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Abstract. We consider nilpotent coadjoint orbits in complex simple higebras and we examine
their transverse Poisson structures. We specialize tawhextreme and most interesting cases, i.e.
the subregular and minimal orbits.
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SOME GENERAL RESULTS

In this first section we prove some general results on thewese Poisson structures to
coadjoint orbits. In the next section we specialize to thedwtreme and most interesting
cases, i.e. the subregular and minimal orbits. The resualth® minimal orbit are new
and detailed proofs will appear in a future paper. We refefd{ofor proofs of the
remaining Theorems.

Transver se Poisson Structuresto adjoint orbits

The splitting theorem of A.Weinstein [7] says that locallyPaisson manifold is a
direct product of a symplectic manifold with another siraguPoisson manifold whose
tensor vanishes at the point. More precisely: Xgbe a point in a Poisson manifolMd
of dimensionn. Let S, be the symplectic leaf throughy, dim S, = 2s. Let N be an
arbitraryn — 2s dimensional manifold transverse 8 atxp. ThenN inherits a Poisson
structure fromM vanishing atxp. This Poisson structure dd is in a neighborhood of
Xo, unique up to Poisson diffeomorphism and is called the trense Poisson structure
atXo.

We consider the case wheké = g*, whereg is a complex Lie algebra, equipped
with its standard Lie-Poisson structure; see [1] for therdtédins. As is well known,
the symplectic leaf through € g* is the co-adjoint orbiG - u of the adjoint Lie group
G of g. A natural transverse slice 6 - u is obtained in the following way: we choose



any complemennh to the centralizeg(u) of u in g and we takeN to be the affine
subspaceu + n+ of g*. It follows easily thatN is a transverse slice t6 - u at p.
Furthermore, defining ont any system of linear coordinatés, . . ., gx), and using the
Dirac constraint formula, one can write down explicit fodasifor the Poisson matrix
Nij := {0;,q;} of the transverse Poisson structure. As a corollary, in tieeFloisson
case, the transverse Poisson structure is always ratiogtalis give a specific example
of such computation using the Dirac reduction formula in ¢ase of the simple Lie

algebrasp,.
Example 1 We realize the typefl.ie algebra as the set of matrices of the form

2y 2
Zs -2

where Z € My(C) and %, Z3 are symmetric.
We look at the subregular nilpotent orbit correspondingtte partition(2,2). Itis an
orbit through the nilpotent element

0010
(o001
X=10 00 0
000 0

A simple calculation shows that a typical element in the $xaanse slice is given by

0 - 1 0
o o o1
Q= 24 g3 0 O
3 202 q O

The Dirac constraint formula gives the structure matrix tbe transverse Poisson
structureA\:

0 03 20—20—0F —Gs
A= —03 0 _2qlq4 0 (1)
—204+ 202+ 02 20104 0 —20004 | -
d3 0 20104 0

The coefficients of the characteristic polynomial of q are @asimirs of the trans-
verse Poisson structure. In our case the characteristigpamnial is

X' — 2(0 + Ga) X% + 203014 + 4004 — 05 -

What is striking in this example is that the transverse Rwisstructure is actually
polynomial. Therefore it is an interesting question to deiae conditions on the Lie
algebrag, the particular co-adjoint orbit, and the particular coempéntn so that the
transverse Poisson structure is polynomial.



In 1989 P. A. Damianou [3] made such a conjectureglgrin 2002 R. Cushman and
M. Roberts [2] proved that there exists for any nilpotenbadjorbit of a semi-simple
Lie algebra a special choice of a complemersuch that the corresponding transverse
Poisson structure is polynomial. In 2005 H. Sabourin in [&}ga more general class
of complements where the transverse structure is polyripusismg in an essential way
the machinery of semi-simple Lie algebras. In this papetresverse slice is always
chosen to lie in the class of complements prescribed by Sabou

It turns out that the transverse Poisson structure to argiradjrbit G - x of a semi-
simple (or reductive) algebigis essentially determined by the transverse Poisson struc-
ture to the underlying nilpotent orb@(s) - e defined by its Jordan-Chevalley decompo-
sitionx = s+ ewheresis semisimpleeis nilpotent ands, €] = 0. In fact, as is proved in
[4], there is an isomorphism between the transverse Possacture ak and the trans-
verse Poisson structure atlt follows that in well-chosen coordinates, the transeers
Poisson structure to any adjoint orbit in a semi-simple Lgelra is polynomial

THE SUBREGULAR AND MINIMAL CASES

We will give an explicit description of the transverse Poisstructure in the case of the
subregular orbiUs; C g, whereg is a semi-simple Lie algebra. Recall that an elenzent
in gis subregular if ding(Z) = RK(g) + 2. In this case, the generic rank of the transverse
Poisson structure ol is 2 and we know dinN — 2 independent Casimirs, namely
the basic Ad-invariant functions og, restricted toN. It follows that the transverse
Poisson structure is the determinantal structure, deterinby these Casimirs, up to
multiplication by a function. What is much less trivial toash is that this function is
actually just a non-zeroonstant.

Simple singularities
Consider the adjoint quotient map given by

G:g — Cf

X = (Gl(X), GZ(X)7 RER) Gg(X)),
whereG; are the Chevalley invariants gfand/ is the rank ofg. These functions are
Casimirs of the Lie-Poisson structure gnif we denote byy; the restriction ofG; to the
transverse slic&\, then it follows that these functions are independent Ciasiof the
transverse Poisson structure. The zero-fiBet(0) of G is exactly the nilpotent variety
A of g. We are interested iINN.# = NN G~1(0) = x~1(0), which is an affine surface
with an isolated, simple singularity.

Up to conjugacy, there are five types of finite subgroupSief= SL »(C), the cyclic,
dihedral and three exceptional types, denotedshyZ,, 7,6 and .. Given such a
subgroupF, one looks at the corresponding ring of invariant polyndsn@{u,v|~. In
each of the five case€§[u,Vv|" is generated by three fundamental polynomil¥, Z,
subject to only one relatioR(X,Y,Z) = 0, hence the quotient spa&?/F can be



identified, as an affine surface, with the singular surfac&dndefined byR = 0. The
origin is its only singular point; it is called @omogeneous) simple singularity

For the other simple Lie algebras (of tygg, C,, F4 or Gy), there exists a similar
correspondence. By definition, gmhomogeneous) simple singularity type A is a
couple(V,I) consisting of a homogeneous simple singulavity- C?/F and a group
I = F'/F of automorphisms 0¥

We can now state the following extension of a theorem of Boes, which is due to
Slodowy [6]

Theorem 1 Letg be a simple complex Lie algebra, with Dynkin diagram of tpéeet
Osr = G - e be the subregular orbit and N e+n= a transverse slice t&s,. The surface
NN .4 = x~1(0) has a (homogeneous or inhomogeneous) simple singulariypef.

Example 2 In example (1) the Casimirs arg £ g2+ g4 and b = 2q§q4+4q2q4 — qg.
The common level set of the Casimirs is obtained by elinmgatil but three variables
and we obtain

20502 + 405+ 95 =0,
a surface with a type Psingularity which agrees with the result of Slodowy.

The deter minantal Poisson structure

In terms of linear coordinates, dp, . . ., g2 on Ct*2, the formula

df AdgAdxiA...Adxy
dp AdpA...AdQ2

{fvg}det:: (2)

defines a Poisson bracket 642 with Casimirsyz, ..., X

Looking at our example, the two Casimirs can be used to coenhg transverse
Poisson structure via the determinant formula (2). It tuwos that it gives the same
result (up to a constant multiple) as (1).

This phenomenon is general. In the subregular orbit we hvawgblynomial Poisson
structures on the transverse slidewhich haveys,..., x; as Casimirs oN = C/*2,
namely the transverse Poisson structure and the detertaisaucture, constructed by
using these Casimirs. It is proved in [4] that these two Rwidsrackets are essentially
the same:

Theorem 2 Let 05 be the subregular nilpotent adjoint orbit of a complex samiple

Lie algebrag and let(h, e, f) be the canonical triple, associated &t,. Let N=e+n*

be a transverse slice t@s;,, wheren is an ad,-invariant complementary subspace to
g(e). Let{-,-} and {-, }4e denote respectively the transverse Poisson structure and
the determinantal structure on N. Thén -} = c{-,-}4¢ for some c C*.



The minimal orbit

In this subsection we consider the transverse Poissontsteuto the minimal orbit
Omin In an arbitrary semi-simple Lie algebia This orbit is the nilpotent orbit of
minimal dimension (besides the trivial orldi0}). It is unique and is generated by a
root vectorEnin, associated to a highest root, with respect to a fixed Cartbalgebra
h and a choice of simple roots.

Theorem 3 The transverse Poisson structure of the minimal ofhit, is the sum of two
Poisson structuremin = .« + 2, where

1 o7 is alinear Poisson structure, isomorphic to the Lie-Porsstructure on the dual
of the Lie algebray(Emin);

2 2 is a quadratic Poisson bracket, whose generic rantim &ypin — 2.

3 rankAmin = rank <.

4 The pair(«7,2) defines a bi-hamiltonian vector field.
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