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Abstract. We study the singular iso-level manifold Mg(0) of the genus g Mumford
system associated to the spectral curve y2 = x2g+1. We show that Mg(0) is stratified by
g+1 open subvarieties of additive algebraic groups of dimension 0, 1, . . . , g and we give an
explicit description of Mg(0) in terms of the compactification of the generalized Jacobian.
As a consequence, we obtain an effective algorithm to compute rational solutions to
the genus g Mumford system, which is closely related to rational solutions of the KdV
hierarchy.

1. Introduction

The notion of algebraic integrability has been introduced by Adler and van Moerbeke

in order to provide a natural context in which basically all classical examples of inte-

grable systems naturally fit (after complexification) and they have developed techniques

for studying the geometry and the explicit integration of these systems [2, 3, 4]. The main

feature of an algebraic completely integrable system (a.c.i. system) is that the generic

fiber of its complex momentum map (the map which is defined by the Poisson commuting

integrals) is an affine part of an Abelian variety (compact complex algebraic torus); in

addition, the corresponding Hamiltonian vector fields are demanded to define translation

invariant vector fields on these tori. One important consequence is that the integration

of the equations of motion, starting from a generic point, can be done in terms of theta

functions, such as the classical Riemann theta function. A widely known example of an

a.c.i. system is the Euler top, which Euler integrated in terms of elliptic functions.

Particular special (non-generic) fibers of a the moment map of an a.c.i. system are in

general not affine parts of an Abelian variety. According to a conjecture, stated in [4, p.

155], such a fiber is made up by affine parts of one or several algebraic groups, defined by

the flows of the integrable vector fields. The solutions starting from a point on such a fiber

are then expressed in terms of a degeneration of the theta function, such as exponential

or rational functions. When the generic fiber of the a.c.i. system is the Jacobian of a

Riemann surface, so that the solution is expressed in terms of its Riemann theta function,

one is tempted to relate the algebraic groups that make up a special fiber to a generalized
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Jacobian, i.e., the Jacobian of a singular algebraic curve. Then the function theory of these

Jacobians provides the algebraic functions in which the corresponding special solution can

be expressed. In the case which we will study in this paper, the zero-fiber of the genus

g Mumford system, the singular curve is of the form y2 = x2n+1 (where n 6 g) and the

entire zero-fiber admits, according to a result by Beauville [8], a natural description as an

affine part of the compactification of the generalized Jacobian of the curve y2 = x2g+1. We

will show that the corresponding solutions of the Mumford system are rational functions

of all time variables and we will give explicit formulas for these solutions. See [7, 11, 12]

for other works on integrable systems involving generalized Jacobians.

Recall [17, 22] that for a fixed positive integer g, the phase space Mg of the Mumford

system is given by

Mg =







ℓ(x) =

(

v(x) w(x)
u(x) −v(x)

)

∣

∣

∣

u(x) = xg + ug−1x
g−1 + · · · + u0,

v(x) = vg−1x
g−1 + · · · + v0,

w(x) = xg+1 + wgx
g + · · · + w0







(∼= C3g+1),

(1.1)

equipped with a Poisson structure {· , ·}. We have the momentum map

Φg : Mg → Hg : ℓ(x) 7→ − det(ℓ(x)),

where Hg
∼= C2g+1 is given by

Hg = {h(x) = x2g+1 + h2gx
2g + h2g−1x

2g−1 + · · · + h0 | h0, . . . , h2g ∈ C}. (1.2)

Out of the 2g + 1 independent functions h0, . . . , h2g+1 on Mg, g + 1 functions hg, . . . , h2g

are Casimirs, and the g other functions h0, . . . , hg−1 define commuting Hamiltonian vector

fields X1, · · · ,Xg. This implies, since the generic rank of {· , ·} is 2g on Mg, that the

system (Mg, {· , ·} ,Φg) is a Liouville integrable system. For h(x) ∈ Hg, let Cg(h) denote

the integral projective (possibly singular) hyperelliptic curve of (arithmetic) genus g, given

by the completion of the affine curve y2 = h(x) with one smooth point at infinity. The

main feature of the Mumford system is that, when Cg(h) is non-singular, there is an

isomorphism between the level set Mg(h) := Φ−1
g (h) and the complement of the theta

divisor in the Jacobian variety Jg(h) of Cg(h), which transforms the Hamiltonian vector

fields X1, · · · ,Xg into the translation invariant vector fields on Jg(h). This shows that the

Mumford system is a.c.i. For singular curves, according to Beauville [8], the same result

holds true, upon replacing the Jacobian by the compactified generalized Jacobian (and

the theta divisor by its completion in the latter).

In this paper we give a precise and explicit description of the zero-fiber of the Mumford

system, which is the fiber of Φg over the very special point h(x) = x2g+1 in Hg, for which

the spectral curve Cg := Cg(x
2g+1) becomes a singular curve given by y2 = x2g+1. Our

results can be summarized as follows. (See Theorems 4.2, 4.4 and Proposition 5.7 for

(1)-(3).)



SINGULAR FIBER OF THE MUMFORD SYSTEM 3

(1) The level set Mg(x
2g+1) is stratified by g + 1 smooth affine varieties, which are

invariant for the flows of the vector fields X1, . . . ,Xg; they are of dimension k =

0, 1, . . . , g.

(2) Let k ∈ {0, 1, . . . , g}. There is an isomorphism between the (unique) k-dimensional

invariant manifold in Mg(x
2g+1) and the complement of the ‘theta divisor’ Θk in the

generalized Jacobian Jk of Ck, which linearizes the vector fields X1, . . . ,Xk. (The

vector fields Xk+1, . . . ,Xg vanish.) On the other hand, we construct explicitly an

isomorphism between Jk and the additive group Ck, by which Θk is transformed

to the zero locus of an (explicitly constructed) polynomial function τk on Ck.

Combined, for k = g, this yields a rational solution to the Mumford system in

terms of τg and its derivatives.

(3) The entire level set Mg(x
2g+1) is isomorphic to the complement of the ‘completed

theta divisor’ Θ̄g in the compactification J̄g of Jg. The vector fields X1, . . . ,Xg

are transformed to the ones induced by the natural action of Jg on J̄g via this

isomorphism.

The rational solutions, obtained in (2), turn out to be exactly same as the rational

solutions to the Korteweg-de Vries (KdV) hierarchy constructed in [1, 5, 6, 14, 18, 20].

This is not surprising, since Mumford’s original motivation for constructing the Mumford

system is the fact that every solution to the Mumford system yields a solution to the KdV

hierarchy [17, p. 3.203]. We therefore recover the rational solutions of the KdV hierarchy by

using an adapted version of the Abel-Jacobi map within the finite-dimensional framework

of the Mumford system.

Outline of the paper. In §2, we briefly review the basic facts about the Mumford system.

§3 is devoted to a detailed analysis of the generalized Jacobian Jg of Cg and its compact-

ification J̄g. We then apply in §4 the results of §3 to the Mumford system. In §5, we give

an algorithm to produce rational solutions for the Mumford system. In §6, we study the

relation to the KdV hierarchy.

Acknowledgement. Part of this work is done while the first and third authors stay in the

Université de Poitiers. They are grateful to the hospitality of the members there. We also

wish to thank the anonymous referee for his suggestions which allowed us to better relate

our results to the extensive KdV literature.

2. The Mumford system

In this section, we recall the basic facts about the Mumford system ([17], [22, Ch. VI.4]).

Throughout the section, g is a fixed positive integer.

2.1. Hamiltonian structure and integrability. The phase space Mg defined in (1.1)

of the Mumford system is equipped with the Poisson structure defined by (see [22, Ch. VI
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(4.4)])

{u(x), u(z)} = {v(x), v(z)} = 0,

{u(x), v(z)} =
u(x) − u(z)

x − z
,

{u(x), w(z)} = −2
v(x) − v(z)

x − z
,

{v(x), w(z)} =
w(x) − w(z)

x − z
− u(x),

{w(x), w(z)} = 2
(

v(x) − v(z)
)

.

The natural coordinates h0, . . . , h2g on Hg (1.2) can be regarded as polynomial functions

on Mg. These functions are pairwise in involution with respect to the above Poisson

structure1, where hg, · · · , h2g are the Casimirs, and h0, · · · , hg−1 generate the Hamiltonian

vector fields X1, · · · ,Xg on Mg by Xi := {· , hg−i}. Introducing D(z) :=
∑g−1

i=0 zi Xg−i,

these vector fields can be simultaneously written as follows (see [17, Th. 3.1]):

D(z)u(x) = 2
u(x)v(z) − v(x)u(z)

x − z
,

D(z)v(x) =
w(x)u(z) − u(x)w(z)

x − z
− u(x)u(z),

D(z)w(x) = 2
(v(x)w(z) − w(x)v(z)

x − z
+ v(x)u(z)

)

.

(2.1)

Since Φg is submersive and since the above g Hamiltonian vector fields are independent at

a generic point of Mg, a simple count shows that the triplet (Mg, {· , ·} ,Φg) is a (complex)

Liouville integrable system.

2.2. Algebraic integrability. It was shown by Mumford that (Mg, {· , ·} ,Φg) is actually

an a.c.i. system, which means that, in addition to Liouville integrability, the generic fiber

of the momentum map Φg is an affine part of an Abelian variety (complex algebraic

torus), and that the above Hamiltonian vector fields are constant (translation invariant)

on these tori. We sketch the proof, which Mumford attributes to Jacobi. To a polynomial

h(x) ∈ Hg, one naturally associates two geometrical objects:

• The spectral curve Cg(h) is defined to be a completion of the affine curve in C2

given by y2 = h(x) by adding one smooth point ∞. This is an integral projective

(possibly singular) hyperelliptic curve of (arithmetic) genus g.

• The level set Mg(h) is defined to be the fiber of Φg over h(x).

Theorem 2.1 (Mumford). Suppose that h(x) ∈ Hg has no multiple roots, so that Cg(h)

is an irreducible projective smooth hyperelliptic curve of genus g. Let Jg(h) and Θg(h)

be the Jacobian variety and the theta divisor of Cg(h). Then there is an isomorphism

Mg(h) ∼= Jg(h)\Θg(h) by which the vector fields X1, . . . ,Xg are transformed into indepen-

dent translation invariant vector fields on Jg(h).

1Actually, they are in involution with respect to a whole family of compatible Poisson structures, see
[22, Ch. VI (4.4)].
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Outline of the proof. One first proves that there is an isomorphism between Mg(h) and

an open dense subset

S := {

g
∑

i=1

[Pi] ∈ Symg(Cg(h) \ {∞}) | i 6= j ⇒ Pi 6= ı(Pj)}

of Symg(Cg(h)), where ı : Cg(h) → Cg(h) is the hyperelliptic involution. This isomorphism

is given by

ℓ(x) =

(

v(x) w(x)
u(x) −v(x)

)

7→
∑

roots xi of u(x)

[(xi, v(xi))] (2.2)

when u(x) has no multiple roots, which naturally extends to the whole of Mg(h) by the

interpolation formula. The next step is to show that the Abel-Jacobi map induces an

isomorphism between S and Jg(h) \ Θg(h). Combined with the first step, this yields the

isomorphism between Mg(h) and Jg(h) \ Θg(h).

As for the translation invariance of the vector fields X1, . . . ,Xg on Jg(h), it suffices to

prove that they are translation invariant in the neighborhood of a generic point, because

they are holomorphic on Mg(h). We use the above isomorphism to write these Hamilton-

ian vector fields down in terms of the variables xi, which yield local coordinates in the

neighborhood of a generic point of S. We calculate D(z)u(xi) in two different ways:

D(z)u(x)
∣

∣

x=xi
= 2

v(xi)u(z)

z − xi
= 2yi

∏

k 6=i

(z − xk),

D(z)u(x)
∣

∣

x=xi
= −

∏

k 6=i

(xi − xk)D(z)xi.

Thus
D(z)xi

yi
= −2

∏

k 6=i

z − xk

xi − xk
.

By using the interpolation formula, we obtain

g
∑

i=1

xj−1
i

D(z)xi

yi
= −2

g
∑

i=1

xj−1
i

∏

k 6=i

z − xk

xi − xk
= −2zj−1

for j = 1, · · · , g. It follows that in terms of the local coordinates xi, the vector fields Xi

are expressed by











1 1 · · · 1
x1 x2 · · · xg

...
...

xg−1
1 xg−1

2 · · · xg−1
g























Xgx1

y1

Xg−1x1

y1
· · · X1x1

y1
Xgx2

y2
· · · X1x2

y2

...
...

Xgxg

yg
· · ·

X1xg

yg













= −2 Ig. (2.3)

The g differential forms {
∑g

i=1 xj
idxi/yi}j=0,...,g−1 on S are seen to be the dual basis to

{Xi}i=1,...,g (up to a scalar) by (2.3). Since {
∑g

i=1 xj
idxi/yi}j=0,...,g−1 constitute under the

Abel-Jacobi map a basis for the space of holomorphic one-forms on Jg(h), it follows that

X1, . . . ,Xg extends to holomorphic (hence translation invariant) vector fields on Jg(h). �
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2.3. Singular fiber. We consider what happens in Theorem 2.1 when Cg(h) is singular.

For a coherent sheaf F on Cg(h) and k ∈ Z, we write F(k) for F ⊗ OCg(h)(k[∞]). For

any h(x) ∈ Hg, we define Jg(h) and J̄g(h) respectively to be the generalized Jacobian

variety of Cg(h) (which parametrizes invertible sheaves on Cg(h) of degree zero) and its

compactification (which parametrizes torsion free OCg(h)-modules L of rank one such that

h0(Cg(h),L) − h1(Cg(h),L) = 1 − g) (see [10]). We have Jg(h) = J̄g(h) if h(x) has no

multiple root. We have a natural inclusion Jg(h) ⊂ J̄g(h) (see [19]). We also define

Θg(h) := {L ∈ Jg(h) | h0(Cg(h), L(g − 1)) 6= 0}, (2.4)

Θ̄g(h) := {L ∈ J̄g(h) | h0(Cg(h),L(g − 1)) 6= 0}. (2.5)

Note that we have h0(Cg(h),L(g − 1)) = h1(Cg(h),L(g − 1)) for any L ∈ J̄g(h).2 We set

Mg(h)reg := {l(x) ∈ Mg(h) | l(a) is regular for all a ∈ P
1}.

(Recall that A ∈ M2(C) is regular iff all eigenspaces of A are one-dimensional. Note that

the matrix l(∞) =

(

0 1
0 0

)

of leading coefficients is regular.) When h(x) has no multiple

root, we have Mg(h) = Mg(h)reg. Here we state a special case of a result of Beauville [8].

Theorem 2.2 (Beauville). For any h ∈ Hg, there exist isomorphisms

Mg(h) ∼= J̄g(h) \ Θ̄g(h) and Mg(h)reg
∼= Jg(h) \ Θg(h),

where the latter is a restriction of the former.

Outline of the proof. Let f : Cg(h) → P
1 be the map given by (x, y) 7→ x. We take

L ∈ J̄g(h) \ Θ̄g(h). We see that the condition L 6∈ Θ̄g(h) implies that there exists an

isomorphism E := f∗(L(g − 1)) ∼= OP1(−1)⊕2 of OP1-modules (and vice versa), which is

unique up to the conjugation by an element of GL2(C). Once we fix this isomorphism,

the map E → E(g + 1) defined by the multiplication by y ∈ OCg(h) is represented by

a matrix l̃(x) ∈ M2(C[x]) such that all the entries of l̃(x) are of degree 6 g + 1. We

also have − det l̃(x) = h(x) by the Cayley-Hamilton formula. In the GL2(C)-conjugate

class of l̃(x), there exists a unique l(x) which belongs to Mg(h) (cf. [8, (1.5)]). It follows

that the correspondence L 7→ l(x) defines a bijection J̄g(h) \ Θ̄g(h) ∼= Mg(h). In order

to see this is an isomorphism, we simply notice that the same argument works after any

base change. It is shown in [8, (1.11-13)] that the restriction of this isomorphism defines

Mg(h)reg
∼= Jg(h) \ Θg(h). �

Remark 2.3. We briefly explain that the two isomorphisms constructed by Mumford and

Beauville coincide when h(x) ∈ Hg has no multiple root. We take l(x) =

(

v(x) w(x)
u(x) −v(x)

)

∈

Mg(h). Mumford associates to l(x) the invertible sheaf L = OCg(h)(D − g[∞]) where

D =
∑g

i=1[(xi, v(xi))] with u(x) =
∏g

i=1(x−xi). We set E := f∗(L(g−1)) = f∗(OCg(h)(D−

[∞])). Then we can choose an isomorphism E(1) ∼= O
⊕2
P1 in such a way that on the

2When L ∈ Jg(h), this is a consequence of the Riemann-Roch theorem (cf. [21]). For a general L ∈ J̄g(h),
the proof can be reduced to the previous case, because one can find a partial normalization f : C′

→ Cg(h)
and an invertible sheaf L on C′ of degree zero such that f∗(L) = L (cf. [9, p. 101] ).
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global section u(x) and y − v(x) are mapped to the standard basis of O
⊕2
P1 . (Note that

{u(x), y−v(x)} is a basis of H0(Cg(h), L(g)).) Then the multiplication by y is represented

by l(x), since (u(x), y−v(x))y = (u(x), y−v(x))l(x) follows from the relation y2 = h(x) =

u(x)w(x) + v(x)2.

Beauville also showed that the Hamiltonian vector fields are transformed by this iso-

morphism to the vector fields generated by the group action of Jg(h), but the proof works

only when Cg(h) is non-singular. It should be possible to modify his argument to deal

with singular cases, but we avoid it. Instead, we limit ourselves to consider a very singular

rational curve obtained by taking h(x) = x2g+1, so that the curve is given by y2 = x2g+1.

For this curve we will make the above isomorphism explicit, which entails in particular an

explicit description of Mg(h)reg as a subset of Mg(h), a description of the Jacobian variety

as the additive group Cg, and a description of the theta divisor as a subvariety of Cg.

The latter two descriptions will be given in the following section. We will then discuss the

Hamiltonian vector fields in §4.

3. Generalized Jacobian and its compactification

For a positive integer g, we define Cg to be the (complete, singular) hyperelliptic curve

defined by the equation y2 = x2g+1. In this section, we study in detail the structure of

the generalized Jacobian of Cg and its compactification.

3.1. Generalized Jacobian. Let Jg be the generalized Jacobian variety of Cg, which

parametrizes isomorphism classes of invertible sheaves on Cg of degree zero (cf. [21]).

The normalization of Cg is given by πg : P
1 → Cg; πg(t) = (t2, t2g+1). Let O and ∞ be

the points on P
1 whose coordinates are t = 0 and ∞ respectively. The images of O and

∞ by πg are, by abuse of notation, written by the same letter O and ∞. Note that O is

the unique singular point on Cg. We write Rg for the local ring OCg ,O of Cg at O, which

we regard as a subring of S = OP1,O = C[t](t) (via πg). The completions of S and Rg are

identified with C[[t]] and C[[t2, t2g+1]] respectively. The following isomorphisms play an

important role throughout this paper (see, for example, [21]):

Cg ∼= C[[t]]∗/C[[t2, t2g+1]]∗ ∼= S∗/R∗
g
∼= Div0(Cg \ {O})/div(R∗

g)
∼= Jg. (3.1)

Here the first map is given by

~a = (a1, . . . , ag) 7→ f(t;~a) := exp(

g
∑

i=1

ait
2i−1) mod C[[t2, t2g+1]]∗.

The second map is induced by the ”inclusion to their completion” S ⊂ C[[t]] and Rg ⊂

C[[t2, t2g+1]]. The third map associates to the class of f ∈ S∗ its divisor class div(f).

The fourth map is defined by D 7→ O(−D), where for D ∈ Div(Cg \ {O}) we write the

corresponding invertible sheaf by O(D). We often identify all the five groups appearing in

(3.1) altogether.

It is convenient to introduce the following notations:
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Definition 3.1. (1) We define polynomials χn ∈ C[a1, a2, . . . ] for n ∈ Z>0 by

exp(

∞
∑

i=1

ait
2i−1) =

∞
∑

n=0

χntn in C[[t]]. (3.2)

For example, we have χ0 = 1, χ1 = a1, χ2 =
a2
1
2 , χ3 =

a3
1
6 + a2. One sees that χn is

a polynomial in the variables a1, . . . , a[ n+1
2

]. We set χn = 0 for n ∈ Z<0.

(2) We set fg(t;~a) :=
∑2g−1

n=0 χn(~a)tn for ~a ∈ Cg. Since fg(t;~a) ≡ f(t;~a) in

C[[t]]∗/C[[t2, t2g+1]]∗, the invertible sheaf L := O(− div(fg(t;~a))) ∈ Jg corresponds

to ~a ∈ Cg by (3.1).

In order to study the structure of Jg, we need to introduce some definitions.

Definition 3.2. For a natural number k, we define the Abel-Jacobi map

ajg,k : Symk(Cg \ {O}) → Jg

by ajg,k(D) := O(D − k[∞]).

Definition 3.3. We define a (g × 2g)-matrix

X2g :=















χ1 χ0 0 0 0 0 · · · 0
χ3 χ2 χ1 χ0 0 0 · · · 0
χ5 χ4 χ3 χ2 χ1 χ0 · · · 0
...

...
χ2g−1 χ2g−2 χ2g−3 χ2g−4 χ2g−5 · · · χ1 χ0















with entries in C[a1, . . . , ag]. For 0 6 k 6 2g, let Xk be the (g × k)-submatrix of X2g

consisting of the left k columns of X2g.

Lemma 3.4. Let k ∈ Z and ~a = Cg. Recall that L = O(− div(fg(t;~a))) is the correspond-

ing invertible sheaf.

(1) Assume that 0 6 k 6 2g − 1. Then the following conditions are equivalent:

(a) h0(Cg, L(k)) 6= 0.

(b) There exists h(t) ∈ C[t] \ {0} such that deg h(t) 6 k and fg(t;~a)h(t) ∈ Rg.

(c) There exists ~b = (bi)
k
i=0 ∈ Ck+1 such that Xk+1

~b = 0 and ~b 6= 0.

(2) Assume that 0 6 k 6 2g − 1. Then the following conditions are equivalent:

(a) L is in the image of ajg,k.

(b) There exists h(t) ∈ C[t] such that deg h(t) 6 k and fg(t;~a)h(t) ∈ R∗
g.

(c) There exists ~b = (bi)
k
i=0 ∈ Ck+1 such that Xk+1

~b = 0 and b0 6= 0.
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Proof. First we prove (1):

h0(Cg, L(k)) 6= 0 ⇔∃r ∈ Rg \ {0}, div(r) − div(fg(t;~a)) + k · ∞ > 0

⇔∃h(=
r

fg(t;~a)
) ∈ C[t] \ {0}, s.t. deg h(t) 6 k, fg(t;~a)h(t) ∈ Rg

⇔∃h(t) =
k

∑

j=0

bjt
j 6= 0 s.t. fg(t;~a)h(t) =

∑

n

(
∑

j

bjχn−j)t
n ∈ Rg

⇔∃~b = (bj) ∈ Ck+1 \ {0} s.t.
∑

j

bjχn−j = 0 (n = 1, 3, . . . , 2g − 1)

⇔∃~b = (bj) ∈ Ck+1 \ {0} s.t. Xk+1
~b = 0.

Next we prove (2). If E =
∑k

i=1[πg(αi)] ∈ Symk(Cg \ {O}) with αi ∈ P
1 \ {O}, then

ajg,k(E) is represented by h(t)−1 ∈ S∗ where h(t) =
∏k

i=1(1 − t
αi

). (Here the factors

with αi = ∞ are regarded as 1. Hence h(t) is a polynomial of degree 6 k.) Since ~a is

represented by fg(t;~a) ∈ S∗, we have ~a = ajg,k(E) ⇔ fg(t;~a)h(t) ∈ R∗
g. This proves (a)

⇔ (b). The equivalence of (b) and (c) is seen in the same way as (1). �

The above lemma justifies the following definition.

Definition 3.5. We define the theta divisor Θg to be the zero locus of the polynomial

det(Xg) ∈ C[a1, . . . , ag] in Cg. This is a divisor on Cg, but we identify it with a divisor

on Jg via the isomorphism (3.1), which is the same as Θg(x
2g+1), defined in (2.4).

Corollary 3.6. (1) For L ∈ Jg, the following conditions are equivalent:

(a) L ∈ Θg, (b) h0(Cg, L(g − 1)) 6= 0, (c) det(Xg) = 0.

(2) We have Im(ajg,g−1) ⊂ Θg. However, Im(ajg,g−1) 6= Θg if g > 3.

(3) For any L ∈ Jg and k > g, the equivalent conditions in Lemma 3.4 (1) hold.

However, Im(ajg,g) 6= Jg if g > 2.

(4) The image of ajg,g+1 contains Jg \ Θg.

Proof. (1) When k = g − 1, the condition of Lemma 3.4 (1-c) is rephrased as (c), which

proves (b) ⇔ (c). The equivalence of (a) and (c) is the definition of Θg.

(2) The first statement follows from a trivial fact R∗
g ⊂ Rg. The second statement is

an effect of non-zero elements of Rg \ R∗
g. A concrete example is given by g = 3 and

L = O(− div(1 − t5)). (See the last line in this proof for the case g = 1, 2.)

(3) The first statement follows from the Riemann-Roch theorem. The second statement

is an effect of elements of Rg \ R∗
g. A concrete example is given by g = 2 and L =

O(− div(1 − t3)). (See the last line in this proof for the case g = 1.)

(4) We take L ∈ Jg \ Θg. Then Xg is of rank g by (1). Hence Xg+2 is also of rank g,

and the linear equation

(∗) Xg+2
~b = 0
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has two independent solutions ~b = (bi)
g+1
i=0 ∈ Cg+2. By Lemma 3.4 (2), it is enough to

show that (at least) one of these two solutions satisfies b0 6= 0. We suppose that there

exist two independent solutions to (∗) with b0 = 0. Because the first row of (∗) reads

a1b0 + b1 = 0, we have b1 = 0 as well. Let Y be the lower-right ((g − 1)× g)-submatrix of

Xg+2. (This is to say Y is constructed by removing the top row and the left two columns

from Xg+2.) Then Y ~c = 0 has two independent solutions. Hence Y is of rank 6 g − 2.

However, since Y is the same as a submatrix of Xg (obtained by removing the bottom row

from Xg) this implies Xg is of rank 6 g− 1. This contradicts the fact that the rank of Xg

is g.

The implication b0 = 0 ⇒ b1 = 0 shows that the implication (1-c) ⇒ (2-c) holds when

k = 2 in Lemma 3.4. This explains why the equality holds in (2) for g = 1, 2, and in (3)

for g = 1. �

The following lemma gives an explicit formula for the map (3.1), composed with ajg,g,

restricted to an open dense subset:

Lemma 3.7. The composition Symg(Cg \ {O,∞})
ajg,g
→ Jg

∼= Cg is described as follows:

D =

g
∑

k=1

[πg(αk)] 7→ ~a = (
1

2i − 1

g
∑

k=1

α
−(2i−1)
k )gi=1 (αk ∈ P

1 \ {O,∞}).

Proof. We claim that the formal power series defined by Ξ(t) := (1 − t) exp(
∑∞

j=1
t2j−1

2j−1 )

belongs to C[[t2]]. Indeed, we have

Ξ(t) = exp(log(1 − t) +

∞
∑

j=1

t2j−1

2j − 1
) = exp(−

∞
∑

i=1

ti

i
+

∞
∑

j=1

t2j−1

2j − 1
) = exp(−

∞
∑

i=1

t2i

2i
),

which belongs to C[[t2]]. Consequently, we have

Ξg(t) := (1 − t) exp(

g
∑

j=1

t2j−1

2j − 1
) ∈ C[[t2, t2g+1]].

By replacing t by α−1
k t for k = 1, . . . , g and taking a product, we get

g
∏

k=1

Ξg(α
−1
k t) =

g
∏

k=1

(1 − α−1
k t) exp(

g
∑

i=1

(α−1
k t)2i−1

2i − 1
) = h(t)f(t;~a) ∈ C[[t2, t2g+1]],

where h(t) =
∏g

k=1(1 − α−1
k t). Now we take D :=

∑g
k=1[πg(αk)] ∈ Symg(Cg \ {O,∞}).

Then ajg,g(D) is represented by h(t)−1 in C[[t]]∗/C[[t2, t2g+1]]∗. The above calculation

shows that, in C[[t]]∗/C[[t2, t2g+1]]∗, the class of h(t)−1 is the same as f(t;~a), which

represents ~a. This completes the proof. �

3.2. Compactification of the Generalized Jacobian. We write J̄g for the compact-

ified Jacobian of Cg which parametrizes isomorphism classes of torsion free OCg -modules

L of rank one such that h0(Cg,L) − h1(Cg,L) = 1 − g (see [10, 19]). We have a natural

inclusion Jg ⊂ J̄g, by which we regard Jg as a Zariski dense open subscheme in J̄g We also
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define Θ̄g = {L ∈ J̄g | h0(Cg,L(g − 1)) 6= 0}. Similarly to Θg, we see that Θ̄g is the same

as Θ̄g(x
2g+1), defined in (2.5).

The normalization πg : P
1 → Cg factors as P

1 πk→ Ck

πk,g
→ Cg for k = 1, . . . , g. Explicitly,

πk,g is given by πk,g(x, y) = (x, xg−ky). We have a push-forward (πk,g)∗ : J̄k → J̄g. We

also have an action of Jg on J̄g defined by L · L = L ⊗ L for L ∈ Jg and L ∈ J̄g.

Lemma 3.8. Let k ∈ {1, . . . , g}.

(1) The push-forward defines an isomorphism (πg−1,g)∗ : J̄g−1 → J̄g \ Jg.

(2) For any L ∈ Jg and L ∈ J̄k, we have (πk,g)∗((πk,g)
∗L · L) = L · (πk,g)∗L

(3) We have a commutative diagram of algebraic groups

Cg
(3.1)
∼= Jg

↓ ↓(πk,g)∗

Ck
(3.1)
∼= Jk

where the left vertical map is defined by (ai)
g
i=1 7→ (ai)

k
i=1.

(4) For any L ∈ J̄k, we have L ∈ Θ̄k if and only if (πk,g)∗L ∈ Θ̄g.

Proof. It is proved in [9, Lemma 3.1] that (πk,g)∗ : J̄k → J̄g is a closed embedding. Now

(1) follows by induction from the elementary fact that any torsion-free Rg-submodule M of

rank one in C(Cg) = C(t) satisfies f(t)M = Rk for some f(t) ∈ C(t)∗ and k = 0, 1, . . . , g.

(We set R0 = S by convention.) (2) is a direct consequence of the projection formula. (3)

follows from the description of the isomorphism (3.1). Since πk,g is a finite map, we have

h0(Ck,L) = h0(Cg, (πk,g)∗L), which proves (4). �

4. Singular fiber of the Mumford system with additive degeneration

We use the notations of §2. We apply the results of the previous section to study the

level set Mg(0) := Mg(x
2g+1) of the genus g Mumford system.

4.1. Matrix realization of the generalized Jacobian. Let us take h(x) := x2g+1 ∈

Hg. Then the spectral curve Cg(h) is precisely Cg considered in the previous section. We

write Mg(0) and Mg(0)reg for Mg(h) and Mg(h)reg. We define a map

ig : Mg−1(0) → Mg(0) ig(l(x)) = xl(x).

Lemma 4.1. Let l(x) ∈ Mg(0). Then l(x) is in Mg(0)reg iff l(0) 6= 0. In other words, we

have Mg(0)reg = Mg(0) \ ig(Mg−1(0)).

Proof. We first remark that a traceless 2 by 2 matrix A is regular iff A 6= 0. Hence

l(x) ∈ Mg(0)reg iff l(c) 6= 0 for all c ∈ C. If l(c) = 0 for some c ∈ C, then x2g+1 = − det l(x)

is divisible by x − c, thus c must be 0. �

Combined with Theorem 2.2, we obtain
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Theorem 4.2. There exist isomorphisms

φ̄g : Mg(0) ∼= J̄g \ Θ̄g and φg : Mg(0) \ ig(Mg−1(0)) ∼= Jg \ Θg.

Remark 4.3. We give an explicit description of φg. (Compare with Remark 2.3.) Take

l(x) ∈ Mg(0) \ ig(Mg−1(0)). Because of the relation u0w0 + v2
0 = 0, we have u0 6= 0 or

w0 6= 0. In the first case, l(x) is mapped to the invertible sheaf corresponding to the divisor
∑g

i=1[αi]− g[∞], where αi = v(xi)/x
g
i with u(x) =

∏g
i=1(x − xi). In the second case, l(x)

is mapped to the invertible sheaf corresponding to the divisor
∑g+1

j=1 [−βj ] − (g + 1)[∞],

where βj = v(xj)/x
g
j with w(x) =

∏g+1
j=1(x − xj). Note that for l(x) with u0w0 6= 0, the

two definitions give the same divisor class. Indeed, one has
∑

i

[αi] − g[∞] ≡ −
∑

j

[βj ] + (g + 1)[∞] ≡
∑

j

[−βj ] − (g + 1)[∞],

where the first equivalence is seen by div(t2g+1 − v(t2)) =
∑

i[αi] +
∑

j[βj ] − (2g + 1)[∞],

while the second follows from div(1 − t2

γ2 ) = [γ] + [−γ] − 2[∞] for any γ ∈ C \ {0}. We

shall consider the inverse map of φg in §5.1.

4.2. The Hamiltonian vector fields.

Theorem 4.4. The vector fields X1, . . . ,Xg on Mg(0) are linearized by the isomorphism

φ̄g to the vector fields induced by the action of Jg on J̄g. More precisely, we have the

following:

(1) For any i = 1, . . . , g, the vector fields Xi on Mg(0) \ ig(Mg−1(0)) are mapped to

(the restriction of) the invariant vector fields ∂
∂ ai

on Cg by the isomorphism φg in

Theorem 4.2 composed with (3.1).

(2) The map ig : Mg−1(0) → Mg(0) is a closed embedding. The vector fields

X1, . . . ,Xg−1 on Mg−1(0) are mapped to X1, . . . ,Xg−1 on Mg(0) by ig, while the

vector field Xg is zero on ig(Mg−1(0)).

(3) The level set Mg(0) is stratified by g+1 smooth affine varieties, which are invariant

for the flows of the vector fields X1, . . . ,Xg; they are isomorphic to Ck \ Θk for

k = 0, . . . , g.

Proof. (2) follows from (1) and Lemma 3.8. (3) is a consequence of (1) and (2). We

prove (1). Since the vector fields in question are all holomorphic, it suffices to show this

assertion on some open dense subset. We define

S
′ := {

g
∑

i=1

[(xi, yi)] ∈ Symg(Cg \ {O,∞}) | xi 6= xj for all i 6= j}.

Lemma 4.5. The map ajg,g, restricted to S′, is an open immersion whose image is a

dense open subset of Jg.

Proof. Suppose that
∑g

i=1[(xi, yi)] and
∑g

i=1[(x
′
i, y

′
i)] have the same image in Jg. If we set

αi = yi/x
g
i , α′

i = y′i/x
′g
i , then this amounts to saying that f(t) =

∏g
i=1(1−α−1

i t)(1+α′−1
i t)
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is in Rg. Since f(t) is of degree 2g, we must have f(t) = f(−t). This implies
∑g

i=1[αi] =
∑g

i=1[α
′
i] (in Symg(P1 \ {O,∞})) by the definition of S′, and the injectivity follows. The

rest follows from Lemma 3.4 (2). �

Now we consider the vector fields on S′. Since the computation made in the proof of

Theorem 2.1 is valid in this situation, it follows by putting xi = α2
i , yi = α2g+1

i in (2.3)

that, with local coordinates αi, the vector fields Xi are expressed by











1 1 · · · 1
α2

1 α2
2 · · · α2

g
...

...

α2g−2
1 α2g−2

2 · · · α2g−2
g



























Xgα1

α
2g
1

Xg−1α1

α
2g
1

· · · X1α1

α
2g
1

Xgα2

α
2g
2

· · · X1α2

α
2g
2

...
...

Xgαg

α
2g
g

· · ·
X1αg

α
2g
g

















= −Ig. (4.1)

Using Lemma 3.7 and (4.1) one computes that Xkai = δi,k, for 1 6 i, k 6 g, which leads

to (1) in Theorem 4.4.

5. Rational solution to the Mumford system

In view of Theorem 4.4, an explicit description of the inverse map

φ−1
g : Jg \ Θg → Mg(0) \ ig(Mg−1(0)); ~a 7→

(

v(x) w(x)
u(x) −v(x)

)

.

of φg gives rise to a rational solution to the Mumford system. This will be done in §5.1,

then we present a concrete algorithm to compute rational solutions in §5.2.

5.1. The map φ−1
g . We introduce some notations. For ~a = (a1, · · · , ag) ∈ Cg, let X̄ =

X̄(~a) be the 2g by g matrix:

X̄ =































χ0 0 · · ·
χ1 0 · · ·
χ2 χ0 0 · · ·
...

χg χg−2 · · ·
χg+1 χg−1 · · ·

...
χ2g−2 χ2g−4 · · · χ2 χ0

χ2g−1 χ2g−3 · · · χ3 χ1































,

where χi = χi(~a) are given by Definition 3.1 (1). We write X̄g = X̄g(~a) for the submatrix

consisting of the last g rows of X̄. We remark that X̄ and X2g of Definition 3.3 are closely

related (for instance we have det X̄g = detXg), but they come out of different contexts,

and it seems more natural to use both of them. We divide X̄ into a g + 1 by g matrix

A = A(~a), a g − 1 by g − 1 matrix B = B(~a) and a vector ~φ = ~φ(~a) = t(φ1, · · · , φg−1):

Ai,j = X̄i,j = χi−2j+1 for 1 6 i 6 g + 1, 1 6 j 6 g,

Bi,j = X̄g+1+i,1+j = χi−2j+g for 1 6 i, j 6 g − 1,

φi = X̄g+1+i,1 = χi+g for 1 6 i 6 g − 1.
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Let τg = τg(~a) be the polynomial function on Cg given by

τg(~a) = det X̄g(~a)(= detXg(~a)). (5.1)

Note that τg is essentially the Schur function associated to the partition ν = (g, g −

1, · · · , 1). (See (3) in the proof of Proposition 6.1.) Recall that the g vector fields Xi on

Mg(0) induce the translation invariant vector fields Xi = ∂
∂ai

on Cg (Theorem 4.4 (1)). For

a rational function s ∈ C(a1, · · · , ag) we write s′ := ∂
∂a1

s and s(k) := ∂k

∂ak
1
s for k = 1, 2, . . . .

Let U be the open subset of Jg \ Θg = {~a ∈ Cg | τg(~a) 6= 0} defined by

U := {~a ∈ Cg | detB(~a) 6= 0 and τg(~a) 6= 0}.

The next proposition is a key to an explicit formula for φ−1
g :

Proposition 5.1. Suppose ~a ∈ U . We denote by p(t;~a) =
∑g

k=0 pkt
k the polynomial,

whose coefficients are defined by

~p = t(p0, p1, · · · , pg) := A(~a)

(

1 0
0 −B(~a)−1

)(

1
~φ(~a)

)

. (5.2)

Then p(t; a) is the unique polynomial of degree at most g, which satisfies p0 = 1 and

2g−1
∑

k=0

χkt
k ≡ p(t;~a) in C[[t]]∗/C[[t2, t2g+1]]∗. (5.3)

Proof. We see that (5.3) with p0 = 1 is equivalent to the existence of a polynomial b(t) =

1 +
∑g−1

j=1 bjt
2j such that

p(t;~a) ≡ (

2g−1
∑

k=0

χkt
k) · b(t) mod t2gC[[t]]. (5.4)

Then we have

(5.4) ⇔ X̄~b =











~p
0
...
0











⇔

{

(ia) A~b = ~p

(ib) (~φ B)~b = t(0, · · · , 0)

where ~b = t(1, b1, b2, · · · , bg−1). When det B 6= 0, (ib) has the unique solution

~b =

(

1 0
0 −B−1

)(

1
~φ

)

,

with which (ia) is equivalent to (5.2). This completes the proof. �

Theorem 5.2. If ~a ∈ U , then φ−1
g (~a) =

(

v(x) w(x)
u(x) −v(x)

)

is given by

u(t2) =
(−1)g

pg(~a)2
p(t;~a)p(−t;~a), (5.5)

v(x) =
1

2

∂

∂a1
u(x), w(x) = (x − 2ug−1)u(x) −

1

2

∂2

∂a2
1

u(x). (5.6)

For a proof, we need a few lemmas:
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Lemma 5.3. For k = 1, · · · , g. we have

(1)
∂

∂ak

χj = χj−2k+1, (2)
∂

∂ak

χj =
( ∂

∂a1

)2k−1
χj.

Proof. By operating with ∂
∂ak

on (3.2), we obtain

t2k−1 exp(

g
∑

i=1

ait
2i−1) =

∞
∑

j=0

(
∂

∂ak

χj)t
j .

Thus we get
∑∞

j=0(
∂

∂ak
χj − χj−2k+1)t

j = 0, and (1) follows. (2) follows from (1). �

Lemma 5.4. For ~a ∈ U , we have the following:

(1) τg(~a) = pg detB, (2) τ ′
g(~a) = pg−1 det B, (3) τ ′′

g (~a) = 2pg−2 det B.

Proof. (1) Since ~a ∈ U , we can write B(~a)−1 = 1
det B(~a)B̄(~a) where B̄(~a) is the matrix of

cofactors of B(~a). We write Bk for the g − 1 by g − 2 submatrix of B(~a) obtained by

removing the k-th column of B(~a). We have

pg det B = χg det B −

[ g

2
]

∑

k=1

χg−2k

g−1
∑

j=1

B̄k,jφj ,

τg = det X̄g = χg det B +

[ g

2
]

∑

k=1

(−1)kχg−2k det
(

~φBk

)

.

Now the claim follows from the following fact

det
(

~φBk

)

= (−1)k−1
g−1
∑

j=1

B̄k,jφj. (5.7)

(2) Using Lemma 5.3, we get

τ ′
g = det

(

χg−1 χg−3 χg−5 · · ·
~φ B

)

.

On the other hand, we have

pg−1 det B = χg−1 detB −

[ g−1
2

]
∑

k=1

χg−1−2k

g−1
∑

j=1

B̄k,jφj,

which coincides with τ ′
g by (5.7).

(3) Using Lemma 5.3, we have

τ ′′
g = det















χg−2 χg−4 χg−6 · · ·
χg+1 χg−1 χg−3 · · ·
χg+2 χg χg−2 · · ·

...
χ2g−1 χ2g−3 χ2g−5 · · ·















+ det















χg−1 χg−3 χg−5 · · ·
χg χg−2 χg−4 · · ·

χg+2 χg χg−2 · · ·
...

χ2g−1 χ2g−3 χ2g−5 · · ·















.

By using (5.7), the first term in r.h.s. turns out to be pg−2 detB. On the other hand, it

follows from the following lemma that the first and second terms coincide. This completes

the proof. �
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Lemma 5.5. Let X0, . . . ,X2g−1 be independent variables. We define two elements in the

polynomial ring C[X0, . . . ,X2g−1]:

Q1 := det















Xg−2 Xg−4 Xg−6 · · ·
Xg+1 Xg−1 Xg−3 · · ·
Xg+2 Xg Xg−2 · · ·

...
X2g−1 X2g−3 X2g−5 · · ·















, Q2 := det















Xg−1 Xg−3 Xg−5 · · ·
Xg Xg−2 Xg−4 · · ·

Xg+2 Xg Xg−2 · · ·
...

X2g−1 X2g−3 X2g−5 · · ·















.

Then we have Q1 = Q2.

Proof. We define a derivation ∂ on C[X0, . . . ,X2g−1] by ∂Xj = Xj−2 for 2 6 j 6 2g − 1

and ∂ X0 = ∂ X1 = 0. We define

T := det















Xg Xg−2 · · · 0
Xg+1 Xg−1 · · · 0

Xg+2 Xg

...
...

... X0

X2g−1 X2g−3 · · · X1















.

We calculate ∂T in two ways. By differentiating columns, we see that ∂ T = 0 since

∂ X0 = ∂ X1 = 0. By differentiating rows, we see that ∂ T = Q1 −Q2. This completes the

proof. �

Proof of Theorem 5.2. From Lemma 5.4 (1) we have pg 6= 0 on U , thus p(t;~a) is written

as p(t;~a) =
∏g

j=1(1−
t

αj
) so that pg = (−1)g

∏g
j=1

1
αj

. Proposition 5.1 shows that u(x) =
∏g

j=1(x − α2
j ) (cf. Remark 4.3). Thus we have

u(t2) =

g
∏

j=1

(t − αj)(t + αj) = (

g
∏

j=1

−α2
j )p(t;~a)p(−t;~a),

and (5.5) follows. The action of Xg (2.1) on Mg is written as follows:

X1u(x) = 2v(x),

X1v(x) = −w(x) + (x − ug−1 + wg)u(x),

X1w(x) = 2(x − ug−1 + wg)v(x).

(5.8)

To obtain v(x) and w(x), we use the first two equations, the relation X1 = ∂
∂a1

which

comes from Theorem 4.4 (1), and the fact that wg = −ug−1 on Mg(0), as follows from

u(x)w(x) + v(x)2 = x2g+1. �

5.2. Algorithm. We present an explicit algorithm to compute a rational solution to the

Mumford system. This can be considered as a degenerate version of [15] (see also [17,

§10]), where a solution is given in terms of the hyperelliptic ℘-function. The function ρg

defined in (5.9) below corresponds to a degenerate version of the hyperelliptic ℘-function.

Definition 5.6. We define a family of polynomials U0, . . . , Ug−1, V0, . . . , Vg−1,W0, . . . ,Wg ∈

C[T0, . . . , T2g] as follows. We set

Ug−1 = T0, Vg−1 =
1

2
T1, Wg = −T0.
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Assume we have defined Ug−i, Vg−i,Wg−i+1 for i = 1, . . . , k. Then we define

Ug−k−1 =
1

4
Üg−k + Ug−1Ug−k −

1

2

(

g−1
∑

j=g−k

UjW2g−j−k +

g−1
∑

j=g+1−k

VjV2g−j−k

)

,

Vg−k−1 =
1

2
U̇g−k−1,

Wg−k = −
1

4
Üg−k − Ug−1Ug−k −

1

2

(

g−1
∑

j=g−k

UjW2g−j−k +

g−1
∑

j=g+1−k

VjV2g−j−k

)

.

Here F 7→ Ḟ is the derivation on C[T0, . . . , T2g] defined by Ṫi = Ti+1 for i = 0, 1, . . . , 2g−1,

and by Ṫ2g = 0. The first examples of Uk are given by

Ug−1 = T0,

Ug−2 =
1

4
T2 +

3

2
T 2

0 ,

Ug−3 =
1

16
T4 +

5

8
T 2

1 +
5

4
T0T2 +

5

2
T3.

Proposition 5.7. Let ρg = ρg(~a) be the rational function in C[a1, . . . , ag,
1
τg

] given by

ρg(~a) =
∂2

∂a2
1

log τg(~a). (5.9)

Then, the functions

uk := Uk(ρg, ρ
′
g, . . . , ρ

(2g)
g ), vk := Vk(ρg, ρ

′
g, . . . , ρ

(2g)
g ), wk := Wk(ρg, ρ

′
g, . . . , ρ

(2g)
g )

give a rational solution for the genus g Mumford system.

Proof. By using Theorem 5.2, when ~a ∈ U , ug−1 is written in terms of pj as

ug−1 =
2pg−2pg − p2

g−1

p2
g

.

From Lemma 5.4, this turns out to be

ug−1 =
τ ′′
g τg − (τ ′

g)
2

τ2
g

= ρg.

Since ρg has poles only on Θg, the domain of the solution of ug−1 is extended from the

open subset U of Jg \ Θg to Jg \ Θg.

The first two equations of (5.8) yield

vg−k =
1

2
u′

g−k,

1

2
u′′

g−k = −wg−k + ug−k−1 + (wg − ug−1)ug−k.

If we look at the coefficient of x2g−k in the equation u(x)w(x) + v(x)2 = x2g+1, we get

g−1
∑

j=g−k

ujw2g−j−k + ug−k−1 + wg−k +

g−1
∑

j=g+1−k

vjv2g−j−k = 0.

The proposition follows from these three equations. �
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Example 5.8. (Rational solution)

(i) g = 2 case:

τ2(~a) =
a3

1

3
− a2, ρ2(~a) =

−3a1(a
3
1 + 6a2)

(a3
1 − 3a2)2

.

(ii) g = 3 case:

τ3(~a) =
a6

1

45
−

a3
1a2

3
− a2

2 + a1a3,

ρ3(~a) =
−3(2a10

1 + 675a4
1a

2
2 − 1350a1a

3
2 − 270a5

1a3 + 675a2
3)

(a6
1 − 15a3

1a2 − 45a2
2 + 45a1a3)2

.

(iii) g = 4 case:

τ4(~a) =
a10

1

4725
−

a7
1a2

105
− a1a

3
2 +

a5
1a3

15
+ a2

1a2a3 − a2
3 −

a3
1a4

3
+ a2a4.

6. Relation to the KdV hierarchy

As we already pointed out in the introduction, the Mumford systems and the KdV

hierarchy are intimately related. We briefly examine the relationship, with focus on the

rational solutions. Recall that the KdV hierarchy is defined by the family of compatible

Lax equations (see [16, 20] and references therein):

∂

∂x2i−1
L = [L

i− 1
2

+ , L], for i = 1, 2, 3, · · · .

Here L is a differential operator of the form ∂2
x + f where f is a function of ~x =

(x, x1, x3, · · · ) ∈ C∞ and ∂x f = ∂ f
∂ x

+ f · ∂x. The square root L
1
2 is computed in the

ring of formal pseudo-differential operators; the index + in L
i− 1

2
+ means that we take the

differential part of L
i− 1

2 . The first three equations (i = 1, 2, 3) are given as follows:

∂f

∂x1
=

∂f

∂x
,

∂f

∂x3
=

1

4

∂3f

∂x3
+

3

2
f ·

∂f

∂x
,

∂f

∂x5
=

1

16

∂5f

∂x5
+

5

8
f ·

∂3f

∂x3
+

5

4

∂f

∂x
·
∂2f

∂x2
+

15

8
f2 ·

∂f

∂x
.

In the sequel, we identify x with x1, as suggested by the first equation of the above list

and we consider the rational solutions to the KdV hierarchy. According to [6], there is for

every positive integer g an essentially unique solution, depending on g parameters:

(1) Suppose f = f(x1, x3, . . . ) be a non-zero rational function satisfying the KdV hier-

archy. Then there exist g ∈ Z>0 and c1 ∈ C such that f(x1, 0, 0, . . . ) = − g(g+1)
(x1−c1)2

.

Moreover, f depends on the g variables x1, x3, . . . , x2g−1, and is independent of

the other variables x2i−1. In this case, we call f a genus g rational solution.

(2) If f and f̃ are genus g rational solutions, then there exist c1, c3, . . . , c2g−1 ∈ C such

that f̃(x1 − c1, . . . , x2g−1 − c2g−1) = f(x1, . . . , x2g−1).
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An explicit formula for these rational solutions is given in the following proposition,

which is known in different forms, as indicated in the proof below. The upshot, in connec-

tion with our result, is that the rational solutions to the KdV hierarchy of genus 0, 1, . . . , g

fill up a very specific invariant manifold of the genus g Mumford system and form, com-

bined, the complement of the completed theta divisor of the compactified Jacobian of the

singular curve y2 = x2g+1.

Proposition 6.1. The function f = 2ρg(~a), defined in (5.9), gives a rational solution for

the KdV hierarchy upon substituting

ai = x2i−1, for i = 1, · · · , g. (6.1)

This solution is non-trivial for the first g − 1 vector fields ∂
∂x3

, ∂
∂x5

, . . . , ∂
∂x2g−1

of the hier-

archy, and trivial for the higher ones.

Proof. We sketch three different approaches to this result.

(1) The KdV hierarchy is known to have Wronskian solutions, constructed as fol-

lows (See [13] for details): Fix g ∈ Z>0, and consider g functions f1, . . . , fg of ~x =

(x1, x3, x5, · · · ) ∈ C∞; for k ∈ Z>0 we denote f
(k)
i := ∂k

∂xk
1
fi. If these functions satisfy

∂

∂x2k−1
fi =

( ∂

∂x1

)2k−1
fi, for k ∈ Z>0, (6.2)

then 2 ∂2

∂x2
1
log T (~x) satisfies the KdV hierarchy, where T (~x) is defined by

T (~x) := det













f1 f
(1)
1 · · · f

(g−1)
1

f2 f
(1)
2 · · · f

(g−1)
2

...
...

...

fg f
(1)
g · · · f

(g−1)
g













. (6.3)

In view of Lemma 5.3, the functions fi := χ2g−2i+1 with ai = x2i−1 for i = 1, · · · , g,

satisfy (6.2). With this choice of functions, T (~x) is precisely τg(~a), and the result follows.

(2) In [17, IIIa §10-11], Mumford shows, building upon the work [15] of McKean-van

Moerbeke that a solution to the Mumford system, associated to an arbitrary smooth

hyperelliptic curve, yields a solution to the KdV hierarchy. In our case the hyperelliptic

curve is not smooth, yet Mumford’s argument depends only on (differential) algebra, so

we can construct as in the smooth case a rational solution f to the KdV equation from

the rational solution which we constructed to the genus g Mumford system. Finally we

obtain f = 2ug−1, which leads precisely to the proposed solution.

(3) In the Grassmannian approach to the KdV equation [20], to each point of the

Sato (universal) Grassmannian one associates a tau function, whose second logarithmic

derivative yields a solution to the KdV hierarchy. 3 If one takes the point of the Sato

Grassmannian corresponding to the partition ν = (g, g−1, · · · , 1), then the associated tau

3Precisely, this yields a solution to the KP hierarchy in general; it is a solution to the KdV hierarchy
iff it depends only on the odd-indexed variables.
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function is given by the Schur function Fν of ν (cf. [20, §8]). By the very definition (5.1),

we have an identity τg(~a) = (−1)
g(g+1)

2 Fν(a1, 0, a2, 0, a3, · · · ), where Fν is considered as a

function in t1, t2, · · · through [20, (8.4)]. Thus, our function τg, which shares the same

second logarithmic derivative with Fν , yields a rational solution to the KdV hierarchy. �

Remark 6.2. In [20, p. 47-48], a relation between the Sato Grassmannian and the

compactified generalized Jacobian J̄g is discussed. To be more precise, we introduce the

Grassmannian Grg of g-dimensional subspaces W of C[t]/(t2g)(∼= C2g) satisfying t2W ⊂

W . (One can consider Grg as a subvariety of the usual Grassmannian Gr(g, 2g) or of

the Sato Grassmannian.) Then Grg admits a cell decomposition Grg = ⊔g
k=0 Gr

(k)
g with

Gr
(k)
g

∼= Ck (k = 0, 1, · · · , g), and there exists a bijective morphism νg : Grg → J̄g

satisfying νg(Gr
(k)
g ) = (πk,g)∗(Jk) for all k = 0, 1, · · · , g (cf. Lemma 3.8). In particular,

the cell decomposition of the Grassmannian corresponds to the stratification of the zero

level set Mg(0) of the genus g Mumford system. Note that νg is not an isomorphism

already in the case g = 1. It is conjectured in [20] that νg gives the normalization of J̄g.
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SINGULAR FIBER OF THE MUMFORD SYSTEM 21

[18] J. J. Nimmo and N. C. Freeman, Rational solutions of the Korteweg de Vries equation in Wronskian

form. Phys. Lett. A 96, no. 9, 443–446 (1983).

[19] C. J. Rego, The compactified Jacobian. Ann. Sci. École Norm. Sup. 13(4), no. 2, 211–223 (1980).
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