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Abstract. We consider nilpotent coadjoint orbits in complex simple Lie algebras and we examine
their transverse Poisson structures. We specialize to the two extreme and most interesting cases, i.e.
the subregular and minimal orbits.
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SOME GENERAL RESULTS

In this first section we prove some general results on the transverse Poisson structures to
coadjoint orbits. In the next section we specialize to the two extreme and most interesting
cases, i.e. the subregular and minimal orbits. The results on the minimal orbit are new
and detailed proofs will appear in a future paper. We refer to[4] for proofs of the
remaining Theorems.

Transverse Poisson Structures to adjoint orbits

The splitting theorem of A.Weinstein [7] says that locally aPoisson manifold is a
direct product of a symplectic manifold with another singular Poisson manifold whose
tensor vanishes at the point. More precisely: Letx0 be a point in a Poisson manifoldM
of dimensionn. Let Sx0 be the symplectic leaf throughx0, dim Sx0 = 2s. Let N be an
arbitraryn−2s dimensional manifold transverse toSx0 at x0. ThenN inherits a Poisson
structure fromM vanishing atx0. This Poisson structure onN is in a neighborhood of
x0, unique up to Poisson diffeomorphism and is called the transverse Poisson structure
atx0.

We consider the case whereM = g∗, whereg is a complex Lie algebra, equipped
with its standard Lie-Poisson structure; see [1] for the definitions. As is well known,
the symplectic leaf throughµ ∈ g∗ is the co-adjoint orbitG ·µ of the adjoint Lie group
G of g. A natural transverse slice toG · µ is obtained in the following way: we choose



any complementn to the centralizerg(µ) of µ in g and we takeN to be the affine
subspaceµ + n⊥ of g∗. It follows easily thatN is a transverse slice toG · µ at µ.
Furthermore, defining onn⊥ any system of linear coordinates(q1, . . . ,qk), and using the
Dirac constraint formula, one can write down explicit formulas for the Poisson matrix
Λi j := {qi,q j} of the transverse Poisson structure. As a corollary, in the Lie-Poisson
case, the transverse Poisson structure is always rational.Let us give a specific example
of such computation using the Dirac reduction formula in thecase of the simple Lie
algebrasp4.

Example 1 We realize the type C2 Lie algebra as the set of matrices of the form

(

Z1 Z2
Z3 −Zt

1

)

where Zi ∈ M2(C) and Z2, Z3 are symmetric.
We look at the subregular nilpotent orbit corresponding to the partition(2,2). It is an

orbit through the nilpotent element

X =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






.

A simple calculation shows that a typical element in the transverse slice is given by

Q =







0 −q1 1 0
0 0 0 1

2q4 q3 0 0
q3 2q2 q1 0






.

The Dirac constraint formula gives the structure matrix forthe transverse Poisson
structureΛ:

Λ =







0 q3 2q4−2q2−q2
1 −q3

−q3 0 −2q1q4 0
−2q4 +2q2+q2

1 2q1q4 0 −2q1q4
q3 0 2q1q4 0






. (1)

The coefficients of the characteristic polynomial of q are the Casimirs of the trans-
verse Poisson structure. In our case the characteristic polynomial is

x4−2(q2+q4)x
2 +2q2

1q4+4q2q4−q2
3 .

What is striking in this example is that the transverse Poisson structure is actually
polynomial. Therefore it is an interesting question to determine conditions on the Lie
algebrag, the particular co-adjoint orbit, and the particular complementn so that the
transverse Poisson structure is polynomial.



In 1989 P. A. Damianou [3] made such a conjecture forgln. In 2002 R. Cushman and
M. Roberts [2] proved that there exists for any nilpotent adjoint orbit of a semi-simple
Lie algebra a special choice of a complementn such that the corresponding transverse
Poisson structure is polynomial. In 2005 H. Sabourin in [5] gave a more general class
of complements where the transverse structure is polynomial, using in an essential way
the machinery of semi-simple Lie algebras. In this paper thetransverse slice is always
chosen to lie in the class of complements prescribed by Sabourin.

It turns out that the transverse Poisson structure to any adjoint orbit G · x of a semi-
simple (or reductive) algebrag is essentially determined by the transverse Poisson struc-
ture to the underlying nilpotent orbitG(s) ·edefined by its Jordan-Chevalley decompo-
sitionx= s+ewheres is semisimple,e is nilpotent and[s,e] = 0. In fact, as is proved in
[4], there is an isomorphism between the transverse Poissonstructure atx and the trans-
verse Poisson structure ate. It follows that in well-chosen coordinates, the transverse
Poisson structure to any adjoint orbit in a semi-simple Lie algebra is polynomial

THE SUBREGULAR AND MINIMAL CASES

We will give an explicit description of the transverse Poisson structure in the case of the
subregular orbitOsr ⊂ g, whereg is a semi-simple Lie algebra. Recall that an elementZ
in g is subregular if dimg(Z) = Rk(g)+2. In this case, the generic rank of the transverse
Poisson structure onN is 2 and we know dimN − 2 independent Casimirs, namely
the basic Ad-invariant functions ong, restricted toN. It follows that the transverse
Poisson structure is the determinantal structure, determined by these Casimirs, up to
multiplication by a function. What is much less trivial to show is that this function is
actually just a non-zeroconstant.

Simple singularities

Consider the adjoint quotient map given by

G : g → Cℓ

x 7→ (G1(x), G2(x), . . . ,Gℓ(x)),

whereGi are the Chevalley invariants ofg andℓ is the rank ofg. These functions are
Casimirs of the Lie-Poisson structure ong. If we denote byχi the restriction ofGi to the
transverse sliceN, then it follows that these functions are independent Casimirs of the
transverse Poisson structure. The zero-fiberG−1(0) of G is exactly the nilpotent variety
N of g. We are interested inN∩N = N∩G−1(0) = χ−1(0), which is an affine surface
with an isolated, simple singularity.

Up to conjugacy, there are five types of finite subgroups ofSL2 = SL2(C), the cyclic,
dihedral and three exceptional types, denoted byCp,Dp,T ,O andI . Given such a
subgroupF, one looks at the corresponding ring of invariant polynomials C[u,v]F. In
each of the five cases,C[u,v]F is generated by three fundamental polynomialsX,Y,Z,
subject to only one relationR(X,Y,Z) = 0, hence the quotient spaceC2/F can be



identified, as an affine surface, with the singular surface inC3, defined byR= 0. The
origin is its only singular point; it is called a(homogeneous) simple singularity.

For the other simple Lie algebras (of typeBℓ, Cℓ, F4 or G2), there exists a similar
correspondence. By definition, an(inhomogeneous) simple singularityof type ∆ is a
couple(V,Γ) consisting of a homogeneous simple singularityV = C2/F and a group
Γ = F′/F of automorphisms ofV.

We can now state the following extension of a theorem of Brieskorn, which is due to
Slodowy [6]

Theorem 1 Let g be a simple complex Lie algebra, with Dynkin diagram of type∆. Let
Osr = G ·e be the subregular orbit and N= e+n⊥ a transverse slice toOsr. The surface
N∩N = χ−1(0) has a (homogeneous or inhomogeneous) simple singularity oftype∆.

Example 2 In example (1) the Casimirs are f1 = q2 +q4 and f2 = 2q2
1q4+4q2q4−q2

3.
The common level set of the Casimirs is obtained by eliminating all but three variables
and we obtain

2q2
1q2+4q2

2+q2
3 = 0 ,

a surface with a type D3 singularity which agrees with the result of Slodowy.

The determinantal Poisson structure

In terms of linear coordinatesq1, q2, . . . ,qℓ+2 on Cℓ+2, the formula

{ f ,g}det :=
d f ∧dg∧dχ1∧ . . .∧dχℓ

dq1∧dq2∧ . . .∧dqℓ+2
(2)

defines a Poisson bracket onCℓ+2 with Casimirsχ1, . . . ,χℓ.
Looking at our example, the two Casimirs can be used to compute the transverse

Poisson structure via the determinant formula (2). It turnsout that it gives the same
result (up to a constant multiple) as (1).

This phenomenon is general. In the subregular orbit we have two polynomial Poisson
structures on the transverse sliceN which haveχ1, . . . ,χℓ as Casimirs onN ∼= Cℓ+2,
namely the transverse Poisson structure and the determinantal structure, constructed by
using these Casimirs. It is proved in [4] that these two Poisson brackets are essentially
the same:

Theorem 2 Let Osr be the subregular nilpotent adjoint orbit of a complex semi-simple
Lie algebrag and let(h,e, f ) be the canonical triple, associated toOsr. Let N= e+n⊥

be a transverse slice toOsr, wheren is an adh-invariant complementary subspace to
g(e). Let {· , ·}N and {· , ·}det denote respectively the transverse Poisson structure and
the determinantal structure on N. Then{· , ·}N = c{· , ·}det for some c∈ C∗.



The minimal orbit

In this subsection we consider the transverse Poisson structure to the minimal orbit
Omin in an arbitrary semi-simple Lie algebrag. This orbit is the nilpotent orbit of
minimal dimension (besides the trivial orbit{0}). It is unique and is generated by a
root vectorEmin, associated to a highest root, with respect to a fixed Cartan subalgebra
h and a choice of simple roots.

Theorem 3 The transverse Poisson structure of the minimal orbitOmin is the sum of two
Poisson structuresΛmin = A +Q, where

1 A is a linear Poisson structure, isomorphic to the Lie-Poisson structure on the dual
of the Lie algebrag(Emin);

2 Q is a quadratic Poisson bracket, whose generic rank isdimOmin−2.
3 rankΛmin = rankA .
4 The pair(A ,Q) defines a bi-hamiltonian vector field.
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