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1 Introduction

Random matrix theory has led to the discovery of novel matrix models and
novel statistical distributions, which are defined by means of Fredholm determi-
nants and which, in many cases, satisfy nonlinear ordinary or partial differential
equations. A crucial observation is that these matrix integrals, upon appropri-
ate deformation by means of exponentials containing one or several series of
time parameters, satisfy (i) integrable equations and (ii) Virasoro constraints
with respect to these time parameters. Most of the time, such matrix integrals
can be written — by expressing the integrand in “polar coordinates” — as a
multiple integral, which then can be expressed in terms of the determinant of

IDepartment of Mathematics, Brandeis University, Waltham, Mass 02454, USA,
adler@brandeis.edu. The support of a National Science Foundation grant # DMS-04-06287
is gratefully acknowledged

2Département de Mathématiques, Université Catholique de Louvain, 1348 Louvain-
la-Neuve, Belgium and Brandeis University, Waltham, Mass 02454, USA, vanmoer-
beke@math.ucl.ac.be. The support of a National Science Foundation grant # DMS-04-06287,
a European Science Foundation grant (MISGAM), a Marie Curie Grant (ENIGMA), Nato,
FNRS and Francqui Foundation grants is gratefully acknowledged.

3The support of a European Science Foundation grant (MISGAM) and a Marie Curie
Grant (ENIGMA) is gratefully acknowledged.



a moment matrix; this may be a moment matrix with regard to one or several
weights. The extra time parameters are added in such a way that each weight
has its own exponential time deformation.

The main point is to show that this determinant satisfies (i) and (ii). These
features turn out to be extremely robust! The purpose of the present paper is to
show point (i) in great generality, which is the determinant of moment matrices
associated with one or several weights and defined on various different domains,
satisfies the multi-component KP hierarchy with regard to the time parameters.
This is a very general class of integrable equations.

This determinant will turn out to be the 7-function of this integrable hierar-
chy; this 7-function with appropriate shifts of the deformation variables will be
expressed in terms of the “orthogonal polynomials” defined by the weights and
their Cauchy transform. We list below a number of examples having their origin
in Hermitian random matrix theory, in random matrices coupled in a chain, in
random permutations and in Dyson Brownian motions (non-intersecting Brow-
nian motions) on R leaving from the origin, where some paths are forced to end
up at one point and others at another point, etc. .. These examples will then be
discussed in detail in Section 7.

e GUE: orthogonal polynomials.
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e Coupled random matrices / Dyson Brownian motions: bi-orthogonal
polynomials.
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e Longest increasing subsequences in random permutations: orthogonal
polynomials on S*t.
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® m1 + my non-intersecting Brownian motions on R leaving from 0 and
m.  paths forced to end up at *a: multiple orthogonal polynomials on R.
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° 22:1 Mo = Zg:1 ng non-intersecting Brownian motions on R, with
Mq paths starting at a,, € R and ng paths forced to end up at bg:
mized multiple orthogonal polynomials (mized mops) on R.

A moment matrix for several weights: Define two sets of weights

V1(x),...,%g(z) and  @1(y),...,ep(y), with z,y € R,

and deformed weights depending on time parameters s, = (Sa1,Sa2,-..) (1 <
a < q) and tg = (tg1,t82,...) (1 < B < p), denoted by

Vo " (2) = Pa(w)e” et and  ph(y) == g (y)e=ior
That is, each weight goes with its own set of times. For each set of positive
integers*
m=(mi,...,mg),n=(n1,...,n,) with |m| = |n|,
consider the determinant of a moment matrix 7;y,,, composed of blocks and of
size |m| = |n|, with regard to a (not necessarily symmetric) inner product (- |-)
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Hm|=32_, mqy and |n| = Zgzl ng.



A typical inner product to keep in mind is

(o // F(@)g(y) du(z, y), 2)

where p = u(x,y) is a fixed measure on R?, perhaps having support on a line
or curve.

From moment matrices to polynomials and their Cauchy transforms:

I. Then, for 1 < g3, 8’ < p, the following expressions are polynomials (with
coefficients depending on s and t)®

mn tg — -1
anT (s [Z D — (5/3)( ) =2+ ...
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-1
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satisfying, for each (3, the following orthogonality conditions
1<a<
(8.5 (4 - =>4
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IT. In the same way, the following expressions are polynomials (depending on s
and t)

1
am1 Tm—eqm—es(Sa +[277]) = P59 (2) of degree < mq  (5)
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satisfying, for each [, the orthogonality relations
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except /' =0, j=ng—1

<Z Pl @)y (x) ‘ y”f’l%(y)> =
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III. The following expressions are Cauchy transforms of the polynomials ob-
tained in II:

5Introduce the notation [a] = (a, ‘172, ‘1—33, ...) for & € C. Only shifted times will be

made explicit in the 7-functions; i.e., Tmn(ty — [zfl]) means that 7., still depends on all
time parameters, but the variable t;, only gets shifted. Moreover, here and below all the
expressions £,3(n), €qg(n,m), etc... all equal £1 and will be given later. Throughout the
paper, we use the standard notation e; = (1,0,0,...), e2 = (0,1,0,...).
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IV. Similarly, the following expressions are Cauchy transforms of the polyno-
mials obtained in I:

Tmenefsa_271
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Tmn B=1
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The statements I, 11, IIT and IV summarize sections 1, 2 and 3. As will appear
in Section 2, the polynomials appearing in (I) are called Type II | , mixed
g

multiple orthogonal polynomials, whereas those appearing in (II) Type I Lo

mixed multiple orthogonal polynomials. These were introduced by E. Daems
and A. Kuijlaars [9], in the context of non-intersecting Brownian motions; they
are a generalization of multiple orthogonal polynomials, where instead of one set
of weights, there are two sets (the classical orthogonal polynomials correspond
to one set with one element). They were introduced and studied by Aptekarev,
Bleher, Geronimo, Kuijlaars, Van Assche [6, 14, 15, 8]. Around the same time,
they were introduced by Adler-van Moerbeke in the context of band matrices
and vertex operator solutions to the KP hierarchy [2]. In [7, 8], they were used
in the context of non-intersecting Brownian motions and random matrices with
external source.

The (p + ¢)-KP hierarchy: Define two matrices W, (z) and W}, (z) of
size p + g, whose entries are given by ratios of determinants 7,,, of moment
matrices as above, but with appropriately shifted ¢ and s parameters. They
turn out to be the wave and dual wave matrices for the (p + ¢)-KP hierarchy.
It is remarkable that, upon setting all ¢ and s parameters equal to zero, the
matrix W,,,(z) below is precisely the Riemann-Hilbert matrix characterizing
the mixed multiple orthogonal polynomials! Similarly W (z) at t = s =
0 satisfies the Riemann-Hilbert problem characterizing alternately the “dual”
multiple orthogonal polynomials or the inverse transpose matrix of W,,,,(2) at
t = s = 0. The Riemann-Hilbert matrix for the multiple-orthogonal polynomials
has been defined in Daems-Kuijlaars [9], which is a far generalization of the
Riemann-Hilbert matrix of Fokas-Its-Kitaev [11] and Deift-Zhou [10]. Using
identities as in I to IV, the two left blocks of W,,,, and the two right blocks of
Wy . are mixed multiple orthogonal polynomials, and the remaining blocks are

Cauchy transforms of such polynomials; for explicit expressions, see Section 5.
The matrix Wp,,(2) is defined by
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with inverse transpose matrix given by
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The matrices Wi, (2) and W, .. (2) satisfy the bilinear identities which char-
acterize the T-function of the (p + q)-KP hierarchy
j{ Wonn (25 8, )Wk (23 8%, %) Tdz = 0, (11)
o0
for all m,n,m*,n* such that |m| = |n|, |m*| = |n*| and all s,t,s*,t* € C=.

The integral above is taken along a small circle about z = oo; writing out the
identity above componentwise and using the expressions (9) and (10) for W and
W*, the bilinear identity (11) is equivalent to the single identity

P
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where |m*| = |n*| 4+ 1 and |m| = |n| — 1 and
a B
ga(m) = (ma —mi) and os(n) =Y (ng —nj).
a'=1 B'=1

It remains an open problem to have a clear understanding of why the W, (2; s, t)-
matrix above, evaluated at ¢t = s = 0, coincides with the Riemann-Hilbert
matrix for the mixed multiple orthogonal polynomials.



PDE’s for the determinant of moment matrices: Upon actually comput-

ing the residues in the contour integrals above, the functions 7,,,,, with |m| = |n|,
satisfy the following PDE’s expressed in terms of the Hirota symbol®:
2 0 5
Tmn 87‘55 e+18t51 1 In7p, = S€+26Bﬁ/ (8t[;)7—m,n+eﬁfeﬁ/ O Tm,n+ez —ep
2 0 5
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2
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Whereas the formulae above have in their right hand side different 7,,,’s, one can
combine these relations to yield PDE’s in a single 7,,,; so, these are PDE’s for
the determinant of the moment matrix (1). In particular, one finds the following
(p Jqu) PDE’s, which play a fundamental role in chains of random matrices and

in the transition probabilities for critical infinite-dimensional diffusions:
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2 Tau functions and mixed multiple orthogonal
polynomials

Following [9] we introduce the notion of mixed multiple orthogonal polyno-
mials (mixed mops), with regard to two sets of weights {1, ¢2,...,9p,} and

{wlana' ~71/)q}3

8For a given polynomial p(t1,ta, ...), the Hirota symbol between functions f = f(t1,t2,...)
and g = g(¢1,t2,...) is defined by:
o 0
oty ’ Oto T

Vog :=p(84;, St (e =)
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(
We also need the elementary Schur polynomials S;, defined by eX1 o=t Zkzo Sy (t)zF
for £ > 0 and Sy(t) = 0 for £ < 0; moreover, set
o 10 19

Sp(8y) i= Sp(—,=—,=—,...).
Z( t) Z(8t1’28t2738t37 )



Definition 2.1 Let Ay, As,..., A, be p polynomials in y and set

Q) == A1(y)e1(y) + A2(y)p2(y) + - - + Ap(y)ep(y)-

Type I For o € {1,2,...,q} the polynomials A1, Aa,..., A, are said to be
Type I normalized with respect to 1o, denoted Typel | if deg(Ag) < ng for
8=1,...,p and Q satisfies the following orthogonality conditions

<xzwa’(x) |Q(y)> = baa'0i,ma—15 i=0,....,my—1, 1<a <gq. (13)

Type II For § € {1,...,p} the polynomials Ai, As,..., A, are said to be
Type II normalized with respect to g, denoted Type II oy if Ag is monic of

degree ng and deg(Ag) < ng for 1 < ' <p, with ' # 3, and Q satisfies the
following orthogonality conditions

(z'a(2) |Qy) ) =0, i=0,....mq—1, 1<a<gq (14)

In both cases, the polynomials Ay,..., A, are called multiple orthogonal poly-
nomials of mixed type, or mixed mops for brevity.

Proposition 2.2 For =1,...,p, let
Q) = QWD Wt (v) + -+ QUP (W)eh(y), (15)

where Qghﬁl), with 1 < 3,8 < p are the polynomials, defined by

—1
%Bhﬁ)(z) = Znﬁw
g nas—1 Tmun+eg—e /(tﬁl B [Zil})
Qi (z) = epp )z - ﬁr . AR
and

- (_1)nﬁ,+1+n[,/+2+~~+nﬁ+1 if B>/, 17
Epp’ (n) - (_1)nﬁ+1+nﬁ+2+'“+”ﬁ’ if pB< ﬁl~ ( )

Then Quin(4), -, Qi (y) are Type IL |, mized mops.

B

Proof For j=0,1,2,...and 8 =1,2,...,p we define a column vector Cjﬁ
of size |m| by

((a"v7*@) |veb )

o (<xvﬁz¢58(az) yj.sﬁfa(y)>)0<i2<m2 . as)

0<i1 <m

(<xiqwq‘s(x) ¥ ol (y) >)

0<ig<myg



When its size is important (see the proof of Proposition 2.3) we write Cjﬁ (m)
for (18). Notice that the moment matrix Ty,,, defined in (1), can be expressed
in terms of the columns Cjﬁ , and so

Torm = det (03, Cl ..., CL ., C CE ... CP _1) (19)

For future use, let us point out that the dependence of 7,,,, on the ¢ variables is
as follows:

Tmn(tl) = det(C&(tl), Cll(tl) ey Cll_l(tl), Cg, 012, .. Cﬁp—l)
Tin(ta) = det(Cl, CL, ..., CL _,, C2(ts), C3(ta), ..., Cﬁp,l),
Tmn(tn,) = det(C¢, Ct, .. Cl1 1, C8, C3, .. Cﬁ _1(tn,))-
(20)
Since
P nﬁlfl ‘ ]
QU ZQW> Z Oppy™ + Y Absy’ | ey (W),
B'=1 =1 j=0
(21)

the orthogonality conditions (14) for Q = Qgﬁ% can be written as the linear

system
p Mpl-1

Z Z Aﬁﬁ’ Cgﬁ’

B'=1 j=0
of |m| equations, in the |n| (= |m|) unknowns Aéﬁ,, where 1 < 8/ <pand 0 <
Jj < ng—1. If we order these unknowns as follows: A%l, Aél, .. .Anl ! A%Q,

A11327 . ,Ag’;_l, then this linear system has precisely 7,,, as determinant, in
view of (19). Since Ty, # 0, generically, we have by Cramer’s rule,

det(cg,cll,.. o —cp P Cﬁ,,_l)

Jj—1 ng’ J+1a"'7

Aj

Bs = (22)

Tmn
Substituted in (21) this yields an explicit expression for the Type II |, mixed
“p
1 )
mops Qggﬂ )(y)7 et ggnp) (y)
In order to connect these polynomials with the tau functions 7,,, we first

expand Ty, (tg — [27']) using (20). Thus, we need to compute Cjﬁ(t,g - 71,
which we claim to be given by

Clits— [z71]) = CJ(tg) — 27" Cly (bg) = CF —27'CFy, (23)

where the last equality is the notational simplification agreed upon. To prove
the first equality in (23), which is an equality of formal series in 27!, let us write



a typical entry of the column vector Cf (tg) with its explicit time-dependence
on tg,

(@) | v ep(y) ) = <xiw;S(x) ‘yﬂ'%(y)ezz‘;ltakyk >

where 1 < a < g and 0 < i < m,. The following trivial identity will be used
over and over again in this paper

D Sl S (24)

In view of the latter, the same entry of Cjﬁ(tg — [¢71]) (as above) is given by

<xi¢;S(x) ’yjsot@(y) (1 — %) > = (2" (x) |yj<p%(y)>—% (a5 (x) [/ b))

which proves (23). Using the fact that the determinant is a skew-symmetric
multilinear function of its columns, which vanishes when two columns are equal,
it follows from (20), (23) and (22) that

2" T (tg — [zfl})
= det(C},...,CY 200 —CF, 200 =)L et e )

71,5,1—1’ ng—l ng?
ng

= > Adet(Cy, ... 00 —Cy L —CE

J ng?

—~
*
=

1
cytt,...ch )

n
=0
ng

> idet(C, O, 0y —CE L O O

] ng? ng—l’

B+1
Ch ,...,Cﬁp_l)
§=0

ng
= D AbyTmn
j=0

In (%) it is understood that all the columns between —Cjﬁ 1 and -CP , come with
negative signs and no others; this notation shall be used freely in the sequel,
without further mention.

For %’f ) with B # [’ we also need to keep track of signs and of shifts

in the first index of the tau function, as is seen in the following computation,
where we suppose that 8 < 3

"B -1 Tm,ntes—egy (tﬁ' — [z—l})

!/ ’7 ’7 !/ I+1
= det(Cg,.. Oy, Oy 2C] = COF 200 o= CF 1, CF Gy
’n,ﬁl—l
= j 1 B’ B’ / B +1
- Zszet(CO,...,Cgﬁ,...,ijl,—Cj+1,...,—C£ﬁ,71,CO s CR )
§=0

10



nﬁlfl

= Eﬁﬁ’(n) Z zjdet(Cé, Cfﬁ 1,C,8+1, C]ﬁ 19 C Cjﬁ+17...,czp71)

ng?
§=0
nﬁ/ —1
= egp(n) Z 2! A% T
§=0
= 655'(”) Tmn Qgr?nﬁ )(Z)
The sign 55/ (n) which we introduced when moving the column C# , to the right
is given by (—1)"#+1T*"s "in agreement with (17). When 3 > /3’ the column

Cff is moved to the left, which yields a sign egg (n) = —(—1)"s'+17 "8 as is
easﬂy checked. ]

The tau functions 7,,, also lead to Type I normalized mixed mops, as given
in the following proposition.

Proposition 2.3 Fora=1,...,q, let
P (y) := Pl ()@l (9) + - + PLoi? (y) e (y), (25)
where Pf(noiq’,ﬁ) are the polynomials, defined by

m—eq,n—e tg — -1
P() = cqptm, o Inmemnesla D) o)

Tm n

with leading sign

gl ) = (1) (e, ")
Then Pf(noiq’,l)(y), ce (o) (y) are Type I lyms mized mops.
Proof Letting
P p ns—
Pl ) =Y PP (w)eh(y) =D Z 1Y by (28)
B=1 B=1 j=0

the orthogonality conditions (13) for @ = P{2) can be written as the linear
system
P mg—l

> D Bl = En..

B=1 j=0
where Ey, denotes the column vector of size |m| with a 1 at position m,, of the
a-th block (so at position mj +mg + -+ - + my), and zeros elsewhere. Cramer’s
rule now yields

Bj _ det(C&, Cllv C]ﬁ 1> ma Cf—i-l""’cﬁpfl)
af T ,
Tmn
1 Pl 8 Db pB 4
= eap(m,n)(=1)7T1""s det(Dg, Dy, ..., Dj_y, Df, Djiy, ... Dy )
= o ) ’
Tmn

11



where the last line was obtained by expanding the determinants along the £y,
column, €,3(m,n) is given by (27) and D] is the column vector D] with its
(my + -++ 4+ mgq)-th entry removed, i.e., D} := C/(m — e,). This yields ex-
plicit expressions for the Type I s mixed mops. To connect them with tau
functions, we notice on the one hand that the columns D} appear in the ma-
trices which define the tau functions 7,,_c, «, and on the other hand that these
columns behave in the same way (23) as C}] under shifts. Therefore we can
compute, as before

Znﬁ_le—e“ ,n—eg (tﬁ - [Z_l} )

= det(D},..., D7 | zDF—DP ... 2D° ,—DF | DY ... DP )

ng—1—1 ng—2 ng—17 np—1
n[.;fl
j 1 +1
= > Zdet(Dy,...,D] \, =D}\\,...,—Di D Db )
§=0
n[.;fl o
_ vg—j—1 5 1 I&] B B
= Y (- dey(Dy,..., D]y, DY, Dy, DE )
§=0
n[.;fl
= ¢eap(m,n) Z 27 B) 5 Tmn
§=0

= eap(m,n) PL%(2) Ty

3 Cauchy transforms

We now show that certain shifts of the tau function, appearing in the Riemann-
Hilbert matrix of [9], are (formal) Cauchy transforms. For a function F' and a
weight v, define its Cauchy transform as

€6 = (YL 160) ) =3 o ) [G)). (29)

x :
=0

i.e., our Cauchy transforms will be formal in the sense that we always think of z
as being large, and this is precisely how it will be used. The first type of Cauchy
transforms which we are interested in are given in the following proposition.

Proposition 3.1 For o« = 1,...,q and 8 = 1,...,p, the Cauchy transforms

of Q¥ (y) = gr’?nl)(y)w’i (y) +---+ Qghp)(y)wg(y), with respect to 1 * can be
expressed in terms of tau functions as follows.

[—1
e Q) = eaplim, )zt Tmteamtesla 7D gy
& Tmn

12



Proof The proof is based on an investigation of the moment matrix by row.
Therefore we define, for a = 1,...,¢ and for i = 0,1, 2, ... the row R, of size |n|
by

fo = ( (<xl¢gs(x) |yj1907i(y) >)0§j1<n1 (<xl¢;8(x) |yj”50§7(y) >)0§jp<np ) .

When its size is important we write R’ (n) for R (n). The moment matrix T},
can now be expressed in terms of the rows R, and so

Ry
Ry

Tn = det RTrl . (31)
RY

mg—1
Ry

The tau function which we need to compute is Tm+e, ntes (S — [z‘l}); SO
throughout the proof, R, stands for R!,(n + eg) for all 1 < o < g and i =
0,1,2,.... Notice that the only rows which depend on the time variables s, =
(Sa1, Sa2,.-.) are the rows Rfl. Recall the dependence of ¥ ° on s, as follows

w;‘?(x) = Yq (l‘)e_ 2R Sakmk’

so that, according to the identity (24), when s, gets replaced by s, — [2’1},
then v *(x) gets replaced by ¢, *(z) (1 + 24 z—z + - ) . Tt follows that

2
i(s _[~1) = ih=s ror oL Jar ot
Rl = ((sva@ (14 2+ 54 ) | b)) e,
0<jgr <nlys

where we introduce the convenient abbreviation nj, = ng +dgg = (n+eg)g.
Notice that

Ri(se— [+7]) = Riloa) + R 50— [+71]),

for 0 < i < mg, — 1; we stop at m, — 1 because the highest index ¢ for which fo
appears in Thy e, ntes 18 © = M. By recursively applying this formula we get
that for 0 <7 <m, —1

Rl (sa — [#7']) = RL(s4) + lin. comb. of lower rows.
This leads to the first equality in

Zﬁmaile‘l’ea;n‘i’eﬁ (Sa — [271]) (32)

13



RY RY
Rm.afl Rm.("fl
= e ldet | RIe(se — [27Y]) | =det | Ra(2)
R3+1 R3+1
Ryt Ry

For the second equality, in which we have put

Ro(2) := ( (<wz%(f) |yj1‘pfi(y) >)0<j1<n,1 (<w2%(f) |yjp<‘0§’(y)>)0<j <n’ )’
<ji<n <jp<ny,

(33)
it suffices to show that

Rl (sq — [271]) = zMe R (2) 4+ lin. comb. of higher rows R?,. (34)

To do this, compare a typical entry of RZ™ (so — [271]), to wit
m —s €z 1‘2 ]
<3? “thg (2) <1+;+§+"'> ‘ijtgf(y)>
AN r 2P ;
— Me hd —s 1 hd - 7 t/
2 <(z) v (x>(+z+zz+ )|y<ﬂ,3(y)>

= e <¢;S(x) <(§)m“ + (g)mQH +o ) \yjsotg/(y)>

with the corresponding typical entry of 2™t R, (z), to wit

Zmatl <M | v/ ol (y)>

zZ—X

— e <1/Ja5(x) <1 +=+ (%)2 +) \ij,t@f(y)>~

It leads to the following explicit expression for (34):

Mea—1

R (8o — [271}) + Z 2o TR (54) = zm“HRa(z),
i=0

and hence to the proof of the second equality in (32).

In order to make the connection with mixed mops, we introduce for §’ =
1,...,p the row Sg (2) of size |n + eg| = |n| + 1 which has zeroes everywhere,
except in its #/-th block, namely”

CHOE <0...0 (o<, 0...0).

"Recall that n/ﬂ, =ng + g3

14



Notice that with this notation, definition (33) of R4 (z) can be rewritten as
B'=1

It suggests the introduction of the following polynomials (in y)

RY

So(y) i=det | ST (y) |- (36)
RS

mg—1
Ry

Expanding this determinant along its (mq + - - - 4+ mg, + 1)-th row, which is the
(unique) row that contains y, it is clear that if 3’ # 3, then deg Sgﬂ(y) <njg =
ng. In view of (31) we also have®

525(9) = €ap (M, 1) Tray™ + O(y™ ).

Moreover, for any o’ = 1,...,qand i =0,...,my — 1, we have by linearity of
the determinant

(o1 | 3 st

RY

= <xi¢;,s(x) det 255 )i (y) > (37)
pr=1 ..
Ry~

8See (27) for the definition of €,g(m, n).
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RO
) R
Ryt et
= det (<“W;’S(“) ‘W%’(y)» 1<g'<p | =det| R, |,
0§j<n%, RO
Ra—i—l a+l
' -1
Rglq*1 Rglq

which is zero, since the latter matrix has two identical rows (i < mq).

shows that
€ap(m,n)

Tmn

This

€ap(m,n) Sﬁﬁ(y)

Tmn

c 9

are type II mixed mops, normalized with respect to @tﬁ. It follows from Propo-

sition 2.2 that

S5(y) = cap(m,n) Tmn QG (y),

for any? @ =1,...,¢. Since an

follows from (32), (35), (38) and (20) that

a1 Tmoea mtey (Sa — D _
Tmn

(38)
(v) = QU (W)t () + - - + QU ()b (y), it
1
%CW ZS 2)ply (2)
p'=1
p !
= caplmn) Cye | D Qui) ()2l (2)
B=1
= cap(mm) Cyi QUi (2) (39)
O

This finishes the proof.

Observe our proof shows, as a byproduct, that each anﬁ%

(y) is expressible nat-

urally as a determinant, like in the classical case, namely

RY
Rm.a—l
Q) = <2 g | 3™ 57 (et (40)
Tmn ﬁ/ 1
Ra—i—l
Ry

9The formulas for the different values of « are all the same, up to a sign, as they amount
to changing the location of a row in the evaluation of a determinant.
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We now get to the second type of Cauchy transforms which correspond to the
Type I mops P&a,‘z) (y).

Proposition 3.2 For 1 < a, da < ¢ the Cauchy transforms of Pr(nafi)(y) =

Pf(noi:,’l)(y) Oy)+- -+ plep) ()} (y) with respect to 1. * can be expressed in
terms of tau functions as follows:

—Me Tm"(so‘ — [Z_l})

Cy—eP)(z) = 2 — (41)
-1
C¢;5PT(nar;)(Z) _ 5a’a(m) y—1-ma Tm—i—e(‘,—e“/,n(Sa [Z }), o 7& d42)

Tmn

Proof Up to a relabeling of the indices, the shifted tau functions in question
were already expressed as polynomials in the previous proof. Let us show how
this leads to a quick proof of (41). Shifting the m, and ng indices down by 1,
it follows from (32) that

0

Ry
Mea—2

R

27" T (Sa — [zfl}) = det R.(2) ,
RY

mg—1
Ry

while the orthogonality relations (37) become

RmQ—Q

p «@

<$z¢a/5 (if) Z Sgﬁ (y)wfﬁ’ (y)> = det Rg/ = 5aa’5i,mafl7—mn~ (43)
p=1 RO

a+1

R;”.fl
Since deg 52;3 <ng for f/ =1,...,p this means that the polynomials

1 1
—Sas(W), s —S5(y)

Tm n Tm n

are type I mixed mops, normalized with respect to %, so they coincide ac-

o )

cording to Proposition 2.3 with the polynomials Pf(noi;,l)(y), RN (o) (y). We

17



conclude, as in (39), that

-1
z "M —Tmn(sa [Z ]) = Z S gaﬁ, = C¢;3P7510;2(Z)-

T
mn =1

Similarly, one obtains (42) from (30) by shifting m/, and ng down by 1; the sign
in this case is determined (for o/ < «) from the right hand side of (43) now
taking the form

RY R}
RZ‘L,O‘/—Q RZ;(‘X/—Q
R, 4 R,
. RO
. /+1
det Rm. . = eaa(m) det ¢ =cara(n) davardim, , —1Tmn-
iy :
L Rme—t
RO R4
R;”.q—l qu.q—l
O
4 Duality

By interchanging the roles of the weights 1!, with the weights @ES we obtain
Type I, , mixed mops and Type II| _ mixed mops, expressed in terms of tau
B Yo

functions, leading to a duality. As a general rule, in order to dualize a formula
one does the following exchanges

qgeop, men, e so—t zey (44)
At the level of the indices, duality amounts to
ae B, ie (45)

As for the mixed mops which we have constructed, they will correspond to new
mixed mops for which we will use the same letter, but adding a star. Thus,

Pl < Pil. P < Pril) QW) - Qi QUL < Qi
(46)
What happens to the tau functions 7,,,7 To see this, pick a typical shifted tau
function Tmie, —e., n(Sa — [z‘l]) and make its dependence on the weights and

18



on all times explicit, writing Tmte,—c_, n(s — [27!] €ast;, ). According to
the above rule it becomes Tn+eﬁ_eﬁ,7m(—t — [z_l] eg, —s; ¢, 1) which is equal to
Tim,ntes—ey (s,t+ [2’1} es; 1, ¢), since transposing the moment matrix has no
effect on the determinant, while it permutes the indices in the tau function, it
permutes the time-dependence (with signs) and it permutes the weights. Thus,

Tmn
Trnn (Sa + [271})
T’n’L76a,n76ﬁ (Sa + I:Zil})

Tm,nJreﬁ*eg/ (tﬁ + [271]%

Tmn
Tmn(ts — [271])
Tmfea,nfeﬁ (tﬁ - [271})

Tereafea/ ,n(sa - [271} )

1111

and so on. Dualizing Propositions 2.2 and 2.3, we get the following proposition.

Proposition 4.1 Fora=1,...,qand =1,...,p, let

w@) = QAU @) 4 QR () (@)
where P;fﬁ,f %) and Q:;,(r?f’a/) are the polynomials, defined by
m—ean—es(Sa + [271
P;r(r?’a)(z) = €5a(n,m)zma*17- ea, ej—(sa [Z ]), (48)
and
;‘z(ga)(z) = Zm“M
Tmn 71
:L(rgﬂ’)(z) = Eaa’ (m)zmalfl Tm+ea—ea,7n(3a, + [Z D, . 7& N
Tmn
(49)

Then Pﬁﬁf’l)(x), ce P;,kf(fq)(x) are Type 1| | mizved mops, while Qfl(ﬁl)(x), ce Qfl(ﬁm (x)
“p
are Type Il | _  mized mops.
Ya

O

Dualizing Definition (29) we get the following definition for the dual Cauchy
transform: for any function F' and a weight ¢ we put

() > (50)

CLF(2) = //Rz %F(w‘)du(w,y) = <F($) —y

If we dualize now Propositions 3.1 and 3.2, then we get the following proposition.

Proposition 4.2 Fora=1,...,q and 3,5 = 1,...,p, the Cauchy transforms
of p )(x) with respect to ¢f, and of Qf,(ff{)(x) with respect to pf can be ex-
pressed in terms of tau functions as follows:
gy Tmn(ts + [271])
i) = e Tl D)

Tm n
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’ Tm,n — /t + 271
C;}fpﬁﬁf)(Z) = cpp(n)p e ew (to F | ]), B # B,

Tmn

and B
Q*(a ( ) =g (n m) H—ne—1 Tm-l—ea,n-i-eﬁ(tﬁ + [Z ])

Tm n

O

5 The Riemann-Hilbert matrix and the bilinear
identity

Orthogonal polynomials were shown to be characterized by a Riemann-Hilbert
problem in [11] and [10]. This was generalized by Daems and Kuijlaars to the
case of mixed mops. According to [9]'° the corresponding Riemann-Hilbert
matrix is given by the (p + ¢) X (p + ¢) matrix

(") (c,.-0%)
mn 1<B<p Yo 1<B<p

Ymn(z) — 1<B'<p 1<a<q _

o, «
(P?) 1cazy  (Cpe Pl
1<B<p

1<a’<q
1<a<q

-1
Tomndeg—e g (g —[271]) _ Tt eo e (5a—|
(Eﬁﬁ,(n) m,nteg "[-1’ B [ ] Znﬁ,+6ﬁﬁl 1 eaﬁ(m,n) m+teq,nteg [
p

-1
1<
1<

™mn <5 ™mn <p
1< 3 <p a<q
_|{.—1 ¢ _|,—1
"'anea.nfeﬁ(tﬁ [Z ]) ng—1 T"m,-%—e(‘,—ea,,n(boc [2 ]) 5 J—1—ma
€ap(m,n) = z Eala(m) > B
mn 1<a<gq mn 1<a’<q
1<B<p <a<q

whose inverse transpose matrix is given by

* *(ﬂ) *(8,a)
(C ) 1<8'<p (—an ) 1<B<p

* — 1<B<p 1<a<q _
Ymn(z) - , -
* *(a *(a,a)
( C ) 1<a<q (Q”m 1<a<gq
1<B<p 1<a’<q
Tm,nteg—eg (tﬁ+[z_1]) 541 ,—1—ng T”m,—e(y,n—eﬁ(s("+[2
g1 5 (M) 2 2"B'8 £ —€ga(n,m) o
) 1<p'<p
1<p<p
1 1
7m+ea,n+eB(tﬁ+[z ]) —ng—1 Tmteq—e ,.n(sal‘*'[z ]
(_eﬁa(mm) Tmn = 1<a<q aar (M) “rmn
1<B<p

We will obtain bilinear identities for these tau functions from an identity which
is satisfied by the Riemann-Hilbert matrix and its adjoint. We define the wave
matrix Wi, (2) by Yiun(2)A(z), where A(z) is the diagonal matrix!!

A(2) = diag(eSh1), . €tn2) o6612) E(s0,2)).

10Up to a factor diag(l,, —2my/—1I4) which we suppress.
1 Throughout this section, we set £(t, z) := > 3° trpzk.
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with adjoint wave matrix Y,* (2)A71(z). In order to make the dependence
on the time variables (s,t) explicit, we will write W,,,,(2;s,t) for W(z) and
W (z;s,t) for W (2).

Theorem 5.1 The tau functions Tmy, satisfy the following bilinear identities
that characterize the tau functions of the (p + q)-KP hierarchy (see [13]):

f Wmn(za sat)W:l*n* (Z’ S*vt*)—rd'z = 07

which is equivalent to the single identity

Z 74 )72 ey (b = [271] ) Time e ey (8 + [271])eSC0 7105 2ma 7762 dy =

q
27{ )7 e n(Sa = 27 ) e —enne (85 + [271])ef o m502) pma=ma=2 g, (51)

where
a B
oa(m) = Z (Mo —ml,) and og(n Z ng —nj). (52)
a’=1 pr=1
and |m*| = |n*|+ 1 and |m| = |n| — 1.

Proof For the entry (5, 3"”) of the product

YA(Y*Afl)T — Ydiag(eg(h*t’{’z), o eE(tp*t;,Z)7 65(81*832), o ,ei(sqfszﬁz))y*i

)

we need to prove that

P q
Z]{ (6 5) C;g*Pn*(,an*)(Z) eEta—t5.2) g, _ Zj{ I _gQ(ﬂ )( ) P; (/3 k )( )e E(sa—s5:2) 1y
B=1 a=1">®

(53)
where it is understood that all polynomials P* go with starred times s* and
t*. Also, the integral stands for (minus) the residue at infinity, and can be

computed using the following formal residue identities, with f(z) = Y2 a;27,

Qﬂ#\/_—l]if(z)cwg@)dz = (f(@)y(x) |9(v)), (54)
= ()d: = (@) ¢l 55)

whose proof we defer until the end. Using this, and Definition (47) of the
functions Pnfa,’?)( ), the left hand side in (53) becomes (up to a factor 2my/—1)

i< 02w [ QAW ) e i) = 3 (R | Q0 )

= <Z(§Z3 )W)

EM_U
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Similarly, the right hand side in (53) becomes (up to a factor 2w/—1)

qu< P @) it ) [ Q) = 0 (P (@) | QU

a=1

(i@ | @i >

The three other identities are obtained in the same way.

In terms of tau functions, it means that we have shown that for any m, n, m*, n*, 8/
and 87, with |m| = |n| and |m*| = |n*| the following bilinear identities hold:

7{ & Tintey —es(ta — (27 ) T e — e (U + En Dei(tﬁ—tfﬁz) dz =

q
Z % Q Tm-‘,—emn-i—eﬁ, (Sa - [Z_l} )Tm*—6{17'n*—€[_1// (52 + [Z_l] )65(8‘1_82’2) dZ,
a=1"7>

where

& = 66’[3(”)85"6(n*)znﬁ_"g_“é‘””+5‘””’,
. - Gaﬁl(m7n)65//a(n*7m )Z @ mw_Q

For different values of 8’ and 3" this yields the same identity, up to a relabeling
of n and n*. Namely, replace in the bilinear identity n+eg by n and n* —eg~ by
n* and multiply by (—1)™+ 7 (=1)"1F #1576 find the following symmetric
expression for the identity, that is independent of 5’ and (”:

P
Zj{ (_1)%(”) Tm,n—eg (tﬁ - [Zil} )Tm*,n*Jre@ (tz; + [271} )eg(tﬁit;”z) Znﬁin?ﬁ? dz =
=1 Y

@

q
Z% (_1)aa(m) Terea,n(sa o [Zfl} )Tm*fea,n* (53; + [Zfl} )65(50475;:2) me;fman dz,
a=1Y>®

where o,(m) and og(n) are given by (52). Notice that, due to the shift, one
must have in this symmetric form that |m| = |n| — 1 and |m*| = |n*| 4+ 1. The
other three identities also yield the above identity, up to relabeling.

Finally, to prove (54), compute
1 xT 1
el AEAS < w (_i Ig<y>> dz = Z S (270(@) [9(v))

=Y ai (@'(x) |g(y)) = <Z aiz’ P(z) 1g(y) ) = (f2)v(@) |g(y))
3 =0

and similarly for (55), completing the proof. O
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6 Consequences of the bilinear identities

In this section we will derive from the bilinear identities (51) a series of PDE’s
for the tau functions 7,,,. In order to keep the formulas transparant we will use
the following simplification in the notation. Recall that we have time variables
Sa = (Sals Sa2,-..) and tg = (tg1, tg2,...), wherea=1,...,gqand 8 =1,...,p.
In the bilinear identities (51) we consider in each term a shift in ¢4, for a single
o, or in sg, for a single §; we will denote this ¢, or sg by v (so v is an infinite
vector v = (v1,vs,...) and we assemble all the other r := p + g — 1 series
of time variables in w = (w1, ws,...,w,), where w; = (wi1,w12,...) and so
on. Moreover, precisely like in the bilinear identities we will want to consider an
independent collection of all these variables, in fact we will consider here (v, w')
and (v, w"”) besides (v, w). We use the Hirota symbol, which takes in our case
the following form

P(0y,04) FoG = POy, 0y ) Flv+ v, w+w') Gl — v, w—w) . (56)
ol —w! =0
The elementary Schur polynomials Sy(v) are defined by
eXim v = N7 6y (v)2F, (57)
k=0

for £ > 0 and S¢(v) := 0 otherwise. In particular, if we put degree v; := 4, then
So =1, S1(v) = vy, S¢(v) = vg + degree £in vy, ...,v_1. (58)
We also use the standard notation
5, = (i 1o 19 )
Ovi’ 20vs’ 30vs’
We first give an identity which will allow us to compute the formal residues

which appear in (51) in terms of derivatives of the tau function.

Lemma 6.1 For any n € Z we have the following formal residue identity

dz
2w/ —1

% F(U” + [z—l] ,’LUH) G(U/ _ [Z_l} ,w/) ezg‘;o(v;—vf/)z[ P

~ o (g, r _0
_ Z Sj717n(—2a) Sj(av) 6215:1( £ By +3200 1 by 8’“’wk) F(U,U)) ° G(U,U)),

j=0
(59)
where
vV=v—a, v'=v+a, wh =w; —b;, w! =w; + b,
a = (a17a27a‘37"')7 bzz (bilv biQ; bi37"')7
for1<i<r.

23



Proof The proof is an immediate, but tricky, consequence of Definition (57) of
the Schur functions and of the following two properties of the Hirota symbol:

Fo+ [z7'],w)Glv— [z7'] ,w) = Zz_ij(gv)Fo G,
j=0

o gy 25T _o_
Fv+a,w+b) G(v — a,w — b) = e2i=0{®au T25=1 bt 7o) F oG

O

Proposition 6.2 The bilinear equations imply, upon specialization, that the tau

UNCLIONS Tmn, W m| = |n| satisfy € jotltowrng S exrpressea tn 1erms o
ti ith tisfy the following PDE’. d in t
the Hirota symbol:
2 0? 5
Tmn Otpe+10tp 1 I Tmn = Serassy (O)Tmn+es—epr © Tmnteg —es (60)
2 0? 5
Tmnm hl Tmn = SZ-I—QBQQ/ (asw )Tm—‘rew/—e(y,’n o Tm+ea—ea/,n(61)
2 0 5
_Tmnm In Tmn — Sé(atﬁ)Tm—i-emn—i-eﬁ o Tm—emn—eﬁ (62)
2
2 9 5

—Tmnmln%w = Su(0s,)Tm—ca.n—es © Tmtea.ntes (63)
Equations (60) resp. (61) for 3’ = B (resp. for &' = «) yield a solution to the
KP hierarchy in tg (resp. in o), while for ' # B and o # «, (60) — (63)
yields

62 1 . Tm,nJreﬁfeﬁ/ Tm,nJreﬁ/ —eg 64
Dlpadlg, T 2 (64)
B8,1¢437,1 Tmn
82 Tm+e s —eq,nTm+eq—e r,n
EYSY; P In7,, = C =) o (65)
sa,l Sa’vl Timn
2
0 o7 _ Tm+eq,ntegTm—eq,n—eg (66)
mn B}
&sa,lé)t,g,l T
o
0 Tm,nJreﬁfeﬁ/ - 815[;,2816[,/,1 In Tmn (67)
= —%
87‘)571 Tm,n—i—eﬁ/—elg W In Trn
52
0 1 Tm—ea+e,r,m 050,205,/ 3 In 7inn 68
88 n - 02 1 ( )
a,l Tm—e,rteaqa,n m N Tmn
o
0 In Tm4eq,ntes  Otg20sa1 In 77, (69)
= —m
8tﬁ,1 Tm—eq,n—eg 781‘/51188(‘,,1 ll’len
o
8 1n Tmfea,nfeﬁ _ 8Sa‘28tﬁyl ln Tmn’ (70)
= — QG
83a,1 Terea,nJreﬁ m In Tmn
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It leads to the following (p;q) PDE’s for In Ty, involving not just one so ortg,
but a few of them

o? 2?
3 8t5,28tﬁl~1 ln Tmn 8 8tﬁ/Y28tﬁ~1 1n Tmn o
Ot 2 92 1 + ot 92 1 - 07 (71)
Bs1 8t[1116tﬁ/,1 N Tmn B:1 Btﬁlylﬁtﬁ,l N Tmn
22 22
3 88{1,288&“1 ln Tmn 8 88(,‘/‘288{1,1 1n Tmn
Dsas | —22_ LT =0
a1 8504‘185{1/’1 N Tmn a1 65(‘1/’188&‘1 N Tmn
o2 o2
8 81‘,‘9‘288(‘,,1 hl Tmn 8 88(‘,,281‘,5.1 hl Tmn
s — + 5 B — 0. (73)
o1 Otg,105a,1 0 Tmn 81 08a,10t3,1 0 Tmn

Proof Let us denote for a = (ai,...,aq) and b = (b1,...,by) by Q(a,b) the
differential operator

Q(a,b) = Z Z Q¢ D5 + Z bg/g 8t5/4 . (74)

=1 \o'=1 B'=1

Using Lemma, (6.1), rewrite the bilinear identity'? (51):

p [e’e]
(_1)%(71) S"?*n/f+1+k(_2bﬁ)sk (atﬁ)eﬂ(a’b)Tm* n*+eg © Tmn—eg
g
=1 k=0

M=

Il
-

« k=0

(75)
Note that all infinite vectors a, and bz can be chosen completely arbitrary. We
set all components of a and b equal to zero, except bg 11 = B # 0 (for some
fixed B and ¢), and we set m* = m and n* —n = —2eg (for some fixed §).
Then only the first term in (75) survives, the signs og(n) are all 1 (see (52))
and, in view of (58), the identity (75) becomes

P

o0
~ B a
O - E E Sl+k—25ﬁ/ﬁ// (_2bﬂ”)5k (8tﬁu )6 g, 041 Tm,n-{—eﬁu—Qeﬁz o Tm,ﬂ,—65//
B'"=1 k=0
82

+ -
Otp 10tg 041

B (_285-1—25[1[,/ (atﬁ)Tm,n-l—eLg—Qeﬁ, o Tm,n—65

Expressing that the coefficient of B in this expression must vanish we get (60),
upon relabeling n—eg +— n and upon using the following property of the Hirota
symbol, valid for f depending on (time-) variables s and t:

2 9 82
FoF =2F In F. 76
0tos 0tos (76)
12Recall that in this form of the bilinear identity |m*| = |[n*| + 1 and |m| = |n| — 1.
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(61) follows from (60) by duality, using P(—9,) F o G = P(Js) G o F. In order
to obtain (62) we consider again (75), with bg,y1 = B # 0 and all other
components of a and b equal to zero, but we set now n* = n and m—m* = —2e,,.
Then (75) becomes

oo
~ B0
0 = Z Sk+1(_2bﬁ)5k(a3) e 9Bt Tm+2eq,n+eg o Tm,n—eg
k=0

~ B 9
— > k1 (0)84(De) €7 TP T 0 T

82

= —-B (258(5t5)7'm+26a,n+65 © Tm,n—eg + Tm+eq,n © Tm-l—ea,n) + O(BQ)

8sa,18t5,g+1
The nullity of the coefficient of B in this expression, rewritten by using (76),
leads at once to (62), upon doing the relabeling m + e, +— m. From it, (63)
follows by duality. Equations (64) — (66) follow from (60) — (62) by setting
B # B, o # « and ¢ = 0. Equations (67) — (70) follow from (60) — (63) by
setting 3’ # 3, o’ # « and forming in each equation the ratio of the cases £ = 0
and £ = 1, and using the following property of the Hirota symbol, valid for F
and G depending on a (time-) variable ¢:
0 0 F
—FoG=FG—(In—|.
ot ° ot ( " G)
Equations (71) — (73) are just respectively the compatibility equations between
(67) and (67)gop7, between (68) and (68)q—a’, and between between (69) and
(70). O
Corollary 6.3 The tau functions T, and the polynomials Pn(fn*)( )=P, (fn*) (x,s*,t%),
QSE,) (y) = @ )(y, s,t) appearing inY* andY respectively, satisfy the following

4 formal series identities (83 s (n,n*) = (—1)M T2t Fneninstotng, ).

0 = Sorgr (10" Vo (5, )i (57,8 (P02 @) [ QU W) ) e
n—n—egtes nt o nteg —eg
8k — S, tg 13— bg, tZ —tg + bg

p oo _2‘9€+25ﬁﬁ (5t5)7-m,n+eﬁ—e[; o Tm,n—eg—i—e[;
= 2.2 baen o +0(t?),
B=1 =0 +at,@ 18t5,4+1 Tmn © Tmn
* * g% *(B
0 = 9 (n,0")Tmn (8, ) Tmen (57, ¢ )< (m*) ‘Q(ﬁ) > m—m—es, M= m+ e

n—n-—eg, n*—n-+egr
Sa F* Sq — Qa, Sk F Sa + Qa, tg»—>t5

28@4—25&@ (831‘4 )Tm—i-ed—emn © Tm—es+ea,n

q oo
= DD Garn S +0(a?),

Tm'n, o Tmn
a=1,=0 084,1084,0+1
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O (1,10) o (5, )T (5% ) (Pali? (@) [ QU )| 1 s — s o 4 e

n—n-—eg, n*—n+egr
5k Sq, tg—tg —bg, t;i—>t5+b5

p o0
= -2 Z Z b57€+1‘9€ (8tﬁ)7-m+6a7n+eﬁ O Tm—es,n—eg + O(bz)
B=1 =0
and
p o0 82 )
= —_ @] + O b 5
830 (10, ) T (8, )T (57, %) (PEP ) (2) | QU2
BB ) mn\°; m*n ) n*m* m* —m
n»—>n—65/—|—eé, n* —n-+egn -5
Sa = Sq — o, Sk Sa + Gq, t;»—%g
q e o] 82 )
= ZzaaéJrla E) TmnOTmn+O(a )a
a=1/0=0 t5,105a.041
and

q

oo
=-2 Z Z aa,ZJrle(asa)Tmfea,nfeg O Tmteq,ntes T O(aQ).

a=1¢=0
Proof jFrom the proof of Theorem 5.1 and (59) it follows that
* ko gk * /3
Opp (1, 1) T (8, ) T (57, ¢ )< @ ’Q(ﬁ) > n—n—eg, n*—n"+egn
Sa M Sa — Qa;, 52H5a+aa
tg —tg —bg, tg — tg + bg

p [e’e]
Z(_l)aﬁ(n) Z S”E*nfa+1+k(_2b,3)sk (8t;f)69(a7b)7—m*,n* +es © Tmn—eg

p=1 k=0
and
q o0 3
= Z(_l)aa(m) Z Sma*m(*;+1+k(_2aa)sk (asa)eﬂ(a’b)’rm*fea,n* O Tm+eq,n
a=1 k=0
and so if we just follow the 4 specializations leading to (60) — (63), in order, we
find the 4 equations of the corollary, in their given order. ]
7 Examples

7.1 Biorthogonal polynomials (p = ¢ =1)

Given the (not necessarily symmetric) inner product with regard to the weight
p(z,y) on R?,
@) 190)) = [[ 1@awne.)dady
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and the deformed weight
oo k k
prs(a,y) = e V) (g y),

Setting p = q =1, m = my, n =nq, with m = n, implies that the indices m,n
in 7y, can be replaced by one single index; namely, set 7,, := Tp,,, Where

Tn(t, s) = det (<xie_ T skat ‘ yjeZTo tey" >)

0<ij<n—1
Moreover, set 1/11 = ¢1 = 1 and define the monic polynomials p( )( ) =
(1)(t s;y) and P ( ) = (2)(t s;z) (with k', the leading coefficient of
wn () by
Py = QW) =y 4
Bt @) = B @) = bt
The orthogonality conditions (4) and (6) imply
<xie_ > ska® pgll)(y)eZ‘f" tkyk> = 0 for 0<i<n-—1
<h;1pg)($)€7 3% spak ‘yjez?j tkyk> = 0 for 0<j<n-—1
= 1 for j=n.

for all n > 0, from which the bi-orthogonality can be deduced'®

// AP W)prs,y)dedy = Sumn.

(From (3), (5), (7) and (8) and from h,, = Tp4+1/7n, it follows that

ZTn(t—[271],8) _ 1
z W = p%)(z)
WTalt,s+[271)
e P (2)
—n—1 Tn+1(t+ [Z_l]vs) _ :E x
o Tal(t, 8) B //}RQ z— pt oo y)dedy

Z_n_lTn—H(;;ft:q)[z_l]) _ //IR

and from (51), the bilinear identity becomes

pt s(@,y)dady. (77)

7{ Too1(t —[27Y,8) T (U + [271], 8)) e (timt)2 yn—m—2g,

= § b= T Tl 4 [ ST 0 g,
zZ=00

131t turns out that hy, = Tnt1(t, s)/Tn(t, s).
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which characterizes the 7-functions for the 2-component KP hierarchy. Equa-
tions (77) and the bilinear identity were obtained in [1]. Indicating the depen-
dence on t, s in the polynomials, the following inner product can be computed
in two different ways, leading to'*

oo k rk
Tn(t,8)7n+1(t/,sl)//2cixdy pgi)rl(t', s 2)ptD (¢, 539)e2t V=512 (1 4)) fst—a
R

t'—t'+a
s’=s
= Z —2aj+15j(5t)7'n+2 o Ty + O(CLQ)
§=0
— ia 8—27- oT, +O(a2) (78)
- k=1 Fotpds; T .

Identifying the coefficients of a;41 in both expressions and shifting n — n —1
yield a first identity; then redoing the calculation above for s +— s — b, s’ +— s’ + b
and ¢’ =t leads to a second one. All in all we find

. 92
S; a n n— - - 271 ns
(0)Tnt1 © Tho T”aslatjﬂ nm,
~ 82
Sj(0s)Tn—10Tnt1 2 InT7,.

2
" 6t165j+1

Specializing the identity (73) leads to an identity, which can be expressed as a
sum of two Wronskians!® and which involves a single tau function:

9%Int, 0%InT, N 02Int, 0%IlnT, _0 (79)
Ot10sy " Ot10s1 ¢ 0510ty " Ot10s1 s e

The computation (2.2) was at the origin of the crucial argument (Theorem 5.1)
in this paper. It illustrates in a simple way what is being done in this paper.
These equations are used, when computing the PDE for the Dyson, Airy and
Sine processes ([3]).

7.2 Orthogonal polynomials

Given a weight p(z) on R, the symmetric inner product
(f(2) lg(x)) = /Rf(w)g(ff)f)(w) dz,

and the formal deformation by means of an exponential p;(z) 1= p(z)eXt ="
This is a special case of the previous example, where the deformation only

14This integral is # 0, unless t = t’
15in terms of the Wronskian {f, g}+ = %g - f%.
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depends on ¢ — s; thus t — s can be replaced by ¢. Then 7, () is the determinant
of the moment matrix depending on t = (¢1, 12, ...),

Tn(t) == det(/ z”jerot"'szt(z)dz)
R

0<i,j<n—1

Then, from (77), it follows at once that the orthogonal polynomials p,(z) :=
Pn(t; ) are given by

2 TH(%(E;]) = pn(2)
an%—w = /}R%Pt(ﬂf)d”

Moreover, the integral below can be computed in two different ways: on the one
hand, it is automatically zero, because p,,(z) is perpendicular to any polynomial
of lower degree; on the other hand, for ¢ and ¢’ close to each other, the integral
can also be developed, using the technique of Proposition 6.2, in t' — ¢ = 2y,
yielding the following formula

0 = Tn(t)Tn(t')/an(t;z)pn,l(t',z)pt(z)dz’ tst—y
t—t+y

oo 82 ~ )
%:yk (m — 2541 (81‘,)) Tn © T + O(y7),

showing that 7, (¢) satisfies the KP hierarchy.

7.3 Orthogonal polynomials on the circle
Consider the inner product on the circle between analytic functions on S*:

() 1)) = § | 5= FEale)

and the determinant of moment matrices

To(t,s) = det (<zke_ 25 st ‘ ZleXT 1! >)
0<k,f<n—1

dz oy i —i
= det (\% kaJrZeZl (tiz"—s;z ))
S1 271'\/ —1z 0<k,0<n—1

Then it follows that

n ot = [z71], 5)

T = pM(z)
Tnlt, s 21
”—(tTn(JtiL) D pD(2)



— 2 —

—n—1 Tn+1(t + [Z 1]’ 8) \% du pgl )(U 1) SR (tiut—siuT?)

z €
Tn(t, 8) st 2my/—1lu z—u

_ 1
,—n—1Tn+1(t,s — [z D 7{ du p(w) Pt —su )
Tn (£, 5) g1 2miuz —u~!

3

with pgll)(z) and pg)(z’l) monic orthogonal polynomials on the circle:

n m

dz T,
BN )] @,y §5 p ith b, — +1
j{gl 27”.210 V(2o (277) nmln, W1 n -

The nature of the inner product implies some extra-relationship between the
orthogonal polynomials

p(z) — 2P = Pl (0)2p P (=7
P2(2) —2pP(z) = pll(0)2"pM (=Y.

leading to (in the notation of footnote 8)

ha ) TS WA RS
hm-l—l hn hm
1 -

=5 (Sn,_m(at)Terg o Tn) . (Sn—m(_és)Tm-i-Q o Tn) :

2
Tm+27—n

In particular, for m =n — 1,

Rt hn, 0 0
(1 — I ) (1 — —hn—1> = o lnhnas1 In h,,.

7.4 Non-intersecting Brownian motions

Consider N non-intersecting Brownian motions z1(¢),...,zn(t) in R, leaving
from distinct points a; < ... < ay and forced to end up at distinct points
B1 < ... < Bn. From the Karlin-McGregor formula (see [12]), the probability
that all z;(t) belong to E C R can be expressed in terms of the Gaussian

p(t,z,y) = e~ (@972t )\/o71t as follows (0 < t < 1)
P2 (all z(t) € E)

- pS (allxi(t)eE‘ (€1(0),-.., 25 (0) = (au,...,an) )

(@1 (1), an (1) = (B, -, BN)

N
1
= 5= det[p(t, cvi, 7j)]1<ij<n det[p(l —t, 24, Bj)]1<i j<N H d;
N JEN =1
1 N —a? a;T; Bizj
- L / [ e=nduidet [ det |17 (80)
Zy Je~ Py 1<i,j<N 1<i,5<N
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The limiting case where several points « and [ coincide has been the object
of many interesting studies. It is obtained by taking appropriate limits of the
formulae above. Just to fix the notation, consider

mi mo mg
(o1,...,an) = (ai,a1,...,a1,02,a2,...,02,...,0q,0q,...,0q)
niy ng np

(B1,...,0n) = (b1,b1,...,b1,b2,b2, ..., b2, ..., bp,bp, ... 0p),
where 33!, an =30, bs =0 and

q p
a <ay<-ag, by <by<..<by, Y ma=» ng=N.
a=1 B=1

Then, take the limit of (80), make a change of variables in the second equality,
use the standard matrix identity in the third equality

> det (ain() bioli)) 1< jen = et (@ik) 1 <; jozn A0t (Bik)1 <z

ogeSy
and distribute the integral and the Gaussian over the different columns; this
yields

PP (all z;(t) € E)
N

1
- e 2ta—-0 dx;
Z 3
N
N JBEN =
. bymy
ayx 7
3 x,el—f
({EJG ¢ ) 0<i<mq <j ) 0<i<mng
1<j<N 1<j<N
x det : - det
aq®j bgx
3 . a*y
(xje t )0§7<m,q x}e 1—t
1<j<N 0<i<mnp
1<j<N
N
1 72
= Z—, - He 2dyl
N
N JEY
i a1y yi,ei’lyj
(yje J) 0<i<mq J 0<i<mng
1<j<N 1<j<N
x det : - det
o ) E—_E
iplqy ; )
€71 ) o < < i obqy; t(1
(yJ ) 17<L_7‘<"1qu y;e 0<i<mnp (
- 1<j<N ~ 1
T i =\ T
by = /L

=
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! -
— —g det </ dy eyjy”je(anrbﬁ)y) _
N E %SSL mMey

<
j<mng «

1<a<g
1<B<p

INIA
INIA

The numerator of this probability has exactly the form (1) evaluated at s, =
tg = 0, with the inner product given by (2)

; ; V2 it (Gatd
(z'Ya(z) | 0p(y) ) = / dy e~ 7yt e@atbo)y,
E

upon setting 1o () = e%®, p4(y) = ¥ and du(z, y) = d(z—y)e ¥ /%x ( ) dz.
By mult1ply1ng each of the exponentials e®¥ and ebay by e~ 21 Se, " and

e X1 tony" respectively, it follows that both the numerator and the denominator
of the probability above,

T (t15 -, tp; S1,.- -, Sq)

(/ dy e~ E3 “FJ aa+l~)ﬁ)y+z(1>o(t[i,kSw,k,)yk)
0<i
0<j

det((<wi¢as(x) v/ el(w)) ) 1<

and the same expression for F = R, satisfy the bilinear identity for p + g-
component KP and, in particular, all the general relations and identities, men-
tioned in this paper, namely (12) and (71), (72), (73). Note the equations are
independent of the set E.

In particular, for n non-intersecting Brownian motions, departing from the
origin, with n; paths forced to end up at —a and ny paths forced to end up at
a, we have for 0 <t < 1,

o ,
(175)0<i<n—1, 0<j<ni+na—1

.1
PE(all z(t) € E) = - det
" (Kij)o<isna—1, 0<j<ni+na—1

where

S 22
uf; :z/ e T Eer gy (81)
E

with the change of variables

In a similar way, for several times 0 =tp < t; < ... <ty < tpmy1 =1,

B B 1 (M:rj)ogigan 0<j<ni+na—1
PE(all z(t1) € Er, ... all z(ty) € Ey) = - det

s _
(Hiz)ogi<na—1, 0<j<ni+ny—1
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where
pi= [ P e et T s e [, (82)
HnL Ey —1

with the change of variables
2ty — tim— ~ — 1ty
o a ( 1) ) 2(tep1 —te-1) ’
(1 =tm)(1 = tm—1) (ter1 —te)(te —to—1)

oo it e Z ) gy
! (tjr2 —tj)(tjs1 — tj-1) T

We now introduce the inner products

and

ar /f (2)dz with Fi(z) = e %
and (m > 2)
(f19)m z/ f@)g(@m)Fn(z1, .-y )dxy - .. dTp,
[T B
with

m 2
x m—1 £ m—1 14
Fm(xlv . 7$m) = <H €;> ezp,qzl 2200 Céq)IﬂHl*Zz o e ey

The precise form of F},, does not matter very much for the purpose of this paper,
but does play a crucial role in satisfying the Virasoro constraints.

In these two sets of moments (81) and (82), we insert extra time-parameters,
as follows, which can then be identified with the moments appearing in (1),

N 2 2 oo _( vk k
p; (s, u,0) = /w”je F ke S5 (e (U g
E

<x"e—25’° sea® | 15 8 (k)" towtpe? > ,
1

Miij(svuav) = / xixgnFm(xla'H»xm)@Z;O:l(Skmlf_(q:k)mm) Hdifz
[17" Ex

and

Il
T
&$4
9]
|
tJ
w»
=z
8
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In both cases, we have ¢ = 1 and p = 2, and m := n; + neo, leading to the
introduction of three sets of times s; := —sy;, u; := —t1; and v; := —tg;. Thus,
from the general theory, the numerator of both probabilities,

+
(175)0<i<ni—1, 0<j<ni+na—1
Tna,ne = det
(113;)0<i<na—1, 0<j<ni+na—1

satisfies the bilinear identity for the 3-component KP and, in particular, the
PDE’s and thus 7, ,, satisfies the single PDE

62
9 In Tni+lns  9s20ur In Tny,ng
—_— = e
0s1 Tni—1,n2 P59 In Tha,na
82
_ 9 In Tni+lne _ 9s10us In Tni,ng
= b2 )
aul Tni—1,nz ds10u1 In Tny,ng
_9® 9?
0 ds,0m In 7, s O 73,00 In7,, n, B

_0% _0%
Ouy 0s10u1 In Tna,mz 951 9s10u1 In Tni,ne

and the same PDE with u; replaced by v;. These PDE’s play a crucial role in
establishing the PDE for the Pearcey process; see [4].

T

The methods developed in this paper should enable one to study more com-
plicated situations of non-intersecting Brownian motions, as indicated in the
figure above. The curves in the (x,t)-plane are the boundary of the equilib-
rium measure as a function of time. When two curves meet, one expects to see
a new infinite-dimensional diffusion in that neighborhood, beyond the Pearcey
process.
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