . , x2k+1 by 0, the

sum in (3.14) can be restricted to the (2i + 1)-tuplets m = (m1,m2, . . . ,m2i+1),

with m2i+1 6 2k − ` + 1; thus, we can view these integers now as the rows and
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columns of a submatrix of A
(2k+1)
k obtained from it by removing from it its last `

rows and columns, i.e., as the rows and columns of A
(2k−`+1)
k−` . For future reference,

we state this in the following proposition.

Proposition 3.3. Suppose that 1 < 2k + 1 < n. For i = 0, . . . , k the polynomial

K
(n,k)
i , defined by

K
(n,k)
i :=

∑
m∈S(n,k)

i

xm1
xm2

. . . xmi
. . . xm2i+1

(3.15)

is a first integral of LV(n, k).

Notice that K
(n,k)
i is homogeneous and has degree 2i + 1. Notice also that

when i > k the set S
(n,k)
i is empty; said differently, when i > k the restric-

tion of Ki to LV(n, k) is zero. We will see below that the polynomials K
(n,k)
0 =

H,K
(n,k)
1 , . . . ,K

(n,k)
k are actually functionally independent, in particular they are

not trivial.

Since the polynomials K
(n,k)
i are defined in terms of the sets S

(n,k)
i , we need

a characterization of the elements of the latter sets. It is given in the following

proposition.

Proposition 3.4. Suppose that n > 2k + 1 and let m = (m1, . . . ,m2i+1) be a

strictly ordered 2i + 1-tuplet of elements of {1, 2, . . . , n}. Then m ∈ S
(n,k)
i if and

only if the following conditions are satisfied:

(1) mi+s < ms + n− k 6 mi+s+1 for s = 1, . . . , i;

(2) m2i+1 < mi+1 + n− k.

Proof. Suppose that m = (m1, . . . ,m2i+1) with 1 6 m1 < m2 < · · · < m2i+1 6 n.

In view of the definitions (3.12) and (3.13) of Bm and S
(n,k)
i , we have that m ∈ S

(n,k)
i

if and only if(
A

(n)
k

)
ms,mt

=
(
A

(2i+1)
i

)
s,t

, for 1 6 s, t 6 2i+ 1 .

Using (2.1) this condition can be translated into

n+ms > k +mt when i+ 1 + s > t ,

n+ms 6 k +mt when i+ 1 + s 6 t ,

which is equivalent to

n+ms > k +mt when i+ s = t , (3.16)

n+ms 6 k +mt when i+ 1 + s = t . (3.17)

The latter equivalence is a direct consequence of the fact that m is strictly in-

creasing, i.e., ms < mt when s < t. The conditions (3.16) and (3.17) yield for

s = 1, . . . , i precisely item (1), while item (2) is obtained by taking s = i + 1 in
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(3.16), which is the only remaining possible value for s in (3.16) and (3.17) such

that 1 6 i, j 6 2i+ 1. �

We list a few properties of the elements m of S
(n,k)
i which are direct consequences

of Proposition 3.4.

Corollary 3.5. Let n and k be integers with n > 2k + 1. Suppose that m =

(m1,m2, . . . ,m2i+1) ∈ S
(n,k)
i and denote by m′ the vector m with its middle entry

mi+1 replaced by m′i+1.

(1) mi 6 k;

(2) mi+2 > n− k > k + 1;

(3) m′ ∈ S
(n,k)
i if and only if m2i+1 − n+ k < m′i+1 < m1 + n− k;

(4) m′ ∈ S
(n,k)
i when k < m′i+1 < n− k + 1.

Proof. If we take s := i in Proposition (3.4) (1), we find mi 6 m2i+1 − n+ k 6 k,

which is item (1). The first part of item (2) is obtained similarly by taking s := 1 in

the same inequality; the second part of item (2) follows from n > 2k+ 1. When we

replace mi+1 by m′i+1 the only inequalities in Proposition (3.4) which get affected

are (1) with s := 1 and (2); they become precisely the two inequalities in item (3).

If k < m′i+1 < n− k+ 1 then m2i+1 − n+ k < m′i+1 < m1 + n− k, so item (4) is a

consequence of item (3). �

One more property of the elements m of S
(n,k)
i is given in the following example.

Example 3.6. Let n > 2k + 1 and suppose that m = (m1,m2, . . . ,m2i+1) ∈ S
(n,k)
i

with m2i+1 < n. Then from the conditions given in Proposition 3.4 it easily follows

that m′ = (m1 + 1,m2 + 1, . . . ,m2i+1 + 1) also belongs to S
(n,k)
i . In the case

n = 2k + 1, if m = (m1,m2, . . . ,m2i+1) ∈ S
(n,k)
i with m2i+1 = n then m′ :=

(m′1,m
′
2, . . . ,m

′
2i+1) = (1,m1 + 1,m2 + 1, . . . ,m2i + 1) belongs to S

(n,k)
i . Indeed

the only condition needed to be checked is the m′i+1 < m′1 + n − k 6 m′i+2 which

translates to mi < k + 1 6 mi+1. This follows from Corollary 3.5 (items (1) and

(4)). This shows that the cyclic group of n elements acting on Rn by permuting

the variables, leaves the first integrals K
(2k+1,k)
i invariant.

4. Independence of the first integrals

We have constructed in the previous section n− k− 1 (polynomial and rational)

first integrals for LV(n, k), where n > 2k + 1. We prove now the following result,

concerning the independence of these first integrals.

Proposition 4.1. The n−k−1 first integrals H
(n,k)
1 , . . . ,H

(n,k)
n−k−2, K

(n,k)
0 , K

(n,k)
1 ,

. . . , K
(n,k)
k of LV(n, k) are functionally independent.
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The proof of this proposition is quite long and technical; it will take up this

whole section and can be skipped on a first reading, as the rest of the paper only

depends on the statement of the above proposition, and not on its proof.

We only need to show that the differentials of the above first integrals are in-

dependent at some point of Rn: since these functions are polynomial or rational,

their differentials will then be independent on an open dense subset of Rn, proving

their functional independence. To do this, we show that the Jacobian matrix of

these first integrals with respect to the n− k variables x1, . . . , xn−k is of maximal

rank (n− k− 1) at the point 1 = (1, 1, . . . , 1) of Rn. More precisely, we show that

there exist constants p` and qi (with ` = 1, 2, . . . , n − 2k − 2 and i = 1, 2, . . . , k)

such that the Jacobian matrix at 1 of the following functions (which are the above

first integrals, shifted by a multiple of the Hamiltonian H = K
(n,k)
0 ),

H
(n,k)
` − p`H for ` = 1, 2, . . . , n− 2k − 2 ,

H = K
(n,k)
0 , (4.1)

K
(n,k)
i − qiH for i = 1, 2, . . . , k ,

has the following form 0n−2k−2,k Φn−2k−2,n−2k
11,k 11,n−2k
Λk,k 0k,n−2k

 , (4.2)

and is of maximal rank; in this block matrix, the subscripts denote the dimension

of the different blocks. Also, the matrices 1 and 0 have all entries equal to 1,

respectively to 0.

We first prove the existence of the constants p` and qi. When n is odd, it follows

from (3.8) that

∂H
(n,k)
`

∂xj
(1) = 2`− 1 , for j = 1, . . . , k , (4.3)

and so, since ∂H
∂xj

= 1, it suffices to define p` := 2`− 1 for ` = 1, 2, . . . , n− 2k− 2 to

obtain the upper left block of zeroes in (4.2). Similarly, when n is even, p` := 2` does

the job. Also, it follows from (4) in Corollary 3.5 that the number of monomials in

K
(n,k)
i containing xj does not depend on j when k < j < n− k + 1; their number

is the number qi needed to obtain the lower right block of zeroes in (4.2) since all

these monomials have a coefficient 1, and so
∂K

(n,k)
i

∂xj
= qi.

It remains to be shown that the matrix (4.2) has maximal rank. It is shown

in [23] that the Jacobian matrix

∂(H
(n−2k,0)
1 , . . . ,H

(n−2k,0)
n−2k−1 )

∂(y1, y2, . . . , yn−2k)
(1)
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is of full rank (n− 2k − 1). Since H
(n,k)
` = H

(n−2k,0)
` ◦ φk, we have

∂H
(n,k)
`

∂xj
(1) =

∂H
(n−2k,0)
`

∂yj−k
(1) , for j = k + 1, . . . , n− k ,

and so the rank of the Jacobian matrix

∂(H
(n,k)
1 , . . . ,H

(n,k)
n−2k−1)

∂(xk+1, xk+2, . . . , xn−k)
(1) (4.4)

is also maximal. Now Φn−2k−2,n−2k is given by

Φn−2k−2,n−2k =
∂(H

(n,k)
1 − p1H, . . . ,H(n,k)

n−2k−2 − pn−2k−2H)

∂(xk+1, xk+2, . . . , xn−k)
(1) ,

and all entries below it (in (4.2)) are equal to 1. It follows that the matrices (4.4)

and

(
Φn−2k−2,n−2k

11,n−2k

)
coincide, up to some row operations; in particular, they have

maximal rank.

We still need to show that Λk,k also has maximal rank. For the proof, we need

several notations and relations which are of combinatorial nature. We first introduce

the notation that we will use. First, we denote by K or K(n,k) the Jacobian matrix

K(n,k) :=
∂(K

(n,k)
1 , . . . ,K

(n,k)
k )

∂(x1, . . . , xk)
(1) , so that K

(n,k)
i,j =

∂K
(n,k)
i

∂xj
(1) . (4.5)

For m = (m1,m2, . . . ,m2i+1) we denote by m̂ the vector m with its middle element

removed,

m̂ = (m1,m2, . . . ,mi,mi+2, . . . ,m2i+1) .

We deduce from the definition (3.13) of S
(n,k)
i three related sets

S
(n,k)
i,j :=

{
m ∈ S

(n,k)
i | j ∈ {m1, . . . ,mi+1}

}
,

Ŝ
(n,k)
i :=

{
m̂ | m ∈ S

(n,k)
i

}
, Ŝ

(n,k)
i,j :=

{
m̂ ∈ Ŝ

(n,k)
i | j ∈ {m1, . . . ,mi}

}
,

where j = 1, . . . , k. Finally, we put

σ
(k)
i,j := #Ŝ

(2k+1,k)
i,j . (4.6)

In the following proposition we relate the entries of the matrix Λk,k with those of K

and with the numbers σ
(k)
i,j for which we give a formula; combining these relations,

we will prove that Λk,k is of maximal rank.

Proposition 4.2. Let n, k be such that n > 2k + 1 and let i, j ∈ {1, 2, . . . , k}.

(1) The entries of K are given by

K
(n,k)
i,j = #S

(n,k)
i,j ;

(2) The entries of Λk,k and of K are related by

(Λk,k)i,j = K
(n,k)
i,j − qi ;

(3) The assignment m 7→ m′, where m′s := ms for s = 1, . . . , i + 1 and m′s :=

ms + 1 for s = i+ 2, . . . , 2i+ 1 defines a map ρ : S
(n−1,k)
i → S

(n,k)
i ;
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(4) The map ρ induces bijections ρ̂ : Ŝ
(n−1,k)
i → Ŝ

(n,k)
i and ρ̂j : Ŝ

(n−1,k)
i,j → Ŝ

(n,k)
i,j

for j = 1, . . . , k. In particular,

#Ŝ
(n,k)
i,j = σ

(k)
i,j for all n > 2k + 1 ;

(5) The entries of K and the numbers σ
(k)
i,j are related by

K
(n,k)
i,j −K

(n−1,k)
i,j = σ

(k)
i,j ;

(6) For j < k,

σ
(k)
i,j − σ

(k)
i,j+1 =

1

(2i− 2)!

i−2∏
s=1−i

(2j − k + s) , (4.7)

where the right hand side is, by definition, equal to 1 when i = 1.

Proof. From the definition (3.15) of K
(n,k)
i , combined with (4.5), we find that

K
(n,k)
i,j = #

{
m ∈ S

(n,k)
i | j ∈ {m1,m2, . . . ,m2i+1}

}
.

In order to derive (1) from it suffices to use the inequalities j 6 k < mi+2 (see

item (2) in Corollary 3.5 for the second inequality). In view of (4.1) and (4.2), the

matrix Λk,k is by definition given by

Λk,k =
∂(K

(n,k)
1 − q1H, . . . ,K(n,k)

k − qkH)

∂(x1, x2, . . . , xk)
(1) ,

from which item (2) follows. In order to prove item (3), we need to show that when

m satisfies the two conditions of Proposition (3.4), then m′, as defined in item (3),

also verifies them (with n replaced by n + 1). In these conditions, every term is

augmented by 1, proving their validity, except for condition (1) with i = 1, where

one has to check that mi+1 < m1 + n− 1− k implies that mi+1 < m1 + n− k, but

this is trivial. This proves (3).

Since the map m 7→ m̂ amounts to removing the middle entry of its argu-

ment and since, by definition, Ŝ
(n,k)
i is the image of this map, ρ induces a map

ρ̂ : Ŝ
(n−1,k)
i → Ŝ

(n,k)
i , which is by construction injective; explicitly it is given by

(m1, . . . ,mi,mi+2, . . . ,m2i+1) 7→ (m1, . . . ,mi,mi+2 + 1, . . . ,m2i+1 + 1). To show

that ρ̂ is surjective, choose as representative m′ for a given m̂′ ∈ Ŝ
(n,k)
i the one

for which m′i+1 = k + 1; this yields indeed an element m′ of S
(n,k)
i , according to

item (4) in Corollary 3.5. Thanks to this choice, m′ = ρ(m) with m ∈ S
(n−1,k)
i ,

by the same use of Proposition (3.4) as above: the exceptional case of (1) with

i = 1 now amounts to checking that mi+1 = k + 1 < m1 + n − 1 − k, which is

fine since 2k + 1 < n. Then ρ̂(m̂) = m̂′, so that ρ̂ is surjective, hence bijective.

For future reference, notice that if one can pick a representative m′ in S
(n−1,k)
i for

m̂′ with m′i+1 < k + 1, then this representative is also in the image of ρ. If, in

the bijection ρ̂, j appears as one of the (first i) indices of m, the same will be true
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for m′, and vice versa. Therefore, ρ̂j is also bijective, for j = 1, . . . , i. From it and

from the definition (4.6) of σ
(k)
i,j , we get

σ
(k)
i,j = #Ŝ

(2k+1,k)
i,j = #Ŝ

(n,k)
i,j , for all n > 2k + 1 .

This proves the different claims in (4). We next prove (5). In view of items (1)

and (4) we need to show that

#S
(n,k)
i,j = #S

(n−1,k)
i,j + #Ŝ

(n−1,k)
i,j . (4.8)

Let us denote for all n > 2k+ 1 and for j = 1, . . . , k by S
(n,k)
i,j=mi+1

and S
(n,k)
i,j<mi+1

the

subsets of S
(n,k)
i,j consisting of those m for which j = mi+1, respectively for which

j < mi+1. In view of item (2) in Corollary 3.5 these subsets form a partition of

S
(n,k)
i,j . We will show that

#S
(n,k)
i,j=mi+1

= #S
(n−1,k)
i,j=mi+1

and #S
(n,k)
i,j<mi+1

= #S
(n−1,k)
i,j<mi+1

+ #Ŝ
(n−1,k)
i,j , (4.9)

which proves (4.8). First, let us consider the restriction of the injective map ρ to

S
(n−1,k)
i,j=mi+1

. Its image is contained in S
(n,k)
i,j=mi+1

; in fact, its image consists of all of

S
(n,k)
i,j=mi+1

since, as we pointed out in the proof of item (4), any element m′ ∈ S
(n,k)
i ,

with m′i+1 6 k belongs to the image of ρ. This proves the first equality in (4.9).

For the second equality, consider the following diagram:

S
(n−1,k)
i,j<mi+1

ρ //

τn−1

��

S
(n,k)
i,j<mi+1

τn

��
Ŝ
(n−1,k)
i,j

ρ̂j

'
// Ŝ(n,k)i,j

The maps τn in it are defined by m 7→ m̂. Clearly this diagram is commutative.

The lower line is a bijection in view of (4) and the upper line is injective. We claim

that for every element m̂ of Ŝ
(n−1,k)
i,j ,

1 + #τ−1n−1 {m̂} = #τ−1n {ρ̂j(m̂)} . (4.10)

Indeed, according to Corollary 3.5 (3) and (4), given m̂ ∈ Ŝ
(n−1,k)
i,j the m such that

τn−1(m) = m̂ are precisely those for which mi+1 satisfies the inequalities mi+1 <

m1+n−1−k and m2i+1 < mi+1+n−1−k, so there are 2(n−1−k)+m1−m2i+1−1

of them. Therefore

#τ−1n−1 {m̂} = 2(n− 1− k) +m1 −m2i+1 − 1 = 2(n− k) +m1 −m2i+1 − 3 ,

#τ−1n {ρ̂j(m̂)} = 2(n− k) +m1 −m′2i+1 − 1 = 2(n− k) +m1 −m2i+1 − 2 .

This proves (4.10). From it, the second equality in (4.9) is clear, because ρ is

injective and the maps τn are surjections.

The proof of item (6) will be given at the end of the section. �

We now show our main claim, to wit that the matrix Λk,k is of maximal rank.

We do this by analyzing the structure of this matrix. As before, k and n are fixed
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and n > 2k+1. Consider the integers σ
(k)
i,j , which we view as the entries of a matrix

(of size k × k). For fixed i, the right hand side of (4.7) is zero for i− 1 consecutive

integer values of j, namely for
[
k−i+3

2

]
6 j 6

[
k+i−1

2

]
and it is positive for all other

integer values of j, because for such values of j, either all factors are negative or all

factors are positive, and the number of factors is 2i − 2, hence even. This means

that the integers σ
(k)
i,j verify the following properties: for all i ∈ {1, 2, . . . , k} and

j ∈ {1, 2, . . . , k − 1}

σ
(k)
i,j > σ

(k)
i,j+1 with equality iff

[
k − i+ 3

2

]
6 j <

[
k + i+ 1

2

]
.

The entries of K(n,k) enjoy the same property: in view of items (4) and (5) of

Proposition (4.2), K
(n,k)
i,j −K

(2k+1,k)
i,j = (n−2k−1)σ

(k)
i,j ; also K

(2k+1,k)
i,j is independent

of j (see example 3.6), so that

K
(n,k)
i,j > K

(n,k)
i,j+1 with equality iff

[
k − i+ 3

2

]
6 j <

[
k + i+ 1

2

]
.

In fact, according to item (2) of Proposition (4.2), the entries of Λ = Λk,k also enjoy

the same property, since the cited item says that the lines of K(n,k) and Λ are the

same, up to an additive constant. So the matrix Λ has the following structure:

Λi,j > Λi,j+1 with equality iff

[
k − i+ 3

2

]
6 j <

[
k + i+ 1

2

]
.

It follows that Λ is of maximal rank. Indeed, the above property says that the

entries of the i-th row are decreasing in j with exactly i elements (in the middle)

equal. Furthermore if the elements Λi,j1 , . . . ,Λi,ji of the i-th row are also equal,

then the elements Λi+1,j1 , . . . ,Λi+1,ji , of the i+ 1-th row are equal. Subtracting a

suitable multiple of the last line (whose elements are all equal, and different from

zero) from line i we can make the i equal elements of line i zero. Doing this for

i = 1, . . . , k − 1 and rearranging the columns, we obtain a lower triangular matrix

with non-zero diagonal elements. This shows that Λ is of maximal rank, and hence

terminates — modulo the proof of item (6) in Proposition 4.2 — the proof of

Proposition 4.1.

In order to prove item (6) of Proposition 4.2 we need two recurrence relations

for σ
(k)
i,j which we prove in the next lemma.

Lemma 4.3. Let k > i > 2 and k > j > 2. Then

(1) σ
(k)
i,1 = σ

(k−1)
i−1,1 + 2σ

(k−2)
i−1,1 + . . .+ (k − i+ 1)σ

(i−1)
i−1,1

(2) σ
(k)
i,j = σ

(k−1)
i,j−1 + σ

(k−1)
i−1,j−1 + σ

(k−2)
i−1,j−2 + . . .+ σ

(k−j+1)
i−1,1 .

Proof. Using item (1) of Proposition 3.4 we deduce that for any 1 6 m′1 < m′2 <

. . . < m′i 6 k such that j ∈ {m′1, . . . ,m′i} and any n > 2k + 1 we have

#{m̂ ∈ Ŝ
(n,k)
i,j : m` = m′` for ` = 1, 2, . . . , i} = (m′2−m′1)(m′3−m′2) · · · (k+ 1−m′i).
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Therefore

#Ŝ
(n,k)
i,j =

∑
16m1<m2<...<mi6k
j∈{m1,m2,...,mi}

(m2 −m1)(m3 −m2) · · · (k + 1−mi). (4.11)

From this formula we see that #Ŝ
(n,k)
i,j is independent of n, which also follows from

item (4) of Proposition 4.2. Therefore the choice n = 2k + 1 is reasonable. Since

for m̂ ∈ Ŝ
(2k+1,k)
i,1 we have that m1 = 1, it follows

#{m ∈ Ŝ
(2k+1,k)
i,1 : mi = `} = (k + 1− `)σ(`−1)

i−1,1

for all i 6 ` 6 k. Partitioning the set Ŝ
(2k+1,k)
i,1 as

Ŝ
(2k+1,k)
i,1 = ∪k`=i{m ∈ Ŝ

(2k+1,k)
i,1 : mi = `}

we get the proof of item (1).

For the proof of item (2) first note that there is a correspondence between the

sets

{(m1,m2, . . . ,mi) : 2 6 m1 < m2 < . . . < mi 6 k and j ∈ {m1,m2, . . . ,mi}}

and

{(m1,m2, . . . ,mi) : 1 6 m1 < m2 < . . . < mi 6 k−1 and j−1 ∈ {m1,m2, . . . ,mi}}.

The correspondence is given by the function

(m1,m2, . . . ,mi) 7→ (m1 − 1,m2 − 1, . . . ,mi − 1).

Using the formula (4.11) we get that #{m̂ ∈ Ŝ
(2k+1,k)
i,j : m1 6= 1} = σ

(k−1)
i,j−1 . Now we

analyze the case m1 = 1. For any ` ∈ {2, 3, . . . , j}, formula (4.11) gives

#{m ∈ Ŝ
(2k+1,k)
i,j : m1 = 1,m2 = `} =

(`− 1)
∑

`<m3<...<mi6k
j∈{`,m3,...,mi}

(m3 − `)(m4 −m3) · · · (k + 1−mi)

and therefore

#{m ∈ Ŝ
(2k+1,k)
i,j : m1 = 1} =

j∑
`=2

(`− 1)
∑

`<m3<...<mi6k
j∈{`,m3,...,mi}

(m3 − `)(m4 −m3) · · ·(k + 1−mi).
(4.12)

This is because m2 can only take the values 2, 3, . . . , j. In a similar manner as in

the case m1 6= 1, for 2 6 j′ 6 j we have

j∑
`=j′

∑
`<m3<...<mi6k
j∈{`,m3,...,mi}

(m3 − `)(m4 −m3) · · · (k + 1−mi) =

j−j′+1∑
`=1

∑
`<m3<...<mi6k−j′+1
j−j′+1∈{`,m3,...,mi}

(m3 − `)(m4 −m3) · · · (k − j′ + 2−mi)
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which is exactly σ
(k−j′+1)
i−1,j−j′+1. This is because the first entry of any vector in

Ŝ
(2k−2j′+3,k−j′+1)
i−1,j−j′+1 can only take the values m1 = 1, 2, . . . , j − j′ + 1. Combining

with formula (4.12) and the case m1 6= 1, we get item (2).

�

Before giving the general proof of item (6) of Proposition 4.2. we will prove it

for the special cases i = 1 and i = k. We do this in the following example.

Example 4.4. For the case i = 1 we easily get (see for example (4.11) or Proposition

3.4)

σ
(k)
1,j = k − j + 1, j = 1, 2, . . . , k.

Therefore σ
(k)
1,j − σ

(k)
1,j+1 = 1. For the case i = k, we already pointed out that the

set Ŝ
(2k+1,k)
k has exactly one element, namely Ŝ

(2k+1,k)
k = {(1, 2, . . . , k, k + 2, k +

3, . . . , 2k + 1)}. It follows that σ
(k)
k,j = 1, j = 1, 2, . . . , k, and the sequence σ

(k)
k,j is

constant.

Proof of item (6) of Proposition 4.2. First we prove (using induction on k) that

σ
(k)
i,1 =

(
k + i− 1

2i− 1

)
, for all 1 6 i 6 k. (4.13)

For i = 1 this formula says that σ
(k)
1,1 = k, which is included in the Example 4.4.

Assuming that σ
(k′)
i,1 =

(
k′+i−1
2i−1

)
for all 1 6 k′ < k and all i 6 k′, then using the

recurrence relation of item (1) of Lemma 4.3 we get

σ
(k)
i,1 =

(
k + i− 3

2i− 3

)
+ 2

(
k + i− 4

2i− 3

)
+ · · ·+ (k − i+ 1)

(
2i− 3

2i− 3

)
=

(
k + i− 1

2i− 1

)
.

For our proof we will also use induction. For k = 1 and k = 2 the proof is in

the Example 4.4. We suppose k > 2 and we consider the case 2j − k + i − 2 > 0

(the case 2j − k + i − 2 < 0 being the same). In this case we will show that

σ
(k)
i,j − σ

(k)
i,j+1 =

(
2j−k+i−2

2i−2
)

(in the case 2j − k + i − 2 < 0 we have to show that

σ
(k)
i,j − σ

(k)
i,j+1 =

(−2j+k+i−1
2i−2

)
). Assuming the truth of this formula for k′ < k, then

using the recurrence relation of item (2) of Lemma 4.3 we get

σ
(k)
i,j − σ

(k)
i,j+1 = σ

(k−1)
i,j−1 − σ

(k−1)
i,j +

j−1∑
`=1

(σ
(k−j+`)
i−1,` − σ(k−j+`)

i−1,`+1 )− σ(k−j)
i−1,1 =

(
2j − k + i− 3

2i− 2

)
+

j−1∑
`=1

(
`− k + j + i− 3

2i− 4

)
−
(
k − j + i− 2

2i− 3

)
=(

2j − k + i− 3

2i− 2

)
+

(
2j − k + i− 3

2i− 3

)
−
(
−k + j + i− 2

2i− 3

)
−
(
k − j + i− 2

2i− 3

)
=(

2j − k + i− 2

2i− 2

)
which follows from the formulas(

2j − k + i− 3

2i− 2

)
+

(
2j − k + i− 3

2i− 3

)
=

(
2j − k + i− 2

2i− 2

)
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and (
−k + j + i− 2

2i− 3

)
=

(
k − j + i− 2

2i− 3

)
.

�

5. Non-commutative and Liouville integrability

In this section, we use the results of the previous section to prove our main

result, Theorem 1.1, which states that the Lotka-Volterra systems LV(n, k) (with

n > 2k+ 1) are Liouville integrable as well as non-commutative integrable (of rank

k + 1). First, let us recall the following definition (see [21, 18]).

Definition 5.1. Let (M,Π) be a Poisson manifold of dimension n. Let F =

(f1, . . . , fs) be an s-tuple of functions on M , where 2s > n and set r := n − s.
Suppose the following:

(1) The functions f1, . . . , fr are in involution with the functions f1, . . . , fs:

{fi, fj} = 0, (1 6 i 6 r and 1 6 j 6 s) ;

(2) For m in a dense open subset of M :

df1(m) ∧ · · · ∧ dfs(m) 6= 0 and Xf1 |m ∧ · · · ∧ Xfr |m 6= 0 .

Then the triplet (M,Π,F) is called a non-commutative integrable system of rank r.

The classical case of a Liouville integrable system corresponds to the particular

case where r is half the (maximal) rank of Π; this implies that all the functions

f1, . . . , fs are pairwise in involution. The case of a superintegrable system corre-

sponds to r = 1; in the latter case, the Poisson structure does not play any role.

We first consider the non-commutative integrability (of rank k + 1) of LV(n, k)

(with n > 2k + 1). The n − k − 1 first integrals which we consider are H =

K
(n,k)
0 ,K

(n,k)
1 , . . . ,K

(n,k)
k (see Subsection 3.2) and H

(n,k)
1 , H

(n,k)
2 , . . . ,H

(n,k)
n−2k−2 (see

Subsection 3.1). We know already from the previous sections that all functions are

first integrals of LV(n, k). Notice that when n is odd, H
(n,k)
1 is just the Casimir

function C (see (2.3)). It was shown by Itoh (see [16]) that the functions Ki are

in involution, hence the functions K
(n,k)
i are also in involution, being restrictions

to a Poisson submanifold. We show in the following proposition that the functions

K
(n,k)
i are in involution with the functions H

(n,k)
` .

Proposition 5.2. For ` = 1, . . . , n − 2k − 2 and for i = 1, . . . , k the functions

K
(n,k)
i and H

(n,k)
` are in involution.

Proof. We give the proof for n odd and we write {· , ·} for {· , ·}(n)k . By using the

involution ψ, if necessary, we may assume that 1 6 ` 6 n−1
2 + k. Suppose that

X is a polynomial in x1, . . . , xn of the form X = (L + L′)Y , where L and L′
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are linear, Y and L′ are independent of the variables xk+1, . . . , xn−k and L is the

sum of these variables. We will show that
{
H

(n,k)
` , X

}
= 0; since by items (3)

and (4) of Corollary 3.5, K
(n,k)
i is a (finite) sum of terms of this form, it follows

that
{
H

(n,k)
` ,K

(n,k)
i

}
= 0, which was to be shown. First, since every variable

which appears in L′ or Y also appears in each term of H
(n,k)
` (in fact it appears in

Ĥ
(n,k)
` ), we know by item (1) in Lemma 3.1 that

{
H

(n,k)
` , L′Y

}
= 0. It remains

to be shown that
{
H

(n,k)
` , LY

}
= 0, where we recall that L = xk+1 + · · · + xn−k.

Using again item (1) of Lemma 3.1 in the two first equalities that follow, and item

(2) of the same lemma in the fourth equality, we get{
H

(n,k)
` , Y

n−k∑
s=k+1

xs

}
= Y

{
H

(n,k)
` ,

n−k∑
s=k+1

xs

}
= Y

{
H

(n,k)
` ,

n+2`−1∑
s=k+1

xs

}

= Y

n+2`−1∑
j,s=k+1

{
xjĤ

(n,k)
` , xs

}
= Y Ĥ

(n,k)
`

n+2`−1∑
j,s=k+1

{xj , xs} .

The latter sum is zero because of skew-symmetry of the Poisson bracket. �

To finish the proof of non-commutative integrability, it remains to be shown that

the Hamiltonian vector fields, associated to the k+1 first integralsK
(n,k)
0 , . . . ,K

(n,k)
k

are independent on an open dense subset on Rn. When n is even, the Poisson

structure is symplectic, and so this follows from the functional independence of

K
(n,k)
0 , . . . ,K

(n,k)
k . When n is odd, the Poisson structure is of rank n − 1 and a

Casimir is given by the rational function H
(n,k)
1 , and so the functional independence

of H
(n,k)
1 ,K

(n,k)
0 ,K

(n,k)
1 . . . ,K

(n,k)
k leads to the same conclusion.

Let us now consider Liouville integrability. We know from [23] that the functions

F1, . . . , Fr−1 are in involution, with r :=
[
n+1
2

]
− k. According to Proposition 2.3,

φk is a Poisson map, and so the pullbacks H
(n,k)
1 , . . . ,H

(n,k)
r−1 are also pairwise in

involution. The upshot is that the
[
n+1
2

]
independent functions H

(n,k)
1 , . . . ,H

(n,k)
r−1 ,

K
(n,k)
0 , . . . ,K

(n,k)
k are in involution. Since π

(n)
k is of rank n when n is even and of

rank n − 1 when n is odd, this proves Liouville integrability. Notice that, rather

than using the functions F1, . . . , Fr−1, one can also use the functions G1, . . . , Gr−1,

because they are also in involution (since ψ is an anti-Poisson map).

This finishes the proof of Theorem 1.1.
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[3] O. I. Bogoyavlenskĭı. Some constructions of integrable dynamical systems. Izv. Akad. Nauk
SSSR Ser. Mat., 51(4):737–766, 910, 1987.



INTEGRABLE REDUCTIONS OF SOME LOTKA-VOLTERRA SYSTEMS 23

[4] O. I. Bogoyavlenskij. Integrable Lotka-Volterra systems. Regul. Chaotic Dyn., 13(6):543–556,

2008.

[5] O. Bogoyavlensky. Method of descent for integrable lattices. J. Math. Phys., 50(5):053517,
11, 2009.

[6] T. Bountis and P. Vanhaecke. Lotka-Volterra systems satisfying a strong Painlevé property.
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