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t

In this paper, a one-dimensional family of strati�
ations on a hyperellipti
 Ja
obian is intro-

du
ed. It generalizes a well-known strati�
ation, 
onsidered in algebrai
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ation is shown to be related to a natural strati�
ation on the Sato

Grassmannian, via an extension of Kri
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Strati�
ations of Ja
obians and Grassmannians

1. Introdu
tion

In this paper we introdu
e a one-dimensional family of strati�
ations on the Ja
obian of any

hyperellipti
 
urve and show how it appears naturally in di�erent situations. Some strati�
ations of

Abelian varieties, in parti
ular of Ja
obians, have been used and studied in algebrai
 geometry, in


onne
tion with linear systems of (spe
ial) divisors on 
urves. For example, let � be a hyperellipti



urve with hyperellipti
 involution P 7! P

�

and let P be a Weierstra� point on it. Then Gunning

(see [Gu℄) 
onsiders, for m = 0; : : : ; g, the subsets J

m

(�; P ) of the Ja
obian of �, Ja
(�), de�ned

by

J

m

(�; P ) =

(

fDg j D =

g�m

X

i=1

(P

i

� P ); P

i

2 � n fPg; i 6= j ) P

i

6= {P

j

)

;

where fDg denotes the 
lass of all divisors linearly equivalent to D, viewed as a point of Ja
(�).

He shows that they de�ne a strati�
ation of the Ja
obian of �:

This strati�
ation generalizes in a natural way, spe
i�
 to hyperellipti
 Ja
obians, to the 
ase

where P is any point on the 
urve �. If the point 
orresponding to P under the hyperellipti


involution is denoted by P

�

, then we de�ne for m and n positive, m + n � g = genus (�),

J

m;n

(�; P ) =

(

fDg j D =

g�m�n

X

i=1

P

i

+ mP + nP

�

� gP; P

i

2 � n fP; P

�

g and i 6= j ) P

i

6= P

�

j

)

:

Remark that in the 
ase P = P

�


onsidered by Gunning, one has J

m

(�; P ) = J

m�i;i

(�; P ) for any

i � m. In the opposite 
ase P 6= P

�

, however, all J

m;n

(�; P ) are disjoint and we show that they

stratify Ja
(�), with i + 1 strata of 
odimension i, (in total

(g+1)(g+2)

2

strata) and it is shown how

they relate. If the 
hosen point P 2 � is repla
ed by P

�

, then one obviously obtains the same

strati�
ation, up to a translation; therefore the family of strati�
ations is essentially parametrized

by �=�, i.e., by IP

1

.

It is easily dedu
ed from [SW℄ that the strati�
ation 
onsidered by Gunning arizes in the 
on-

text of an in�nite-dimensional Grassmannian, Gr; introdu
ed by Sato (see [SS℄). The Grassmannian

Gr 
an be de�ned as the set of all linear spa
es of formal power series in one variable z (whi
h

should be thought of as being large) whi
h have an algebrai
 basis of the form

fw

0

(z); w

1

(z); w

2

(z); : : :g;

where

w

i

(z) =

s

i

X

j=�1

w

ij

z

j

; w

is

i

6= 0 and s

i

< s

i+1

;

with i = s

i

for i suÆ
iently large. To su
h a linear spa
e W 2 Gr there is asso
iated the (ordered)

subset S

W

= fs

0

; s

1

; : : : ; g of the integers, whi
h has the property that s

i

= i for i suÆ
iently large.

Ea
h su
h sequen
e de�nes in a natural way a (nonempty) subset �

S

� Gr; de�ned as

�

S

= fW 2 Gr j S

W

= Sg:

These (noninterse
ting) subsets 
an be shown to be the strata of a strati�
ation of Gr (see [PS℄). To

relate this strati�
ation to Gunning's strati�
ation, the Kri
hever map is used. Roughly speaking,

this map asso
iates to a point in the Ja
obian of �, that is, to a line bundle on �, the family of

all its se
tions, whi
h are holomorphi
 ex
ept at the marked point P 2 �. This family is identi�ed
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with an element of Gr by using a trivialization of the line bundle. We remark that although this

element of Gr depends on the trivialization, the stratum it belongs to is independent of it, hen
e

we may use the Kri
hever map to relate both strati�
ations: we show that (di�erent) strata are

mapped into (di�erent) strata so that we may think of the strati�
ations 
onsidered by Gunning

as being indu
ed by the natural strati�
ation of Gr via the Kri
hever map.

The natural question arizes whether the strati�
ations by the subsets J

m;n

(�; P ) 
an for every

P 2 � be obtained in this way by an appropriate generalization of the Kri
hever map. The answer

is aÆrmative and the generalized Kri
hever map whi
h we introdu
e, asso
iates now to ea
h point

in Ja
(�) two points in Gr, i.e., a point in the produ
t Gr�Gr, whi
h is equipped with the produ
t

strati�
ation. In the spe
ial 
ase that P = P

�

the map redu
es to a diagonal map (i.e., both

points are the same) giving the ordinary Kri
hever map on ea
h 
omponent. We also show that

the strati�
ation on Gr � Gr 
an be weakened to a 
oarser strati�
ation, whi
h still indu
es the

family of strati�
ations. This 
oarser strati�
ation shows up when 
onsidering the so-
alled K-P

hierar
hy on the Grassmannian (see [SS℄, [SW℄ and [DKJM℄).

This K-P hierar
hy, in parti
ular a distinguished ve
tor �eld of it, determines a spe
ial family

of ve
tor �elds on Ja
(�), depending on the marked point P on �. As is well-known from the

theory of integrable systems, every meromorphi
 fun
tion on Ja
(�) admits families of Laurent

solutions des
ribing the fun
tion on the integral 
urves of the ve
tor �eld (see [AvM3℄). Taking

one or several fun
tions a de
omposition of Ja
(�) is given by �xing the way these solutions blow

up. This de
omposition may be a strati�
ation. We will show that the 
hoi
e of the very spe
ial

ve
tor �eld 
oming from the K-P hierar
hy and a natural 
hoi
e of fun
tions 
oming from the

symmetri
 fun
tions on the 
urve, gives for ea
h 
hoi
e of the marked point P on the 
urve, indeed

a strati�
ation whi
h 
oin
ides again with the strati�
ation by the subset J

m;n

(�; P ), thereby

providing us with a very expli
it des
ription of the former strati�
ations; in parti
ular the leading

behaviour of the Laurent solutions to the di�erential equations whi
h des
ribe the ve
tor �eld will

be 
omputed expli
itely by introdu
ing a pair of tau fun
tions whi
h 
orresponds to the extended

Kri
hever map.

The text is organized as follows. In Se
tion 2 some preliminaries about hyperellipti
 
urves

and their Ja
obians are re
alled and our family of strati�
ations is introdu
ed. We give a detailed

des
ription of these strati�
ations sin
e they are fundamental for the whole paper. Se
tion 3 deals

with the Sato Grassmannian, whi
h is also re
alled, together with its strati�
ation. The Kri
hever

map is explained and extended as needed for our purposes, leading to the main result relating

the two strati�
ations. In the end the 
oarser strati�
ation is dis
ussed in the 
ontext of the K-P

hierar
hy. In the �nal Se
tion 4, we look at spe
ial ve
tor �elds on the Ja
obian, asso
iated to a

point on the 
urve; the relation between Laurent solutions to the ve
tor �eld and strati�
ations

of the Ja
obian is explained and related to the strati�
ation in Se
tion 2, relying heavily on some

results obtained in Se
tion 3.

I wish to take this opportunity to thank M. Adler, L. Haine and P. van Moerbeke for several

useful dis
ussions on K-P theory, and for giving me a

ess to some unpublished results, whi
h were

indispensible for a 
lear understanding of the subje
t. The hospitality of Brandeis University and

the Max-Plan
k Institut f�ur Mathematik is also greatly a
knowledged.
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2. The algebrai
 des
ription of the strati�
ation

In this se
tion we introdu
e a natural family of strati�
ations on the Ja
obian of a hyperellipti



urve, parametrized by a point on the 
urve. In the �rst paragraph we re
all some basi
 results

about hyperellipti
 
urves and their Ja
obians (see [GH℄ or [H℄). The strati�
ation is introdu
ed in

the se
ond paragraph and its stru
ture is des
ribed.

2.1. Preliminaries

Let � be a smooth (
omplete, irredu
ible) 
omplex 
urve of genus g whi
h is hyperellipti
,

i.e., � it admits a 2: 1 holomorphi
 
over �: � ! IP

1

, whi
h by the Riemann-Hurwitz formula is

rami�ed over 2g + 2 points, the so-
alled Weierstra� points of �. They are 
hara
teristi
 points of

� sin
e they are pre
isely the �xed points of the unique (independent of �) holomorphi
 involution

�: � ! �; Q 7! �(Q) = Q

�

; �

2

= Id whi
h inter
hanges the sheets of �, the so-
alled hyperellipti


involution. The 
over � gives rise to an equation y

2

= f(x) for (an aÆne part of) �; the degree of

f is 2g + 1 or 2g + 2 a

ording to whether or not 1 2 IP

1

is the image of a Weierstra� point, i.e.,

a

ording to whether �

�1

(1) 
ontains one point (with multipli
ity two), or two points. These two

points 
orrespond under �, whi
h is given in terms of the 
oordinates x; y by (x; y) 7! (x;�y), in

parti
ular the Weierstra� points (lying in the aÆne part) have 
oordinates (x

i

; 0), where x

i

are the

roots of f .

The group of divisors D =

P

�nite




i

P

i

(P

i

2 �) on � is denoted by Div(�) and � extends

linearly to Div(�) giving an involution D 7! D

�

. There is asso
iated to ea
h meromorphi
 fun
tion

f 2 M(�) its divisor of zeroes minus its divisor of poles, denoted by (f); obviously the map

(�):M(�) ! Div(�) is a homomorphism. In the same way (!) is de�ned for any meromorphi


di�erential and one has (f!) = (f) + (!). For example, let P 2 � and let

y

2

= f(x) =

deg f

Y

i=1

(x� x(B

i

))

be an equation for � su
h that x(P ) = 1. Then

(y) =

deg f

X

i=1

B

i

�

deg f

2

(P + P

�

) and (x) =

2

X

i=1

�

0; (�1)

i

p

f(0)

�

� (P + P

�

): (1)

Also

(dx) =

2g+1

X

i=1

B

i

� 3P or (dx) =

2g+2

X

i=1

B

i

� 2(P + P

�

); (2)

a

ording to whether P = P

�

or P 6= P

�

(in that order).

We introdu
e the spa
es L(D) and 
(D) for D 2 Div(�) as

L(D) = ff j f meromorphi
 fun
tion on � and (f) + D � 0g;


(D) = f! j ! meromorphi
 di�erential on � and (!) + D � 0g:

Their dimensions are related by the Riemann-Ro
h formula whi
h states (for algebrai
 
urves) that

for any D 2 Div(�),

dimL(D) = dim 
(�D)� g + 1 + deg(D); (3)
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the degree deg(D) of a divisor D being de�ned as deg(

P




i

P

i

) =

P




i

. In parti
ular, sin
e ev-

ery holomorphi
 fun
tion on � is 
onstant, the spa
e 
 = 
(0) of holomorphi
 di�erentials has

dimension g and by (1) and (2) has in the hyperellipti
 
ase a basis

�

dx

y

;

xdx

y

; : : : ;

x

g�1

dx

y

�

; (4)

when y

2

= f(x) is an equation for � as above. Remark that it follows from (3) and (4) that if

P

i

(i = 1; : : : ; n � g) are su
h that i 6= j ) P

i

6= P

�

j

then

dim 


 

n

X

i=1

P

i

!

= g � n: (5)

For their meromorphi
 analogues with poles at P and P

�

only we have

dim 
(kP + lP

�

) = g + k + l � 1 for k > 0; l � 0: (6)

To see this in 
ase P 6= P

�

, �rst remark that (1) and (2) imply that x

i

dx has a pole of order i + 2

at P and at P

�

(and no other poles), while x

g+i

dx=y has at these points poles of order i+ 1. This

gives one di�erential form with a single pole at P and P

�

and for any n > 1 two di�erential forms

with a pole of order n at these points. Sin
e the �rst set of forms is even with respe
t to � and

the other set is odd they are all independent (and independent from the holomorphi
 di�erentials).

They are maximal independent, sin
e having another independent form with poles only at P and

P

�

would result in having a meromorphi
 di�erential form with a single pole, whi
h 
ontradi
ts

the fa
t that the sum of the residues of a di�erential form over all its singular points is always 0.

This leads to (6) in 
ase P 6= P

�

, the proof for the 
ase P = P

�

is very similar.

On the group Div(�) one introdu
es the notion of linear equivalen
e by D �

l

D

0

i� D�D

0

= (f)

for some meromorphi
 fun
tion f on � and the 
lass of D is written as fDg. The homomorphism

deg des
ends to a homomorphism

deg

l

:

Div(�)

�

l

! ZZ

and its kernel, ker deg

l

, is 
alled the Ja
obian of �; Ja
(�): In the present 
ase of hyperellipti
 
urves

there is a very expli
it des
ription of the linear equivalen
e relation as we state in the following

lemma (see [M℄).

Lemma 1 Let � be a hyperellipti
 
urve of genus g with involution � and let P 2 � �xed. Then

1) D

1

+ D

�

1

�

l

D

2

+ D

�

2

for any D

1

; D

2

2 Div(�) of the same degree,

2) if

P

g

i=1

P

i

�

l

P

g

i=1

Q

i

, then

P

g

i=1

P

i

=

P

g

i=1

Q

i

or P

i

= P

�

j

for some i 6= j,

3) if degD = 0 then D �

l

P

g

i=1

(P

i

� P ) for some P

i

2 �.

The notion of linear equivalen
e is natural in view of the basi
 relation between divisors and

(holomorphi
) line bundles on a smooth 
urve: if a divisor D has lo
al de�ning fun
tions (f

�

)

�2I

for some 
over (U

�

)

�2I

of the 
urve, then the transition fun
tions of a line bundle [D℄ are given by

f

�

=f

�

on U

�

\U

�

, and it is a fundamental fa
t that the line bundle [D℄ is determined by the (linear)

equivalen
e 
lass fDg; also every line bundle is the line bundle of a divisor. To a meromorphi


se
tion ' of [D℄ there is asso
iated its divisor (') and there exists a se
tion ' for whi
h (') = D;

�xing su
h a se
tion shows that L(D) is isomorphi
 to the ve
tor spa
e of holomorphi
 se
tions of

[D℄, in parti
ular these spa
es have the same dimension.
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Let the degree of a line bundle be de�ned as the degree of its 
orresponding divisor and denote

for any d 2 ZZ the set of all line bundles of degree d by Pi


d

(�). Then it follows that for any d 2 ZZ,

Pi


d

(�) is isomorphi
 to Ja
(�) via fDg 7! [D + D

d

℄ where D

d

is any �xed divisor of degree d.

Ex
ept for d = 0 there is no 
anoni
al 
hoi
e for D

d

; if however | as in the present paper | the


urve has a marked point P then one is led to the natural 
hoi
e D

d

= dP , used ex
lusively in the

sequel.

2.2. The strati�
ation

We now introdu
e a de
omposition of Ja
(�) with respe
t to an arbitrary �xed point P on the

(hyperellipti
) 
urve �. Let I

g

denote the set

I

g

= f(m;n) 2 IN� IN j 0 � m + n � gg

whi
h we order by (m;n) � (m

0

; n

0

) i� m � m

0

and n � n

0

. Then for (m;n) 2 I

g

we de�ne a

subset Div

m;n

(�; P ) of Div(�) by

Div

m;n

(�; P ) =

(

g�m�n

X

i=1

P

i

+ mP + nP

�

� gP j P

i

2 � n fP; P

�

g and i 6= j ) P

i

6= P

�

j

)

;

the term gP is introdu
ed here in order to make every element in Div

m;n

(�; P ) of degree 0. We

denote

Div

0

(�; P ) =

g

[

n=0

g�n

[

m=0

Div

m;n

(�; P ):

and show in the following lemma that �: ker deg ! Ja
(�); D 7! fDg restri
ts to a bije
tion

�: Div

0

(�; P ) ! Ja
(�):

Lemma 2

1) For any (m;n) 2 I

g

the restri
tion of � to Div

m;n

(�; P ) is inje
tive.

2) If P 6= P

�

; then the subsets �(Div

m;n

(�; P )); (m;n) 2 I

g

are all disjoint.

3) If P = P

�

; then Div

m+1;n

(�; P ) = Div

m;n+1

(�; P ) if m + n + 1 � g: In this 
ase the g + 1

subsets �(Div

m;0

(�; P )); 0 � m � g are all disjoint.

4) �(Div

0

(�; P )) = Ja
(�):

Proof

Let (k; l) � (m;n) in I

g

and suppose that �(D) = �(D

0

) where D 2 Div

m;n

(�; P ) and

D

0

2 Div

k;l

(�; P ); if P = P

�

we may suppose that n = l = 0 by using the obvious identity

Div

m+1;n

(�; P ) = Div

m;n+1

(�; P ) (valid for m + n + 1 � g). Then 
an
elling k terms P it follows

that we are asked for a meromorphi
 fun
tion f on � with at most g poles P

i

, no two of whi
h


orrespond under the hyperellipti
 involution. Using (5) and the Riemann-Ro
h formula (3) the

fun
tion f must be 
onstant, hen
e D = D

0

: This proves 1) and 2), and sin
e the �rst part of 3) is

obvious, also 3).

To prove that �(Div

0

(�; P )) = Ja
(�) we need to show that every divisor D of degree zero is

linearly equivalent to a divisor inside one of the sets Div

m;n

(�; P ). By Lemma 1, D �

l

P

g

i=1

(P

i

�P ),

for some points P

i

2 �, but by the same lemma every o

urren
e of Q + Q

�


an, up to linear

equivalen
e, be repla
ed by P + P

�

, hen
e is linearly equivalent to an element in one of the sets

Div

m;n

(�; P ).
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We now prove that the sets J

m;n

(�; P )

def

=�(Div

m;n

(�; P )) (or J

m

(�; P )

def

=�(Div

m;0

(�; P )) in


ase P = P

�

) de�ne a strati�
ation of Ja
(�); meaning that they are disjoint di�erentiable mani-

folds, whose boundary is a �nite union of lower-dimensional sets J

s;t

(�; P ) (resp. J

s

(�; P )). To this

aim we �rst need to explain the di�erential, or even 
omplex, stru
ture of Ja
(�); more details are

found in [GH℄. It is one of the oldest and most profound results in the theory of algebrai
 
urves

that Ja
(�) has the stru
ture of a 
omplex (algebrai
) torus C

g

=�, where � is a latti
e of maximal

rank in C

g

. In fa
t, it was �rst de�ned as a 
omplex torus and shown (by Abel) to 
orrespond

to the above de�nition. We sket
h the 
onstru
tion of the analyti
 obje
t. Choose a symple
ti


basis A

1

; : : : ; A

g

; B

1

; : : : ; B

g

for H

1

(�;ZZ), i.e., a basis for whi
h the interse
tion indi
es between

the 
y
les obey A

i

�A

j

= B

i

�B

j

= 0 and A

i

�B

j

= Æ

ij

. Let f!

1

; � � � ; !

g

g be the normalized basis of

holomorphi
 di�erentials for whi
h

R

A

i

!

j

= Æ

ij

. Then the 2g 
olumns of the matrix (I

g

Z), where

Z

ij

=

R

B

i

!

j

, de�ne a dis
rete subgroup � in C

g

, whi
h turns out to be of maximal rank. The

quotient C

g

=� is therefore a 
omplex torus, whi
h is up to isomorphism independent of the 
hoi
e

of basis for H

1

(�;ZZ). To link this torus with Ja
(�) de�ned above, one introdu
es the Abel map

A: Ja
(�) !C

g

=� by

A

(

X

i

(P

i

�Q

i

)

)

=

 

X

i

Z

P

i

Q

i

!

1

; : : : ;

X

i

Z

P

i

Q

i

!

g

!

(mod �)

and proves that it is a well-de�ned isomorphism (Abel's Theorem).

The subsets J

m;n

(�; P ) and J

m

(�; P ) introdu
ed above 
an thus be seen as subsets of a 
omplex

torus under the Abel isomorphism and we will identify them with their image, writing J

m;n

(�; P )

for A(J

m;n

(�; P )) sin
e no 
onfusion 
an arise. We show that they are submanifolds of the torus

and �t together su
h that they de�ne a strati�
ation of it. We give separate theorems for the 
ases

P 6= P

�

and P = P

�

.

Theorem 3 If P 6= P

�

then Ja
(�) is strati�ed by the (g �m � n)-dimensional submanifolds

J

m;n

(�; P ); whose 
losure is given by the (�nite) union

�

J

m;n

(�; P ) =

[

(k;l)�(m;n)

J

k;l

(�; P ): (7)

Ea
h stratum J

m;n

(�; P ) has two boundary 
omponents whi
h are translates of ea
h other by

~e = AfP

�

� Pg =

 

Z

P

�

P

!

1

; : : : ;

Z

P

�

P

!

g

!

(mod �):

More generally, all i + 1 strata of dimension g � i are translates of ea
h other by n~e for some

n 2 f1; : : : ; ig: The 
losures of the (g�1)-dimensional strata J

1;0

(�; P ) and J

0;1

(�; P ) are translates

of the theta divisor and are tangent along their interse
tion

�

J

1;1

(�; P ):

Proof

We �rst show that ea
h J

m;n

(�; P ) is a submanifold of Ja
(�) of dimension g �m � n. Let

d = g �m� n > 0 (otherwise there is nothing to prove) and 
onsider the d-fold symmetri
 produ
t

of � with itself, denoted Sym

d

�. This spa
e is known to have a (
omplex) di�erential stru
ture,

with 
oordinates whi
h derive from 
oordinates on �. Namely, on a neighbourhood of a generi


point hP

1

; : : : ; P

d

i 2 Sym

d

� for whi
h all P

i

are distin
t, the 
oordinates z

i


entered at P

i

serve as


oordinates; when two or more of the P

i


oin
ide however, their 
orresponding 
oordinates need

7
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to be repla
ed by the symmetri
 fun
tions of these 
oordinates, for example, if P

1

= P

2

then take

z

1

+ z

2

and z

1

z

2

instead of z

1

and z

2

. It is 
lear that as a subset of the torus, J

m;n

(�; P ) is given

by the image of the (Abel map-like) map A

s

de�ned by

A

s

hP

1

; : : : ; P

d

i = n~e +

 

d

X

i=1

Z

P

i

P

!

1

; : : : ;

d

X

i=1

Z

P

i

P

!

g

!

(mod �);

on the open set U

d

� Sym

d

� for whi
h all P

i

=2 fP; P

�

g and i 6= j ) P

i

6= P

�

j

. Therefore it

suÆ
es to show that the Ja
obian of this map is nowhere singular on U

d

. If the g holomorphi


di�erentials !

i

are written as f(z

j

)dz

j

around P

j

, then the Ja
obian matrix of A

s

has at the

generi
 point hP

1

; : : : ; P

d

i entries f

i

(P

j

) and its rank is maximal sin
e otherwise there would be at

least a (g � r + 1)-dimensional family of holomorphi
 di�erentials vanishing at the r points P

i

in


ontradi
tion with (5) and the domain of A

s

. If some of the points P

i


oin
ide we arrive at the same


on
lusion (in
luding multipli
ities): if, say, P

1

o

urs n times then the ith 
olumn (1 � i � n) of

the matrix is to be repla
ed by the (i� 1)th derivative of f

i

, evaluated at P

j

; then the rank being

not maximal would mean that there is a (g� r+ 1)-dimensional family of holomorphi
 di�erentials

vanishing n times at P

1

and vanishing simply at the other points, again in 
ontradi
tion with (5).

We now 
ompute the boundary

�

J

m;n

(�; P ) of the strata J

m;n

(�; P ). Sin
e Ja
(�) is given under

the Abel isomorphism A the quotient topology 
oming from Sym

g

�, it is suÆ
ient to 
ompute the


losure of ea
h subset J

m;n

(�; P ) for this topology (re
all that we identi�ed J

m;n

(�; P ) with its

image A(J

m;n

(�; P ))). Let us de�ne the set

K

m;n

(�; P ) =

(

g�m�n

X

i=1

P

i

+ mP + nP

�

� gP j P

i

2 �

)

;

whi
h is 
ompa
t sin
e it is just Sym

g�m�n

�. By 
ontinuity of �, its image �(K

m;n

(�; P )) is also


ompa
t, hen
e 
losed; obviously it is 
ontained in

�

J

m;n

(�; P ) hen
e

�

J

m;n

(�; P ) = �(K

m;n

(�; P ));

moreover

�(K

m;n

(�; P )) =

[

(k;l)�(m;n)

J

k;l

(�; P ):

whi
h proves (7).

Thus the di�erent strata �t together as di
tated by the partial order � on I

g

: if we represent

the di�erent spa
es

�

J

m;n

(�; P ) by

�

J

m;n

, put those of equal dimension on the same horizontal line

and depi
t in
lusions by arrows, then we �nd the following.

�

J

0;0

% -

�

J

1;0

�

J

0;1

% - % -

�

J

2;0

�

J

1;1

�

J

0;2

.

.

. .

.

. .

.

. .

.

.

�

J

g;0

�

J

g�1;1

� � �

�

J

1;g�1

�

J

0;g

Remark that the interse
tion of two spa
es

�

J

m;n

(�; P ) and

�

J

k;l

(�; P ) is given by the set

�

J

s;t

(�; P )

where (s; t) is the supremum of f(k; l) � (m;n)g (if it exists, otherwise the interse
tion is empty).

Therefore it is read o� immediately from the diagram as follows: if say m � k, then draw on the

8
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diagram a diagonal line (of slope 1) through

�

J

m;n

and another one (of slope �1) through

�

J

k;l

; then

their interse
tion point (if any) 
orresponds to the interse
tion of these lines.

There is exa
tly one big stratum (i.e., a stratum of maximal dimension g) namely J

0;0

(�; P ); and

its boundary 
onsists of two strata of 
odimension one, namely

�

J

1;0

(�; P ) and

�

J

0;1

(�; P ); and so

on. Sin
e

Div

m+1;n

(�; P ) = Div

m;n+1

(�; P ) + P � P

�

if m+n+ 1 � g, the sets

�

J

1;0

(�; P ) and

�

J

0;1

(�; P ) are translates of ea
h other by ~e = AfP

�

�Pg,

namely

�

J

0;1

(�; P ) =

�

J

1;0

(�; P )+~e; and it 
an be shown that they are translates of the theta divisor

(see below). In general all strata J

m;n

(�; P ) (ex
ept the zero-dimensional ones) have two boundary


omponents,

�

J

m+1;n

(�; P ) and

�

J

m;n+1

(�; P ); whi
h are obviously also translates of ea
h other by ~e:

Therefore all sets

�

J

m;n

(�; P ) of the same dimension g�m�n are translates of ea
h other by some

integer multiple of ~e; for example for the points

�

J

g;0

(�; P ) and

�

J

0;g

(�; P ) it follows immediately

that

�

J

0;g

(�; P ) =

�

J

g;0

(�; P ) + g~e:

In [Gu℄ (Chapter 4, p. 143) expli
it formulas are found for 
al
ulating the interse
tion of two

translates of the theta divisor. These show that in general the interse
tion of two translates of

the Riemann theta divisor is redu
ible and has two 
omponents. Sin
e in our 
ase

�

J

1;0

(�; P ) \

�

J

0;1

(�; P ) =

�

J

1;1

(�; P ) is irredu
ible, these 
omponents 
oin
ide, hen
e

�

J

1;0

(�; P ) and

�

J

0;1

(�; P )

are tangent along

�

J

1;1

(�; P ):

The 
orresponding theorem for P = P

�

is stated as follows and proven in the same way.

Theorem 4 If P = P

�

then Ja
(�) is strati�ed by the (g �m)-dimensional subsets J

m

(�; P );

whose 
losure is given by the (�nite) union

�

J

m

(�; P ) =

[

k�m

�

J

k

(�; P ):

and ea
h stratum

�

J

m

(�; P ) has just one boundary 
omponent. Here the strati�
ation is simply

depi
ted as

�

J

g

!

�

J

g�1

!

�

J

g�2

! � � � !

�

J

1

!

�

J

0

�

J

0

= Ja
(�);

�

J

1

is a translate of the theta divisor and

�

J

g

is the origin in Ja
(�):

In Theorems 3 and 4 we 
laimed that

�

J

1;0

(�; P ) and

�

J

1

were translates of the theta divisor; this is

the divisor of the 
lassi
al Riemann theta fun
tion for Ja
(�), whi
h is the entire fun
tion on C

g

de�ned as

�(z) =

X

l2Z

g

e

�ihl;Ali

e

2�ihl;zi

(8)

when the latti
e � of Ja
(�)

�

=

C

g

=� is written as (I

g

A). Remark that although � is only de�ned

on C

g

, the theta divisor is well-de�ned as its zero lo
us on Ja
(�). Riemann showed (see [M℄ or

[GH℄) that there is a 
onstant

~

� 2C

g

(
alled Riemann's 
onstant) su
h that

�(Z) = 0 () 9P

1

; : : : ; P

g�1

2 � : Z = A

(

g�1

X

i=1

(P

i

� P )

)

�

~

� (mod �): (9)

The important 
ondition in the right-hand side is that the sum runs over g�1 points only. Formula

(9) leads at on
e to the 
ited 
laims.
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3. The Sato Grassmannian

We show in this se
tion how the strati�
ations from the pre
eding se
tion are indu
ed by a

natural strati�
ation of the Sato Grassmannian via an extension of the Kri
hever map. In the �rst

paragraph we re
all from [SS℄, [SW℄ and [PS℄ the Sato Grassmannian, its strati�
ation and the

Kri
hever map, whi
h relates the Grassmannian to algebrai
 
urves. In the se
ond paragraph, we

introdu
e an extension of this map in the 
ase of hyperellipti
 
urves and relate both strati�
ations.

A 
oarser strati�
ation of the Grassmannian is introdu
ed in the last paragraph; it appears in a

natural way when the K-P hierar
hy is introdu
ed on the Grassmannian.

3.1. The Grassmannian and its strati�
ation

In this paragraph � denotes any smooth 
urve of genus g (i.e., � needs not to be hyperellipti
),

with a marked point P on it. We also �x a small 
oordinate neighbourhood (s;U) 
entered at

P , for whi
h s(U) is the unit disk in C. Then the boundary �U is di�eomorphi
 to a 
ir
le and

L

2

(�U ;C) is a Hilbert spa
e, with a basis

f: : : ; z

�2

; z

�1

; 1; z; z

2

; : : :g;

where z = s

�1

. The Hilbert spa
e de
omposes as L

2

(�U ;C) = H

+

�H

�

, where

H

+

= f1; z; z

2

; : : :g and H

�

= fz

�1

; z

�2

; : : :g;

(the 
losure is here the L

2

-
losure). Let Gr denote the set of all 
losed subspa
es W � L

2

(�U ;C)

whi
h have an algebrai
 basis of the form ff

i

g

i2IN

, with

f

i

=

s

i

X

j=�1




k

z

k

0 6= 


s

i

2C; s

i

< s

i+1

; s

i

= i for i suÆ
iently large. (10)

We 
all Gr the (Sato) Grassmannian of L

2

(�U ;C); it is a 
onne
ted

y

Bana
h manifold, modelled

on the Hilbert spa
e of all Hilbert-S
hmidt operators H

+

! H

�

. For f

i

as in (10) we de�ne its

order to be s

i

and we asso
iate to W the (ordered) subset S

W

= fs

0

; s

1

; s

2

; : : :g. We 
all su
h a

subset of ZZ with s

i

< s

i+1

and s

i

= i for i suÆ
iently large, a sequen
e. The set of all points in Gr

whi
h have as sequen
e S will be denoted by �

S

;

�

S

= fW 2 Gr j S

W

= Sg:

We de�ne a partial order on sequen
es by S � S

0

if the entries s

i

and s

0

i

of S and S

0

satisfy s

i

� s

0

i

for all i 2 IN; and de�ne the length l(S) of a sequen
e S as the �nite sum l(S) =

P

i�0

(i � s

i

):

Then S � S

0

obviously implies l(S) � l(S

0

): Denoting by U

S

the set

U

S

=

n

W 2 Gr j proj

�

W ! fz

i

j i 2 Sg

�

is an isomorphism

o

;

the strati�
ation of Gr is des
ribed as follows (see [PS℄).

y

by the last 
ondition in (10) we singled out the 
onne
ted 
omponent 
ontaining H

+

of what

[PS℄ and [SS℄ 
all the Grassmannian

10
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Theorem 5 For any sequen
e S, the set �

S

is a 
losed subspa
e of U

S

and the 
olle
tion of all

U

S

forms an open 
over of Gr: The big stratum is given by �

IN

and all �

S

are smooth manifolds

of 
odimension l(S): The 
losure in Gr of ea
h �

S

is the union of the strata �

S

0

for whi
h S

0

� S:

Sequen
es are in bije
tion with partitions. By a partition � we mean a �nite, nonin
reasing

sequen
e of positive integers �

0

� �

1

� � � � � �

r

� 0: The bije
tion is simply given by �

i

= i � s

i

and we see that l(S) =

P

r

i=0

�

i

: The sequen
e 
orresponding to a partition � will be denoted by

S

�

: Also we de�ne l(�) = l(S

�

) and � � � i� S

�

� S

�

.

Partitions in turn are in bije
tion with Young diagrams, by whi
h they are best visualized; a

Young diagram is a �nite (left aligned) arrangement of squares su
h that ea
h row has at most as

many squares as the pre
eding row and the Young diagram 
orresponding to �

0

� �

1

� � � � � �

r

� 0

is given by drawing �

i

squares in the ith row. Then the number of squares in a Young diagram

(
alled its weight) equals the length of its partition. For example, if � is the partition 3 � 2 � 2 � 0

then S

�

= f�3;�1; 0; 3; 4; : : :g and its Young diagram is drawn as follows.

We �nally re
all the Kri
hever map. The 
urve �, the point P and a lo
al parameter s around

P being �xed, there is asso
iated to a line bundle  L 2 Pi


g

(�) and a trivialization � of  L (say over

a neighbourhood V of the 
losure of the 
oordinate neighbourhood U of s), a point W ( L; �) in Gr

as follows. Using � we may think of se
tions of  L over V as fun
tions on V, in parti
ular su
h a

se
tion determines an element of L

2

(�U ;C). Then W ( L; �) is de�ned as the 
losure of the set of all

elements of L

2

(�U ;C) obtained in this way from meromorphi
 se
tions of  L whi
h are holomorphi


away from P . Then the pole whi
h the se
tion has at P 
oin
ides with the order of the se
tion at P

and in parti
ular is independent of the trivialization �. It follows that, although W ( L; �) depends

on �, the stratum of Gr it belongs to is independent of �. Therefore the Kri
hever map indu
es a

de
omposition (possibly a strati�
ation) of Pi


g

(�), hen
e also of Ja
(�). We will generalize the

Kri
hever map in the 
ase that � is hyperellipti
 to obtain a map whi
h indu
es the strati�
ations

on Ja
(�) whi
h we 
onsidered in the previous se
tion.

3.2. Relating the strati�
ations

We now return to the 
ase for whi
h � is hyperellipti
, s a lo
al parameter on a small neigh-

bourhood U of a �xed point P ; the Grassmannian built using these data is just denoted by Gr.

For a point fDg 2 Ja
(�), let  L

+

be the 
orresponding element in Pi


g

(�) under our identi�
ation

Ja
(�)


[gP ℄

�! Pi


g

(�), i.e.,  L

+

= [D + gP ℄ and let  L

�

=  L

+


 [P � P

�

℄; also 
hoose a trivialization

�

+

of  L

+

over U and 
hoose a trivialization of  L

�

as �

�

= �

+

s if P 6= P

�

and �

�

= �

+

otherwise.

Then we obtain two points W

+

(D)

not

=W ( L

+

; �

+

) and W

�

(D)

not

=W ( L

�

; �

�

), ea
h belonging to a

stratum whi
h is independent of �

�

. Thus, �; P and (s;U) being �xed, there is asso
iated to a

point in Ja
(�) and a trivialization of its line bundle a point in Gr�Gr; if P is a Weierstra� point,

11
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then the image of this map is 
ontained in the diagonal of Gr�Gr and we get the Kri
hever map;

therefore we 
all our map an extension of the Kri
hever map. The two sequen
es of these strata will

be denoted by S

+

(D) and S

�

(D), sin
e they depend on D only. We will show that the strati�
ation

of Ja
(�) with respe
t to P , as de�ned in Se
tion 2 is indu
ed from the produ
t strati�
ation on

Gr�Gr via this map.

Proposition 6 If degD = 0 then the sequen
es S

+

(D) and S

�

(D) are 
omputed as follows:

S

+

(D) = fn 2 ZZ j dimL(D + (g + n)P ) > dimL(D + (g + n� 1)P )g;

S

�

(D) = fn 2 ZZ j dimL(D + (g + n + 1)P � P

�

) > dimL(D + (g + n)P � P

�

)g:

Proof

Sin
e degD = 0, fDg 2 J

k;l

(�; P ) for some k; l � 0; k + l � g. By Lemma 1, fDg is written

as fD

g

� gPg for a unique D

g

=

P

g�m�n

i=1

P

i

+ mP + nP

�

of degree g, with P

i

2 � n fP; P

�

g,

no two P

i


orresponding under �. Let ' be a holomorphi
 se
tion of [D

g

℄ for whi
h (') = D

g

.

Then the map f ! 'f determines an isomorphism between the meromorphi
 fun
tions on � with

(simple) poles on the points of D

g

and an arbitrary pole at P on the one hand, and meromorphi


se
tions of [D

g

℄, holomorphi
 away from P at the other hand. Consequently we will �nd a fun
tion

in W

+

(D) = W ([D + gP ℄; �) of order n exa
tly when there exists a meromorphi
 fun
tion with

poles on D

g

and a pole of order n at P , i.e.,

n 2 S

+

(D) i� dimL(D

g

+ nP ) > dimL(D

g

+ (n� 1)P ); (11)

whi
h shows that S

+

(D) 
an be read o� from the dimensions dimL(D

g

+ nP ). The formula for

S

�

(D) follows immediately from S

�

(D) = S

+

(D + P � P

�

).

The following lemma will give us neat formulas to 
ompute the sequen
es S

+

(D) and S

�

(D).

Lemma 7 Suppose there are given n � g points P

1

; : : : ; P

n

2 � n fP; P

�

g su
h that i 6= j )

P

i

6= P

�

j

: If P 6= P

�

; let D be a divisor of the form D =

P

n

i=1

P

i

+ kP + lP

�

(k; l 2 ZZ). Then

dimL(D) is given by

dimL(D) =

(

maxfg � n� k � l � 1; 0g + n + k + l + 1� g for k < 0 or l < 0;

maxfg � n�maxfk; lg; 0g + n + k + l + 1� g for k; l � 0.

If alternatively P = P

�

; then dimL(D) is given for any divisor of the form D =

P

n

i=1

P

i

+ kP

(k 2 ZZ) by

dimL(D) =

(

maxfg � n� k � 1; 0g + n + k + 1� g for k < 0,

maxfg � n� dk=2e ; 0g + n + k + 1� g for k � 0:

Proof

We �rst 
onsider the 
ase P 6= P

�

: Let D =

P

n

i=1

P

i

+ kP + lP

�

as above and suppose that

k < 0: Then by (6), dim 
(�kP ) = g � k� 1: If l is nonnegative, then the divisor

P

P

i

+ lP

�

is of

the form

P

n+l

i=1

Q

i

where i 6= j ) Q

i

6= Q

�

j

; whi
h amounts to n+ l linearly independent 
onditions.

If l is negative then by (6), dim 
(�kP � lP

�

) = g� k� l� 1 and there are n linearly independent


onditions 
oming from the points P

i

(i = 1; : : : ; n). It follows as in (5) that in both 
ases there are

12
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g � n� k � l � 1 independent di�erentials in 
(�D) as long as this number is positive, otherwise

there are no su
h di�erentials. By Riemann-Ro
h,

dimL(D) = dim 
(�D) + n + k + l + 1� g;

= maxfg � n� k � l � 1; 0g + n + k + l + 1� g;

for k < 0. The 
ase l < 0 is dedu
ed from the above 
ase by repla
ing D by D

�

:

It remains to prove the 
ase k; l � 0: Then we look for holomorphi
 di�erentials with zeroes at

n general points, with k zeroes at P and l zeroes at P

�

: These are n + k + l 
onditions, but sin
e

minfk; lg of them are the same, we arrive at n + k + l � minfk; lg = n + maxfk; lg independent


onditions. It follows from (5) that we end up with g�n�maxfk; lg di�erentials, as long this number

is positive, otherwise there are no su
h di�erentials. Using Riemann-Ro
h again, we 
on
lude

dimL(D) = maxfg � n�maxfk; lg; 0g + n + k + l + 1� g

for k; l � 0: This 
ompletes the proof in 
ase P 6= P

�

:

Suppose now P = P

�

and let D =

P

n

i=1

P

i

+ kP: If k < 0 then it follows from (6) that

dim 
(�kP ) = g � k � 1: The n points P

i

impose n independent 
onditions on these di�erentials,

giving dim 
(�

P

n

i=1

P

i

� kP ) = maxfg � n� k � 1; 0g: Using Riemann-Ro
h we �nd

dimL(D) = maxfg � n� k � 1; 0g + n + k + 1� g;

for k < 0: If k � 0 then there are g � dk=2e holomorphi
 di�erentials in 
(�kP ) (as long as this

number is positive), sin
e in this 
ase all the holomorphi
 di�erentials vanish to even order at P , as

is seen from (1), (2) and (4). Therefore the dimension of 
(�D) is given by maxfg�dk=2e�n; 0g

and L(D) is 
omputed from the Riemann-Ro
h theorem as

dimL(D) = maxfg � dk=2e � n; 0g+ n + k + 1� g

for k � 0:

We 
ombine Proposition 6 with the previous lemma to 
ompute the sequen
es S

+

(D) and

S

�

(D) and their Young diagrams. The basi
 relation between the strati�
ations of Ja
(�) and

Gr�Gr will follow immediately from it.

Theorem 8 Suppose P 6= P

�

and fDg 2 J

m;n

(�; P ): Then S

+

(D) and S

�

(D) are sequen
es

whi
h depend only on the stratum (i.e., on m and n) and are given by

S

+

(D) = f�m; 1�m; 2�m; : : : ; n�m;n + 1; n + 2; n + 3; : : :g;

S

�

(D) = f�m� 1;�m; 1 �m; : : : ; n�m� 2; n; n + 1; : : :g:

The 
orresponding Young diagrams are re
tangles with m 
olumns and n + 1 rows for S

+

(D) and

m+ 1 
olumns and n rows for S

�

(D); and their weights are simply given by l(S

+

(D)) = m(n+ 1)

and l(S

�

(D)) = n(m + 1). They look as follows.

n+1

m

n

m+1

13
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Se
ondly, suppose that P = P

�

and fDg 2 J

m

(�; P ): Then S

+

(D) = S

�

(D) is a sequen
e

whi
h depends only on the stratum (i.e., on m) and is given by

S

+

(D) = f�m; 2�m; 4�m; : : : ;m� 2;m;m + 1;m + 2; : : :g:

The 
orresponding Young diagram is a rotated stairs of height m; i.e., the �rst row has m squares

and every other row has one square less then the pre
eding row, hen
e it has weight l(S

+

(D)) =

m(m+1)

2

and is depi
ted as follows.

m

m

Proof

Suppose at �rst that P 6= P

�

. For D 2 Div

m;n

(�; P ) let D

g

= D + gP , then by Lemma 7,

dimL(D

g

+ kP ) = maxfminfk + m;ng; 0g + 1 + k;

if k +m � 0; otherwise this dimension is zero. Sin
e S

+

(D) = fk j dimL(D

g

+ kP ) > dimL(D

g

+

(k � 1)P )g we see that

S

+

(D) = f�m; 1 �m; 2�m; : : : ; n�m;n + 1; n + 2; n + 3; : : :g:

Also, sin
e S

�

(D) = S

+

(D + P � P

�

) and sin
e D + P � P

�

2 Div

m+1;n�1

(�; P ) if n � 1, the

formula for S

�

(D) is found in this 
ase by substituting m+ 1 for m and n� 1 for n in the formula

for S

+

(D): The proposed formula above for S

�

(D) gives for n = 0; when properly interpreted,

S

�

(D) = IN. To see its validity, remark that in this 
ase

D

g

+ P � P

�

=

g�m

X

i=1

P

i

+ mP + P � P

�

�

l

g

X

i=1

Q

i

for unique Q

i

, all di�erent from P; P

�

and no two of whi
h 
orrespond under the hyperellipti


involution (using Lemma 1 again), hen
e S

�

(D) = IN. The proof for P = P

�

goes exa
tly along

the same lines.

This theorem leads immediately to the main result of this se
tion.

Theorem 9 The natural strati�
ation of Ja
(�) given by the subsets J

m;n

(�; P ), (m;n) 2 I

g

, is

indu
ed by the (produ
t) strati�
ation on Gr �Gr given by the sets �

S

� �

T

(S; T sequen
es) via

the \map"

F : Ja
(�) ! Gr�Gr

fDg 7! (W

+

(D);W

�

(D)):

14
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Proof

From the previous theorem it follows that the strata J

m;n

(�; P ) are mapped into strata of the

strati�ed spa
e Gr�Gr: Also it follows from this theorem that no two di�erent strata J

m;n

(�; P )

and J

m

0

;n

0

(�; P ) are mapped in the same stratum. To prove this it suÆ
es to show that the

numbers (m;n) 2 I

g


an be re
onstru
ted from S

+

(D) and S

�

(D) (or equivalently from their

Young diagrams). If both Young diagrams are empty then (m;n) = (0; 0): Otherwise m and n are

found by 
ounting rows and 
olumns in one of the nonempty diagrams. Remark that for m = 0 or

n = 0 it is essential to have both diagrams: the ordinary Kri
hever map is only able to distinguish

the strata inside one of the two translates of the theta divisor. In the 
ase P = P

�

both Young

diagrams are obviously the same (sin
e W

+

(D) = W

�

(D)) and the theorem 
an be simpli�ed using

only the subsets J

m

(�; P ) and the planes W

+

(D) 2 Gr:

3.3. The K-P hierar
hy on Gr and another strati�
ation

There is another strati�
ation on Gr, (and on Gr�Gr) 
oarser than the previous one, whi
h

shows up when a 
ertain natural ve
tor �eld on Gr is 
onsidered. Its strata 
onsist of those points

in Gr for whi
h the asso
iated Young diagrams have a given weight. To see that it is also a

strati�
ation, remark that ea
h stratum is a �nite union of the strata of the original strati�
ation,

and the boundary of a stratum now 
onsists of those strata whose Young diagram has more weight

than the Young diagram of the given stratum; we 
all it the 
oarser strati�
ation (on Gr as well as

on Gr�Gr where again the produ
t strati�
ation is 
onsidered). The following proposition follows

at on
e from Theorem 8.

Proposition 10 The natural strati�
ation of Ja
(�) given by the subsets J

m;n

(�; P ) is also

indu
ed by the 
oarser strati�
ation on Gr�Gr via our extension of Kri
hever's map.

Proof

Clearly we only need to prove that no two strata are mapped in the same stratum. If P = P

�

,

then the stratum whi
h 
orresponds to J

m

(�; P ) has weight

m(m+1)

2

, whi
h is di�erent for all

m 2 IN. If P 6= P

�

, then we need to re
onstru
t m and n from w

1

= m(n+ 1) and w

2

= n(m+ 1).

However, given w

1

and w

2

there are only two solutions to this, namely (m;n) and (�n�1;�m�1),

only one of whi
h is positive.

The group C

1

a
ts on Gr in an obvious way by W 7! e

�t

n

z

n

W; (t

n

2 C), and its in�nitimal

a
tion determines an in�nite number of 
ommuting ve
tor �elds �=�t

n

on Gr, 
alled the K-P

hierar
hy (this hierar
hy 
an be written down in many equivalent forms, see [DKJM℄, [SS℄ and

[SW℄). The point e

�

P

1

j=1

t

j

z

j

W is denoted by W

t

, in parti
ular W = W

0

. It leads to the so-
alled

tau fun
tion, also introdu
ed by Sato (see [SS℄ and [SW℄), whi
h is de�ned for a generi
 point

W 2 Gr by

�

W

(t) =

�(W

t

)

e

�

P

1

j=1

t

j

z

j

�(W )

=

�(e

�

P

1

j=1

t

j

z

j

W )

e

�

P

1

j=1

t

j

z

j

�(W )

:

Here �(W ) is a 
anoni
al global se
tion of the dual Det

?

of the determinant bundle Det over

Gr, whi
h 
an be de�ned | with some 
are | as one de�nes the determinant bundle over a

�nite dimensional manifold. For a point for whi
h �(W ) = 0; this se
tion is repla
ed by another

(nonvanishing) se
tion of Det

?

. It is a fundamental fa
t that in the 
ase W = W ( L; �) as in the

previous paragraph, one has W

t

( L; �) = W ( L 
 �

t

; �

t

) where �

t

is the line bundle de�ned by the

transition fun
tion e

P

1

j=1

t

j

s

�j

on the overlap of W = � n fPg and U ; moreover, t 7! �

t

de�nes

a surje
tive homomorphism (see [Sh℄). It follows that C

1

a
ts on the set Pi


g

(�) by tensoring
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with �

t

, hen
e the ve
tor �elds �=�t

n

give linear ve
tor �elds on any Ja
obian Ja
(�) under our

identi�
ation with Pi


g

(�) by fDg $ [D + gP ℄:

We apply this to our 
ase in whi
h � is hyperellipti
, and we 
on
entrate on the ve
tor �eld

�=�t

1

. As before, s is a lo
al parameter around P 2 �. Consider the in
lusion

{

P

: � ! Ja
(�) :Q 7! fQ� Pg:

Then �=�t

1

, as a ve
tor �eld on Ja
(�) has the following property.

Proposition 11 The �rst K-P ve
tor �eld �=�t

1

, 
onsidered as a ve
tor �eld on Ja
(�), is

tangent to the 
urve {

P

(�) at the origin of Ja
(�).

Proof

Let t = (t

1

; 0; 0; : : :) with t

1

small. The line bundle in Pi


g

(�) 
orresponding to the origin of

Ja
(�) is  L = [gP ℄, with transition fun
tions g

UW

= s

g

(W = � n fPg), hen
e  L

t

= [gP ℄ 
 �

t

has

transition fun
tions

g

t

UW

= s

g

exp(�t

1

=s) = s

g�1

(s� t

1

) +O(t

2

1

);

and sin
e t

1

is small, the divisor 
orresponding to it (up to O(t

2

1

)) is (g � 1)P + P

t

1

, where P

t

1

is the point in U for whi
h s = t

1

. As a point in the Ja
obian this is the point fP

t

1

� Pg on the

embedded 
urve {

P

(�). Therefore, around P , {

P

(�) 
oin
ides with the integral 
urve (whi
h is just

a straight line in the torus) of �=�t

1

at least to �rst order, hen
e they are tangent. The 
omponents

of this ve
tor in the dire
tion of the holomorphi
 di�erentials x

k

dx=y; (k = 0; : : : ; g � 1) are easily


omputed; take for example P = P

�

then x = s

�2

; y = s

�2g�1

+O(s

�2g

) hen
e,

lim

t

1

!0

1

t

1

Z

P

t

1

P

x

k

dx

y

= �2 lim

s!0

1

s

Z

s

0

s

2(g�k�1)

(1 +O(s))ds = �2Æ

k;g�1

: (12)

Of interest to us is also how the tau fun
tion, asso
iated to W 2 Gr, vanishes in the t

1

-dire
tion.

This is given by the following proposition, due to [SW℄.

Proposition 12 For any W 2 Gr,

�

W

(t

1

; 0; 0; : : :) = 
t

l

1

+O(t

l+1

1

);

where 
 6= 0 and l is the 
odimension of the stratum of Gr 
ontaining W , i.e., it is the weight l(S

W

)

of the Young diagram of W .

Having asso
iated two points W

+

(D) and W

�

(D) to a point fDg, we have also two 
orre-

sponding tau fun
tions �

W

+

(D)

and �

W

�

(D)

. They relate to the theta fun
tion as follows.

Theorem 13 Let A be the g�1-matrix with entries A

ij

de�ned by expanding the holomorphi


di�erential forms !

i

in terms of s (around P ), !

i

=

P

1

j=1

A

ij

s

j�1

ds: Then for any divisor D of

degree 0,

�

W

+

(D)

(t) = exp(Q(t))�

�

~

��At�A(D)

�

;

�

W

�

(D)

(t) = exp(Q(t))�

�

~

� + ~e�At�A(D)

�

;

where Q(t) is a quadrati
 form in t whi
h is independent of t

1

.
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Proof

The proof is essentially due to Kri
hever (see [K℄), who shows that if  L is a line bundle of

degree g, then

�

W ( L;�)

(t) = exp(Q(t))�(At + Z( L));

for some ve
tor Z whi
h depends \linear" on  L in the sense that

Z( L
 [D℄) = Z( L) +A(D); (13)

for any divisor D of degree 0 (see also [Sh℄). We determine Z. By the pre
eding proposition and

Theorem 8, �

W

+

(D)

(0) = 0 i� l(S

+

(D)) 6= 0 i� fDg =2 J

0;0

(�; P ). On the other hand, by (9)

(Riemann's theorem), �(Z) vanishes for the points A(D)�

~

� for whi
h A(D) = fDg =2 J

0;0

(�; P ):

Using (13), Z( L) = A(D)�

~

� for all D of degree 0, leading to the �rst formula. The se
ond formula

follows at on
e form the �rst one.
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4. The master systems

4.1. The master systems

Consider for a �xed hyperellipti
 
urve � (of genus g), P 2 � and s a lo
al parameter around

P the map

�

P

: � ! Ja
(�):Q 7! fQ� Pg:

Then d�

P

�

�

�s

�

s=0

is a tangent ve
tor at the origin of Ja
(�), tangent to the embedded 
urve

�

P

(�), and we have seen in Proposition 11 that it determines the unique holomorphi
 ve
tor �eld

on this torus, whi
h 
oin
ides with the �rst K-P ve
tor �eld, under the identi�
ation of Ja
(�)

with Pi


g

(�), given by fDg $ [D + gP ℄. Natural 
oordinates 
an be pi
ked for (an aÆne part of)

Ja
(�) in whi
h the di�erential equations des
ribing the ve
tor �eld take a ni
e form. This was

done by Mumford in 
ase P is a Weierstra� point on � (see [M℄), and by us in the opposite 
ase

(see [V℄). The result 
an be written in a 
ompa
t form as a so-
alled Lax pair

dA

dt

= [A;B℄; A =

�

v(x) u(x)

w(x) �v(x)

�

; B =

�

0 1

b 0

�

; (14)

where

u(x) = x

g

+

g

X

i=1

u

i

x

g�i

; v(x) =

g

X

i=1

v

i

x

g�i

; w(x) =

g

X

i

w

i

x

g�i

:

The sum in w(x) starts from �1 if P is a Weierstra� point and from �2 in the other 
ase; in any


ase w(x) is taken moni
. Moreover, w

�1

di�ers from �u

1

only by a 
onstant, whi
h is normalized

to zero by a shift in x. With this normalization the entry b in B is given by

b = x� 2u

1

; or b = x

2

� 2u

1

x + 2u

2

1

� u

2

+ w

0

;

again a

ording to whether P is, or is not, a Weierstra� point of �. In [V℄ we 
alled the ve
tor �eld

(14) the odd master system in 
ase P = P

�

and the even master system otherwise.

The 
oeÆ
ients of u(x); v(x) and w(x) are meromorphi
 fun
tions on Ja
(�), whi
h serve

as (a 
omplete set of) 
oordinates for an aÆne part of Ja
(�); for example the polynomial u(x)

asso
iated to a generi


y

point fDg = f

P

g

i=1

P

i

� gPg 2 Ja
(�), is just u(x) =

Q

(x�x(P

i

)), hen
e

its 
oeÆ
ients are symmetri
 fun
tions on the 
urve; also v(x) is the unique polynomial of degree

g � 1 whi
h re
ords the y-values of the points P

i

, i.e., v(x(P

i

)) = y(P

i

) for i = 1; : : : ; g. It follows

that f(x) � v

2

(x) is divisible by u(x) and w(x) is by de�nition the quotient. Remark that, in

parti
ular, an equation for the 
urve � is given by

y

2

= f(x) = u(x)w(x) + v

2

(x) (15)

and the 
oeÆ
ients of u(x)w(x) + v

2

(x) are 
onstants. Also the points P and P

�

are points at

in�nity with respe
t to this equation. It is easy to dedu
e from this that the ve
tor �eld (14)


oin
ides with the ve
tor �eld given by d�

P

�

�

�s

�

js=0

, hen
e with the �rst K-P ve
tor �eld, as we

show now.

Proposition 14 The ve
tor �eld (14) whi
h des
ribes the master systems 
oin
ides with the �rst

K-P ve
tor �eld �=�t

1

.

y

generi
 means here that the point lies in J

0;0

(�; P )
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Proof

Take a generi
 divisor P

1

+ � � �+P

g

; P

i

= (x

i

; y

i

) and let u(x); v(x) and w(x) be its asso
iated

polynomials. Using (14),

y

i

= v(x

i

) =

1

2

du

dt

(x

i

) = �

1

2

Y

j 6=i

(x

i

� x

j

)

dx

i

dt

;

hen
e

g

X

i=1

x

k

i

dx

i

y

i

= �2

g

X

i=1

x

k

i

dt

Q

j 6=i

(x

i

� x

j

)

= �2Æ

k;g�1

dt:

It follows that the ve
tor �eld vanishes in the dire
tion of dx=y; : : : ; x

g�2

dx=y and takes the value

�2 for x

g�1

dx=y exa
tly as in (12).

4.2. The Laurent solutions for the master systems

The di�erential equations des
ribing a ve
tor �eld su
h as (14) are known to possess families

of Laurent solutions (see [AvM3℄). We explain this by re
alling the argument. Let Z be any

point on Ja
(�) and let us denote for simpli
ity the fun
tions u

i

; v

i

and w

i

by z

1

; : : : ; z

m

; (m =

3g + 1 or m = 3g + 2). If all fun
tions z

i

are holomorphi
 in this point then the solution z

i

(t) is

obviously given by power series; therefore suppose that one or more fun
tions z

i

blow up at Z, say

the blow-up lo
us of z

1


ontains Z. We write the divisor of z

1

as

(z

1

) =

k

X

i=1

n

i

D

i

�

l

X

i=1

m

i

D

0

i

(m

i

; n

i

2 IN n f0g);

where all D

i

and D

0

i

are di�erent and irredu
ible. Then Z belongs to one or more D

0

i

, but may

belong as well to some of the D

i

. In any 
ase, if we pi
k for ea
h divisor a lo
al de�ning fun
tion

around Z, say f

i

for D

i

and g

i

for D

0

i

(if Z does not belong to some divisor then the lo
al de�ning

fun
tion may be taken as the 
onstant fun
tion 1), then z

1

is written around Z as

z

1

= f

f

n

1

1

f

n

2

2

� � � f

n

k

k

g

m

1

1

g

m

2

2

� � � g

m

l

l

:

We may take linear 
oordinates x

1

= t; x

2

; : : : ; x

n

for the torus, and think of the lo
al de�ning

fun
tions as being expressed in terms of these. If the t-axis is not 
ontained in any of the divisors

D

i

or D

0

i

then all these fun
tions 
an (again up to a nonvanishing holomorphi
 fun
tion) be written

as a (Weierstra�) polynomial in t (by the Weierstra� Preparation Theorem) and we see that the

zero or pole z

1

has in Z depends on the 
omponents of the divisor of z

1

to whi
h Z belongs but

also on the singularity these divisors have in Z (sin
e then the �rst few terms in the series vanish)

and on the 
onta
t the ve
tor �eld d=dt has with these divisors (for the same reason). Pro
eeding

in this way for all fun
tions z

i

we �nd a Laurent solution to the di�erential equations, whi
h starts

from Z. The 
ase in whi
h the t-axis is 
ontained in the divisor of one of the fun
tions 
orresponds

to the ex
eptional 
ase that both the torus is redu
ible and one of the fun
tions blows up on a

subtorus, a 
ase whi
h will not be en
ountered here.

The Laurent series organize themselves naturally in families as follows: for every z

i

, �x an

interse
tion of some divisors (
ontained in the divisor of poles of (z

i

)), �x an order of singularity

and an order of tangen
y of the ve
tor �eld. On this set all z

i

are written as Laurent series

depending on a number of free parameters, equal to the dimension of this set (
orresponding to the
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starting point of the series whi
h 
an be 
hosen in it) and in a dense subset the order of pole ea
h

expansion experien
es is �xed. The pole may however be
ome less severe in an analyti
 subset,

obtained from the interse
tion with one of the divisors on whi
h z

i

has a zero; in su
h a 
ase the

leading 
oeÆ
ient of the Laurent series must be (dependent on) a free parameter, so that it 
an in

parti
ular take the value 0. The di�erent sets obtained in this way do not give a strati�
ation of

the torus in general; indeed, if, for example, z

1

and z

2

both have a pole on some smooth divisor and

the interse
tion of these divisors is singular, then this singularity will not be seen by the Laurent

series.

Finding all Laurent solutions in a dire
t way is in general a hard problem. At �rst it is not


lear when looking at the di�erential equations where to start with the solution. For a given 
hoi
e

one needs to solve a nonlinear system of algebrai
 equations for the leading term (whi
h may be

very diÆ
ult, espe
ially in the present 
ase where the number of variables is inde�nite; here this

number is 3g+1 or 3g+2); the presen
e of free parameters (giving information about the dimension

of the 
orresponding subset) 
an in favourable 
ases be dete
ted by 
omputing the eigenvalues of

a matrix, depending on these leading terms, but this is again very diÆ
ult when the number of

variables, hen
e the size of the matrix, is inde�nite. One also has to show 
onvergen
e of all Laurent

solutions and to see how the di�erent sets they 
orrespond to are related (see [AvM3℄).

Our method to �nd the Laurent solutions for the master systems does not use this s
heme.

Instead we 
ombine Theorem 12 with the following theorem whi
h expresses the symmetri
 fun
-

tions u

i

in terms of the Riemann theta fun
tion. The result is most easily expressed in terms

of alternative symmetri
 fun
tions U

i

(on the 
urve, given by (15), de�ned for a generi
 point

fDg = f

P

g

i=1

P

i

� gPg 2 Ja
(�), as

U

i

= U

D

i

=

g

X

j=1

x

i

(P

j

) (i = 1; : : : ; g):

Remark that u

i

is a weight homogeneous polynomial in U

1

; : : : ; U

i

when U

k

is given weight k. We

also introdu
e the S
hur polynomials p

i

(x); x = (x

1

; x

2

; : : :) de�ned by

exp

 

1

X

i=1

x

i

�

i

!

=

1

X

i=0

p

i

(x)�

i

:

In order to simplify the notation we will abbreviate

~

� =

�

�

�t

1

;

1

2

�

�t

2

;

1

3

�

�t

3

; : : :

�

:

Theorem 15 If P = P

�

then the symmetri
 fun
tions U

i

are expressed in terms of the Riemann

theta fun
tion by

U

D

i

= 


i

�

2i�1

X

j=0

�

�t

2i�j

p

j

(

~

�)(log �)(

~

��A(D)) (


i

2C): (16)

In parti
ular, sin
e the S
hur polynomial p

j

(x) has degree j in x

1

, the Laurent expansion in t

1

for

U

i

(and hen
e also for u

i

) will have a leading behaviour whi
h is not worse than t

�2i

1

.
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Alternatively, if P 6= P

�

then the symmetri
 fun
tions U

i

are expressed in terms of the Riemann

theta fun
tion by

U

D

i

= 


i

�

i�1

X

j=0

�

�t

i�j

p

j

(

~

�)(log �)(

~

��A(D))�

�

�t

i�j

p

j

(�

~

�)(log �)(

~

��A(D) + ~e): (17)

so that in this 
ase any Laurent expansion in t

1

for U

i

(and, hen
e, also for u

n

) will have a leading

behaviour whi
h is not worse than t

�i

1

.

Proof

The formulas (16) and (17) generalize analogous formulas that have been obtained by several

methods for small n (see [D℄, [MvM℄); our proof is a residue 
al
ulation as in [D℄.

The fundamental formula used here is that, if Z = A(P

1

+ � � � + P

g

� gP ) with P

1

+ � � � + P

g

a generi
 divisor on �, then

�(A(Q� P )� Z +

~

�) = 0 i� Q 2 fP

1

; : : : ; P

g

g;

an easy 
onsequen
e of (9) (Riemann's Theorem). We start with the 
ase P = P

�

. Then it follows

from this formula that U

D

i

is given by

U

D

i

= 


i

�Res

Q=P

x

i

(Q)d log �(A(Q� P )�A(D) +

~

�);

= 


i

�Res

Q=P

x

i

(Q)

g

X

l=1

!

l

(Q)

�

�

�z

l

log �

�

�

A(Q� P )�A(D) +

~

�

�

;

(18)

for some 


i

2 C. As before, we expand !

i

and the 
omponents A

i

of the Abel map for Q 
lose to

P; say x(Q) = s

�2

in terms of s,

!

i

(Q) =

1

X

j=1

A

ij

s

j�1

ds A

i

(Q) =

1

X

j=1

1

j

A

ij

s

j

ds:

We use Taylor's Theorem,

F (~z +

~

h) = exp

 

g

X

i=1

h

i

�

�z

i

!

F (~z) (h small);

for

F =

�

�z

l

(log �); ~z =

~

��A(D);

~

h = A(Q� P ); Q near P:

This gives

�

�

�z

l

log �

�

�

A(Q� P )�A(D) +

~

�

�

= exp

2

4

1

X

j=1

 

g

X

i=1

1

j

A

ij

�

�z

i

!

s

j

3

5

�

�

�z

l

log �

�

�

~

��A(D)

�

;

= exp

2

4

1

X

j=1

1

j

�

�t

j

s

j

3

5

�

�

�z

l

log �

�

�

~

��A(D)

�

;

=

1

X

j=0

s

j

p

j

(

~

�)

�

�

�z

l

log �

�

�

~

��A(D)

�

:
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We have used that

P

g

i=1

A

ij

�

�z

i

=

�

�t

j

, whi
h follows from z = At + � in Theorem 13. We have

now expressed everything in terms of s and 
an 
ompute the residue:

U

D

i

= 


i

�Res s

�2i

1

X

j=0

p

j

(

~

�)s

j

�

�

�z

l

log �

�

�

~

��A(D)

�

1

X

k=1

A

lk

s

k�1

ds;

= 


i

�Res

1

X

j=0

1

X

k=1

s

j+k�2i

p

j

(

~

�)

�

�t

k

(log �)

�

~

��A(D)

�

ds

s

;

= 


i

�

2i�1

X

j=0

�

�t

2i�j

p

j

(

~

�)(log �)

�

~

��A(P )

�

:

The modi�
ations for the 
ase P 6= P

�

are the following. In (18) there is an extra term 
orrespond-

ing to the residue in P

�

,

Res

Q

0

=P

x

i

(Q

0

)

g

X

l=1

!

l

(Q

0

)

�

�

�z

l

(log �)

�

�

A(Q

0

� P )�A(D) +

~

�

�

:

Letting Q

�

= Q

0

it is rewritten as a residue in P upon using x(Q

�

) = x(Q) and !(Q

�

) = �!(Q)

for all holomorphi
 di�erentials ! (hen
e also A(Q

�

� P

�

) = �A(Q� P )), giving:

�Res

Q=P

x

i

(Q)

g

X

l=1

!

l

(Q)

�

�

�z

l

log �

�

�

�A(Q� P )�A(D) +

~

� + ~e

�

:

A se
ond mayor di�eren
e with the 
ase P = P

�

is that now x(Q) = s

�1

in terms of the lo
al

parameter s. Taylor's Theorem gives the same result as above for the residue in P , while for the

extra residue term we �nd

�

�

�z

l

log �

�

�

�A(Q� P )�A(D) +

~

� + ~e

�

=

1

X

j=0

s

j

p

j

(�

~

�)

�

�

�z

l

log �

�

�

~

� + ~e�A(D)

�

;

so that �nally the sum of the two residue terms is given by

�Res

1

X

j=0

1

X

k=1

s

j+k�i

�

�

�t

k

p

j

(

~

�)(log �)

�

~

��A(D)

�

�

�

�t

k

p

j

(�

~

�)(log �)

�

~

� + ~e�A(D)

�

�

ds

s

;

= 


i

�

i�1

X

j=0

�

�

�t

i�j

p

j

(

~

�)(log �)

�

~

��A(D)

�

�

�

�t

i�j

p

j

(�

~

�)(log �)

�

~

� + ~e�A(D)

�

�

:

The above theorem is very helpful to determine the Laurent solutions for the master systems.

Sin
e t = t

1

, we may now make the ansatz

u

i

=

1

t

�(i)

1

X

j=1

u

ij

t

j

(19)
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where �(i) is given by the theorem, namely �(i) = 2i if P = P

�

and �(i) = i otherwise, and we

are sure to �nd all the Laurent solutions. We show that they lead indeed to the strati�
ation of

Ja
(�) whi
h 
oin
ides with the one by the subsets J

m;n

(�; P ). We give separate propositions for

the 
ases P = P

�

and P 6= P

�

.

Proposition 16 For the odd master system there are g + 1 families of Laurent solutions. The

mth family 
orresponds to the stratum J

m

(�; P ) and the fun
tions u

1

; : : : ; u

g

blow up as

u

i

= (�1)

i

(2i� 1)!!

2

i

i!

(m + i)!

(m� i)!

1

t

2i

+O(t

�2i+1

) (i = 1; : : : ;m);

u

i

= O(t

�2i+1

) (i = m + 1; : : : ; g);

(20)

In parti
ular, the odd master system indu
es a strati�
ation on Ja
(�) whi
h 
oin
ides with the

strati�
ation by the subsets J

m

(�; P ).

Proof

Equations (14) are written out in the 
ase of the odd master system (
orresponding to P = P

�

)

as

_u(x) = 2v(x);

_v(x) = �w(x) + (x� 2u

1

)u(x);

_w(x) = �2(x� 2u

1

)v(x);

or just as a third order equation,

:::

u

i

(x) = 4 ( _u

i+1

� 2u

1

_u

i

� _u

1

u

i

) (i = 1; : : : ; g; u

g+1

= 0): (21)

Then the ansatz (19) leads to the re
ursion relation

a

i+1

=

2i + 1

i + 1

�

i(i + 1)

2

+ a

1

�

a

i

: (22)

To solve this re
ursion relation, remark that if a

i

= 0 then a

i+1

= 0; sin
e a

i

= 0 for at least one

i � g + 1, we �nd that

a

1

= �

1

2

m(m + 1) (23)

for some m 2 f0; : : : ; gg whi
h leads by indu
tion immediately to the formula

a

i

= (�1)

i

(2i � 1)!!

2

i

i!

(m + i)!

(m� i)!

(i = 1; : : : ;m);

and a

m+1

= � � � = a

g

= 0, hen
e also to (20). The series for v

i

and w

i

follow immediately from it

by di�erentiation, in parti
ular they do not give rise to separate families of Laurent solutions.

We now show that the mth solution 
orresponds to J

m

(�; P ). Take fDg 2 J

m

(�; P ) and

let fD

t

g be the integral 
urve of d=dt = �=�t

1

with D

0

= D. Denote by u

D

t

(x) and U

D

t

(x) the
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asso
iated polynomials, as above. Sin
e it follows from the de�nition of A that At+A(D) = A(D

t

),

we may 
ompute, using Theorems 15, 13 and Proposition 12 (in that order),

u

D

t

1

= (log �)

::

�

~

��A(D

t

)

�

� 


1

;

= (log �)

::

�

~

��A(D)�At

�

� 


1

;

=

�

log �

W

+

(D)

�

::

(t)� 


1

;

=

d

2

dt

2

log

�


t

l(S

+

(D))

+O(t

l(S

+

(D))+1

)

�

� 


1

; (
 6= 0);

= �

l(S

+

(D))

t

2

+O(1):

If fDg 2 J

m

(�; P ); then we know from Theorem 8 that l(S

+

(D)) =

m(m+1)

2

, so we �nd by (23)

that the mth stratum 
orresponds to J

m

.

We will now formulate and prove the 
orresponding result for the even master system, i.e., for

the 
ase P 6= P

�

.

Proposition 17 For the even master system there are

(g+1)(g+2)

2

families of Laurent solutions

one for ea
h element of the set I

g

. The (m;n)th family 
orresponds to the stratum J

m;n

(�; P ) and

the fun
tions u

1

; : : : ; u

g

blow up as

u

1

=

m� n

t

+O(1);

u

i

= O(t

�i

); (i = m + 1; : : : ; g);

(24)

In parti
ular, the even master system indu
es a strati�
ation on Ja
(�) whi
h 
oin
ides with the

strati�
ation by the subsets J

m;n

(�; P ).

Proof

The proof goes along the same lines as the proof of Proposition 16. However one �nds using

the ansatz in this 
ase a re
ursion relation

a

k+2

=

2k + 3

k + 2

a

1

a

k+1

+

k + 1

k + 2

�

(k + 2)k � (3a

2

1

� 2a

2

)

�

a

k

;

whi
h is solved at on
e for g = 1; 2; 3; : : :, but seems to be very hard to solve for general g. Therefore

we 
ompute as in the previous proposition for fDg 2 J

m;n

(�; P )(�; P ) with (m;n) 2 I

g

:

u

D

t

1

= (log �)

:

�

~

��A(D

t

)

�

� (log �)

:

�

~

��A(D

t

) + ~e

�

� 


1

;

=

�

log �

W

+

(D)

�

:

(t)�

�

log �

W

�

(D)

�

:

(t)� 


1

;

=

l(S

+

(D))� l(S

�

(D))

t

+O(1);

=

m� n

t

+O(1):

The formula for the other u

i

follows from Theorem 15.
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