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Abstract. We construct a large family of Hamiltonian systems which interpolate between
the classical Kostant-Toda lattice and the full Kostant-Toda lattice and we discuss their
integrability. There is one such system for every nilpotent ideal I in a Borel subalgebra b+ of
an arbitrary simple Lie algebra g. The classical Kostant-Toda lattice corresponds to the case
of I = [n+, n+], where n+ is the unipotent ideal of b+, while the full Kostant-Toda lattice
corresponds to I = {0}. We mainly focus on the case I = [[n+, n+] , n+]. In this case, using
the theory of root systems of simple Lie algebras, we compute the rank of the underlying
Poisson manifolds and we construct a set of (rational) functions in involution, large enough
to ensure Liouville integrability. These functions are restrictions of well-chosen integrals of
the full Kostant-Toda lattice, except for the case of the Lie algebras of type C and D where a
different function (Casimir) is needed. The latter fact, and other ones listed in the paper, point
at the Liouville integrability of all the systems we construct, but also at the non-triviality of
obtaining the result in full generality.

Dedicated to Valery V. Kozlov on the occasion of his 65th birthday.

1. Introduction

This paper has overlap with [6] which appeared in the Proceedings of the fifth International
Workshop on Group Analysis of Differential Equations and Integrable Systems in Protaras,
Cyprus. In [6] we announced a list of results without proofs and we promised that the proofs
will appear in a future publication. We chose to present it in this special issue of RCD in
honor of Valery Kozlov on the occasion of this 65th birthday. The choice is quite appropriate.
In fact we discovered these systems in an effort to find Lax pairs in the context of real and
complex Lie algebras of the so called Kozlov-Treshchev potentials which were classified in [12].
This paper is therefore an expanded version of [6] with the inclusion of complete proofs of
all results announced in [6]. The main purpose of this paper is to define the new systems,
give their connection with simple Lie algebras and some of their basic properties. We will not
attempt to prove the Liouville integrability of these systems in full generality.

We begin with a short overview of the various Toda type systems relevant to our construc-
tion. The classical Toda lattice is the mechanical system with Hamiltonian function

H(q1, . . . , qN , p1, . . . , pN ) =
N∑
i=1

1

2
p2
i +

N−1∑
i=1

eqi−qi+1 .

It describes a system of N particles on a line, connected by exponential springs. The differ-
ential equations which govern this lattice can be transformed via a change of variables due to
Flaschka [10] to a Lax equation L̇ = [L+, L], where L is the Jacobi matrix
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L =



b1 a1 0 · · · · · · 0

a1 b2 a2 · · ·
...

0 a2 b3
. . .

...
. . .

. . .
...

...
. . .

. . . aN−1

0 · · · · · · aN−1 bN


, (1)

and L+ is the skew-symmetric part of L in the Lie algebra decomposition lower triangular plus
skew-symmetric. Lax equations define isospectral deformations; though the entries of L vary
over time, the eigenvalues of L remain constant. It follows that the functions Hi = 1

i TraceLi

are constants of motion. Moreover, they are in involution with respect to a Poisson structure,
associated to the above Lie algebra decomposition.

There is a generalization due to Deift, Li, Nanda and Tomei [5] who showed that the system
remains integrable when L is replaced by a full symmetric N×N matrix. The resulting system
is called the full symmetric Toda lattice. The functions Hi := 1

i TraceLi are still in involution
but they are not enough to ensure integrability. It was shown in [5] that there are additional
integrals, called chop integrals, which are rational functions of the entries of L. They are

constructed as follows. For k = 0, . . . , [ (N−1)
2 ], denote by (L− λ IdN )k the result of removing

the first k rows and the last k columns from L− λ IdN , and let

det(L− λ IdN )k = E0kλ
N−2k + · · ·+ EN−2k,k . (2)

Set
det (L− λ IdN )k

E0k
= λN−2k + I1kλ

N−2k−1 + · · ·+ IN−2k,k . (3)

The functions Irk, where r = 1, . . . , N − 2k and k = 0, . . . , [N−1
2 ], are independent constants

of motion, they are in involution and sufficient to account for the integrability of the full Toda
lattice.

The classical Toda lattice was generalized in another direction. One can define a Toda type
system for each simple Lie algebra. The finite, non–periodic Toda lattice corresponds to a
root system of type A`. This generalization is due to Bogoyavlensky [3]. These systems were
studied extensively in [11] where the solution of the system was connected intimately with the
representation theory of simple Lie groups. See also Olshanetsky-Perelomov [13] and Adler-
van Moerbeke [1]. We will call these systems the Bogoyavlensky-Toda lattices. They can be
described as follows.

Let g be any simple Lie algebra, equipped with its Killing form 〈· | ·〉. One chooses a
Cartan subalgebra h of g, and a basis Π of simple roots for the root system ∆ of h in g.
The corresponding set of positive roots is denoted by ∆+. To each positive root α one can
associate a triple (Xα, X−α, Hα) of vectors in g which generate a Lie subalgebra isomorphic
to sl2(C). The set (Xα, X−α)α∈∆+ ∪ (Hα)α∈Π is basis of g, called a root basis. To these data

one associates the Lax equation L̇ = [L+, L], where L and L+ are defined as follows:

L =
∑̀
i=1

biHαi +
∑̀
i=1

ai(Xαi +X−αi),

L+ =
∑̀
i=1

ai(Xαi −X−αi).

The affine space M of all elements L of g of the above form is the phase space of the
Bogoyavlensky-Toda lattice, associated to g. The functions which yield the integrability of
the system are the Ad-invariant functions on g, restricted to M .
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Let D be the diagonal N ×N matrix with entries di :=
∏i−1
j=1 aj . In [11] Kostant conjugates

the matrix L, given by (1), by the matrix D to obtain a matrix of the form

X =



b1 1 0 · · · · · · 0

c1 b2 1
. . .

...

0 c2 b3
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 cN−1 bN


. (4)

The Lax equation takes the form

Ẋ = [X+, X],

where X+ is the strictly lower triangular part of X, according to the Lie algebra decompo-
sition strictly lower plus upper triangular. This form is convenient in applying Lie theoretic
techniques to describe the system. Note that the diagonal elements correspond to the Cartan
subalgebra while the subdiagonal elements correspond to the set Π of simple roots. The full-
Kostant Toda lattice is obtained by replacing Π with ∆+, in the sense that one fills the lower
triangular part of X in (4) with additional variables. It leads on the affine space of all such
matrices to the Lax equation

Ẋ = [X+, X], (5)

where X+ is again the projection to the strictly lower part of X.
Generalizing the above procedure, we can introduce the following Lax pair (LΦ, BΦ), where

Φ is any subset of ∆+ containing Π. Thus, we have :

LΦ =
∑
α∈Π

bαHα +
∑
α∈Φ

aα(Xα +X−α)

BΦ =
∑
α∈Φ

aα(Xα −X−α)

In order to have consistency in the Lax equation, the Lax matrix being symmetric, the bracket
[BΦ, LΦ] should give an element of the form

∑
α∈Φ cαHα +

∑
α∈Φ dα(Xα +X−α). In this case,

we will say that Φ is adapted. A straightforward computation leads to the following result :

Proposition 1.1. The set Φ is adapted if and only if it satisfies to the following property:

∀α, β ∈ Φ, α− β or β − α ∈ Φ ∪ {0}

Recall that α− β = 0 means that α− β is not a root.

Thus, for each Φ which is adapted we obtain a corresponding Hamiltonian system. Note
that the special case Φ = Π corresponds to the classical Toda lattice while the case Φ = ∆+

corresponds to the full symmetric Toda of [5]. There is an analogous construction for systems of
the Kostant form which is the focus of this paper. With the exception of the following example
we will switch to the Kostant-type systems. Even though the chain of systems under the full
symmetric Toda and the chain of systems under the full Kostant-Toda are not isomorphic, the
techniques used are quite similar.

Example 1.2. We consider a Lie algebra of type B2. The set of positive roots ∆+ = {α, β, α+
β, β + 2α} which corresponds to the full symmetric Toda lattice with Lax matrix

L =


b1 a1 a3 a4 0
a1 b2 a2 0 −a4

a3 a2 0 −a2 −a3

a4 0 −a2 −b2 −a1

0 −a4 −a3 −a1 −b1

 .
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This system is completely integrable with integrals h2 = 1
2TrL2 which is the Hamiltonian,

h4 = 1
2TrL4 and a rational integral which is obtained by the method of chopping as in [5].

Taking Φ = {α, β, α+ β} we obtain another integrable system with Lax matrix

L =


b1 a1 a3 0 0
a1 b2 a2 0 0
a3 a2 0 −a2 −a3

0 0 −a2 −b2 −a1

0 0 −a3 −a1 −b1

 .

The matrix B is defined as above, i.e. the skew-symmetric part of L. Again there is rational
integral given by

I11 =
a1a2 − a3b2

a3
.

Defining the Poisson bracket by {a1, a2} = a3, {ai, bi} = −ai i = 1, 2 and {a1, b2} = a1 we
verify easily that h2 plays the role of the Hamiltonian and I11 is a Casimir. The set {h2, h4, I11}
is an independent set of functions in involution.

2. Intermediate Toda lattices

We have defined some Hamiltonian systems associated to a subset Φ consisting of positive
roots (which we call adapted). The associated matrix is symmetric. As in the case of classical
and full Toda there is also an analogous system defined by a Lax matrix which is lower
triangular (the Kostant-Toda lattices). In this paper we restrict our attention to this version
of the systems. In this section we show that these Hamiltonian systems are associated to
a nilpotent ideal of a Borel subalgebra of a semi-simple Lie algebra g. Since for particular
(extreme) choices of the ideal one finds the classical Kostant-Toda lattice or the full Kostant-
Toda lattice, associated to g, we call these Hamiltonian systems Intermediate Toda lattices.

2.1. The phase space MI. Throughout this section, g is an arbitrary complex semi-simple
Lie algebra, whose rank we denote by `. We fix a Cartan subalgebra h of g and a basis
Π = {α1, . . . , α`} of the root system ∆ of g with respect to h. The choice of Π amounts to the
choice of a Borel subalgebra b+ = h⊕n+ of g. It also leads to a Borel subalgebra b− = h⊕n−,
corresponding to the negative roots. We fix an element ε in n+, satisfying 〈ε | [n−, n−]〉 = 0,
where 〈· | ·〉 stands for the Killing form of g. One usually picks for ε a principal nilpotent element
of n+. For example, for g = slN (C), viewed as the Lie algebra of traceless N×N matrices, one
can take for h and for b+ the subalgebras of diagonal, respectively upper triangular matrices
and for ε one can choose

ε :=



0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 . . . . . . . . . 0

 .

Let I be a nilpotent ideal of b+. The quotient map b+ → b+/I will be denoted by PI . Using
the isomorphism b∗+ ' b− induced by the Killing form, we can think of the orthogonal I⊥ of

I in b∗+ as a vector subspace of b−. We consider the affine space MI := ε+ I⊥. Explicitly,

MI = {X + ε | X ∈ b− and 〈X | I〉 = 0} .

When I = {0}, MI = b−+ε, which is the phase space of the full Kostant-Toda lattice. On the
other extreme, taking I = [n+, n+] the manifold MI is the phase space of the classical Kostant-
Toda lattice. We therefore call MI the intermediate Kostant-Toda phase space. Notice that
if I ⊂ J then MJ ⊂MI .
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2.2. Hamiltonian structure. We show that MI has a natural Poisson structure. To do
this, we prove that MI is a Poisson submanifold of g, equipped with a Poisson structure {· , ·}
whose construction1 we first recall, using the theory of R-matrices (see [2, Chapter 4.4] for the
general theory of R-matrices). Write g = g+ ⊕ g− where g+ := b+ and g− := n−. For X ∈ g,
its projection in g± is denoted by X±. The endomorphism R : g→ g, defined for all X ∈ g by
R(X) := X+ −X− is an R-matrix, which means that the bracket on g, defined by

[X,Y ]R :=
1

2
([R(X), Y ] + [X,R(Y )]) = [X+, Y+]− [X−, Y−],

for all X,Y ∈ g, is a (new) Lie bracket on g. The Lie-Poisson bracket on g which corresponds
to [· , ·]R, and which we denote simply by {· , ·} (since it is the only Poisson bracket on g which
we will use) is given by

{F,G} (X) = 〈X | [(∇XF )+, (∇XG)+]〉 − 〈X | [(∇XF )−, (∇XG)−]〉 , (6)

for every pair of functions F,G on g and for all X ∈ g. In this formula, the gradient ∇XF of
F at X is the element of g, defined by

〈∇XF |Y 〉 = 〈dXF, Y 〉 =
d

dt

∣∣∣∣
t=0

F (X + tY ). (7)

Proposition 2.1. Let I be a nilpotent ideal of b+.

(1) The affine space MI is a Poisson submanifold of (g, {· , ·});
(2) Equipped with the induced Poisson structure, MI is isomorphic to (b+/I)∗, equipped

with the canonical Lie-Poisson bracket;
(3) A function F on MI is a Casimir function if and only if (∇X F̃ )+ ∈ I for all X ∈MI ,

where F̃ is an arbitrary extension of F to g.

Proof. First notice that the second term in the right hand side of (6) vanishes at every point
X of MI ⊂ ε + b−, since 〈ε | [n−, n−]〉 = 0 and 〈b− | n−〉 = 0. Let F be a function on g
which vanishes on MI . Since n− is isotropic with respect to 〈· | ·〉, it follows from (7) that〈
(∇XF )+ |Y

〉
= 0 for all Y ∈ b− satisfying 〈Y | I〉 = 0. Therefore (∇XF )+ ∈ I, so that the

first term in (6) also vanishes at all points of MI for such a function F and for all functions G
on g. It follows that all Hamiltonian vector fields which correspond to functions which vanish
on MI , also vanish on MI , so that MI is a Poisson submanifold of (g, {· , ·}), and its Poisson
bracket, still denoted by {· , ·}, is given, for F,G ∈ F(MI) at X ∈MI , by

{F,G} (X) =
〈
X |

[
PI(∇X F̃ )+, PI(∇XG̃)+

]〉
, (8)

where F̃ (resp. G̃) is an arbitrary element of F(g), whose restriction to MI is F (resp. G).
Notice that the projections PI in (8) are optional since 〈X | I〉 = 0 for all X ∈MI . From (8),
as it is written, it is clear that the map MI → (b+/I)∗, which sends X + ε to 〈X | ·〉, viewed
as a linear form on b+/I, is an isomorphism of Poisson manifolds, where MI is equipped with
the bracket (8), and (b+/I)∗ is equipped with the canonical Lie-Poisson brackets. We also

read off from (8) that a function F on MI whose extension F̃ to g satisfies (∇X F̃ )+ ∈ I for all
X ∈MI is a Casimir function. In fact, this condition characterizes Casimir functions since the
center of b+/I is trivial, a consequence of the fact that I ⊂ n+ (see subsection 2.3 below). �

For a function H on MI , we denote its Hamiltonian vector field by XH ; our sign convention
is that XH := {· , H}, so that XH [F ] = {F,H} for all F ∈ F(M). The Hamiltonian of the
intermediate Kostant-Toda lattice is the polynomial function on MI , given by

H :=
1

2
〈X |X〉 , (9)

1See the appendix of [7] for an alternative construction, using symplectic reduction to the cotangent bundle
T ∗G, where G is any Lie group integrating g.
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so that the vector field of the intermediate Kostant-Toda lattice is given by the Lax equation
(on MI)

Ẋ = [X+, X] . (10)

2.3. Nilpotent ideals in b+. We now summarize some facts about nilpotent ideals in b+

(see [4]).
If I is a nilpotent ideal of b+, then I is contained in n+. For example, n+ itself is a

nilpotent ideal of b+. For α ∈ ∆+, let Xa denote an arbitrary root vector, corresponding to α,
i.e., [H,Xα] = 〈α,H〉Xα, for all H ∈ h. Consider a subset Φ of ∆+, which has the property
that if α ∈ Φ then every root of the form α+ β, with β ∈ Π+, belongs to Φ; we call such a set
Φ an admissible set of roots. For such α and β, the Jacobi identity implies that [Xα, Xβ] is a
multiple of Xα+β. It follows that the (vector space) span of {Xα | α ∈ Φ} is a nilpotent ideal
of b+. Most importantly, every nilpotent ideal of b+ is of this form, for a certain admissible
set of roots Φ. Thus, the nilpotent ideals of a given Borel subalgebra b+ of g are parametrized
by the family of all subsets Φ of ∆+, which have the property that if α ∈ Φ then every root of
the form α+ β, with β ∈ Π+, belongs to Φ.

To give an idea of the number of intermediate Toda systems, we list the cardinality of
nilpotent ideals for each complex simple Lie algebra. This number is given table 2.3. In the
table

Cn =
1

n+ 1

(
2n

n

)
is the Catalan number.

Lie Algebra Number of Positive Roots Number of Ideals

An
(
n+1

2

)
Cn+1

Bn, Cn n2
(

2n
n

)
Dn n2 − n (n+ 1)Cn − nCn−1

G2 6 8
F4 24 105
E6 36 832
E7 63 4160
E8 120 25080

It is interesting that there is a uniform formula for counting nilpotent ideals of b+. It is
given by

1

|W |
∏̀
i=1

(h+mi + 1) =
∏̀
i=1

(h+mi + 1)

mi + 1

where W is the Weyl group, h is the Coxeter number and mi are the exponents.

2.4. Height k Kostant-Toda lattices. We will in the sequel of this paper mainly study the
case when I is an ideal of height 2, a notion which we introduce in this paragraph. Every

positive root α ∈ ∆+ can be written as a linear combination of the simple roots, α =
∑̀
i=1

niαi,

where all ni are non-negative integers. The integer ht(α) :=
∑̀
i=1

ni is called the height of α.

For k ∈ N , let Φk denote the set of all roots of height larger than k. It is clear that Φk

is an admissible set of roots. We denote the corresponding ideal of b+ by Ik and we call it
a height k ideal. An alternative description of Ik is as adkn+ n+. For k = 1, I1 = [n+, n+]
is the ideal which leads to the classical Toda lattice. We will consider in the sequel mainly
I2 = [n+, [n+, n+]] and the corresponding affine space MI2 .



TODA SYSTEMS 7

Example 2.2. Consider a Lie algebra of type C4. Take Φ = {α1, α2, α3, α4, α1+α2, α2+α3, α3+
α4}.

The Lax matrix is

L =



a1 1 0 0 0 0 0 0
b1 a2 1 0 0 0 0 0
c1 b2 a3 1 0 0 0 0
0 c2 b3 a4 1 0 0 0
0 0 c3 b4 −a4 −1 0 0
0 0 0 c3 −b3 −a3 −1 0
0 0 0 0 −c2 −b2 −a2 −1
0 0 0 0 0 −c1 −b1 −a1


.

The function

a1 − a2 + a3 − a4 +
2b1b2c3 + b1c2b4 + b3b4c1

c1c3

is a Casimir. We need five functions to establish integrability. Since det(L− λI) is an even
polynomial of the form

λ8 +
3∑
i=0

fiλ
2i

we obtain four polynomial integrals. Using an one-chop we obtain a characteristic polynomial
of the form Aλ2 +B. The function f5 = B/A is the fifth integral.

3. Computation of the rank

In this section, we compute the index of the Lie algebra b+/I2, when b+ is a Borel subalgebra
of a simple Lie algebra of type A`, B` or C`. It yields the rank of the corresponding intermediate
Kostant-Toda phase space (see paragraph 2.4). We first recall a few basic facts about stable
linear forms, the index of a Lie algebra and the relation to the rank of the corresponding
Lie-Poisson structure.

3.1. Stable linear forms. Let a be any complex algebraic Lie algebra, a∗ its dual vector
space. The stabilizer of a linear form ϕ ∈ a∗ is given by

aϕ := {x ∈ a | ad∗x ϕ = 0} = {x ∈ a | ∀y ∈ a, 〈ϕ, [x, y]〉 = 0} .
The integer min{dim aϕ | ϕ ∈ a∗} is called the index of a and is denoted by ind(a). Since
the symplectic leaves of the canonical Lie-Poisson structure on a∗ are the coadjoint orbits,
the codimension of the symplectic leaf through ϕ is the dimension of aϕ. It follows that the
index of a is the codimension of a symplectic leaf of maximal dimension, i.e., the rank of the
canonical Lie-Poisson structure on a∗ is given by dim a − ind(a); notice that since the latter
rank is always even, the index of a and the dimension of a have the same parity. A linear
form ϕ ∈ a∗ is said to be regular if dim aϕ = ind(a); thus, we can use regular linear forms to
compute the index of a, and hence the rank of the canonical Lie-Poisson structure on a∗.

We will use the following proposition to compute the index of b+/I2.

Proposition 3.1. Let a be a subalgebra of a semi-simple complex Lie algebra g. Suppose that
ϕ is a linear form on a, such that aϕ is a commutative Lie algebra composed of semi-simple
elements. Then ϕ is regular, so that the index of a is given by dim aϕ.

Proof. A linear form ϕ ∈ a∗ is said to be stable if there exists a neighborhood U of ϕ in a∗

such that for every ψ ∈ U , the stabilizer aψ is conjugate to aϕ, with respect to the adjoint
group of a. According to [9], every stable linear form is regular. According to ([8], [9, thm 1.7,
cor. 1.8]), ϕ is stable if and only if [a, aϕ] ∩ aϕ = {0}. The latter equality holds when aϕ is a
commutative Lie algebra composed of semi-simple elements (see [9, Lemma 2.6]). Thus, ϕ is
stable, hence regular. �
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3.2. Computation of the index. In this paragraph we compute the index of b/I under the
following assumption on (the root system of) g:

(H) The roots of height 2 of g are given by {αk + αk+1 | 1 6 k 6 `− 1}

For classical Lie algebras, the basis Π can be ordered such that this assumption occurs when
g is of type A`, B` or C`. Let g = h⊕

∑
α∈∆+(gα + g−α) be the decomposition of g according

to the adjoint action of h. To each positive root α corresponds a triple (Xα, X−α, Hα) of
elements of g, where Xα ∈ gα, X−α ∈ g−α, Hα ∈ h and (Xα, X−α, Hα) generates a subalgebra
isomorphic to sl2(C). Let us recall shortly how such a triple can be constructed. Let hα be
the unique element in h such that 〈α,H〉 = 〈hα |H〉 for all H ∈ h. Define a scalar product on
the real vector space h∗R by

〈α |β〉 := 〈hα |hβ〉 = 〈β, hα〉 = 〈α, hβ〉 ,

for all α, β ∈ ∆. We set

Hα :=
2

〈α |α〉
hα.

It is clear that 〈α,Hα〉 = 2. Choose Xα ∈ gα, X−α ∈ g−α such that 〈Xα |X−α〉 = 2
〈α |α〉 . Then,

(Xα, X−α, Hα) is the required triple. Moreover,[
X±αk

, X∓αk∓αk+1

]
= ε±kX∓αk+1

,
[
X±αk+1

, X∓αk∓αk+1

]
= η±k X∓αk

,

where each of the integers ε±k and η±k is equal to 1 or to −1, depending on g.

For all α, β ∈ Π, let Cαβ := 〈β,Hα〉 = 2
〈α |β〉
〈α |α〉

. The ` × `-matrix C := (Cij , 1 6 i, j 6 `),

where Cij := Cαiαj , is invertible. It is called the Cartan matrix of g.

Proposition 3.2. Consider the linear form ϕ on b+, defined for Z ∈ b+ by 〈ϕ,Z〉 := 〈X |Z〉,
where X is defined by

X := δ`X−α`
+

`−1∑
i=1

X−αi−αi+1 , (11)

with δ` := 1 if ` is odd and δ` := 0 otherwise. Denote by ϕ̄ the induced linear form on b+/I2.

(1) ϕ̄ is a regular linear form on b+/I2;
(2) dim(b+/I2)ϕ̄ = 1− δ`;
(3) The index of b+/I2 is 1 if the rank ` of g is even and is 0 otherwise.

Proof. The proof of (3) follows at once from (1) and (2). We prove (1) and (2) at the same
time by determining (b+/I2)ϕ̄. Notice that ϕ vanishes on I2, so that ϕ induces indeed a linear
form ϕ̄ on b+/I2, as asserted. We compute its stabilizer

(b+/I2)ϕ̄ = {Ȳ ∈ b+/I2 | 〈X | [Y,Z]〉 = 0, for all Z ∈ b+}
= {Ȳ ∈ b+/I2 | [X,Y ] ∈ n+}.

Let Ȳ ∈ b+/I2. In view of the assumption (H), any representative Y ∈ b+ of Ȳ can be written
as

Y =
∑̀
i=1

aiHαi +
∑̀
i=1

biXαi +

`−1∑
i=1

ciXαi+αi+1 .
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By a direct computation,

[X,Y ] =
∑̀
i=1

aiCi1δ`X−α1 − b1δ`Hα1 + ε−1 c1δ`Xα2

+
`−1∑
i=1

∑̀
k=1

ak(Cki + Ck,i+1)X−αi−αi+1

−
`−1∑
i=1

(bi+1η
+
i X−αi + biε

+
i X−αi+1)−

`−1∑
k=1

ck(Hαk
+Hαk+1

).

It follows that [X,Y ] ∈ n+ if and only if the coefficients satisfy the following system of linear
equations:

c1 = · · · = c`−1 = 0,

b`−1 = b1δ` = 0,

η+
k bk+1 + ε+k−1bk−1 = 0 for k = 2, . . . , `− 1,∑̀
i=1

ai(Cik + Ci,k+1) = 0 for k = 1, . . . , `− 1,

δ`
∑̀
i=1

aiCi1 − η+
1 b2 = 0.

Since all ε+k and all η+
k are different from zero, the first three equations imply that all bk and

all ck are equal to zero (recall that δ` := 1 if ` is odd and δ` := 0 otherwise). This shows that if
[X,Y ] ∈ n+ then Y ∈ h; in particular (b+/I2)ϕ ⊂ h. Since h is Abelian, we may conclude from
Proposition 3.1 that ϕ is regular, which is the content of (2). We continue solving the above
equations in order to determine the dimension of (b+/I2)ϕ̄, which by the above amounts to
compute the dimension of the solution space of the linear system

δ`
∑̀
k=1

akCk1 = 0,
∑̀
k=1

ak(Cki + Ck,i+1) = 0, for i = 1, . . . , `− 1, (12)

where we recall that the Cij are the entries of the Cartan matrix of g. When ` is odd (so that
δ` = 1) this system is clearly equivalent to

∑̀
k=1

akCki = 0, for i = 1, . . . , `, (13)

which means that (a1, . . . , a`) belongs to the null space of the Cartan matrix. Since the Cartan
matrix is non-degenerate, only the trivial solution remains. In that case dim(b+/I2)ϕ̄ = 0.
When ` is even, the homogeneous linear systems (12) and (13) differ by one equation and the
latter has no non-trivial solutions, so the solution space of (12) is at most one-dimensional.
Since dim b+/I2 = 3` − 1 is odd, then index of b+/I2 is odd, hence it is equal to 1. This
proves (3). �

4. Invariants

We now examine the integrability of the intermediate Kostant-Toda lattice on MI2 ⊂ g,
for any semi-simple Lie algebra g of type A`, B` or C`. We also make some remarks for the
case of D`. More specifically we show that the number of functions needed for integrability is
correct. However, we will not deal with the independence of these functions which is a more
complicated issue. Recall that integrability means that the Hamiltonian is part of a family of
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s independent functions in involution, where s is related to the dimension and the rank of the
Poisson manifold MI2 by the formula

dimMI2 =
1

2
RkMI2 + s.

Since dimMI2 = 3`− 1 and since the corank of MI2 is 1 if ` is even and 0 otherwise (see item
(3) in proposition 3.2), we need s = [3`/2] such functions. According to the Adler Kostant
Symes Theorem, the ` basic Ad-invariant polynomials provide already ` independent functions
in involution. Thus, one needs [`/2] extra ones. As we will see, they can be constructed
by restricting certain chop-type integrals, except for the case of C` where another integral
(Casimir) is needed. We first recall from [5] the construction of the chop integrals on M :=
ε + b− in the case of g = slN (C) and explain why they are in involution. Since MI2 is a
Poisson manifold of M , their restrictions to MI2 are still in involution (but they may become
trivial or dependent).

We consider g = slN (C) with the standard choice of h and Π (see paragraph 2.1). Let k
be an integer, 0 6 k 6 [N−1

2 ]. For any matrix X, we denote by Xk the matrix obtained by
removing the first k rows and last k columns from X. We denote by Gk the subgroup of
G := GLN (C), consisting of all N ×N invertible matrices of the form

g =

∆ A B
0 D C
0 0 ∆′

 , (14)

where ∆ and ∆′ are arbitrary upper triangular matrices of size k× k and A,B,C,D are arbi-
trary2. The Lie algebra of Gk is denoted by gk. A first fundamental, non-trivial observation,
due to [5], is that for all g ∈ Gk, decomposed as in (14),

det
(
gXg−1

)
k

=
det ∆′

det ∆
detXk. (15)

This leads to (rational) Gk-invariant functions on g (and hence on M), constructed as follows.
For X ∈ g and for an arbitrary scalar λ, consider the so-called k-chop polynomial of X, defined
by

Qk(X,λ) := det(X − λ IdN )k.

In view of (15), the coefficients of Qk (as a polynomial in λ) define polynomial functions on g,
which transform under the action of g ∈ Gk, with the same factor det ∆′/det ∆. Writing

Qk(X,λ) =
N−2k∑
i=0

Ei,k(X)λN−2k−i,

each of the rational functions Ei,k/Ej,k is Gk-invariant. By restriction to M , this yields
Gk-invariant elements of F(M). They are called k-chop integrals because they are integrals
(constants of motion) for the full Kostant-Toda lattice. Notice that the constants of motion
Hi := 1

i TraceXi are 0-chop integrals and that the Toda Hamiltonian is expressible in terms

of them as H = 1
2(H2

1 − 2H2).
We show that all chop integrals are in involution. To do this, let F be a k-chop integral

and let F̃ denote its extension to a Gk-invariant rational function on g. Similarly, let G be a
l-chop integral, with G`-invariant extension G̃. We may suppose that k 6 `. Infinitesimally,
the fact that F̃ is Gk invariant yields that〈

X |
[
∇X F̃ , Y

]〉
= 0, (16)

for all X ∈ g and for all Y ∈ gk. Since b+ ⊂ gk, it follows that〈
X |

[
(∇X F̃ )+,∇XG̃

]〉
= 0 =

〈
X |

[
∇X F̃ , (∇XG̃)+

]〉
2With the understanding that, since X is supposed invertible, ∆,∆′ and D are invertible.
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so that (6) can be rewritten, for X ∈M , as

{F,G} (X) = −
〈
X |

[
∇X F̃ ,∇XG̃

]〉
. (17)

We claim that ∇XG̃ ∈ g`. This follows from the construction of the function G̃ ∈ F(g):

the rational function G̃(X) depends only on X`, the `-chop of X, while if an element Z of g

satisfies 〈g` |Z〉 = 0, then Z` is the zero matrix. Thus, ∇XG̃ ∈ g` ⊂ gk, so that (16) implies
that the right hand side of (17) is zero, for all X ∈ M . It follows that F and G Poisson
commute.

Notice that in the case of the height 2 intermediate Kostant-Toda lattice all k-chops with
k > 1 vanish and that only a few 1-chops survive. In what follows we consider separately the
cases of various classical Lie algebras.

4.1. The case of A`. We first consider g = sl`+1(C), the Lie algebra of traceless matrices of
size N = ` + 1, taking for h, Π and ε the standard choices, as before. A general element of
MI2 is then of the form

X =



a1 1 0 . . . . . . 0

b1 a2 1
. . .

...

c1 b2 a3 1
. . .

...

0 c2 b3
. . .

. . . 0
...

. . .
. . .

. . .
. . . 1

0 . . . 0 c`−1 b` a`+1


,

with
∑`+1

i=1 ai = 0. The 1-chop matrix of X is given by

(X − λ Id`+1)1 =



b1 aλ2 1 0 . . . 0

c1 b2 aλ3 1
. . .

...

0 c2 b3
. . .

. . . 0
...

. . . c3 b4
. . . 1

...
. . .

. . .
. . . aλ`

0 . . . . . . 0 c`−1 b`


,

where aλi is a shorthand for ai − λ. We also use the matrix X(λ, α), defined by

X(λ, α) =



b1 aλ2 α13 . . . . . . α1`

c1 b2 aλ3 α24
...

0 c2 b3
. . .

. . .
...

...
. . . c3 b4

. . . α`−2,`
...

. . .
. . .

. . . aλ`
0 . . . . . . 0 c`−1 b`


.

We define functions βk(α) by setting detX(λ, α) =
∑d

k=0 βk(α)λk.

Lemma 4.1.

(1) The polynomials det(X − λ Id`+1)1 and detX(λ, α) have degree d := [ `2 ] in λ;
(2) When ` is even (resp. odd), the coefficients βd−1 and βd (resp. βd) are independent of

the variables α.

Proof. To each variable which occurs in the determinant of X(λ, α), we associate a weight
according to the following rule: each ci is of weight −1, each bi is of weight 0, each aλi is of
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weight 1, each αkj is of weight k − j > 2. Using the usual expansion formula we decompose
detX(λ, α) as a sum of terms of weight 0, each of them composed of ` factors.

Suppose that a term of this determinant contains at least [ `2 ] + 1 factors aλi . Then there are

at most [ `−1
2 ] other factors in this term and their global weight should be at most −[ `2 ] − 1,

which is impossible since every variable has weight at least −1. It follows that the degree of
detX(λ, α), and hence the degree of det(X − λ Id`+1)1 is at most d := [ `2 ].

The coefficient βd defined initem (2) above is a sum of terms of the form γ1.γ2 . . . γ`−d, of
total weight −d. If ` is even then ` − d = d, so that each of the γi has weight −1, i.e., is
(proportional to) one of the variables cj . If ` is odd then ` − d = d + 1, so that one of the
γi has weight 0 (is proportional to a bj) and all other ones have weight −1 (are proportional
to one of the variables cj). In particular, the coefficient βd is in both cases non-zero and it is
independent of the variables α. This shows (1) and part of (2).

Suppose now that ` is even, so that ` = 2d. Every term in βd−1 is of the form γ′1.γ
′
2 . . . γ

′
d+1

and is of total weight 1− d. Then there are two possibilites. Either two of the γ′i have weight
0 (are proportional to a bj) and all other ones have weight −1 (are proportional to one of the
variables cj) or one of the γ′i has weight 1 (is proportional to one of the variables aj) and all
other ones have weight −1 (are proportional to a cj). In particular, the coefficient βd−1 is
independent of the variables α. Notice that if ` is odd (and at least equal to 3) then βd−1 does
depend on the variables α. �

If follows from the lemma that we have precisely the correct number of functions in involution
which are necessary for Liouville integrability in the case of A`. Elaborating on the weights
of the variables, defined in the proof of item (2) of the lemma, it can be shown that these
functions are independent, thereby proving Liouville integrability.

4.2. The case of B`. A Lie algebra of type B` can be realized as the Lie algebra g of all
square matrices of size N := 2` + 1, satisfying XJ + JXt = 0, where J is the matrix of size
2`+ 1, all of whose entries are zero, except for the entries on the anti-diagonal, which are all
equal to one. Clearly, X satisfies XJ + JXt = 0 if and if X is skew-symmetric with respect
to its anti-diagonal. It follows for such X that det(X − λ Id`+1) = (−1)N det(X + λ Id`+1), so
that the characteristic polynomial is an odd polynomial in λ. The 1-chop matrix X1 satisfies
the same relation X1J + JXt

1 = 0, so that its determinant is an even polynomial in λ. As a
Cartan subalgebra of g one can take the diagonal matrices in g and one can take as a basis for
Π+ the matrices Ei,i+1−E2`−i,2`−i+1, for i = 1, . . . , `. If one finally chooses ε to be the matrix∑`

i=1(Ei,i+1−E2`−i,2`−i+1), then the height 2 phase space is given by all matrices of the form

a1 1

b1
. . .

. . .

c1
. . .

. . . 1
. . . b`−1 a` 1

c`−1 b` 0 −1

0 −b` −a`
. . .

−c`−1 −b`−1
. . .

. . .
. . .

. . . −1
−c1 −b1 −a1


In this case N = 2`+ 1, the 1-chop polynomial is even, so the 1-chop polynomial is degree

` when ` is even and of degree ` − 1 when ` is odd. This yields `
2 integrals when ` is even

and `−1
2 when ` is odd. Therefore the number of integrals in involution is again precisely the

number needed for Liouville integrability.
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4.3. The case of C`. A Lie algebra of type C` can be realized as the Lie algebra g of all
square matrices of size N := 2`, satisfying XJ + JXt = 0, where J is the matrix of size 2`,
given by

J =

(
0 I`
−I` 0

)
.

It follows for such X that det(X−λ Id`+1) = (−1)2` det(X+λ Id`+1), so that the characteristic
polynomial is an even polynomial in λ. The 1-chop matrix X1 satisfies the same relation
X1J + JXt

1 = 0, so that its determinant is an even polynomial in λ. As a Cartan subalgebra
of g one can take the diagonal matrices in g and one can take as a basis for Π+ the matrices
Ei,i+1 −E2`−1−i,2`−i, for i = 1, . . . , `. The height 2 phase space for C` is given by all matrices
of the form 

a1 1

b1 a2
. . .

c1 b2
. . . 1

. . .
. . . a` 1
c`−1 b` −a` −1

c`−1 −b`−1
. . .

. . .

−c`−2
. . .

. . .
. . .

. . .
. . . −1
−c1 −b1 −a1



.

In this case N = 2`, the 1-chop polynomial is even, so we get `
2−1 integrals from the 1-chop

when ` is even and `−2
2 integrals when ` is odd. Therefore, when ` is odd, we have the correct

number of integrals in involution for Liouville integrability. When ` is even, we need an extra
function, but then there exists a Casimir function f which does not arise from the method of
chopping, and it does the job. We construct f as follows:

f := A+
B

C
,

where

A :=

`
2∑
i=1

(a2i−1 − a2i) , B :=
∑
i,j

dijmij and C :=
`−1∏
i=1

c2i−1 .

The terms dijmij of B are defined as follows: we associate variables b1, b2, . . . , b` to the simple
roots α1, α2, . . . , α` and associate variables c1, c2, . . . , c`−1 to the height 2 roots α1 + α2, α2 +
α3, . . . , α`−1 + α`. Take simple roots αi, αj (with corresponding variables bi, bj) such that i
is odd and j is even. The remaining variables correspond to the height two roots αk + αk+1

where k 6= i, i − 1 and k 6= j, j − 1. The term mij is a product of bi, bj and l−1
2 c variables.

The coefficient dij is 2 if mij includes the term c`−1 (corresponding to the root α`−1 +α`), and
is equal to 1 otherwise. The proof that this formula produces a Casimir is a straightforward
(but long) calculation which we omit.

Example 4.2. For ` = 6, the Casimir f is explicitly given by

f = a1−a2+a3−a4+a5−a6+
b5b6c1c3 + 2b1b4c2c5 + b3b6c1c4 + 2b1b2c3c5 + 2b3b4c1c5 + b1b6c2c4

c1c3c5
.

4.4. The case of D`. A Lie algebra of type D` can be realized as the Lie algebra g of all
square matrices of size N = 2`, satisfying XJ + JXt = 0, where J is the matrix of size 2`,
given by
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J =

(
0 I`
I` 0

)
.

As in the case of C` the characteristic polynomial is an even polynomial. On the other hand
the 1-chop polynomial is odd so the degree of this polynomial is ` − 1 when ` is even. But
when ` is odd the degree of the 1-chop polynomial is again `. This gives `

2 − 1 integrals when

` is even and `−1
2 integrals in involution when ` is odd. In the even case we need an extra

function i.e. a Casimir but at this point we do not have an explicit formula for it. There is no
stable form in this case, but we can produce a form which gives a lower bound for the rank
and this lower bound is good enough, once we have the Casimir. However, if we restrict (in the
even case) the system to a generic leaf of the symplectic foliation, we have enough integrals in
involution required by Liouville integrability. Clearly, an explicit description of the symplectic
foliation is tantamount to an explicit description of the Casimir.
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