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Abstra
t

In this paper we study a generalised Kummer surfa
e asso
iated to the Ja
obian of those 
omplex

algebrai
 
urves of genus two whi
h admit an automorphism of order three. Su
h a 
urve 
an always been

written as y

2

= x

6

+2�x

3

+1 and �

2

6= 1 is the modular parameter. The automorphism extends linearly to

an automorphism of the Ja
obian and we show that this extension has a 9

4

invariant 
on�guration, i.e., it

has 9 �xed points and 9 invariant theta 
urves, ea
h of these 
urves 
ontains 4 �xed points and 4 invariant


urves pass through ea
h �xed point. The quotient of the Ja
obian by this automorphism has 9 singular

points of type A

2

and the 9

4


on�guration des
ends to a 9

4


on�guration of points and lines, reminis
ent to

the well-known 16

6


on�guration on the Kummer surfa
e. Our \generalised Kummer surfa
e" embeds in IP

4

and is a 
omplete interse
tion of a quadri
 and a 
ubi
 hypersurfa
e. Equations for these hypersurfa
es are


omputed and take a very symmetri
 form in well-
hosen 
oordinates. This 
omputation is done by using

an integrable system, the \even master system".
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1. Introdu
tion

Re
ently several studies were published on the geometri
 aspe
ts of Hamiltonian systems whi
h are

algebrai
ally 
ompletely integrable. For a general introdu
tion, see [1℄. From the point of view of algebrai


geometry, these integrable systems lead to an original approa
h to study proje
tive embeddings of Abelian

varieties and their Kummer varieties, expli
it equations for aÆne parts of these varieties, : : : It follows that

integrable systems may be used to study and solve some questions in algebrai
 geometry, espe
ially in 
urve

theory and the theory of Abelian varieties; the present paper is a parti
ular example of su
h a question.

In order to state this question, let us re
all from the 
lassi
al literature some basi
 fa
ts about the

Kummer surfa
e of the Ja
obian of a 
urve � of genus two. Su
h a 
urve being always hyperellipti
, it


arries an involution � with six �xed points (the Weierstrass points of �); this involution extends linearly

to the Ja
obian of � where it has sixteen �xed points and sixteen invariant theta 
urves (i.e., translates of

the Riemann theta divisor), ea
h invariant 
urve 
ontains six �xed points and ea
h �xed point belongs to

six invariant 
urves, giving a so-
alled 16

6


on�guration of 
urves and points. The quotient of the Ja
obian

by this involution is a singular surfa
e, the Kummer surfa
e, and it embeds in IP

3

as a quarti
 surfa
e. An

equation for this surfa
e has 
lassi
ally been obtained (in several forms) by purely algebrai
 methods (see

[7℄).

Something very analogous happens when the genus two 
urve � has an automorphism � of order three,

in whi
h 
ase the 
urve has an equation y

2

= x

6

+ 2�x

3

+ 1 (here �

2

6= 1 is the modular parameter as we

will show). The symmetry of order three extends to the Ja
obian and leads now to a 9

4


on�guration as

we will prove both dire
tly and by using an analogue of the theta 
hara
teristi
, whi
h expresses in general

the obstru
tion for a line bundle to des
end to a quotient. In the present 
ase this 
hara
teristi
 turns out

to be a quadrati
 form whi
h takes values in IF

3

(the �eld of three elements). Su
h a 
on�guration, whi
h

has essentially only one proje
tive realisation has been 
onsidered by Segre and Castelnuovo (see [12℄ and

[5℄). The singular surfa
e obtained as the quotient of the Ja
obian of � by the order three automorphism

will be shown to embed now in IP

4

as the interse
tion of a quadri
 and a 
ubi
 hypersurfa
e. The nine

singular points are of type A

2

and are part of a 9

4


on�guration of lines and points on this surfa
e whi
h,

after desingularisation, is a K-3 surfa
e.

The question now is to 
ompute expli
it equations for the quadri
 and 
ubi
 hypersurfa
e. To this

aim we need to introdu
e well-adapted 
oordinates and this is where the integrable system 
omes in. The

system is 
hosen in su
h a way that among its invariant surfa
es we �nd the Ja
obians 
orresponding to the

genus two 
urves with an automorphism of order three. Su
h a system was �rst 
onstru
ted by the se
ond

author in [13℄ in analogy with a system introdu
ed by Mumford (see [10℄). It gives on the one hand expli
it

equations for aÆne parts of the Ja
obians whi
h 
on
ern us here, on the other hand it allows us to 
onstru
t

an expli
it base for the fun
tions with a pole of order three at one of the invariant theta 
urves. Among

those fun
tions the ones whi
h are invariant by � are easily determined and the image of the Ja
obian in IP

4

by these fun
tions is 
omputed from these expli
it data. The �nal result is that in terms of an appropriate

base for IP

4

| formed by the �ve �xed points whi
h do not belong to one of the invariant theta 
urves |

the equation for the quadri
 hypersurfa
e is given by


(y

1

+ y

4

)(y

2

+ y

3

+ y

4

� y

0

) + �
(y

2

+ y

3

)(y

1

+ y

3

+ y

4

� y

0

) = 
y

2

4

+ �
y

2

3

;

while the equation for the 
ubi
 hypersurfa
e is given by




2

y

1

y

4

(y

2

+ y

3

� y

0

)� �


2

y

2

y

3

(y

1

+ y

4

� y

0

) = 0;

where 
 = �+ 1 and �
 = 1� �.

It has been pointed out to us by I. Dolga
ev that su
h equations already appeared in the basi
 work of

Enriques and S�everi on hyperellipti
 surfa
es. They proved that the asso
iated Kummer surfa
e is hyper-

ellipti
 in their sense with the aid of results of Segre and Castelnuovo. The indire
t arguments used there

seem not to be 
omplete. Our dire
t method shows also the pre
ise relationship between the two parameters

and 
an be used in other similar situations.

The spe
ial 
urves 
onsidered here are a
tually the 
hiral Potts N-state 
urves 
orresponding to N = 3

(see [11℄). The results and te
hniques in this paper generalise to all 
hiral Potts 
urves. We hope to return

to this in the future.
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2. An equation for the 
urve �

We 
onsider a 
urve � of genus two, equipped with an automorphism of order three, denoted by �. By

the Riemann-Hurwitz formula the quotient �=� has genus zero and � has four �xed points. Sin
e � has

genus two it is also hyperellipti
; the hyperellipti
 involution will be denoted by � and its �xed points are

the six Weierstrass points on �. We have the following diagram

�

�

�

�!

3:1

IP

1

�

�

?

?

y

2:1

IP

1

� ne
essarily maps Weierstrass points to Weierstrass points, hen
e the 
ommutator [�; � ℄ �xes all these points

and we see that �� = �� sin
e the only automorphisms whi
h �x all Weierstrass points are � and identity.

It follows on the one hand that � indu
es on IP

1

a fra
tional linear transformation ~� of order three, and on

the other hand that the four �xed points of � 
onsist of two � -orbits. We may therefore suppose that ~� is

given by ~�(x) = �x; � = exp(

2�i

3

), by 
hosing a 
oordinate x on IP

1

su
h that these two orbits 
orrespond

to x = 0 and x = 1. The images of the Weierstrass points form two orbits of three points under ~�, whi
h


orrespond to the roots of the equation x

3

= �

3

and x

3

= �

�3

, possibly after a res
aling of x. Obviously

� 6= 0; sin
e both orbits are di�erent, �

3

6= �

�3

, i.e., �

6

6= 1. This shows that � has an equation

y

2

= (x

3

� �

3

)(x

3

� �

�3

);

= x

6

+ 2�x

3

+ 1;

(1)

with � 6= �1.

Clearly, every equation of the form (1) with � 6= �1, de�nes a smooth 
urve of genus two with an

automorphism (x; y) 7! (�x; y) of order three; also, if � in (1) is repla
ed by �� then an isomorphi
 
urve

is obtained. Conversely, let there be given two isomorphi
 
urves � and �

0

with respe
tive automorphisms

� and �

0

of order three. We may suppose that the isomorphism �: � ! �

0

respe
ts the automorphism, i.e.,

�� = �

0

�: We 
laim that if � and �

0

are written as above as

� : y

2

= x

6

+ 2�x

3

+ 1;

�

0

: y

2

= x

6

+ 2�

0

x

3

+ 1;

then �

2

= �

02

. To see this, remark that � obviously 
ommutes with �; hen
e there is an indu
ed linear

transformation

~

� whi
h satis�es

~

�(�x) = �

~

�(x), for all x 2 IP

1

. Thus

~

�(x) = �x and �(x; y) = (�x; y), giving

�

6

= 1. It follows that �

2

6= 1 
an be taken as modular parameter.

The automorphism group of � 
ontains a subgroup whi
h is isomorphi
 to S

3

� ZZ=2ZZ, as is seen

immediately from (1); it a
tually 
oin
ides with this group, unless � = 0 (in whi
h 
ase the group of

automorphisms jumps to D

6

�ZZ=2ZZ). Namely, there is, apart from the hyperellipti
 involution � , an a
tion

of S

3

by means of whi
h the Weierstrass points belonging to one �-orbit 
an be at random permuted. For

future use we 
hoose an element � of order two in this symmetry group S

3


orresponding to a transposition

in S

3

, say �(x; y) = (x

�1

; yx

�3

) and remark that it 
ommutes with � but not with �. Its �xed points are

the two points in �

�1

�

f1g, hen
e �=� is an ellipti
 
urve.

We will �nd it 
onvenient to denote the �xed points of �, whi
h are mapped by �

�

to 0 (resp. 1) by

o

1

and o

2

(resp. 1

1

and 1

2

). Then �(o

1

) = o

2

; �(1

1

) = 1

2

and we may suppose �(o

1

) = 1

1

giving

also �(o

2

) = 1

2

. In the same way we denote the Weierstrass points 
orresponding to the x

3

= �

3

-orbit

by �

i

; �(�

i

) = �

i+1

(indi
es are taken modulo 3) and the ones 
orresponding to the x

3

= �

�3

-orbit by

�

�

i

; �(�

i

) =

�

�

i

. Then the a
tion of S

3

� ZZ=2ZZ on these points is 
ontained in the following table.
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order o

1

o

2

1

1

1

2

�

i

�

�

i

� 3 o

1

o

2

1

1

1

2

�

i+1

�

�

i�1

� 2 o

2

o

1

1

2

1

1

�

i

�

�

i

� 2 1

1

1

2

o

1

o

2

�

�

i

�

i

Table 1
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3. The 9

4


on�guration on the Ja
obian of �

Let J(�) denote the Ja
obian of � and for a divisor D of degree 0, let [D℄ denote the 
orrespoding point

in J(�) (i.e., its linear equivalen
e 
lass). A useful fa
t about the Ja
obian of a 
urve of genus two is the

following: for any �xed Q

1

; Q

2

2 �; every element ! 2 J(�) 
an be written as ! = [P

1

+ P

2

� Q

1

� Q

2

℄;

moreover this representation is unique i� P

1

6= �(P

2

), all P + �(P ) and Q+ �(Q) (P;Q 2 �) being linearly

equivalent, P + �(P ) �

l

Q+ �(Q). In the present 
ase of 
urves (1) whi
h have an automorphism � of order

three, the 
over �

�

asso
iated to � provides in addition (using the notations of the previous se
tion for the

�xed points of �) the following linear equivalen
es

3o

1

�

l

3o

2

�

l

31

1

�

l

31

2

: (2)

The automorphism � extends in a natural way to an automorphism on J(�), also denoted by �. It is given

and well-de�ned for ! = [P

1

+ P

2

�Q

1

�Q

2

℄ as follows: �(!) = [�(P

1

) + �(P

2

)� �(Q

1

)� �(Q

2

)℄.

Proposition 1. The automorphism � has nine �xed points and nine invariant theta 
urves on J(�).

Proof

The prin
ipal polarisation on J(�) is invariant under Aut(�), hen
e the isomorphism J(�)!

^

J(�) from

J(�) to its dual

^

J(�) is Aut(�)-invariant and the se
ond statement follows from the �rst one.

We 
ount the number of �xed points of � in two di�erent ways. At �rst we use the holomorphi
 Lefs
hetz

�xed point formula

X

p

(�1)

p

tra
e f

�

j

H

p;0

(M)

=

X

f(p

�

)=p

�

1

det(I �B

�

)

; (3)

for a holomorphi
 map f :M ! M , where B

�

is the linear part of f at the �xed point p

�

. We apply it for

f = � and M = J(�); in this 
ase H

p;0

(J(�)) may be identi�ed with the p-th anti-symmetri
 power of the


otangent bundle at any point of J(�). For the left-hand side in (3), the base of H

p;0

(J(�)) may thus be

taken in a point [P

1

+P

2

�Q

1

�Q

2

℄ as f


1

;


2

g = f!

1

(P

1

)+!

1

(P

2

); !

2

(P

1

)+!

2

(P

2

)g; where !

i

= x

i�1

dx=y

and 


1

^ 


2

is a generator for H

2;0

(J(�)). Sin
e �

�




i

= �

i




i

; (i = 1; 2), the left hand side in (3) gives

2

X

p=0

(�1)

p

tra
e�

�

j

H

p;0

(J(�))

= 1� tra
e

�

� 0

0 �

2

�

+ 1 = 3:

As for the right hand side, obviously all B

�

are equal, in fa
t

B

�

=

�

� 0

0 �

2

�

(4)

when lo
al 
oordinates dual to 


1

and 


2

are pi
ked around the point P

�

. Therefore

det(I �B

�

) = (1� �)(1� �

2

) = 3;

and the number of �xed points of � is indeed nine.

A se
ond way to determine the number of �xed points of � is by writing down an expli
it list: if we

write every point ! 2 J(�) as ! = [P

1

+P

2

�21

1

℄ then �! = ! i� �(P

1

)+�(P

2

) �

l

P

1

+P

2

, i.e., P

1

= �(P

2

)

or P

1

and P

2

are both �xed points for �. Using (2) we arrive at the following list

fO; o

1

� o

2

; o

2

� o

1

; 1

1

�1

2

; 1

2

�1

1

; o

1

�1

1

; o

2

�1

2

; o

1

�1

2

; o

2

�1

1

g: (5)

The nine invariant 
urves are then given by the nine translates over these points of the image of � in J(�)

by the map x 7! [x�1

1

℄: Sin
e this 
urve obviously 
ontains exa
tly the four �xed points

fO; 1

2

�1

1

; o

1

�1

1

; o

2

�1

1

g;
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ea
h of the nine invariant 
urves will 
ontain exa
tly four �xed points. Dually, every �xed point belongs to

four invariant 
urves sin
e the origin O belongs to the four 
urves

fx 7! [x�1

i

℄; x 7! [x� o

i

℄; i = 1; 2g

Note that the �xed points form a group F (isomorphi
 to ZZ=3ZZ�ZZ=3ZZ) whi
h is a subgroup of J

3

(�),

the three-torsion subgroup of J(�). On J

3

(�) there is a non-degenerated alternating form (� ; �) indu
ed by

the Riemann form 
orresponding to the prin
ipal polarisation. The subgroup F � J

3

(�) has the following

property.

Proposition 2. The group F of �xed points of � on J(�) is a totally isotropi
 subgroup of J

3

(�) with

respe
t to the Riemann form (� ; �).

Proof

� is a symple
ti
 automorphism of J

3

(�)

�

=

(ZZ=3ZZ)

4

, whi
h satis�es 1+�+�

2

= 0; also dimker(��1) =

2. It follows that F 
onsists exa
tly of the elements of the form �(x)�x where x 2 J

3

(�). Finally, if y 2 F ,

then obviously (y; �(x) � x) = 0.

Apart from the Riemann form, whi
h 
oin
ides on J

3

(�) with Weil's pairing e

3

(see [8℄) a fun
tion 
an

be de�ned on F with values in the group of 
ubi
 roots of unity. It is analogous to Mumford's quadrati
 form

(theta 
hara
teristi
) on the two-torsion subgroup J

2

(�) of J(�) and 
an be de�ned in 
omplete generality

(see [4℄). It measures the obstru
tion for a line bundle to des
end to the quotient J(�)=�. One 
an de�ne

it as follows. Choose a linearisation of L with respe
t to the 
y
li
 group ZZ=3ZZ generated by �, i.e., an

isomorphism �:L

�

!�

�

(L) with �(0) = Id

L(0)

. When x is a �xed point of �, then � indu
es an isomorphism

of L(x) whi
h is multipli
ation by a root of unity e(x), and e:x 7! e(x) is the desired fun
tion. It depends on

the 
hoi
e of L itself and not only on the polarisation. If � is the (theta) divisor whi
h 
orresponds to L; i.e.,

L = [�℄; then the 
orresponding e = e

�

may be 
omputed as follows. Let f = 0 be a lo
al de�ning fun
tion

for � in x. Sin
e the divisor � is non-singular, the leading part h of f is linear and we have �

�

(h) = e(x)h.

Sin
e the singular points are of type A

2

, as is seen from (4), there exist lo
al 
oordinates fu; vg in x su
h

that �

�

(u) = �u and �

�

(v) = �

2

v. Therefore we have either h = u and e(x) = �, or h = v and e(x) = �

2

: Also

if x =2 � then e(x) = 1. It follows that e

�

is expli
itely given for all x 2 F by e

�

(x) = �

�jT

x

�

, or equivalently

e

�

(x)v = �

�

v for all v 2 T

x

�. (6)

The automorphisms � and � a
t on F as well as on the set of invariant theta 
urves. It is desirable to

have a \totally symmetri
" theta 
urve, i.e., invariant by �; � and �. The main observation of this paragraph,

from whi
h the 9

4

-
on�guration is a 
onsequen
e, is the following.

Proposition 3. There is a unique totally symmetri
 theta 
urve among the nine invariant theta 
urves.

The fun
tion e

�

asso
iated to this 
urve � is a quadrati
 form on F ; it is given in a suitable base for F and

upon identi�
ation of the group of 
ubi
 roots of 1 with IF

3

by e

�

(r; s) = r

2

� s

2

(mod 3).

Proof

The existen
e of the 
urve is 
lear: sin
e the polarisation is invariant by the group Aut(�), we may �nd

an invariant invertible sheaf whi
h gives this polarisation, hen
e also an invariant divisor. It is unique sin
e

if there are two Aut(�)-invariant 
urves, then their (two) interse
tion points must be invariant under Aut(�)

whi
h is impossible by Table 1. It is easy to identify �: it is given by the image of P 7! [P +1

1

� 21

2

℄.

To see this, remark that this image 
an be written as

P 7! [P + S

1

+ �(S

1

)� 3S

2

℄;

independent of the 
hoi
e of S

1

; S

2

2 fo

1

; o

2

; 1

1

; 1

2

g. From this representation it is also 
lear that �


ontains the four points [�(S

1

)� S

1

℄; S

1

2 fo

1

; o

2

; 1

1

; 1

2

g.
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Let us determine e

�

in terms of the base f�

1

; �

2

g where �

1

= [1

2

� 1

1

℄ and �

2

= [o

2

� o

1

℄. Sin
e

� = ��� and �

2

= 1 it follows using the 
hain rule that if �(x) = x and v 2 T

�(x)

� then

e

�

(�(x))v = �

�

v = �

�

�

�

�

�

v = e

�

(x)�

�

�

�

v = e

�

(x)v;

hen
e e

�

(�(x)) = e

�

(x). In the same way it follows from � = ��

�1

� that e

�

(�(x)) = e

�

(x)

�1

. Therefore,

if we identify the group of 
ubi
 roots of unity with IF

3

by e

�

(�

1

) = 1 then e

�

is given by

e

�

(r�

1

+ s�

2

) = r

2

� s

2

(mod 3)):

The 9

4


on�guration is now des
ribed as follows. if ! and !

0

are two �xed points, then

! 2 �+ !

0

i� e

�

(! � !

0

) 6= 0:

It follows that every invariant theta 
urve passes through four �xed points and that every �xed point belongs

to four invariant theta 
urves. Moreover we have seen that the fun
tion e

�

determines the dire
tion of the

tangent to � in the �xed points of �. Therefore, if !; !

0

2 F then �+! and �+!

0

are tangent in a 
ommon

point x 2 F if and only if

e

�+!

(x) = e

�+!

0

(x):

Sin
e e

�+!

(x) = e

�

(x� !), this 
ondition is rewritten as

e

�

(x� !) = e

�

(x � !

0

)

whi
h is satis�ed for !

0

= 2x � ! (only). We 
on
lude that the four invariant 
urves running through

one �xed point 
ome in two pairs: sin
e any two theta 
urves always interse
t in two points (whi
h may


oin
ide), the 
urves of one pair are tangent in their unique interse
tion point and the 
urves of opposite

pairs interse
t in two di�erent points (see Figure 1, whi
h also 
ontains the dual pi
ture, equally present in

the 9

4

-
on�guration).

dual

 ��!

Figure 1: The in
iden
e of points and lines on the 9

4

-
on�guration

6



4. Equations for J(�)=� in IP

4

In this se
tion we will 
ompute expli
it equations for the quotient S = J(�)=� as an algebrai
 surfa
e

in IP

4

. Sin
e � has nine �xed points, S has nine singular points and we have seen that they are of type A

2

.

The minimal resolution of these singularities of S leads to a K-3 surfa
e (a generalised Kummer surfa
e),

whi
h we will denote by X (see [3℄). Let �: J(�) ! S be the quotient and denote by � the unique divisor

given by Proposition 3.

Proposition 4. Let M be the divisor on S for whi
h �

�

(M) = [3�℄. Then M is very ample and allows to

embed S as the 
omplete interse
tion of a quadri
 and a 
ubi
 threefold in IP

4

.

Proof

Sin
e most of the proof is standard, we only give few details. Using the quadrati
 form e

�

we see that

L


3

= [3�℄ des
ends to an invertible sheaf M on S, i.e., �

�

(M) = L


3

. Let us denote by N the line bundle

on X whi
h is the pull-ba
k of M by the 
anoni
al map from X to S. Then using L � L = 2 we �nd

18 = L


3

� L


3

= (deg �)M �M = 3M �M;

so thatM �M = 6; whi
h is also the self-interse
tion of N . Therefore, we �nd by the Riemann-Ro
h Theorem

(for K-3 surfa
es),

�(N) = �(O

X

) +

N �N

2

= 2 + 3 = 5:

It follows moreover from Serre duality and Kodaira vanishing (for K-3 surfa
es) that dimH

i

(X;O(N)) = 0

for i > 0, so that dimH

0

(X;O(N)) = �(N) = 5.

The morphism �

N


orresponding to N fa
torises via the blow-up p:X ! S and is shown to provide an

inje
tive morphism �:S ! IP

4

. More pre
isely, it 
an be seen by analysing theta 
urves on J that �

N

is one

to one away from the ex
eptional 
urves. If we 
onsider now the surje
tive map

SymH

0

(X;N)! �

t�0

H

0

�

X;N


t

�

;

whose kernel leads to the de�ning equations for the image of S in IP

4

, we see by a dimension 
ount as above

that the kernel 
ontains a quadrati
 as well as an (independent) 
ubi
 form. Sin
e the degree of N equals

six, we see that the image is the 
omplete interse
tion of a quadri
 and a 
ubi
 hypersurfa
e in IP

4

.

We will now use the so-
alled even master system, introdu
ed and studied by the se
ond author in [13℄.

Let us shortly re
all what is needed for our purposes. Let us denote by �

0

one of the four invariant theta


urves whi
h is tangent to �, say �

0

= � + [1

2

�1

1

℄. Then every point ! 2 J(�) n (� + �

0

) is written

uniquely as [P +Q� 21

2

℄ and P; Q =2 f1

1

;1

2

g. It follows that we may asso
iate to ! three polynomials

u(x) = x

2

+ u

1

x+ u

2

, v(x) = v

1

x+ v

2

and w(x) = x

4

� u

1

x

3

+ w

0

x

2

+ w

1

x+ w

2

by

y

u

1

= �x(P )� x(Q); u

2

= x(P )x(Q);

v

1

=

y(P )� y(Q)

x(P )� x(Q)

; v

2

=

x(P )y(Q)� x(Q)y(P )

x(P )� x(Q)

and w(x) is de�ned by the fundamental relation u(x)w(x) + v

2

(x) = f(x), where f(x) is the right hand side

of our equation y

2

= x

6

+ 2�x

3

+ 1 for the 
urve �. The 
oeÆ
ients of this fundamental equation a
tually

lead to aÆne equations for the aÆne part J(�) n (� +�

0

) and are easily written out as

w

0

� u

2

1

+ u

2

= 0;

w

1

+ w

0

u

1

� u

1

u

2

= 2�;

w

2

+ w

1

u

1

+ u

2

w

0

+ v

2

1

= 0;

w

1

u

2

+ w

2

u

1

+ 2v

1

v

2

= 0;

u

2

w

2

+ v

2

2

= 1:

(7)

y

if x(P ) = x(Q) then the de�nitions of v

1

and v

2

are adjusted in an appropriate way

7



Note that the a
tion of � on these 
oordinates is very simple: the a
tion is diagonal and, if we assign to

(u

1

; u

2

; v

1

; v

2

; w

0

; w

1

; w

2

) the weights (1; 2; 2; 3; 2; 3; 4), then all equations in (7) are weight homogenous and

ea
h variable is multiplied by � as often as given by its weight. Clearly the a
tion leaves the equations (7)

invariant.

A se
ond ingredient whi
h we need from [13℄ is that we may �nd expli
itely in terms of these variables

(a base for) the fun
tions whi
h have a pole of order three along � and are holomorphi
 elsewhere. This

is done by using a ve
tor �eld on J(�) and its Laurent solutions whi
h are written down there (we refer to

[13℄ Se
t. 6.b for more details). Obviously a weight homogeneous base for these fun
tions 
an be 
hosen and

fun
tions whi
h are invariant by � are the ones whose weight is a multiple of three. The list is the following.

z

0

= 1;

z

1

= u

1

u

2

� v

2

;

z

2

= 2u

1

(u

2

+ v

1

� u

2

1

);

z

3

= 2u

2

v

2

1

+ 2v

2

2

+ 2u

2

v

1

(2u

2

� u

2

1

) + 2u

1

v

2

(u

2

1

� v

1

� 3u

2

) + 2u

3

2

;

z

4

= 2v

3

1

� 2(u

2

1

+ 4u

2

)v

2

1

+ 10v

2

(u

1

v

1

� v

2

) + 2v

1

(7u

2

u

2

1

� u

4

1

� 11u

2

2

)

+ 2v

2

(2�+ 15u

1

u

2

� 5u

3

1

) + 2(u

2

1

� u

2

)

3

� 10u

3

2

� 4�u

1

u

2

:

(8)

To �nd the image of J(�) in IP

4

it suÆ
es to eliminate the variables u

i

; v

i

and w

i

from (7) and (8). In fa
t,

from the �rst three equations of (7) the variables w

i

are eliminated linearly and the other equations redu
e

to

2�(u

2

� u

2

1

) + 3u

1

u

2

2

� u

1

v

2

1

� 4u

2

u

3

1

+ 2v

1

v

2

+ u

5

1

= 0;

�2�u

1

u

2

+ u

2

u

4

1

� u

2

v

2

1

� 3u

2

1

u

2

2

+ u

3

2

+ v

2

2

= 1;

(9)

so it suÆ
es to eliminate u

1

; u

2

; v

1

and v

2

from (9) and (8) (we have already eliminated the w

i

-variables in

(8)). In the latter z

1

and z

2

are solved linearly for v

1

and v

2

,

v

1

= u

2

1

� u

2

+

z

2

2u

1

;

v

2

= u

1

u

2

� z

1

;

(10)

and the new equation for z

3

, obtained by substituting (10) in (8) is then solved linearly for u

2

as

u

2

=

2u

2

1

z

2

2

�

z

3

� z

1

z

2

� 2z

2

1

�

: (11)

After substitution of (10) and (11) in the last equation of (8) and in the equations of (9), we are left with

three linear equations in u

3

1

, whi
h re
e
ts the fa
t that J(�) will be a 3: 1 
over of its image in IP

4

. If we

eliminate u

3

1

we arrive at the following two equations:

8z

3

1

� 24�z

2

1

� 4 (2�z

2

+ 6z

3

+ z

4

) z

1

+ 4�z

3

� 2�z

2

2

� 3z

2

z

3

� z

2

z

4

= 0;

8z

4

1

� 16�z

3

1

� 4 (2 + 2�z

2

+ 6z

3

+ z

4

) z

2

1

+

�

8�+ 4�z

3

� 2�z

2

2

� 4z

2

� 3z

2

z

3

� z

2

z

4

�

z

1

+ 2�z

2

z

3

+ 14z

3

+ 2z

4

� 2z

2

2

+ z

3

z

4

+ 5z

2

3

= 0:

Using the �rst equation, the se
ond equation 
an be repla
ed by

8

�

1� 3�

2

�

z

2

1

+ 4

�

�2�+

�

1� 2�

2

�

z

2

� 6�z

3

� �z

4

�

z

1

+ 2

�

1� �

2

�

z

2

2

� 5z

2

3

� �z

2

(5z

3

+ z

4

) + 2z

3

�

2�

2

� 7

�

� z

3

z

4

� 2z

4

= 0;
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or equivalently by

t

ZAZ = 0, where

A =

0

B

B

B

B

B

B

B

�

0 �8� 0 2(2�

2

� 7) �2

�8� 16(1� 3�

2

) 4(1� 2�

2

) �24� �4�

0 4(1� 2�

2

) 4(1� �

2

) �5� ��

2(2�

2

� 7) �24� �5� �10 �1

�2 �4� �� �1 0

1

C

C

C

C

C

C

C

A

:

Although at this point these equations for the quadri
 and 
ubi
 hypersurfa
es whi
h de�ne S as a subset

of IP

4

(whi
h we will identify in the sequel with S) may not seem very attra
tive, we will see that natural


oordinates 
an be pi
ked for IP

4

in whi
h these equations take a very symmetri
 form. Indeed, the base we

used for IP

4

is rather arbitrary: for example, the 
oordinates of the nine �xed points for � do not possess

spe
ial 
oordinates in terms of the present base. The �rst interesting observation is here that if the �ve �xed

points for � whi
h do not lie on � are taken as base points for IP

4

then the four �xed points on � take a

simple form and are independent of �. To see this, let � =1

1

�1

2

and � = o

1

� o

2

and remark that the

points

fO; ��� �; ��+ �; �� �; �+ �g

are the �ve poins whi
h do not lie on �. To �nd their 
oordinates, use a lo
al parameter t and take x = t,

y = �

�

1 + �t

3

�

+O

�

t

6

�

;

pi
king either sign around o

1

or o

2

, and in the same way, x = t

�1

and

y = �

�

t

�3

+ �+

1� 2�

2

2

t

3

�

+O

�

t

4

�

for 1

1

and 1

2

. Then a 
areful 
omputation yields the following 
oordinates:

O : (0: 0: 0: 0: 1);

�� � : (0: 0: 1:�1:�3� 2�);

��� � : (1:�1:�2� 2�:�2�: 4�

2

� 14�+ 4):

We take the points

fO; ��� �; ��+ �; �� �; �+ �g

as base points for IP

4

(in that order), i.e., O = (1: 0: 0: 0: 0), et
., with asso
iated 
oordinates y

0

; : : : ; y

4

.

Then the four �xed points on � have as 
oordinates

� = (1: 1: 1: 0: 0); �� = (1: 0: 0: 1: 1);

� = (1: 1: 0: 1: 0); �� = (1: 0: 1: 0: 1);

and we see that they lie on the (2-dimensional!) plane

y

0

= y

2

+ y

3

= y

1

+ y

4

;

and it is easy to see that in fa
t � is 
ontained in this plane. The translations �

�

and �

�


orrespond to

proje
tive transformations of the surfa
e and take in terms of these 
oordinates the simple form

t

�

=

0

B

B

B

�

�1 1 1 0 0

�1 0 1 1 0

�1 1 0 0 1

0 0 1 0 0

0 1 0 0 0

1

C

C

C

A

and t

�

=

0

B

B

B

�

�1 1 0 1 0

�1 0 1 1 0

0 0 0 1 0

�1 1 0 0 1

0 1 0 0 0

1

C

C

C

A

9



from whi
h the equations for the planes to whi
h the other invariant 
urves belong, are obtained at on
e.

This 
on�guration of nine points in IP

4

is 
hara
terised by the fa
t that there exist nine planes with the

property that ea
h of these planes 
ontains four of the nine points and every point belongs to four of the

planes. Thus we have re
overed in a dire
t way a 
on�guration that has been studied in the work of Segre

and Castelnuovo on nets of 
ubi
 hypersurfa
es in IP

4

(see [5℄ and [12℄).

The equations of the quadri
 and 
ubi
 hypersurfa
es Q and C take in terms of the new 
oordinates the

following symmetri
 form.

Q : 
(y

1

+ y

4

)(y

2

+ y

3

+ y

4

� y

0

) + �
(y

2

+ y

3

)(y

1

+ y

3

+ y

4

� y

0

) = 
y

2

4

+ �
y

2

3

;

C : �


3

y

2

2

(y

1

+ y

3

+ y

4

� y

0

) + �


2


y

2

((y

1

+ y

4

)(y

2

� y

0

) + y

0

y

3

+ y

1

y

4

)�




3

y

2

1

(y

2

+ y

3

+ y

4

� y

0

)� �



2

y

1

((y

2

+ y

3

)(y

1

� y

0

) + y

0

y

4

+ y

2

y

3

) = 0;

where 
 = �+1 and �
 = 1��. The 
ubi
 equation 
an be simpli�ed in a signi�
ant way by adding to it the

equation for Q multiplied with 


2

y

1

� �


2

y

2

. The result is




2

y

1

y

4

(y

2

+ y

3

� y

0

)� �


2

y

2

y

3

(y

1

+ y

4

� y

0

) = 0:

If we de�ne

x

1

= �y

1

;

x

2

= �y

4

;

x

3

= y

0

� y

2

� y

3

;

x

4

= y

2

;

x

5

= y

1

+ y

4

� y

0

;

x

6

= y

3

;

then S is given as an algebrai
 variety in IP

5

by

C : 


2

x

1

x

2

x

3

+ �


2

x

4

x

5

x

6

= 0;

Q : 
(x

1

x

2

+ x

2

x

3

+ x

1

x

3

) + �
(x

4

x

5

+ x

5

x

6

+ x

4

x

6

) = 0;

H :x

1

+ x

2

+ x

3

+ x

4

+ x

5

+ x

6

= 0;

(12)

and the 9

4


on�guration is presented in the form used by Segre and Castelnuovo. Namely, the singular points

of S are now the points �

ij

(i; j = 1; : : : ; 3) with a 1 on the i-th pla
e, a �1 on position 3 + j and zeroes

elsewhere; the nine planes they belong to are given by H \ (x

i

= x

j+3

= 0) for i; j = 1; : : : ; 3. Moreover

the theta 
urves are mapped to the nine 
oni
s C

ij

; (1 � i; j � 3), given by H

ij

= 3C

ij

For example, C

16

is

given as


x

2

x

3

+ �
x

4

x

5

= 0;

x

2

+ x

3

+ x

4

+ x

5

= 0:

Note that if one 
hanges the sign of � in the equations (12) then an isomorphi
 surfa
e is obtained (inter
hange


$ �
 and x

i

$ x

i+3

for i = 1; : : : ; 3), in agreement with the fa
t that �

2

is the modular parameter.
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