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Abstract

In a recent publication, it was shown that a large class of integrals over the unitary group
U(n) satisfy non-linear, non-autonomous difference equations over n, involving a finite number
of steps; special cases are generating functions appearing in questions of longest increasing
subsequences in random permutations and words. The main result of the paper states that
these difference equations have the discrete Painlevé property ; roughly speaking, this means
that, after a finite number of steps, the solution to these difference equations may develop a
pole (Laurent solution), depending on the maximal number of free parameters, and immediately
after be finite again (“singularity confinement”). The technique used in the proof is based on an
intimate relationship between the difference equations (discrete time) and the Toeplitz lattice
(continuous time differential equations); the point is that the “Painlevé property” for the discrete
relations is inherited from the “Painlevé property” of the (continuous) Toeplitz lattice.
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2Département de Mathématiques, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium and Brandeis
University, Waltham, Mass 02454, USA, vanmoerbeke@math.ucl.ac.be. The support of a National Science Foundation
grant # DMS-04-06287, a European Science Foundation grant (MISGAM), a Marie Curie Grant (ENIGMA), Nato,
FNRS and Francqui Foundation grants is gratefully acknowledged.

3The support of a European Science Foundation grant (MISGAM) and a Marie Curie Grant (ENIGMA) is gratefully
acknowledged.

1



1 Introduction

In a recent publication (Adler & van Moerbeke 2003), we have shown that a large class of integrals
over the unitary group U(n) satisfy non-linear, non-autonomous difference equations over n, involv-
ing a finite number of steps; these U(n)-integrals are motivated by generating functions appearing
in questions of longest increasing subsequences in random permutations and words (see Adler & van
Moerbeke 2001, 2003, 2004; Baik & Rains 2001, Borodin 2003; Rains 1998; Tracy & Widom 1999,
2001). The main result of this paper, announced in Adler & van Moerbeke 2003, states that these
difference equations, which are also recursion relations, have the discrete Painlevé property; roughly
speaking, this means that the solution to these difference equations may develop a pole (formal Lau-
rent solution) after a finite number of steps and immediately after be finite again, a fact which had
been observed by Borodin 2003 in the very special case of unitary matrix integrals related to longest
increasing sequences of random permutations. Moreover, these formal Laurent solutions depend on
the maximal number of free parameters, which equals ((order of difference equation) −1) × (dim of
phase space), with the poles disappearing after a finite number of steps (“singularity confinement”),
due to the non-linear and non-autonomous character of the equations.

The property of singularity confinement was introduced in Grammaticos, Ramani & Papageor-
giou 1991 (see also Suris 1989), and further studied in Grammaticos, Nijhoff & Ramani 1999, as a
method to find discrete Painlevé systems. They were motivated by the famous Painlevé property
for continuous systems (see Ince 1944) that movable (initial condition dependent) singularities be
single-valued. They were further motivated to get a classification of discrete Painlevé equations in
the style of the situation for the continuous case, which they and others have embarked on and
had some success. For instance, Clarkson & Webster 2000 used singularity confinement to get the
so-called d-PIII equation, whose particular solutions in the limit go to Painlevé III. It should be
pointed out that singularity confinement can fail to produce integrability, as was shown by Hietar-
inta & Viallet 1998, and further tests for integrability have been proposed, such as using “algebraic
entropy” by Bellon & Viallet 1999 or using Nevanlinna theory (Ablowitz, Halburd & Herbst 2000
or Ramani et al. 2003). Thus in discrete systems the situation is more complicated than in the
continuous situation, which should come as no surprise.

Nonetheless, singularity confinement is still a stiff requirement for a discrete system to pass and
quite often (but not all the time) indicates integrability. In discovering that a large class, related to
combinatorics, of integrals over the unitary group satisfy discrete recursion relations, it is natural to
ask: “What might be the nature of these recursion relations?”. Moreover, since from the derivation
of these relations, they were clearly related to an integrable system called the Toeplitz lattice, it
was natural to wonder if these discrete relations were integrable or at least have some “integrable-
like property”, especially since two of the relations coming from combinatorics actually possessed
invariants, one case being that of McMillan and the other being a generalization of the McMillan
case. This paper answers the latter question in the affirmative. Indeed, this huge class of recursion
relations coming from unitary integrals and combinatorics possesses the “integrable-like Painlevé
property” called singularity confinement as this paper shall demonstrate. It would be worthwhile to
compute the algebraic entropy of these examples, as it has been hoped that also requiring that the
algebraic entropy is zero would suffice for integrability.

The technique used in the proof is new and is based on an intimate relation between the difference
equations (discrete time) and the Toeplitz lattice (continuous time differential equations), introduced
in Adler & van Moerbeke 2001; the point is that the the “Painlevé property” for the discrete relations
are inherited from the “Painlevé property” of the (continuous) Toeplitz lattice. Before making a
more precise statement and describing the technique, recall the basic facts about the Toeplitz lattice
and the recursion relations (Adler & van Moerbeke 2001, 2003).
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For k ∈ N and ǫ ∈ {−1, 0, 1}, consider the matrix integrals

τ ǫ
k(t, s) =

∫

U(k)

(detM)ǫ+γe
P∞

j=1
Trace(tjMj−sjM−j) dM (1)

where dM is Haar measure on U(k), t = (t1, t2, . . .) and s = (s1, s2, . . .). Special choices of tj and
sj lead to generating functions in combinatorics (see Adler & van Moerbeke 2003). Set τ := τ0 and
τ± := τ±1. In Adler & van Moerbeke 2003 it was shown that the ratios

xk(t, s) := (−1)k τ+
k (t, s)

τk(t, s)
, yk(t, s) := (−1)k τ−

k (t, s)

τk(t, s)
,

with k ∈ N, satisfy the Toeplitz lattice, an integrable Hamiltonian system,

dxk

dti
= (1 − xkyk)

∂H
(1)
i

∂yk

,
dyk

dti
= −(1 − xkyk)

∂H
(1)
i

∂xk

,

dxk

dsi

= (1 − xkyk)
∂H

(2)
i

∂yk

,
dyk

dsi

= −(1 − xkyk)
∂H

(2)
i

∂xk

,

(2)

where i = 1, 2, 3, . . . Moreover, τn is a polynomial expression in the variables xk and yk and τ1:

τn = τn
1

n−1
∏

k=1

(1 − xkyk)n−k.

The Hamiltonians H
(l)
i appearing in (2) are given by

H
(l)
i = −1

i
TraceLi

l, i = 1, 2, 3, . . . , l = 1, 2,

where the matrices L1 and L2 are defined by

L1 :=















−x1y0 1 − x1y1 0 0
−x2y0 −x2y1 1 − x2y2 0
−x3y0 −x3y1 −x3y2 1 − x3y3

−x4y0 −x4y1 −x4y2 −x4y3

. . .















(3)

and

L2 :=















−x0y1 −x0y2 −x0y3 −x0y4

1 − x1y1 −x1y2 −x1y3 −x1y4

0 1 − x2y2 −x2y3 −x2y4

0 0 1 − x3y3 −x3y4

. . .















. (4)

The system admits a reduction, interesting in its own right, obtained by putting xk = yk for all k.
We refer to it as the self-dual Toeplitz lattice.

In Adler & van Moerbeke 2001, it was shown that the matrix integrals (1) satisfy a sl(2,R)-
algebra of Virasoro constraints, which combined with the Toeplitz lattice equations, lead to difference
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equations for xk and yk given in Adler & van Moerbeke 2003, a subset of the cases leading to recursion
relations, which we now describe. Given arbitrary polynomials

P1(λ) :=

N
∑

i=1

uiλ
i

i
, and P2(λ) :=

N
∑

i=1

u−iλ
i

i
,

the variables

xk(u) := (−1)k τ+
k (u)

τk(u)
, yk(u) := (−1)k τ−

k (u)

τk(u)
,

with

τ ǫ
k(u) =

∫

U(k)

(detM)ǫ+γeTrace(P1(M)−P2(M−1)) dM,

and u = (u1, . . . , uN , u−1, . . . , u−N), satisfy 2N + 1 step difference equations Γk(x, y) = 0 =
Γ̃k(x, y) = 0, where x = (x1, x2, . . .) and y = (y1, y2, . . .), and where the polynomials Γk(x, y)
and Γ̃k(x, y) are defined in terms of the matrices L1 and L2 defined above (denote the derivative of
the polynomial Pi by P ′

i )

Γk(x, y) :=
1 − xkyk

yk

(

−(L1P
′
1(L1))k+1,k+1 − (L2P

′
2(L2))k,k

+(P ′
1(L1))k+1,k + (P ′

2(L2))k,k+1

)

+ kxk = 0,

Γ̃k(x, y) :=
1 − xkyk

xk

(

−(L1P
′
1(L1))k,k − (L2P

′
2(L2))k+1,k+1

+(P ′
1(L1))k+1,k + (P ′

2(L2))k,k+1

)

+ kyk = 0.

(5)

Looking closely, one observes that these difference equations Γk = 0 and Γ̃k = 0 are indeed linear
in xk+N and yk+N , and can thus be solved in terms of xk−N , yk−N , . . . , xk+N−1, yk+N−1. See the
appendix for a proof of this fact.

This paper deals with the difference equations (5) for their own sake, without further reference to
the special solution xk(t, s) and yk(t, s), given by the unitary matrix integrals above. Moreover, we
will consider the bi-infinite Toeplitz lattice, which is defined as in (2), but with k ∈ Z. The recursion
relations are then also considered for k ∈ Z, with the semi-infinite case obtained by specialization.
The bi-infinite Toeplitz lattice will be introduced in section 2, where we also discuss the self-dual
Toeplitz lattice and the recursion relations.

It came as a surprise that the generic solutions of these (very general) equations (5) have the
singularity confinement property, a fact which had been observed by Borodin 2003 in the very special
case of unitary matrix integrals related to longest increasing sequences of random permutations. In
this case the recursion relation is only a 3-step relation. We shall see that although the relations
inherit the confinement property from their integrable ancestor, the Toeplitz lattice, they need not,
as there are many places where they can easily loose this property. The main result of the paper is
to show that this large zoo of examples (1.5), indeed possess the singularity property, namely:

Theorem 1.1 (singularity confinement: general case) For any n ∈ Z, the difference equa-
tions Γk(x, y) = Γ̃k(x, y) = 0, (k ∈ Z) admit a formal Laurent solution x = (xk(λ))k∈Z and
y = (yk(λ))k∈Z in a parameter λ, having a (simple) pole at k = n and λ = 0, and no other
singularities. These solutions depend on 4N non-zero free parameters

αn−2N , . . . , αn−2, αn−1, βn−2N , . . . , βn−2 and λ.
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Setting zn := (xn, yn) and γi := (αi, βi), and γ := (γn−2N , . . . , γn−2, αn−1), the explicit series with
coefficients rational in γ read as follows:

zk(λ) =
∑∞

i=0 z
(i)
k (γ)λi, k < n − 2N,

zk(λ) = γk, n − 2N ≤ k ≤ n − 2,

xn−1(λ) = αn−1,

yn−1(λ) = 1/αn−1 + λ,

zn(λ) = 1
λ

∑∞
i=0 z

(i)
n (γ)λi,

zk(λ, γ) =
∑∞

i=0 z
(i)
k (γ)λi, n < k.

For the self-dual case, the statement reads as follows:

Theorem 1.2 (singularity confinement: self-dual case) For any n ∈ Z, the difference equa-
tions Γk(x) = 0, (k ∈ Z) admit two4 formal Laurent solution x = (xk(λ))k∈Z in a parameter λ,
having a (simple) pole at k = n only and λ = 0. These solutions depend on 2N non-zero free
parameters

α = (αn−2N , . . . , αn−2) and λ

Explicitly, these series with coefficients rational in α are given by

xk(λ) =
∑∞

i=0 x
(i)
k (α)λi, k < n − 2N,

xk(λ) = αk, n − 2N ≤ k ≤ n − 2,

xn−1(λ) = ε + λ,

xn(λ) = 1
λ

∑∞
i=0 x

(i)
n (α)λi,

xn+1(λ) = −ε +
∑∞

i=1 x
(i)
n+1(α)λi,

xk(λ) =
∑∞

i=0 x
(i)
k (α)λi, n + 1 < k.

The proof of theorems 1.1 and 1.2 is by no means direct, but proceeds via the Painlevé analysis
for the Toeplitz lattice. As a starting point, the zero locus M, of all polynomials Γk and Γ̃k, form

an invariant manifold for the vector field of the Toeplitz lattice with Hamiltonian H
(1)
1 − H

(2)
2 , by

viewing the coefficients of P1(λ) and P2(λ) as constants, except for u±1, which moves linearly in
time. Explicitly, this vector field is given by

dxk

dt
= (1 − xkyk)(xk+1 − xk−1),

dyk

dt
= (1 − xkyk)(yk+1 − yk−1),

k ∈ Z. (6)

In the self-dual case, this vector field reduces to

dxk

dt
= (1 − x2

k)(xk+1 − xk−1), k ∈ Z. (7)

4They are parametrized by ǫ = ±1.
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The first idea is then to restrict the principal balances (formal Laurent solutions depending on the
maximal number (= dim phase space −1) of free parameters, besides time) of (6) to these invariant
manifolds. We fix n and look for a formal Laurent solution to the Toeplitz lattice that has a (simple)
pole for xn and yn only, and we find a unique such family, as given by the following proposition:

Proposition 1.3 For arbitrary but fixed n, the first Toeplitz lattice vector field (6) admits the fol-
lowing formal Laurent solutions,

xn(t) =
1

(an−1 − an+1)t

(

an−1an+1(1 + at) + O(t2)
)

yn(t) =
1

(an−1 − an+1)t

(

−1 +
(

a +
an+1a+ − an−1a−

an+1 − an−1

)

t + O(t2)

)

xn±1(t) = an±1 + an±1a±t + O(t2)

yn±1(t) = 1/an±1 − a±/an∓1t + O(t2)

whereas for all remaining k such that |k − n| ≥ 2,

xk(t) = ak + (1 − akbk)(ak+1 − ak−1)t + O(t2) (8)

yk(t) = bk + (1 − akbk)(bk+1 − bk−1)t + O(t2) (9)

where a, a±, an±1 and all ai, bi, with i ∈ Z\ {n−1, n, n+1} and with bn±1 = 1/an±1, are arbitrary
free parameters, and with (an−1 − an+1)an−1an+1 6= 0. In the self-dual case it admits the following
two formal Laurent solutions, parametrized by ε = ±1,

xn(t) = − ε

2t

(

1 + (a+ − a−)t + O(t2)
)

,

xn±1(t) = ε
(

∓1 + 4a±t + O(t2)
)

, (10)

xk(t) = ε
(

ak + (1 − a2
k)(ak+1 − ak−1)t + O(t2)

)

, |k − n| ≥ 2,

where a+, a− and all ai, with i ∈ Z \ {n − 1, n, n + 1} are arbitrary free parameters and an−1 =
−an+1 = 1.

Together with time t these parameters are in bijection with the phase space variables; we can put
for the general Toeplitz lattice for example zk ↔ (ak, bk) for |k − n| ≥ 1 and xn±1 ↔ an±1 and
yn±1, xn, yn ↔ a±, a, t. Thus, this formal Laurent solution is the natural candidate to work with;
see section 3.

It is however, a priori, not clear that these formal Laurent solutions can be restricted to the
invariant manifold M. Indeed, upon introducing a proper time-dependence for u already men-
tioned, one has that Γk(t) := Γk(x(t), y(t); u(t)) and Γ̃k(t) := Γ̃k(x(t), y(t); u(t)) satisfy a system of
differential equations, as given in the following proposition:

Proposition 1.4 Upon setting du±i

dt
= δ1i, the recursion relations satisfy the following differential

equations

dΓk

dt
= (1 − xkyk)(Γk+1 − Γk−1) + (xk+1 − xk−1)(xkΓ̃k − ykΓk),

dΓ̃k

dt
= (1 − xkyk)(Γ̃k+1 − Γ̃k−1) − (yk+1 − yk−1)(xkΓ̃k − ykΓk),

(11)

which specialize in the self-dual case (7) to

dΓk

dt
= (1 − x2

k)(Γk+1 − Γk−1). (12)
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In addition to propositions 1.3 and 1.4, many other arguments are needed to fine-tune the
free parameters, when going from the Laurent solutions of the Toeplitz lattice to the existence
of formal Laurent solutions to the difference equations, depending on the announced number of
free parameters. See section 6. The proof of these facts will be spread over two sections, as the
arguments get rather involved; see section 5 for the self-dual case and section 6 for the case of the
general Toeplitz lattice.

This ultimately leads to the proof of the main theorems 1.1 and 1.2.

Examples

I. Denote by P the uniform probability on the group Sk of permutations πk and by L(πk) the length
of the largest (strictly) increasing subsequence of πk. According to an identity, due to Gessel 1990,

∫

U(n)

et Trace(M+M−1) dM =

∞
∑

k=0

t2k

k!
P (L(πk) ≤ n).

The quantities defined for n > 0 by

xn(t) = (−1)n

∫

U(n)
detM et(M+M−1) dM

∫

U(n) et(M+M−1) dM

satisfy the following 3-step relation, found by Borodin 2003,

nxn + t(1 − x2
n)(xn+1 + xn−1) = 0,

possessing the McMillan invariant (McMillan 1971)

Φn(xn+1, xn) = Φn(xn, xn−1)

with
Φn(y, z) = (1 − y2)(1 − z2) − n

t
yz.

II. According to Rains 1998, respectively Tracy & Widom 1999,

∫

U(n)

es Trace(M2+M−2) dM =
∞
∑

k=0

(
√

2s)2k

k!
P (L(π0

2k) ≤ n)

and

1

4

∂2

∂t2

(

∫

U(n)

eTrace(t(M+M−1)+s(M2+M−2)) dM +

∫

U(n)

eTrace(t(M+M−1)−s(M2+M−2)) dM

)

|t=0

=

∞
∑

k=0

(
√

2s)2k

k!
P (L(π0

2k+1) ≤ n),

where π0
2k and π0

2k+1 are odd permutations of respectively order 2k and 2k+1 acting on (−k, . . . ,−1,
1, . . . , k) and (−k, . . . ,−1, 0, 1, . . . , k). Then

xn(s, t) = (−1)n

∫

U(n) detM eTrace(t(M+M−1)+s(M2+M−2)) dM
∫

U(n)
eTrace(t(M+M−1)+s(M2+M−2)) dM
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satisfies a 5-step recursion relation (vn := 1 − x2
n)

nxn + tvn(xn−1 + xn+1) + 2svn(xn+2vn+1 + xn−2vn−1 − xn(xn+1 + xn−1)
2) = 0,

possessing the invariant

Φn(xn−1, xn, xn+1, xn+2) = Φn(xn, xn+1, xn+2, xn+3)

with
Φn(x, y, z, u) = nyz − (1 − y2)(1 − z2)(t + 2s(x(u − y) − z(u + y))).

2 An invariant manifold M for the first Toeplitz flow

In this section we introduce the bi-infinite Toeplitz lattice, in analogy with the semi-infinite Toeplitz
lattice, introduced in Adler & van Moerbeke 2001. We also recall the basic formulas related to the
invariant manifold M that we will introduce below (see Adler & van Moerbeke 2003).

The (bi-infinite) Toeplitz lattice consists of two infinite strings of vector fields on the (real or
complex) linear space of bi-infinite sequences (xi, yi)i∈Z. The particular vector field that we will be
interested in (the “first” Toeplitz vector field) is given by

dxk

dt
= (1 − xkyk)(xk+1 − xk−1),

dyk

dt
= (1 − xkyk)(yk+1 − yk−1),

k ∈ Z. (13)

The semi-infinite Toeplitz lattice is obtained from it by setting (xk, yk) = (0, 0) for k < 0 and
(x0, y0) = (1, 1). The invariant polynomials of the matrices L1 and L2, defined by

(L1)ij :=

{

−xiyj−1 + δi+1,j if j − i ≤ 1,

0 if j − i > 1,

(L2)ij :=

{

−yjxi−1 + δj+1,i if j − i ≥ 1,

0 if j − i < 1,

(14)

provide two infinite strings of constants of motion H
(1)
i and H

(2)
i (i ∈ Z) of (13), defined by

H
(l)
i := −1

i
TraceLi

l, i = 1, 2, 3, . . . , l = 1, 2. (15)

The first Toeplitz vector field (13) is the Hamiltonian vector field that corresponds to

H1 := H
(1)
1 − H

(2)
1 = Trace(L2 − L1) =

∑

i∈Z

(xiyi−1 − xi−1yi),

with respect to the Poisson structure defined by

{xi, xj} = {yi, yj} = 0, {xi, yj} = (1 − xiyi)δij ,

and the functions H
(1)
i and H

(2)
i are all in involution with respect to {· , ·}, as follows from a direct

computation. As a corollary, all Hamiltonian vector fields X (1)
i :=

{

· , H(1)
i

}

and X (2)
i :=

{

· , H(2)
i

}

commute. If we denote 〈A |B〉 := TraceAB, whenever this makes sense, then for i = 1, 2, . . . ,

X (1)
i [xk] =

{

xk,−1

i
TraceLi

1

}

= −(1 − xkyk)

〈

Li−1
1 | ∂L1

∂yk

〉

,
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and similarly for X (1)
i [yk], which leads to the following expression for the vector field X (1)

i ,

X (1)
i :















dxk

dti
= −(1 − xkyk)

〈

Li−1
1 | ∂L1

∂yk

〉

,

dyk

dti
= (1 − xkyk)

〈

Li−1
1 | ∂L1

∂xk

〉

.

(16)

The vector field X (2)
i , has the same form, but with L1 replaced by L2. This is a particular case of

a phenomenon that we will refer to as duality. Namely, there is a natural automorphism σ of our
phase space, given by σ : (xi, yi)i∈Z 7→ (yi, xi)i∈Z. It preserves the first Toeplitz vector field (13), it

permutes the Hamiltonians H
(1)
i ↔ H

(2)
i , it permutes the Lax operators as follows: L1 ↔ L⊤

2 and
it reverses the sign of the Poisson structure. The first Toeplitz vector field (13) can be restricted to
the fixed point locus (xi = yi)i∈Z of σ, which leads to the self-dual (bi-infinite) Toeplitz lattice,

dxk

dt
= (1 − x2

k)(xk+1 − xk−1), k ∈ Z. (17)

All constructions in this paper will be done for this self-dual lattice first, and then for the general
Toeplitz lattice. This is not only for pedagogical reasons: even if the ideas that lead to the proofs
are similar in both cases, the self-dual lattice can for our purposes not be treated as a particular
case of the general Toeplitz lattice, as we will see.

For i = 1, the equations (16) for X (1)
i and for X (2)

i specialize to

X (1,2)
1 [xk] = (1 − xkyk)xk±1,

X (1,2)
1 [yk] = −(1 − xkyk)yk∓1.

(18)

Fixing 2N constants u := (u−N , . . . , u−1, u1, . . . , uN), with uN 6= 0 and u−N 6= 0, we consider
the polynomials

P1(λ) :=

N
∑

i=1

uiλ
i

i
, and P2(λ) :=

N
∑

i=1

u−iλ
i

i
, (19)

whose derivatives we simply denote by P ′
1 and P ′

2. They lead to two strings of polynomials5 Γk and
Γ̃k in xi, yi (i ∈ Z):

Γk(x, y; u) :=
1 − xkyk

yk

(

−(L1P
′
1(L1))k+1,k+1 − (L2P

′
2(L2))k,k

+(P ′
1(L1))k+1,k + (P ′

2(L2))k,k+1

)

+ kxk,

Γ̃k(x, y; u) :=
1 − xkyk

xk

(

−(L1P
′
1(L1))k,k − (L2P

′
2(L2))k+1,k+1

+(P ′
1(L1))k+1,k + (P ′

2(L2))k,k+1

)

+ kyk.

(20)

Notice that the only elements that appear in these polynomials are the diagonal and next-to-diagonal
entries of Ll

1 and Ll
2 for l = 1, . . . , N . For fixed u we consider the zero locus of all polynomials Γk

and Γ̃k,

Mu :=
⋂

k∈Z

{

(xi, yi)i∈Z | Γk(x, y; u) = 0 and Γ̃k(x, y; u) = 0
}

. (21)

5The structure of the matrices L1 and L2 implies that Γk and Γ̃k are indeed polynomials. They are also polynomials
(of degree 1) in the variables ui, but we often do not mention this, because we think of these variables as parameters.
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In terms of the variables xi and yi the leading terms of Γk and Γ̃k are given by

Γk(x, y; u) = uNxk+N

N−1
∏

i=0

(1 − xk+iyk+i) + · · · + u−Nxk−N

N−1
∏

i=0

(1 − xk−iyk−i),

Γ̃k(x; y; u) = u−Nyk+N

N−1
∏

i=0

1 − xk+iyk+i + · · · + uNyk−N

N−1
∏

i=0

(1 − xk−iyk−i).

See the Appendix for a precise statement, a few more terms and a proof. We often write ∆k as a
shorthand for the vector (Γk, Γ̃k)⊤ and zk for (xk, yk)⊤.

In order to get the corresponding formulas for the self-dual case we put σ(ui) := u−i, so that
σ permutes P1 and P2, as well as Γk and Γ̃k, hence P1 = P2 in the self-dual case, and Γk = Γ̃k.
Writing L := L1 and P := P1, the polynomials Γk and Γ̃k reduce in that case to

Γk(x; u) :=
1 − x2

k

xk

(

2(P ′(L))k+1,k − (LP ′(L))k+1,k+1 − (LP ′(L))k,k

)

+ kxk, (22)

while its leading terms are now given by

Γk(x; u) = uNxk+N

N−1
∏

i=0

(1 − x2
k+i) + · · · + uNxk−N

N−1
∏

i=0

(1 − x2
k−i). (23)

The zero locus Mu now takes the simple form

Mu :=
⋂

k∈Z

{(xi)i∈Z | Γk(x; u) = 0} . (24)

Following Adler & van Moerbeke 2003, we show that, upon introducing a proper time dependence,
the polynomials Γk and Γ̃k satisfy a simple set of differential equations, showing that the zero locus
(21) of these polynomials is a (time-dependent) invariant manifold of the first Toeplitz flow (13).

Proposition 2.1 Let (x(t), y(t)) be a solution to the first Toeplitz vector field (13), to wit:

d

dt

(

x(t)
y(t)

)

=
(

X (1)
1 −X (2)

1

)

(

x(t)
y(t)

)

,

and let Γ(t) := Γ(x(t), y(t); u(t)) and Γ̃(t) := Γ(x(t), y(t); u(t)), where

u(t) = (u−N , . . . , u−2, u−1 + t, u1 + t, u2, . . . , uN). (25)

Then Γ(t) and Γ̃(t) satisfy the following differential equations:

dΓk

dt
= (1 − xkyk)(Γk+1 − Γk−1) + (xk+1 − xk−1)(xkΓ̃k − ykΓk),

dΓ̃k

dt
= (1 − xkyk)(Γ̃k+1 − Γ̃k−1) − (yk+1 − yk−1)(xkΓ̃k − ykΓk).

(26)

In particular, Mu(t) is a (time-dependent) invariant manifold of the first Toeplitz flow. In the
self-dual case, these differential equations specialize to

dΓk

dt
= (1 − x2

k)(Γk+1 − Γk−1). (27)

Then Mu(t) is a (time-dependent) invariant manifold of the first vector field of the self-dual Toeplitz
lattice, where u(t) = (u1 + t, u2, . . . , uN).
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Proof We first show that
Γk(x, y; u) = Vu[xk] + kxk,

Γ̃k(x, y; u) = −Vu[yk] + kyk,
(28)

where Vu is the Hamiltonian vector field

Vu :=

N
∑

i=1

(

uiX (1)
i + u−iX (2)

i

)

.

It suffices to prove that Γk(x, y; u) = Vu[xk] + kxk, the other identity being obtained by duality

(indeed, σ(Vu) = −Vu since σ(X (1)
i ) = −X (2)

i ). In view of the Definition (20) of Γk this means that
we need to prove that

X (1)
i [xk] =

1 − xkyk

yk

(

(

Li−1
1

)

k+1,k
−
(

Li
1

)

k+1,k+1

)

,

X (2)
i [xk] =

1 − xkyk

yk

(

(

Li−1
2

)

k,k+1
−
(

Li
2

)

k,k

)

.

(29)

According to (16), the first equation amounts to

yk

〈

Li−1
1 | ∂L1

∂yk

〉

=
(

Li
1

)

k+1,k+1
−
(

Li−1
1

)

k+1,k
, (30)

where we recall that 〈A |B〉 = TraceAB. The proof of (30) follows immediately by writing
(Li

1)k+1,k+1 as (Li−1
1 L1)k+1,k+1, and the expression (14) for the entries of L1. For the second

equation in (29) the proof is similar.
Notice that (28) implies that the time-dependent polynomials Γk(t) and Γ̃k(t) are given by

Γk(t) = Vu(t)[xk](t) + kxk(t),

Γ̃k(t) = −Vu(t)[yk](t) + kyk(t),

where Vu(t) can, in view of (25) be written as

Vu(t) = t(X (1)
1 + X (2)

1 ) + Vu.

Since the vector field d/dt commutes with all the Hamiltonian vector fields X (1)
i and X (2)

i , it follows
from these equations and (18) that

dΓk

dt
(t) = X

(1)
1 [xk](t) + X

(2)
1 [xk](t) + V

u(t)[dxk/dt](t) + k
dxk

dt
(t)

= (k + 1)X
(1)
1 [xk](t) − (k − 1)X

(2)
1 [xk](t) + V

u(t) [(1 − xkyk)(xk+1 − xk−1)] (t)

= (k + 1)(1 − xk(t)yk(t))xk+1(t) − (k − 1)(1 − xk(t)yk(t))xk−1(t)

+(1 − xk(t)yk(t))Vu(t) [xk+1 − xk−1] (t) − (xk+1(t) − xk−1(t))V
u(t) [xkyk] (t)

= (1 − xk(t)yk(t))(Γk+1(t) − Γk−1(t)) + (xk+1(t) − xk−1(t))(xk(t)Γ̃k(t) − yk(t)Γk(t)).

This yields the first relation in (26). The second equation is obtained by duality.
At points of Mu all Γk and Γ̃k vanish so the right hand sides of (26) vanish. The unique

solution to (26) that corresponds to such initial data is the zero solution, Γk(t) = Γ̃k(t) = 0. As a
consequence, Mu(t) is a time-dependent invariant manifold for the first Toeplitz flow.
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3 Painlevé analysis of the first Toeplitz flow

In this section we will show that the first Toeplitz flow admits many families of formal Laurent
solutions, a property reminiscent of (finite-dimensional) algebraic completely integrable systems
(see Adler, van Moerbeke & Vanhaecke 2004). They will be used in the subsequent sections. We will
first consider the self-dual case, which is easier, and then we will consider the full Toeplitz lattice.

3.1 The self-dual Toeplitz lattice

Recall that the first vector field of the self-dual Toeplitz lattice is given by

dxk

dt
= (1 − x2

k)(xk+1 − xk−1), k ∈ Z. (31)

Proposition 3.1 For any n ∈ Z, the first vector field (31) of the self-dual Toeplitz lattice admits a
formal Laurent solution x(t), with only xn(t) having a pole, given by

xk(t) = ε

(

ak + (1 − a2
k)(ak+1 − ak−1)t +

1

2
(1 − a2

k)(ak−2(1 − a2
k−1)+

ak+2(1 − a2
k+1) − ak((ak+1 − ak−1)

2 + 2 − 2ak−1ak+1) + κk)t2 + +O(t3)
)

,

|k − n| ≥ 2,

xn±1(t) = ε
(

∓1 + 4a±t + 4a±(2an±2 ∓ (a− + a+))t2 + O(t3)
)

,

xn(t) = − ε

2t

(

1 + (a+ − a−)t +
1

3
((a+ − a−)2

+ 4(a+an+2 − a−an−2 + 1 − 2a+a−))t2 + O(t3)
)

,

where a+, a− and all ai, with i ∈ Z \ {n − 1, n, n + 1} are arbitrary free parameters; also, ε2 = 1
and an−1 = −an+1 = 1. When |k − n| > 2 then κk = 0, while κn±2 = ∓4a±.

Proof We look for formal Laurent solutions x(t) to (31) that have a simple pole for one of the variables

(only). To do this, we substitute xn(t) = x
(0)
n /t+O(1), with x

(0)
n 6= 0, and xj(t) = x

(0)
j +O(t), j 6= n

into (31) for different values of k. Taking k = n±1 we find that
(

x
(0)
n±1

)2

= 1, in both cases because

1 − x2
k(t) needs to cancel the pole coming from xn(t). Given this, (31) with k = n is given by

−x
(0)
n

t2
+ O(1) = −

(

x
(0)
n

)2

t2
(x

(0)
n+1 − x

(0)
n−1) + O(t−1).

Since x
(0)
n 6= 0, we deduce from it on the one hand that x

(0)
n+1 and x

(0)
n−1 have opposite signs, so

that x
(0)
n+1 = −x

(0)
n−1 and that x

(0)
n = 1/(2x

(0)
n+1). It follows that xn±1(t) = ∓ε + O(t) and xn(t) =

−ε/(2t) + O(1), where ε2 = 1. For |k − n| ≥ 2, the coefficient in t−1 of (31) does not impose any
condition on the constant coefficient of xk(t), which is therefore a free parameter, which we denote
as εak.

Having determined the first term of the series we suppose that

xk(t) = ε

(

ak +

r
∑

i=1

x
(i)
k ti + x

(r+1)
k tr+1

)

, |k − n| ≥ 2,

xn±1(t) = ε

(

∓1 +
r
∑

i=1

x
(i)
n±1t

i + x
(r+1)
n±1 tr+1

)

,
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xn(t) = − ε

2t

(

1 +

r
∑

i=1

x(i)
n ti + x(r+1)

n tr+1

)

,

where all coefficients x
(i)
k , with i ≤ r have been determined. We show that (31) then yields linear

relations on the coefficients x
(r+1)
k . To see that, pick the coefficient in tr in (31) when k 6= n, while

taking the coefficient in tr−1 when k = n. This yields the following relations, where “known” means

coefficients x
(i)
k , with i ≤ r:

|k − n| ≥ 2 : ε(r + 1)x
(r+1)
k = known,

k = n ± 1 : εrx
(r+1)
n±1 = known, (32)

k = n : −ε

2
(r + 2)x(r+1)

n = −ε

4
(x

(r+1)
n+1 − x

(r+1)
n−1 ) + known.

This yields a linear system in the unknowns x
(r+1)
k , where k ∈ Z, which has upper triangular form

when x
(r+1)
n is put at the end. It uniquely determines the coefficients x

(r+1)
k , except when k = n± 1

and r = 0: the corresponding equations both reduce then to 0 = 0, so that x
(1)
n+1 and x

(1)
n−1 are also

free parameters; we denote them by 4a± := x
(1)
n±1. Then the third equation in (32) implies that

x
(1)
n = a+ − a−; also, the first equation is explicitly given by εx

(1)
k = ε(1 − a2

k)(ak+1 − ak−1), for
|k − n| ≥ 2. Since for r > 0 we can solve uniquely for all xr+1

k , we get a formal Laurent solution
depending on the free parameters, as indicated. The extra term that is given in the proposition is
easily verified.

Notice that under the natural correspondence between the phase variables xk (with k 6= n) and
the free parameters ak (a± in the case k = n ± 1) we have that the number of free parameters
on which the coefficients of the series depend, is one less than the number of phase variables, a
property reminiscent of principal balances for (finite-dimensional) algebraic completely integrable
systems (see Adler, van Moerbeke & Vanhaecke 2004, Chapter 6). There are of course also formal
Laurent solutions that depend on less free parameters (lower balances), but these will not be used
here.

For future reference we give the first few terms of the formal Laurent series of 1 − x2
k, which is

easily computed from the series given in proposition 3.1,

1 − x2
k(t) = (1 − a2

k)(1 −−2ak(ak+1 − ak−1)t) + O(t2), |k − n| ≥ 2,

1 − x2
n±1(t) = ±8a±t + O(t2),

1 − x2
n(t) = − 1

4t2
(1 + 2(a+ − a−)t + O(t2)).

(33)

The displayed terms are the only ones that will be needed below.

3.2 The full Toeplitz lattice

We will now show that the full Toeplitz lattice also allows such formal Laurent solutions. To make
the analogy with the self-dual case transparent we will vectorize the variables and the equations,

namely we introduce zk :=

(

xk

yk

)

and ck :=

(

ak

bk

)

, for k ∈ Z; the variables ak and bk will be

the free parameters in the formal Laurent series. With these notations the first Toeplitz vector field
(13) becomes

dzk

dt
= (1 − xkyk)(zk+1 − zk−1). (34)
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Proposition 3.2 For any n ∈ Z, the vector field (34) of the (general) Toeplitz lattice admits a

formal Laurent solution z(t) =

(

x(t)
y(t)

)

, such that only xn(t) and yn(t) have a (simple) pole. It is

given by

zk(t) = ck + (1 − akbk)(ck+1 − ck−1)t + O(t2), |k − n| ≥ 2,

zn±1(t) =

(

an±1 + an±1a±t
1/an±1 − a±/an∓1t

)

+ O(t2)

zn(t) =
1

(an−1 − an+1)t

(

an−1an+1(1 + at)

−1 + an+1(a++a)−an−1(a−+a)
an+1−an−1

t

)

+ O(t),

where a, a±, an±1 and all ci =

(

ai

bi

)

, with i ∈ Z \ {n − 1, n, n + 1} are arbitrary free param-

eters, and where cn±1 =

(

an±1

1/an±1

)

. Precisely, the free parameters an±1 satisfy the condition

an+1an−1(an+1 − an−1) 6= 0. The parameters on which the next order term in the series x(t) and
y(t) depend is given in table 1.

Remark 3.3 In section 6 we will need some extra information on these formal Laurent series,
namely that the coefficient in t2 of zk, for |k − n| ≥ 2 depends in the following way on ck+2,

z
(2)
k =

1

2
(1 − akbk)(1 − ak+1bk+1)ck+2 + z̃

(2)
k , (35)

where z̃
(2)
k is independent of ak+2 and of bk+2. In particular, x

(2)
k depends linearly on ak+2 and is

independent of bk+2, while y
(2)
k depends linearly on bk+2 and is independent of ak+2. This easily

follows from the given terms by considering the coefficient of t in (34).

Proof For fixed n ∈ Z, we look for formal Laurent solutions z(t) =

(

x(t)
y(t)

)

, to (34) where

xn(t) or yn(t) have a simple pole, and where none of the other variables xk(t) or yk(t) have a pole

(in t). Thus, we substitute zn(t) = z
(0)
n /t+O(1) and zj(t) = z

(0)
j +O(t), j 6= n into (34) for different

values of k. For k = n ± 1 we find that x
(0)
n±1y

(0)
n±1 = 1, because 1 − xn±1yn±1 needs to cancel the

pole coming from xn or from yn; we put an±1 := x
(0)
n±1, so that y

(0)
n±1 = 1/an±1. The parameters

an±1 are free, except that an+1an−1 6= 0. Next, (34) with k = n, yields







x
(0)
n

y
(0)
n






=







x
(0)
n+1 − x

(0)
n−1

y
(0)
n+1 − y

(0)
n−1






x(0)

n y(0)
n

which shows on the one hand that x
(0)
n and y

(0)
n are both different from zero (since at least one of

them is supposed to be different from zero), so that also an+1 − an−1 6= 0. On the other hand it

shows that x
(0)
n and y

(0)
n are expressible in terms of an+1 and an−1 as

x(0)
n =

an+1an−1

an−1 − an+1
, y(0)

n =
1

an+1 − an−1
.

For |k−n| ≥ 2, the coefficient in t−1 of (34) does not impose any condition on the constant coefficient
of zk(t), yielding free parameters for the constant coefficients of xk and of yk, with |k − n| > 1. We
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Table 1: We list on which free parameters the first few terms of the formal Laurent solutions depend.
It is understood that we do not list again the parameters that appear already before, on the same

line; for example, x
(1)
n depends only on an+1, an−1 and a. The last two lines correspond to the

values k for which |k − n| > 2. For k 6= n, x
(i)
k is the coefficient of ti in xk(t), while for k = n it is

the coefficient of ti−1 in xn(t).

x(0), y(0) x(1), y(1) x(2), y(2)

xn an+1, an−1 a a−, a+, an+2, bn+2, an−2, bn−2

yn an+1, an−1 a, a+, a− an+2, bn+2, an−2, bn−2

xn±1 an±1 a± an±2, bn±2, a∓, a, an∓1

yn±1 an±1 an∓1, a± an±2, bn±2, a∓, a

xn±2 an±2 an±3, an±1, bn±2 an±4, bn±3, a±

yn±2 bn±2 bn±3, bn±1, an±2 bn±4, an±3, a±, an∓1

xk ak ak+1, ak−1, bk ak+2, bk+1, ak−2, bk−1

yk bk bk+1, bk−1, ak bk+2, ak+1, bk−2, ak−1

denote these free parameters by ck =

(

ak

bk

)

. Upon specialization, some of the formulas below may

contain cn+1 or cn−1; it is understood that these stand for

cn±1 =

(

an±1

bn±1

)

=

(

an±1

1/an±1

)

.

We can now proceed as in the second part of the proof of proposition 3.1, namely we suppose that

zk(t) = ck +

r
∑

i=1

z
(i)
k ti + z

(r+1)
k tr+1,

zn±1(t) =

(

an±1

1/an±1

)

+

r
∑

i=1

z
(i)
n±1t

i + z
(r+1)
n±1 tr+1,

zn(t) =
1

(an−1 − an+1)t

(

(

an−1an+1

−1

)

+

r
∑

i=1

z(i)
n ti + z(r+1)

n tr+1

)

,

where all coefficients z
(i)
k , with i ≤ r have been determined. On the coefficients z

(r+1)
k , k ∈ Z, we

find linear relations by substituting the above series into (34). For k such that |n− k| > 1 it is clear

that, as in the self-dual case, z
(r+1)
k is linearly computed in terms of the known coefficients, from the

coefficient of tr, when substituting the series in (34). Therefore, let us concentrate on what happens
for k ∈ {n − 1, n, n + 1}. Taking k = n ± 1 in (34) the coefficient of tr yields

(r + 1)z
(r+1)
n±1 = ±

(

x
(r+1)
n±1

an±1
+ y

(r+1)
n±1 an±1

)







an−1an+1

an−1−an+1

−1
an−1−an+1






+ known,

15



a linear equation in xn±1 and yn±1, which can be written in the compact form

(L± + (r + 1) Id) z
(r+1)
n±1 = known,

where L± is the matrix that governs the linear problem,

L± := ± 1

an−1 − an+1

(

−an∓1 −an−1an+1an±1

1/an±1 an±1

)

.

Since det(L± +(r +1) Id) = r(r +1) this linear system admits a unique solution, except when r = 0
(recall that r ≥ 0). Before analyzing the case r = 0 further, let us first consider what happens to
(34) in the remaining case k = n. As in the self-dual case, we pick the coefficient of tr−1 in (34) to
find a linear system that can be written in the compact form

(Ln + r Id) z(r+1)
n = known,

where the matrix Ln is given by

Ln :=

(

1 −an+1an−1

−1/(an+1an−1) 1

)

.

Since det(Ln +r Id) = r(r+2) we have again that z
(r+1)
n is determined uniquely, unless r = 0. Thus,

we are done with r ≥ 1.
As we have seen, a free parameter may appear in z

(1)
n+1, in z

(1)
n−1 and in z

(1)
n , but one has to check

that the corresponding linear equations are consistent. Therefore we substitute

zk(t) = ck + z
(1)
k t + O(t2),

zn±1(t) =

(

an±1

1/an±1

)

+ z
(1)
n±1t + O(t2), (36)

zn(t) =
1

(an−1 − an+1)t

((

an−1an+1

−1

)

+ z(1)
n t + O(t2)

)

,

in (34), which yields for k = n ± 1 and t = 0 the homogeneous linear system






x
(1)
n±1

y
(1)
n±1






= ± 1

an−1 − an+1

(

x
(1)
n±1

an±1
+ y

(1)
n±1an±1

)







an−1an+1

−1






,

which is equivalent to

x
(1)
n±1 + an−1an+1y

(1)
n±1 = 0. (37)

Thus, upon setting x
(1)
n±1 = an±1a±, where a+ and a− are free parameters, we have that y

(1)
n±1 =

−a±/an∓1 = −a±bn∓1. Similarly, for k = n the substitution of the series (36) in (34) yields at the
level t−1:

an−1an+1

an−1 − an+1
(x

(1)
n+1 − x

(1)
n−1) − x(1)

n + an−1an+1y
(1)
n = 0,

an−1an+1

an−1 − an+1
(y

(1)
n+1 − y

(1)
n−1) − y(1)

n +
x

(1)
n

an−1an+1
= 0.

These equation are proportional, in view of (37). Thus we have

x(1)
n = an+1an−1a,

y(1)
n = a +

an+1a+ − an−1a−

an+1 − an−1
,
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where a is a free parameter.

The first two terms in the series lead at once to the second and third columns of table 1. In order
to obtain the last column it suffices to list on which parameters the linear term (resp. the constant
term) in the right hand side of (1− xk(t)yk(t))(zk+1(t)− zk−1(t)) depends, when k 6= n (resp. when
k = n). The two leading terms of x(t) and y(t) that we computed suffice for doing this.

It is easily verified that the involution σ, that permutes xk and yk extends naturally to an
involution on the free parameters, given by

σ(ak) = bk, σ(an±1) = 1/an±1, σ(a±) = −a±an±1/an∓1,

σ(a) = −a − an+1a+ − an−1a−

an+1 − an−1
.

(38)

Notice that, altogether, we have besides the free parameters ak, bk, for |k−n| > 1, which naturally
correspond to the variables xk and yk, five extra free parameters an±1, a± and a, that correspond
to the remaining six variables xn±1, yn±1 and xn, yn, which again yields that the number of free
parameters, plus time, is equal to the number of phase variables. This count will be important, and
rigorous, when we restrict these formal Laurent solutions to certain finite-dimensional submanifolds.

4 Tangency to M
We have seen that the polynomials Γk and Γ̃k, which define an invariant manifold for the first Toeplitz
flow, satisfy a non-autonomous system of linear differential equations, where the time-dependence
is defined by the latter flow. In a (finite-dimensional) manifold setting, if such differential equations
have coefficients that depend smoothly on time, solutions (integral curves) that start out on the
invariant manifold will stay on it, by the uniqueness of solutions to differential equations with
smooth coefficients and given initial conditions. In the case that we deal with the situation is quite
a bit different, because the coefficients develop poles in t, for t = 0, and of course the solutions
are only formal Laurent series. As it turns out, the conditions that assure that the formal Laurent
solutions “stay on the invariant manifold” are similar to those in the smooth case for the self-dual
Toeplitz lattice, but are different in an essential way for the general Toeplitz lattice.

4.1 Tangency in the self-dual case

We start out with the case of the self-dual Toeplitz lattice.

Proposition 4.1 Let x(t) denote the formal Laurent solution that is given by proposition 3.1, and
let Γ(t) := Γ(x(t); u(t)), where we recall that u(t) = (u1 + t, u2, . . . , uN ). Then, as formal series in
t,

Γk(t) = Γ
(0)
k + O(t), k ∈ Z \ {n} ,

Γn(t) =
1

4t
(Γ

(0)
n+1 − Γ

(0)
n−1) + Γ(0)

n + O(t).
(39)

Moreover, Γk(t) = 0 as a formal series in t, for all k ∈ Z, as soon as x(t) is such that

Γ
(0)
k = 0, for all k ∈ Z.

Proof According to (23), Γk(x; u) involves only the variables xl with |l − k| ≤ N (2N + 1 step
relation). Since only xn(t) has a pole, Γk(t) = O(1) as soon as Γk does not contain xn, i.e., if
|n − k| > N . But notice that (27) implies

Γn−N =
1

1 − x2
n−N−1

dΓn−N−1

dt
+ Γn−N−2,
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so that Γn−N (t) = O(1), as the leading term 1 − a2
n−N−1 of 1 − x2

n−N−1(t) is non-zero (recall that
an−N−1 is a free parameter). This argument can be repeated to yield Γk(t) = O(1) for all k < n, and
similarly it is shown that Γk(t) = O(1) for all k > n. Since Γn(t) satisfies the differential equation
(27), for k = n, we have in view of (33) that

dΓn

dt
(t) = (1 − x2

n(t))(Γn+1(t) − Γn−1(t)) = − 1

4t2
(Γ

(0)
n+1 − Γ

(0)
n−1) + O(1),

which leads upon integration to (39).

Suppose now that x(t) is such that Γ
(0)
k = 0 for all k ∈ Z. In view of the first part of the proof,

we have that Γk(t) = O(t) for all k ∈ Z. We show that this implies that Γk(t) = 0 as a formal
series in t, for all k ∈ Z. We do this by induction on r ∈ N∗: assuming that Γk(t) = O(tr) for
k ∈ Z we show that Γk(t) = O(tr+1) for k ∈ Z. Notice that in the case r = 1 the assumption holds.
For k /∈ {n − 1, n, n + 1} the right hand side of (27) is O(tr), by (33) and by the assumption, so
that dΓk

dt
(t) = O(tr), hence Γk(t) = O(tr+1), by integration. For k = n ± 1 we have from (33) that

1−x2
n±1(t) = O(t), so that (27) yields for k = n±1 that dΓn±1

dt
(t) = O(tr+1), i.e., Γn±1(t) = O(tr+2).

For k = n we have that 1 − x2
n(t) = 1 − x2

n(t) has a double pole, but since we have just shown that
Γn+1(t)−Γn−1(t) = O(tr+2) the differential equation (27) for k = n leads to dΓn

dt
(t) = O(tr) and we

conclude that Γn(t) = O(tr+1), as was to be shown.

4.2 Tangency in the general case

For the full Toeplitz lattice the tangency condition is rather similar, yet is different in some detail
that will turn out to be crucial in the next section. We recall that the differential equations that are
satisfied by the polynomials Γk and Γ̃k are given by

dΓk

dt
= (1 − xkyk)(Γk+1 − Γk−1) + (xk+1 − xk−1)(xkΓ̃k − ykΓk),

dΓ̃k

dt
= (1 − xkyk)(Γ̃k+1 − Γ̃k−1) − (yk+1 − yk−1)(xkΓ̃k − ykΓk).

(40)

Proposition 4.2 Let (x(t), y(t)) denote the formal Laurent solution that is given by proposition
3.2, and let Γ(t) := Γ(x(t), y(t); u(t)), where u(t) is given by (25). Then, as a formal series in t,

Γk(t) = Γ
(0)
k + O(t) and Γ̃k(t) = Γ̃

(0)
k + O(t) for k ∈ Z \ {n}. Also

Γn(t) =
a2

n+1

a−(an−1 − an+1)2t2

(

Γ
(0)
n−1 − a2

n−1Γ̃
(0)
n−1

)

+
1

t
Γ(−1)

n + O(1),

Γ̃n(t) =
an+1an−1

a−(an−1 − an+1)2t2

(

Γ
(0)
n−1/a2

n−1 − Γ̃
(0)
n−1

)

+
1

t
Γ̃(−1)

n + O(1),

(41)

where Γ
(−1)
n and Γ̃

(−1)
n are both linear combinations of Γ

(0)
n±1 and Γ̃

(0)
n±1 (for the explicit formula, see

(47)); moreover, the latter coefficients are related in the following way:

a−

(

Γ̃
(0)
n+1 −

1

a2
n+1

Γ
(0)
n+1

)

= a+

(

1

a2
n−1

Γ
(0)
n−1 − Γ̃

(0)
n−1

)

. (42)

Proof As in the self-dual case, the polynomials Γk(x; u) and Γ̃k(x; u) define 2N + 1 step relations,
so they depend only on the variables xl and yl with |l − k| ≤ N . Only xn(t) and yn(t) have a pole,
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so that Γk(t) = O(1) and Γ̃k(t) = O(1) for |n − k| > N . Writing (40) for k → k − 1 as

Γk =
1

1 − xk−1yk−1

(

dΓk−1

dt
− (xk − xk−2)(xk−1Γ̃k−1 − yk−1Γk−1)

)

+ Γk−2,

Γ̃k =
1

1 − xk−1yk−1

(

dΓ̃k−1

dt
+ (yk − yk−2)(xk−1Γ̃k−1 − yk−1Γk−1)

)

+ Γ̃k−2,

(43)

and taking as consecutive values k := n − N, . . . , n − 1 in (43) we find that Γk(t) = O(1) and
Γ̃k(t) = O(1) for all k ≤ n − 1, since 1 − xk(t)yk(t) does not vanish for t = 0 when k 6= n ± 1.
Similarly Γk(t) = O(1) and Γ̃k(t) = O(1) when k ≥ n + 1. So we have that Γk(t) = O(1) and
Γ̃k(t) = O(1) when k 6= n and we are left with the case k = n.

In order to deal with the case k = n we write (40) as an equation for Γn and Γ̃n in two different
ways:

Γn = ∓ 1

1 − xn±1yn±1

(

dΓn±1

dt
± (xn − xn±2)(xn±1Γ̃n±1 − yn±1Γn±1)

)

+ Γn±2,

Γ̃n = ∓ 1

1 − xn±1yn±1

(

dΓ̃n±1

dt
∓ (yn − yn±2)(xn±1Γ̃n±1 − yn±1Γn±1)

)

+ Γ̃n±2.

(44)

Either of them implies that Γn(t) = O(t−2) and that Γ̃n(t) = O(t−2), so we write

Γn(t) =
1

t2

(

Γ(−2)
n + Γ(−1)

n t + Γ(0)
n t2 + O(t3)

)

,

and similarly for Γ̃n(t). In fact, as 1 − xn+1(t)yn+1(t) and 1 − xn−1(t)yn−1(t) have a simple zero,
while xn(t) and yn(t) have a simple pole, the coefficient of t−2 in (44), leads to the following linear
equations

Γ
(−2)
n = −x(0)

n

(

x
(0)
n±1Γ̃

(0)
n±1 − y

(0)
n±1Γ

(0)
n±1

)

/ζ±,

Γ̃
(−2)
n = −Γ(−2)

n y(0)
n /x(0)

n ,

(45)

where we have written 1 − xn±1(t)yn±1(t) = ζ±t + O(t2), so that

ζ± = ±a±
an+1 − an−1

an∓1
.

It suffices now to substitue x
(0)
n±1 = an±1 = 1/y

(0)
n±1 and x

(0)
n = an−1an+1/ (an−1 − an+1) =

−an−1an+1y
(0)
n in (45) to find the coefficient of t−2 in (41). Actually, the latter corresponds to

taking the lower sign; equating the two expressions for Γ
(−2)
n in (45) that correspond to the two

signs leads to (42); notice that this is also the expression that is obtained from the two expressions

of Γ̃
(−2)
n in (45).

It remains to compute Γ
(−1)
n and Γ̃

(−1)
n , which can be done from the coefficient of t−2 in dΓn

dt
(t)

and in dΓ̃n

dt
(t), computed from their differential equations

dΓn

dt
= (1 − xnyn)(Γn+1 − Γn−1) + (xn+1 − xn−1)(xnΓ̃n − ynΓn),

dΓ̃n

dt
= (1 − xnyn)(Γ̃n+1 − Γ̃n−1) − (yn+1 − yn−1)(xnΓ̃n − ynΓn).

(46)

Since 1 − xn(t)yn(t) has a double pole, while Γn±1(t) and Γ̃n±1(t) have no pole, the contribution

of the first term to the coefficient in t2 will be linear in Γ
(0)
n±1 and in Γ̃

(0)
n±1. Since xn(t) and yn(t)
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have a simple pole, while Γn(t) and Γ̃n(t) have a double pole, the contribution of the second term

will yield a linear combination of on the one hand Γ
(−2)
n and Γ̃

(−2)
n which, as we have seen, are

themselves linear combinations of Γ
(0)
n±1 and in Γ̃

(0)
n±1; on the other hand, Γ

(−1)
n and Γ̃

(−1)
n , which are

the unknowns. Explicitly, this linear system is given by
(

an+1an−1Γ̃
(−1)
n

1/(an+1an−1)Γ
(−1)
n

)

=
an−1an+1

(an+1 − an−1)2

(

Γ
(0)
n+1 − Γ

(0)
n−1

Γ̃
(0)
n+1 − Γ̃

(0)
n−1

)

−
(

1
1/an+1an−1

)

(

Γ(−2)
n σ(a) + Γ̃(−2)

n aan+1an−1

)

.

(47)

Since Γ
(−2)
n and Γ̃

(−2)
n are linear combinations of Γ

(0)
n±1 and Γ̃

(0)
n±1 it follows that each of Γ

(−1)
n and

Γ̃
(−1)
n is a linear combination of Γ

(0)
n±1 and Γ̃

(0)
n±1, as we asserted.

Proposition 4.3 Suppose that (x(t), y(t)) is a formal Laurent solution of the first vector field of
the Toeplitz lattice, such that Γk(t) = O(t) and Γ̃k(t) = O(t) for all k with k 6= n + 1, and such that,
as formal Laurent solutions in t, Γn−1(t) = O(t2) and Γn+1(t) = O(t). Then, as formal Laurent
series, Γk(t) = 0 = Γ̃k(t) for all k ∈ Z.

Proof According to (42), the hypothesis imply that Γ̃n+1(t) = O(t). In view of proposition 4.2,
we have that Γk(t) = O(t) and Γ̃k(t) = O(t) for every k ∈ Z. We will now proceed by induction
on r ∈ N∗, but in a different way than in the self-dual case: assuming that Γk(t) = O(tr) and
Γ̃k(t) = O(tr) for k 6= n ± 1, as well as Γn±1(t) = O(tr+1) and Γ̃n±1(t) = O(tr+1), we show
that Γk(t) = O(tr+1) and Γ̃k(t) = O(tr+1) for k 6= n ± 1, as well as Γn±1(t) = O(tr+2) and
Γ̃n±1(t) = O(tr+2). Notice that the r = 1 induction assumption needs to be shown at the end of the
proof, as only part of it is in the actual hypothesis of the theorem.

For k such that |k−n| ≥ 2 the differential equations (40) yield that dΓk

dt
(t) = O(tr) and dΓ̃k

dt
(t) =

O(tr), so that Γk(t) = O(tr+1) and Γ̃k(t) = O(tr+1), by integration. So we are left with k ∈
{n − 1, n, n + 1}. Let us write

Γn = γntr + O(tr+1), Γ̃n = γ̃ntr + O(tr+1),

Γk = γktr+1 + O(tr+2), Γ̃k = γ̃ktr+1 + O(tr+2), k 6= n,

which we substitute in

dΓn±1

dt
= ∓(1 − xn±1yn±1)(Γn − Γn±2) ± (xn±2 − xn)(xn±1Γ̃n±1 − yn±1Γn±1),

dΓ̃n±1

dt
= ∓(1 − xn±1yn±1)(Γ̃n − Γ̃n±2) ∓ (yn±2 − yn)(xn±1Γ̃n±1 − yn±1Γn±1).

(48)

Remembering that 1 − xn±1(t)yn±1(t) = O(t) we pick the coefficient of tr in (48), which leads to
the following linear system,

(r + 1)γn±1 = ∓ an−1an+1

an−1−an+1

(

an±1γ̃n±1 − 1
an±1

γn±1

)

,

(r + 1)γ̃n±1 = ∓ 1
an−1−an+1

(

an±1γ̃n±1 − 1
an±1

γn±1

)

.
(49)

Since
∣

∣

∣

∣

∣

∣

∣

r + 1 ∓ an∓1

an−1−an+1
±an−1an+1an±1

an−1−an+1

∓ 1
(an−1−an+1)an±1

r + 1 ± an±1

an−1−an+1

∣

∣

∣

∣

∣

∣

∣

= (r + 1)2 − (r + 1) = r(r + 1),
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it follows, since r ≥ 1, that γn±1 = γ̃n±1 = 0, and hence that Γn±1(t) = O(tr+2) and Γ̃n±1(t) =
O(tr+2). It follows that, if we substitute the series in

dΓn

dt
= (1 − xnyn)(Γn+1 − Γn−1) + (xn+1 − xn−1)(xnΓ̃n − ynΓn),

dΓ̃n

dt
= (1 − xnyn)(Γ̃n+1 − Γ̃n−1) − (yn+1 − yn−1)(xnΓ̃n − ynΓn),

(50)

then the coefficient of tr−1 is simply given by

rγn = −(an−1an+1γ̃n + γn),

rγ̃n = − 1

an−1an+1
(an−1an+1γ̃n + γn).

Since

det







r + 1 an−1an+1

1
an+1an−1

r + 1






= (r + 1)2 − 1 6= 0,

we have that γn = γ̃n = 0, so that Γn(t) = O(tr+1) and Γ̃n(t) = O(tr+1), as was to be shown.

We finally check that our assumptions imply that for r = 1 the induction hypothesis is valid.
According to proposition 4.2, we have that Γ(t) = O(t) and Γ̃(t) = O(t). Let us write Γn±1 =
γn±1t + O(t2) and Γ̃n±1 = γ̃n±1t + O(t2). Then we need to show that γn±1 = γ̃n±1 = 0. From
(49), which is also valid for r = 0, we conclude that γn±1 = an−1an+1γ̃n±1. It was assumed that
Γn−1(t) = O(t2), i.e., that γn−1 = 0, so that we can conclude that γ̃n−1 = 0. In order to obtain a
second relation between γn+1 and γ̃n+1 we consider the residue in the first6 equation in (50), which

reduces to 0 = an−1an+1γn+1/(an−1 − an+1)
2, since Γ

(0)
n = Γ̃

(0)
n = 0. Thus, γn+1 = γ̃n+1 = 0, as

was to be shown.

5 Restricting the formal Laurent solutions: the self-dual case

We have seen conditions on Γ(t) = Γ(x(t); u(t)) that guarantee that solutions x(t) to the self-dual
Toeplitz lattice that start out in the invariant manifold Mu(t) stay in it, formally speaking. In
this section we show how these conditions can be translated into conditions on the formal Laurent
solution x(t) to the first vector field of the self-dual Toeplitz lattice.

5.1 Structure of the polynomials Γk

The polynomials Γk, which define the invariant manifolds M depend on the variable xn in a special
way, that we will analyze by using the fact that Γk remains pole free (for k 6= n) when the formal
Laurent series x(t) are substituted in them, as we have seen in proposition 4.1. Let us denote by
A the algebra of polynomials in all variables xk, where k ∈ Z and by An the subalgebra of those
polynomials that are independent of xn. Also, let us denote by A′

n the subalgebra of A that consists
of those elements that can be written as polynomials in w1, w2 and xk, with k 6= n, where

w1 := xn(xn+1 + xn−1), w2 := xn(1 + xn+1xn−1). (51)

6Taking the second equation would lead to the same result.
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Thus, elements of A′
n may depend only on xn through w1 and w2. For future use, we give the first

few terms of the formal Laurent series of the generators of A′
n, as obtained by substituting the series

from proposition 3.1 in (51):

w1(t) = −2(a+ + a− + 2(a+an+2 + a−an−2)t + O(t2)),

w2(t) = −2ε(a+ − a− + 2(a+an+2 − a−an−2)t + O(t2)),

xk(t) = ε(ak + (1 − a2
k)(ak+1 − ak−1)t + O(t2)), k 6= n.

(52)

It follows that G(x(t)) = O(1), for any G ∈ A′
n. Notice that the polynomials w± := (1 − x2

n±1)xn,
which both have the property w±(t) = O(1), belong to A′

n, since

(1 − x2
n±1)xn = w2 − xn±1w1. (53)

The following proposition generalizes this statement.

Proposition 5.1 For G ∈ A, let G(t) := G(x(t)), where x(t) is the formal Laurent solution to the
first vector field of the self-dual Toeplitz lattice, constructed in proposition 3.1. If G(t) = O(1) then
G ∈ A′

n, i.e., G is a polynomial in

xn(xn+1 − xn−1), xn(1 + xn+1xn−1), and xk (k 6= n).

Proof We suppose that G ∈ A is such that G(t) = O(1), where G(t) := G(x(t)). We write G as a
polynomial in xn with coefficients in A′

n,

G = Glx
l
n + Gl−1x

l−1
n + · · · + G1xn + G0,

where G0, . . . , Gl ∈ A′
n. If l = 0 then we are done. Let us suppose therefore that l is minimal, but

l > 0. We will show that this leads to a contradiction. Since each coefficient Gi belongs to A′
n, we

have that Gi(t) = O(1). Thus, the pole that xn(t) has, needs to be compensated by a zero in Gl(t),
i.e., Gl(t) = O(t). We show that this implies that Glxn ∈ A′

n. By Euclidean division in A′
n we can

write Gl as
Gl = (1 − x2

n+1)K1 + (1 − x2
n−1)K2 + K3, (54)

where K1, K2 and K3 belong to A′
n, and where K3 is of degree 1 at most in xn+1 and xn−1: we can

write K3 as
K3 = κ1(xn+1 + xn−1) + κ2(1 + xn+1xn−1) + κ3xn+1 + κ4

where κ1, . . . , κ4 are elements of A′
n that are independent of xn+1 and xn−1. Since Gl(t) = O(t)

and 1 − x2
n±1(t) = O(t) it follows from (54) that K3(t) = O(t), and so that the leading terms

κ
(0)
3 and κ

(0)
4 of κ3(t) and κ4(t) satisfy κ

(0)
4 = εκ

(0)
3 . Since the leading terms εak of all xk(t), with

k ∈ Z \ {n − 1, n, n + 1}, and the leading terms of w1(t) and w2(t) are all independent, even modulo

ε, it follows that κ
(0)
4 = κ

(0)
3 = 0, as κ4 and κ3 are independent of xn±1. Using (53) it follows that

Glxn = (1 − x2
n+1)xnK1 + (1 − x2

n−1)xnK2 + κ1w1 + κ2w2

= (w2 − xn+1w1)K1 + (w2 − xn−1w1)K2 + κ1w1 + κ2w2,

where K1, K2, κ1, κ2 ∈ A′
n, showing that Glxn = G′

l ∈ A′
n, as promised. Then,

G = (G′
l + Gl−1)x

l−1
n + · · · + G1xn + G0,

with G′
l + Gl−1 ∈ A′

n. This contradicts the minimality of l.
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Lemma 5.2 For k 6= n, Γk(t) := Γk(x(t); u(t)) is of the form

Γk(t) = F(ak−N , ak−N+1, . . . , ak+N , a+, a−) + O(t), (55)

i.e., the constant term in Γk(t) is a polynomial in the variables7 ak−N , ak−N+1, . . . , ak+N , a+ and
a− only.

Proof According to (23), Γk depends on xk−N , . . . , xk+N only. For k 6= n we know from proposition
4.1 that Γk(t) = O(1), so that proposition 5.1 yields that Γk depends on xn through w1 and w2 only,
i.e., Γk is a polynomial in w1, w2 and the xl with |k − l| ≤ N and l 6= n. Each of these variables is
O(1), so the constant term in Γk is a polynomial in their leading terms, which are the parameters
ak−N , ak−N+1, . . . , ak+N , a+ and a− (see (52)).

It is clear that when |k − n| > N then Γk(0) is independent of a+ and a−, as it cannot contain w1

or w2. The following lemma deals with the case of Γn(t), which is slightly harder because Γn(t)
develops a pole.

Lemma 5.3 Γn(t) := Γn(x(t); u(t)) is of the form

Γn(t) =
Γ

(0)
n+1 − Γ

(0)
n−1

4t
+ F(an−N−1, . . . , an+N+1, a+, a−) + O(t)

where F is a polynomial in all its arguments, with an+N+1 and an−N−1 present (linearly).

Proof Consider the following alternative ways of writing Γn = Γn(x; u),

Γn(x; u) = (1 − x2
n)Hn(x; u) + nxn = xnGn(x; u) + Hn(x; u). (56)

Hn is a polynomial in x = (xi)i∈Z, because (28) implies that Hn(x; u) = Vu[xn], and because
∂xn/∂ti = {xn, Hi} is always divisible by 1 − x2

n, see (16). Also, we have put Gn(x; u) := n −
xnHn(x; u) to obtain the second equality. The first equation in (56) implies that Hn(x(t); u(t)) =
O(t), since Γn(x(t); u(t)) = O(t−1) and xn(t) = O(t−1), while 1 − x2

n(t) = −1/(4t2) + O(t−1). The
second equation in (56) then allows us to conclude that Gn(x(t); u(t)) = O(1), and hence also that
Gn(x(t); u) = O(1), since u is an arbitrary vector of constants. Thus, Gn is, by proposition 5.1, an
element of A′

n, depending (linearly) on the parameters ui.

Summarizing, the constant term in Γn(t) will be given by the constant term in xn(t)Gn(t),
hence will depend only on the first two terms ε(1 + (a+ − a−)t)/(2t) of xn(t) and on the first
two terms of Gn(t), where Gn ∈ A′

n. The latter first two terms can depend only on the first
two terms of the variables xn−N , . . . , xn+N , w1 and w2 that appear in Gn; the first two terms of
their series can be read off from (52), yielding that the constant term in Γn(t) can only depend
on an−N−1, . . . , an+N+1, a+, a−. Notice that the only dependence on an−N−1 can come from the
presence of xn−N , but (23) tells us that xn−N appears linearly in Γn, and with a non-zero coefficient.
Therefore, the parameter an−N−1 is indeed present in the constant term in Γn; similarly, an+N+1 is
also present. The leading term of Γn(t) was already determined in proposition 4.1.

5.2 Parameter restriction

We now show that we can tune the free parameters in the formal Laurent solution x(t) of the self-
dual Toeplitz lattice in such a way that Γk(t) = 0 for all k ∈ Z, as a formal series in t. As it turns
out, it will be possible to keep 2N − 1 parameters arbitrary, and the other ones are determined
rationally in terms of these. Together with time it means that the constructed solution depends on
2N free parameters, which is the maximum one can hope for in an 2N + 1 step relation.

7Recall that an±1 = ∓1 and that an does not exist; so an±1 and an may be thought of as being absent in the list.
Thus, a± is the natural substitute for an±1.
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Table 2: Setting Γk(0) = 0 in the given order allows us to solve for all free parameters in the formal
Laurent series, except for the 2N −1 parameters an−2N , . . . , an−2, that can be taken arbitrarily. We
solve (linearly) for the underlined terms. The fact that Γn+1 incidentally does not depend on the
crossed out term an+N+1 allows us to solve Γn+1 = 0 for an+N .

step Γk Γk polynomial in Γ
(0)
k polynomial in

(1) Γn−N−1 xn−2N−1, . . . , xn−1 an−2N−1, . . . , an−1 = 1

(2) Γn−N−2 xn−2N−2, . . . , xn−2 an−2N−2, . . . , an−2

(3)
...

...
...

(4) Γn−N xn−2N , . . . , xn an−2N , . . . , an−2, a−

(5) Γn−N+1 xn−2N+1, . . . , xn+1 an−2N+1, . . . , an−2, a−, a+

(6) Γn−N+2 xn−2N+2, . . . , xn+2 an−2N+2, . . . , an−2, a±, an+2

(7)
...

...
...

(8) Γn−1 xn−N−1, . . . , xn+N−1 an−N−1, . . . , an−2, a±,

an+2, . . . , an+N−1

(9) Γn+1 xn−N+1, . . . , xn+N+1 an−N+1, . . . , an−2, a±

an+2, . . . , an+N , an+N+1

(10) Γn xn−N , . . . , xn+N an−N−1, . . . , an−2, a±

an+2, . . . , an+N+1

(11) Γn+2 xn−N+2, . . . , xn+N+2 an−N+2, . . . , an−2, a±

an+2, . . . , an+N+2

(12)
...

...
...

Proposition 5.4 Keeping the 2N − 1 parameters an−2N , . . . , an−2 arbitrary, the other parameters
in the formal Laurent series x(t), given by proposition 3.1, can be chosen as rational functions of
these parameters, so that Γk(t) = 0, as a formal series in t, for all k ∈ Z.

Proof In this proof we will assume that N > 1. See Remark 5.5 below for the adaption to the
case N = 1. According to proposition 4.1, it suffices to determine the parameters in the series x(t)

so that Γ
(0)
k , the constant term in Γk(t), is zero, for all k ∈ Z. Thus, we need to write Γ

(0)
k in terms

of the parameters in the series x(t). We do this for the different values of k in a very specific order,
as indicated in table 2. The second column indicates which Γk we consider; it is easy to see that
we consider all of them (exactly once); it is understood that steps (6)–(8) are absent when N = 2.
We know from (23) that for any k ∈ Z, Γk depends only on the variables xk−N , xk−N+1, . . . , xk+N ,
which yields the third column. It is important to point out that the two written variables, which
are the extremal terms, are actually present in Γk, and that these two variables appear linearly (see
proposition 8.2 in the appendix).
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The delicate step is in obtaining the last column; the information displayed in it contains the

parameters8 that may appear in Γ
(0)
k , where the underlined term actually does appear, and it appears

linearly. Before validating this column in each of the steps, let us first point out how the proposition
follows from it. Precisely, we can in each step solve for one of the underlined parameters in terms of

the nonunderlined parameters, as the underlined parameter appears linearly in the equation Γ
(0)
k = 0.

Using the previous steps, this yields (using the previous steps) inductively a rational formula for each
of the parameters, in terms of an−2N , . . . , an−2, which remain free. In fact, the variables an−2N−i,
with i > 0 are determined in steps (1) – (3); an−1 = −an+1 = 1 while an does not exist; the variables
an+i+1 with i > 0 are determined in steps (6) – (12); the only other variables are a− and a+, which
are determined in steps (4) and (5).

We now show that in each step the parameters that are indiciated in the fourth column of the

table appear indeed (linearly) in Γ
(0)
k . This is done by carefully using the leading terms of Γk,

as given by proposition 8.2. As a general remark, notice that (23) implies that Γk contains the

variables xk−N and xk+N linearly, but that the behaviour of its coefficients
∏N−1

i=0 (1 − x2
k+i) and

∏N−1
i=0 (1 − x2

k−i), evaluated at t, depends on k, as given in (33).

For step (1) we have that xn−2N−1(t), . . . , xn−1(t) have no pole in t, so that only their leading
coefficients, the parameters an−2N−1, . . . , an−2, an−1 = 1, can appear. Since xn−2N−1 appears

(linearly) in Γn−N−1, with a coefficient uN

∏N
i=1(1 − x2

n−N−i) that is non-vanishing for t = 0,

namely
∏N

i=1(1 − x2
n−N−i(0)) =

∏N
i=1(1 − a2

n−N−i), the parameter an−2N−1 appears (linearly) in

Γ
(0)
n−N−1. The same argument works in steps (2) and (3). Step (4) is more interesting because it

involves xn (linearly). However, xn appears only in the leading term of Γn−N , which we can write,
using w− = xn(1 − x2

n−1), as

uNxn

N−1
∏

i=0

(1 − x2
n−N+i) = uNw−

N−2
∏

i=0

(1 − x2
n−N+i), uN 6= 0. (57)

Now w−(t) = 4εa− + O(t), and the other factors in (57) are finite, non-vanishing, which yields the
proposed dependence on the parameters in step (4). For step (5), xn may be present in other terms
than the leading term in Γn−N+1, but in view of proposition 5.1, Γn−N+1 ∈ A′

n is a polynomial in
xn−2N+1, . . . , xn−1, xn+1 and in w1 and w2 only. Since their series do not have a pole for t = 0, we
get an eventual dependence on a+ and a−, besides the parameters an−2N+1, . . . , an−2. Let us show
that a+ actually appears. The leading term in Γn−N+1 is, according to (23),

uNxn+1(1 − x2
n)(1 − x2

n−1)

n−2
∏

i=n−N+1

(1 − x2
i ).

Since it is the only term in Γn−N+1 that contains xn+1 we can write Γn−N+1 = P1 + P2, where

P1 = uN(xn+1 + xn−1)(1 − x2
n)(1 − x2

n−1)
n−2
∏

i=n−N+1

(1 − x2
i ),

and P2 is independent of xn+1, so P2 depends only on xn−2N+1, . . . , xn. Now P1(t) = O(1), since

xn+1(t) + xn−1(t) = O(t), 1 − x2
n(t) = O(t−2), 1 − x2

n−1(t) = O(t),

while the other factors 1−x2
i (t) that appear in P1(t) are O(1). Since Γn−N+1(t) = O(1) this implies

that P2(t) = O(1), so that P2 satisfies the hypothesis of proposition 5.1; since P2 is independent

8Besides the constants u1, . . . , uN that define P .
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of xn+1 we may conclude, as in step (4), that P2 is independent of a+. On the other hand P1(0)
depends (linearly) on a+, as

(xn+1(t) + xn−1(t))(1 − x2
n(t))(1 − x2

n−1(t)) = 8εa−(a− + a+) + O(t).

The conclusion is that Γ
(0)
n−N+1 = P1(0) + P2(0) depends (linearly) on a+.

We are at step (6). Skip this step and steps (7) and (8) when N = 2. Proposition 5.1 implies

that Γ
(0)
n−N+2 can only depend on the proposed parameters, and that the dependence comes from

the constant terms of the series in (52). The dependence of Γ
(0)
n−N+2 on an+2 comes only from the

leading term uNxn+2(1 − x2
n+1)(1 − x2

n)(1 − x2
n−1)

∏N−4
i=0 (1 − x2

n−N+2+i) which, at t, is O(1), since

(1 − x2
n+1(t))(1 − x2

n(t))(1 − x2
n−1(t)) = O(1) and non-vanishing. It follows that Γ

(0)
n−N+2 depends

on an+2 (linearly). The same happens in steps (7) and (8), as the leading term will always contain
the product (1 − x2

n+1)(1 − x2
n)(1 − x2

n−1) which is finite and non-zero for t = 0.

A new phenomenon arises in step (9). Notice that we have moved to Γn+1, keeping Γn for step
(10). The leading term of Γn+1 is

uNxn+N+1

N
∏

i=1

(1 − x2
n+i),

which does not contribute to Γ
(0)
n+1, since 1 − x2

n+1(t) = O(t), while all other factors in this term

are finite in t. Therefore, Γ
(0)
n+1 is independent of an+N+1. To show that Γ

(0)
n+1 depends on an+N we

need to investigate the next term in Γn+1, the one that contains xn+N , because it is the only one
that might lead to a dependence on an+N . According to proposition 8.2, this term consists of the
following three pieces,

uN−1xn+N

N−2
∏

i=0

(1 − x2
n+1+i) − uNx2

n+Nxn+N−1

N−2
∏

i=0

(1 − x2
n+1+i)

−2uNxn+N

N−2
∏

i=0

(1 − x2
n+1+i)

N−2
∑

j=0

xn+j+1xn+j .

(58)

The two terms on the first line of (58) do not contribute to Γ
(0)
n+1, again because both terms contain

1 − x2
n+1, and all other terms are finite for t = 0. The third term however does contribute, when

j = 0, as xn(t)(1 − x2
n+1(t)) ∼ a+ + O(t); moreover, this term is the only one that involves an+N ,

so that the latter parameter appears (linearly) in Γ
(0)
n+1. For step (10) the presence of an+N+1 was

established in lemma 5.3. Starting from step (11) the leading coefficients do not contain 1 − x2
n±1

or 1 − x2
n anymore, so that everything goes smoothly.

Remark 5.5 When N = 1 the polynomial that defines the recursion relation reduces to

Γk = kxk + u1(1 − x2
k)(xk+1 + xk−1).

Steps (4)–(9) then get replaced by two steps in which we consider Γn±1, which allows us to determine
a±. Indeed, substituting the series x(t) in Γn±1 yields for the leading term (t = 0):

(n ± 1) + 4u1a± = 0.

The other parameters are determined as in the general case.
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6 Restricting the formal Laurent solutions: the general case

In this section we will do a similar analysis as the one that has been done for the case of the self-dual
Toeplitz lattice in section 5.

6.1 Structure of the polynomials Γk and Γ̃k

We first investigate on which parameters the leading term(s) in the polynomials Γk and Γ̃k depends
on the free parameters. We denote by A the algebra of all polynomials in the variables xi and yi,
where i ∈ Z, while An stands for the subalgebra of A that consists of all polynomials that do not
depend on xn and on yn. Consider the following four polynomials9

w1 = xnyn−1 + ynxn+1, w2 = xn + xn−1ynxn+1,
wσ

1 = ynxn−1 + xnyn+1, wσ
2 = yn + yn−1xnyn+1.

(59)

For future use, observe that these polynomials are linked by the following identity:

xn(wσ
2 − yn−1w

σ
1 ) = yn(w2 − xn−1w1), (60)

in fact both expressions in (60) are equal to xnyn1−xn−1yn−1. We denote by A′
n the subalgebra of

A that consists of all polynomials that can be written in terms of these four polynomials, besides all
xi and yi, with i 6= n. The polynomials w have the following series in t, when the first few10 terms
of the series xi(t) and yi(t) that are constructed in proposition 3.2, are substituted in them.

w1(t) = Ωbn−1 − a− + (a+an+2bn−1 − a−an−1bn−2)t + O(t2),

w2(t) = Ω + (a+an+2 + a−an−2)t + O(t2),
(61)

where
Ω :=

an−1an+1

(an+1 − an−1)2
(an−1(2a − a+) − an+1(2a − a−)) .

The formal Laurent series for the other polynomials in (59) is found from it by using the automor-
phism σ (see (38)), which yields in particular

σ(Ω) = Ωbn−1bn+1 + a+bn−1 − a−bn+1. (62)

It follows that if G ∈ A′
n then G(t) = O(1), where G(t) := G(x(t), y(t)), with x(t) and y(t) as above.

We will show that the converse is also true, so that the algebra A′
n plays in the general case a similar

rôle as in the self-dual case. For this we need the following lemma.

Lemma 6.1 Let G be a polynomial in A′
n that is independent of w2 and none of whose terms

contains xn+1yn+1 or xn−1yn−1. If G(t) = O(t) then G = 0, as a formal series in t.

Proof It follows from (61) that











w1(0)

wσ
1 (0)

wσ
2 (0)











=
T

(an+1 − an−1)2











a(an−1 − an+1)

a+an+1

a−an−1











9Recall that σ denotes the involution that permutes all xi ↔ yi.
10A priori, one needs to compute an extra term in the series zk(t) (see proposition 3.2) in order to find the shown

terms in (61). After proposition 6.2 we will however show how such a cumbersome can be avoided.
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where

T :=











2an+1 −an−1 2an+1 − an−1

2an−1 an+1 − 2an−1 an+1

2 1
an−1

(an+1 − 2an−1)
1

an+1
(2an+1 − an−1)











.

T is an invertible matrix, since detT = −2(an−1−an+1)
4/(an−1an+1). Let G be a polynomial in A′

n

that is independent of w2 and suppose that G(0) = 0. We write G =
∑

ijk gijkwi
1(w

σ
1 )j(wσ

2 )k, where
gijk is a polynomial in the variables xk and yk with k 6= n only. Notice that gijk(0) is independent
of a, a+ and a−. Therefore, the fact that T is invertible and that a, a+ and a− are independent free
variables implies that gijk(t) = O(t) for any i, j, k. If we assume now in addition that gijk does not
contain either product xn+1yn+1 or xn−1yn−1 then it is clear that gijk = 0 since the leading terms
ak of xk and bk of yk are independent (k 6= n), except that an+1bn+1 = 1 = an−1bn−1.

Proposition 6.2 For G ∈ A, let G(t) := G(x(t), y(t)), where (x(t), y(t)) is the formal Laurent
solution to the first vector field of the Toeplitz lattice, constructed in proposition 3.2. If G(t) = O(1)
then G ∈ A′

n, i.e., G depends only on xn and yn through the polynomials w1, w2, wσ
1 and wσ

2 .

Proof Given G ∈ A we may write G as a polynomial in xn and yn, with coefficients in A′
n; in fact,

writing xn = w2 − xn−1ynxn+1 we may assume that G is independent of xn and we write

G = Gly
l
n + Gl−1y

l−1
n + · · · + G1yn + G0,

where G0, . . . , Gl ∈ A′
n. We suppose that this is done in such a way that l is minimal. If l = 0 then

G ∈ A′
n and we are done; assume therefore that l > 1. We will show that Glyn ∈ A′

n, which is in
contradiction with the minimality of l, like in the self-dual case. We first show that we may assume
that w2 is absent in Glyn. If we substitute xn = w2 − xn−1ynxn+1 in the identity (60) then we find

ynw2 = w2(w
σ
2 − yn−1w

σ
1 ) + yn(w1xn−1 + xn−1xn+1(yn−1w

σ
1 − wσ

2 )),

which allows us to replace any term in Glyn that contains w2, or a power of it, by a term of lower
degree in w2, at the cost of changing Gl−1, so that we can eventually remove w2 entirely from the
leading coefficient Gl. Assuming that Gl does not depend on w2 we perform an Euclidean division
in A′

n,
Gl = (1 − xn−1yn−1)K1 + (1 − xn+1yn+1)K2 + K3, (63)

where K1, K2 and K3 belong to A′
n, with K3 independent of w2 and not containing xn−1yn−1 or

xn+1yn+1.
Assume now that G(t) = O(1). Since all Gi(t) are O(1), as Gi ∈ A′

n, we must have that Gl(t) =
O(t), as yn(t) has a pole. Then (63) implies that K3(t) = O(t), since 1 − xn±1(t)yn±1(t) = O(t).
This means that K3 satisfies the conditions of lemma 6.1, hence that K3 = 0. The identities

(1 − xn−1yn−1)yn = wσ
2 − yn−1w

σ
1 ∈ A′

n

(1 − xn+1yn+1)yn = wσ
2 − yn+1w1 ∈ A′

n

then imply that Glyn ∈ A′
n, as was to be shown.

As a first application of this proposition, we show how the shown terms in (61) can easily be
computed. Since wi(t) = O(1) we also have dwi

dt
(t) = O(1) for i = 1, 2. By proposition 6.2,

dwi

dt
∈ A′

n, in fact

dw1

dt
=

d

dt
(xnyn−1 + ynxn+1)
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= yn−2xn−1xn+1w
σ
− + xn+2w

σ
+ − yn−2(1 − xn−1yn−1)w2 + xn+1yn+1 − xn−1yn−1,

dw2

dt
=

d

dt
(xn + xn−1ynxn+1)

= xn+2xn−1w
σ
+ − xn−2xn+1w

σ
− + xn+1(1 − xn−1yn−1) − xn−1(1 − xn+1yn+1),

where wσ
± := (1− xn±1yn±1)yn, with wσ

±(0) = ±a±bn∓1 +O(t). Since xn±1yn±1 = 1, it follows that

dw1

dt
(0) = bn−2an−1an+1w

σ
−(0) + an+2w

σ
+(0) = a+an+2bn−1 − a−an−1bn−2,

dw2

dt
(0) = an+2an−1w

σ
+(0) − an−2an+1w

σ
−(0) = an+2a+ + an−2a−,

which yield after integration the linear terms in (61). The same formulas can be used to show

that w
(2)
1 and w

(2)
2 , which are the t2 terms in w1(t) and in w2(t), depend only on the parameters

cn−3, . . . , cn+3, a+, a− and a; the precise formula will not be needed, except that they depend on
cn+3 as follows:

w
(2)
1 = x

(1)
n+2w

σ
+(0)/2 + · · · = an+3a+bn−1(1 − an+2bn+2)/2 + · · · ,

w
(2)
2 = x

(1)
n+2xn−1(0)wσ

+(0)/2 + · · · = an+3a+(1 − an+2bn+2)/2 + · · · ,
(64)

where the dots are independent of an+3 (and of bn+3).

The following lemma is the analog of lemma 5.2 and is proven in exactly the same way.

Lemma 6.3 If k 6= n, then the series Γk(t) := Γk(x(t), y(t); u(t)) and Γ̃k(t) := Γ̃k(x(t), y(t); u(t))
are of the form

Γk(t) = F(ak−N , ck−N+1, . . . , ck+N−1, ak+N , a±, a) + O(t),

Γ̃k(t) = F̃(bk−N , ck−N+1, . . . , ck+N−1, bk+N , a±, a) + O(t),

where we recall that ci = (ai, bi) and that an±1bn±1 = 1, and F , F̃ are polynomials in their arguments.

For k = n the corresponding result is more complicated and the method of proof is different from
the one in the self-dual case (lemma 5.3).

Lemma 6.4 The constant terms Γ
(0)
n and Γ̃

(0)
n are of the form

(

Γ
(0)
n

Γ̃
(0)
n

)

= A

(

an+N+1

bn+N+1

)

+ F(cn−N−1, . . . , cn+N , a±, a),

where A is an invertible 2 × 2 matrix and F is a polynomial 2-vector that depends on the listed free
parameters only. See proposition 4.2 for the leading terms of Γn(t) and Γ̃n(t).

Proof We will assume in our proof that N > 2, see Remark 6.5 below. The proof is based on the
explicit expression for Γn that is given in proposition 8.2 (see the appendix), which we write in the
form Γn = (1 − xnyn)Hn + nxn, where

Hn = uNxn+N

∏N−1
i=1 (1 − xn+iyn+i) − uNx2

n+N−1yn+N−2

∏N−2
i=1 (1 − xn+iyn+i)

−uNxn+N−1

(

xnyn−1 + 2
∑N−2

j=1 xn+jyn+j−1

)

∏N−2
i=1 (1 − xn+iyn+i)

+(uN−1xn+N−1 − u−Nyn+N−1xn−1xn)
∏N−2

i=1 (1 − xn+iyn+i)

+F(xn−N+1, . . . , xn+N−2, yn−N+2, . . . , yn+N−2)

− (uNxnxn+1yn−N+1 − u−Nxn−N (1 − xn−N+1yn−N+1))
∏N−2

i=1 (1 − xn−iyn−i).
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Our first claim is that F ∈ A′
n. Since Γn(t) and 1−xn(t)yn(t) have a double pole, while xn(t) has a

simple pole, Hn(t) = O(1). The terms in the above expression that do not involve xn or yn are also
O(1), because xk(t) = O(1) and yk(t) = O(1) for k 6= n. There are a few terms that contain xn or
yn (linearly), but they are all of the form xn(1−xn+1yn+1), yn(1−xn+1yn+1) or xn(1−xn−1yn−1),
which are both O(1). It follows that F(t; u(t)) = O(1), and hence that F(t; u) = O(1). Thinking of
u as constants we have, in view of proposition 6.2, that F ∈ A′

n.
Since 1 − xn(t)yn(t) has a double pole, only the first three terms of 1 − xn(t)yn(t) and of F(t)

can contribute to the constant term in (1−xn(t)yn(t))F(t); in view of table 1, this contribution can
only yield a dependence on the parameters cn−N−1, . . . , cn+N , a± and a.

We now turn to the other terms in Hn and we use their explicit form to show that they only
depend on the listed parameters. Let us first consider the following terms that do not involve xn or
yn,

−
(

uNx2
n+N−1yn+N−2 + 2uNxn+N−1

∑N−2
j=2 xn+jyn+j−1

−uN−1xn+N−1

)

∏N−2
i=1 (1 − xn+iyn+i) + u−Nxn−N

∏N−1
i=1 (1 − xn−iyn−i).

(65)

Since 1−xn±iyn±i has a simple zero for i = 1 and is O(1) for i > 1 we have that
∏N−2

i=1 (1−xn+iyn+i)

and
∏N−1

i=1 (1−xn−iyn−i) have a simple zero, so we only need to look for the parameters that appear
in the first two terms of the coefficients. The former add nothing new to the above parameter list.
For the coefficients of the first one for example, we read off from table 1 that the constant and linear
terms of x2

n+N−1(t)yn+N−2(t) only depend on an+N , cn+N−1, cn+N−2 and bn+N−3, which falls inside
the proposed limits. Notice in particular that neither an+N+1 nor bn+N+1 appear in this term. We
arrive similarly at the same conclusion for the other three terms in (65). Notice that the lowest free
parameter that appears is an−N−1; it comes from the last term in (65).

We now get to the terms that contain xn or yn. As we already noticed these terms always come
with 1 − xn+1yn+1 or 1 − xn−1yn−1. As xn(t)(1 − xn±1(t)yn±1(t)) = O(1) we must investigate the
first three terms in the remaining factors. For the term

−uNxn(1 − xn−1yn−1)xn+1yn−N+1

N−2
∏

i=2

(1 − xn−iyn−i)

we need to look at xn+1yn−N+1

∏N−2
i=2 (1−xn−iyn−i), which yields terms with a low index, the lowest

coming from the coefficient in t2 in yn−N+1(t), to wit bn−N−1 and an−N . The other three terms
that involve xn or yn can be written as

B := −





xn(1 − xn+1yn+1) (uNxn+N−1yn−1 + u−Nyn+N−1xn−1)

+2uNyn(1 − xn+1yn+1)xn+N−1xn+1





N−2
∏

i=2

(1 − xn+iyn+i).

Again, since 1− xnyn has a double pole the first three terms in B(t) = B + B1t + B2t
2 + O(t3) will

contribute to the constant term in (1 − xn(t)yn(t))B(t). It is clear that B2 will contain an+N+1,

coming from x
(2)
n+N−1 and bn+N+1, coming from yn+N−1. To know the precise value, it suffices to

substitute the relevant coefficients of the formal Laurent series x(t), y(t) in the following part of B2,

−
(

(xn(1 − xn+1yn+1))
(0)
(

uNx
(2)
n+N−1y

(0)
n−1 + u−Ny

(2)
n+N−1x

(0)
n−1

)

+2uN(yn(1 − xn+1yn+1))
(0)x

(2)
n+N−1x

(0)
n+1

)

N−2
∏

i=2

(1 − xn+iyn+i)
(0),
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which gives, by using proposition 3.2, and in particular −(xn(1 − xn+1yn+1))
(0) = a+an+1 and

−(yn(1 − xn+1yn+1))
(0) = −a+bn−1,

−a+an+1

2
(uNan+N+1bn−1 − u−Nan−1bn+N+1)

N
∏

i=2

(1 − an+ibn+i) + · · · , (66)

where the dots are independent of an+N+1 and bn+N+1. There remains one term in Hn, namely

the leading term C := uNxn+N

∏N−1
i=1 (1 − xn+iyn+i). It does not involve xn but does involve

1− xn+1yn+1, which will also lead to a dependence on an+N+1. Writing C(t) = C1t + C2t
2 + O(t3)

we have that

C2 = uNan+N+1a+(an+1 − an−1)bn−1

∏N
i=2(1 − an+ibn+i) + · · · ,

where the dots are again independent of an+N+1 and bn+N+1. Summing up, we have that the leading

terms in Γ
(0)
n are given by

−a+(1 − xnyn)(0)

2
(uN (an+1 − 2an−1)bn−1an+N+1 + u−Nan+1an−1bn+N+1)

N
∏

i=2

(1 − an+ibn+i).

By duality, the leading terms in Γ̃
(0)
n are given by

a+(1 − xnyn)(0)

2an−1
(u−N (an−1 − 2an+1)bn+N+1 + uNbn−1an+N+1)

N
∏

i=2

(1 − an+ibn+i).

We may conclude that
(

Γ
(0)
n

Γ̃
(0)
n

)

= A

(

an+N+1

bn+N+1

)

+ F(cn−N−1, . . . , cn+N , a±, a), (67)

where

A =
a+an+1

2(an−1 − an+1)2







(an+1 − 2an−1)uN an+1a
2
n−1u−N

− uN

an−1
(2an+1 − an−1)u−N







N
∏

i=2

(1 − an+ibn+i).

Since

detA =
uNu−N

2

(

a+an+1

an+1 − an−1

N
∏

i=2

(1 − an+ibn+i)

)2

,

A is invertible.

Remark 6.5 The above proof breaks down at several places when N = 2. The polynomial Hn then
reduces to

Hn = u2(xn+2(1 − xn+1yn+1) − xn+1w1) + u1xn+1

+ u−2(xn−2(1 − xn−1yn−1) − xn−1w
σ
1 ) + u−1xn−1.

(68)

Using (64) and proposition 3.2 we find that Hn depends in the following way on an+3 and bn+3,

u2(x
(1)
n+2(1 − xn+1yn+1)

(1) − x
(0)
n+1w

(2)
1 ) − u−2x

(0)
n−1w

σ(2)
1

=
a+(1 − an+2bn+2)

2an−1
(u2(an+1 − 2an−1)an+3 + u−2an+1a

2
n−1bn+3).

It leads as in the case N > 2 to (67), with precisely the same matrix A.
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6.2 Parameter restriction

The parameter restriction works more or less like in the self-dual case, the main difference coming

from the fact that in the self-dual case we had to put all Γ
(0)
k = 0, while in the general case the

tangency condition is equivalent to

1. Γk(t) = O(t) and Γ̃k(t) = O(t) for all k with k 6= n + 1;

2. Γn−1(t) = O(t2);

3. Γn+1(t) = O(t).

In a sense, the condition Γn−1(t) = O(t2) replaces the condition Γ̃n+1(t) = O(t), which is redundant
because it is a consequence of the other conditions (see proposition 4.3).

Proposition 6.6 Keeping the 4N − 1 parameters11 cn−2N , . . . , cn−2, an−1 arbitrary, the other pa-
rameters in the formal Laurent series (x(t), y(t)), given by proposition 3.2, can be chosen as rational
functions of these parameters, so that Γk(t) = 0 and Γ̃k(t) = 0, identically in t, for all k ∈ Z.

Proof We give the proof in the case N > 1 only, leaving the case N = 1 to the reader (see Remark
5.5 for the self-dual N = 1 case). As in the self-dual case, we summarize the order in which we
treat the different equations in a table (see table 3). The second column shows which ∆k = (Γk, Γ̃k)
we consider. For k 6= n ± 1 it is clear that each ∆k appears (precisely once). The fact that Γn−1

appears on line (9a), while ∆n−1 already appears on line (8) comes from the fact that we consider
in line (9a) the coefficient in t of Γn−1(t) (rather than the coefficient in t0); similarly, Γ̃n+1 is absent
because the nullity of Γ̃n+1(0) is a consequence of the nullity of the other ∆k(0) (proposition 4.3).
We know from proposition 8.2 that for any k ∈ Z,

Γk(x, y; u) ∈ R[xk−N , . . . , xk+N , yk−N+1, . . . , yk+N−1],

Γ̃k(x, y; u) ∈ R[xk−N+1, . . . , xk+N−1, yk−N , . . . , yk+N ],
(69)

so that
∆k(x, y; u) ∈ R[zk−N , . . . , zk+N ].

This leads, with no effort, to the third column of the table. For future use, let us recall that Γk

depends (linearly) on xk−N and on xk+N , while Γ̃k depends (linearly) on yk−N and on yk+N .

Let us now turn, line by line, to the last column, which demands a careful inspection of the
polynomials Γk and Γ̃k. In particular, we show that these polynomials depend on the underlined
parameter(s) (linearly), in such a way that one can solve for them. In steps (1) – (3) we have
that zn is absent, so that ∆n−N−k(0) (k ≥ 1) depends on zn−2N−k(0), . . . , zn−k(0) only, i.e., on
cn−2N−k, . . . , cn−k. Now Γn−N−k depends on xn−2N−k (linearly), but not on yn−2N−k, while the op-
posite is true for Γ̃n−N−k, so that we can solve the equation Γn−N−k(0) = 0 linearly for an−2N−k, and
similarly Γ̃n−N−k(0) = 0 can be solved linearly for bn−2N−k in terms of cn−2N−k+1, . . . , cn−k. For
k = 1 this gives an−2N−1 (resp. bn−2N−1) in terms of the 4N − 1 parameters cn−2N , . . . , cn−2, an−1,
so that by taking k = 2, 3, . . . , we get recursively cn−2N−k in terms of these parameters, for all
k ≥ 1.

We now get to step (4) which is different because ∆n−N involves xn and yn. As for Γn, according
to proposition 8.2, xn appears only in the leading term of Γn−N , which we can write as

uNxn

N−1
∏

i=0

(1 − xn−N+iyn−N+i) = uNw−

n−2
∏

i=n−N

(1 − xiyi), uN 6= 0,

11Recall that ck = (ak , bk) and that an±1bn±1 = 1.
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Table 3: The tangency condition allows us to solve for all free parameters in the formal Laurent
series, except for the 4N − 1 parameters cn−2N , . . . , cn−2, an−1, that can be taken arbitrarily. The
equations can be solved linearly for the underlined terms.

step ∆k ∆k polynomial in ∆
(0)
k , Γ

(1)
n−1, Γ

(0)
n+1 polynomial in

(1) ∆n−N−1 zn−2N−1, . . . , zn−1 cn−2N−1, . . . , cn−1

(2) ∆n−N−2 zn−2N−2, . . . , zn−2 cn−2N−2, . . . , cn−2

(3)
...

...
...

(4) ∆n−N zn−2N , . . . , zn cn−2N , . . . , cn−1, a−, an+1

(5) ∆n−N+1 zn−2N+1, . . . , zn+1 cn−2N+1, . . . , cn+1, a−, a+, a

(6) ∆n−N+2 zn−2N+2, . . . , zn+2 cn−2N+2, . . . , cn+2, a±, a, cn+2

(7)
...

...
...

(8) ∆n−1 zn−N−1, . . . , zn+N−1 cn−N−1, . . . , cn−2, a±, a

cn+2, . . . , cn+N−1

(9a) Γn−1 xn−N−1, zn−N , . . . an−N−2, cn−N−1, . . .

. . . , zn+N−2, xn+N−1 . . . , cn+N−1, an+N

(9b) Γn+1 xn−N+1, zn−N+2, . . . an−N+1, cn−N , . . .

. . . , zn+N , xn+N+1 . . . , cn+N−1, bn+N , an+N+1

(10) ∆n zn−N , . . . , zn+N cn−N−1, . . . , an−2, a±

an+2, . . . , cn+N+1

(11) ∆n+2 zn−N+2, . . . , zn+N+2 cn−N+2, . . . , an−2, a±

an+2, . . . , cn+N+2

(12)
...

...
...
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where w− := xn(1 − xn−1yn−1) ∈ A′
n, as w−(t) = a−an−1 + O(t). Therefore, using (69),

Γn−N (0) = uNa−an−1

n−2
∏

i=n−N

(1 − aibi) + F(an−2N , cn−2N+1, . . . , cn−1),

which can be solved linearly for a− in terms of the previous parameters (1 − aibi 6= 0 for n − N ≤
i ≤ n − 2). Using the automorphism σ (see (38)),

Γ̃n−N (0) = u−N

−a−

an+1

n−2
∏

i=n−N

(1 − aibi) + F(bn−2N , cn−2N+1, . . . , cn−1),

so that Γ̃n−N (0) = 0 can be solved linearly for bn+1 = 1/an+1.

For step (5), xn and yn may be present in several terms in ∆n−N+1, but in view of proposi-
tion 6.2, Γn−N+1 and Γ̃n−N+1 are polynomials in zn−2N+1, . . . , zn−1, zn+1 and in w1 and w2 and
their σ analogs only. Thus, Γn−N+1(0) and Γ̃n−N+1(0) depend on their leading terms only, to wit
cn−2N+1, . . . , cn−1, an+1 and a, a±. It follows that the only new parameters that appear at step (5)
are a+ and a. Let us show that they appear in such a way that we can solve for them (linearly) in
terms of the other parameters. We do this as in the self-dual case by isolating the leading term in
Γn−N+1 as given in proposition 8.2, namely we write Γn−N+1 as

Γn−N+1 = −uN(xnw1 − xn+1)(1 − xn−1yn−1)

n−2
∏

i=n−N+1

(1 − xiyi) + F(zn−2N+2, . . . , zn), (70)

The relation (70) was obtained by writing the leading term

xn+1(1 − xnyn) = xn+1 − (xnw1 − x2
nyn−1),

and throwing the x2
nyn−1 term into F . Since Γn−N+1(t) = O(1) and since the first two terms in (70)

belong to A′
n, the last term in (70) is also O(1) in t; since in addition this term does not contain

zn+1, by proposition 6.2 and (59) xn and yn can only appear in it multiplied by 1− xn−1yn−1, and
so by proposition 3.2 we may conclude that the contribution from this term in Γn−N+1(0) will not

involve a+ or a. Also, the second term in (70), uNxn+1(1−xn−1yn−1)
∏n−2

i=n−N+1(1−xiyi) does not
contribute to Γn−N+1(0) since 1−xn−1(t)yn−1(t) = O(t) while all other factors are O(1). Thus, the
dependence on a+ and a in Γn−N+1(0) comes entirely from the first term in (70), which in view of
proposition 3.2 and (61) is given by

Γn−N+1(0) = −uNa−Ω

n−2
∏

i=n−N+1

(1 − aibi) + previous parameters.

By duality,

Γ̃n−N+1(0) = u−N

a−an−1

an+1
σ(Ω)

n−2
∏

i=n−N+1

(1 − aibi) + previous parameters,

where σ(Ω) was given in (62). Since Ω and σ(Ω) are linearly independent, as linear functions of a+

and a, we can indeed solve Γ̃n−N+1(0) = 0 and Γ̃n−N+1(0) = 0 linearly for a+ and a in terms of the
other parameters.
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Steps12 (6) – (8) are easy, the point being that by proposition 8.2, for 2 ≤ k ≤ N − 1

∆n−N+k(0) =
(

uN

u−N

)

cn+k((1 − xn−1yn−1)(1 − xnyn)(1 − xn+1yn+1))
(0)

n+k−1
∏

i=n−N+k
i6=n−1,n,n+1

(1 − aibi) + known.

Let us concentrate on the next steps, which are more exciting. In step (9a) we need to compute the
linear term in Γn−1(t), where we recall from propositions 4.2 and 6.2 that Γn−1 ∈ A′

n, hence that
this linear term only depends on the constant and linear terms of the elements of Γn−1 ∈ A′

n. Since
Γn−1 ∈ R[xn−N−1, . . . , xn+N−1, yn−N , . . . , yn+N−2], with leading term

Γn−1 = uNxn+N−1

N−1
∏

i=0

(1 − xn+i−1yn+i−1) + · · · ,

we have from proposition 3.2 that

Γn−1(t) = Γ
(0)
n−1+

(

uNan+N ((1 − xn−1yn−1)(1 − xnyn)(1 − xn+1yn+1))
(0)
∏N

i=3(1 − an+i−1bn+i−1) + · · ·
)

t

+O(t2),

where the dots only involve previous parameters. Therefore we may solve Γ
(1)
n−1 = 0 (linearly) for

an+N . Step (9b) is similar to step (9) in the self-dual case; notice that we postpone again ∆n to the
next step. First of all Γn+1(t) = O(1) and so Γn+1 ∈ A′

n. The leading term in Γn+1, namely the

term uNxn+N+1(1 − xn+1yn+1)
∏N−1

i=1 (1 − xn+1+iyn+1+i) cannot contribute to Γn+1(0) because it
is O(t), which explains the absence of an+N+1 in Γn+1(0). By proposition 8.2, bn+N can come only
from yn+N , which appears only once, namely in

−u−Nyn+Nxnxn+1

N−2
∏

i=0

(1 − xn+1+iyn+1+i) = −u−Nyn+Nxn+1(xn(1 − xn+1yn+1))

n+N−1
∏

i=n+2

(1 − xiyi),

yielding at t = 0 a non-zero linear term in bn+N , as xn(t)(1 − xn+1(t)yn+1(t)) = O(1).

Step (10) is the hardest one, but we dealt with it in lemma 6.4. Notice that after this step we
have that ∆n(t) = O(t) since the nullity of the previous ∆k(0) already implies that ∆n(t) = O(1)
(proposition 4.2). Starting from step (11) everything goes smoothly, as ∆k(t) = O(1) for k > n + 1
and the leading term of Γk(0), resp. Γ̃k(0) will produce precisely the new parameter ak+N , resp.
bk+N (linearly).

7 Singularity confinement

We have constructed in the previous sections formal Laurent series for the Toeplitz lattice (self-dual
and general case) solving the recursion relations Γk(x(t); u(t)) = 0 (∆k(x(t), y(t); u(t)) = 0 in the
general case). We will now transform these into solutions of the recursion relations Γk(x; u) = 0
(resp. ∆k(x, y; u) = 0), depending on a certain number of free parameters, and blowing up for only
one (resp. two) variables. We will mainly concentrate on the self-dual case, as the general case is
dealt with in precisely the same way.

12Skip these steps if N = 2.
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The main tool to do this transformation is a formal version of the implicit function theorem,
which we explain in the case of one variable, the scalar case. Suppose that we have a formal series
in t,

x(t; a) = a + f1(a)t + f2(a)t2 + · · · ; (71)

one may think for example of x(t; a) as a formal solution of a vector field (differential equation
dx
dt

= F (x)) on the real line, with initial condition x(0; a) = a. In our case the functions fi will be
rational. We wish solve the equation x(t; a) = α formally, namely we wish to construct the formal
series in t

a(t; α) = α + g1(α)t + g2(α)t2 + · · ·
with the property that x(t; a(t; α)) = α, as a formal t-series identity. Precisely, we claim that there
exist for any s ∈ N unique (rational) functions g1(α), . . . , gs(α), such that

x(t; α + g1(α)t + g2(α)t2 + · · · + gs(α)ts) − α = O(ts+1),

where x(t; ·) is given by (71). This is a trivial consequence of a formal version of Taylor’s Theorem.
For example, for s = 1 we neglect all terms in t2 and the condition on g1 becomes

x(t; α + g1(α)t) − α + O(t2) = g1(α)t + f1(α + g1(α)t)t + O(t2)

= (g1(α) + f1(α))t + O(t2),

so that g1(α) = −f1(α). For s = 2 we neglect the terms in t3, giving

x(t; α − f1(α)t + g2(α)t2) − α + O(t3)

= −f1(α)t + g2(α)t2 + f1(α − f1(α)t)t + f2(α)t2 + O(t3)

= g2(α)t2 + f ′
1(α)(−f1(α)t)t + f2(α)t2 + O(t3)

= (g2(α) − f1(α)f ′
1(α) + f2(α))t2 + O(t3),

which has g2(α) := f1(α)f ′
1(α) − f2(α) as a unique solution. Continuing in this way it is clear that

gi(α) equals −fi(α), up to a differential polynomial in the fj(α), with j < i. Notice that when all
fi(a) are rational function the same will be true for all gj(α).

Let us apply this to the formal Laurent series that we have constructed for the self-dual Toeplitz
lattice, and that yield formal solutions to the recursion relations Γk(t) := Γk(x(t); u(t)) = 0, where
k ∈ Z. Recall from proposition 5.4 that these formal Laurent solutions xk(t) depend on 2N − 1
parameters an−2N , . . . , an−2, which are the leading coefficients of xn−2N , . . . , xn−2, namely

xk(t) = ak + O(t), k = n − 2N, . . . , n − 2, (72)

where the higher order terms are rational functions of the parameters an−2N , . . . , an−2. Besides the
parameters ak these functions also depend (polynomially) on the parameters u = (u1, . . . , uN ) that
define the recursion relations, namely xk(t) = xk(t; an−2N , . . . , an−2; u), for n − 2N ≤ k ≤ n − 2.
The formal implicit function theorem then leads to the following proposition.

Proposition 7.1 There exist for k = n − 2N, . . . , k = n − 2 rational functions

a
(i)
k = a

(i)
k (αn−2N , . . . , αn−2; u1, . . . , uN)

such that ak :=
∑∞

i=0 a
(i)
k ti, k = n − 2N, . . . , n − 2 formally inverts (72), i.e.,

xk

(

t;

∞
∑

i=0

a
(i)
n−2N ti, . . . ,

∞
∑

i=0

a
(i)
n−2t

i; u

)

= αk,

for k = n − 2N, . . . , n − 2, with a
(0)
k = αk.
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We can use these series to replace the free parameters an−2N , . . . , an−2 in the series xk(t), k ∈ Z,
by α := (αn−2N , . . . , αn−2), where we think of the latter as (partial) initial conditions to the recursion

relation. To do this, one simply substitutes ak =
∑∞

i=0 a
(i)
k ti for k = n − 2N, . . . , n − 2 in each of

the series xk(t) = xk(t; an−2N , . . . , an−2; u), and rewrites this as a series in t; by construction, this
simply gives xk(t) = αk for k = n − 2N, . . . , k = n − 2. For k = n − 1, this yields

xn−1(t) = ε +

∞
∑

i=1

x
(i)
n−1(a; u)ti = ε +

∞
∑

i=1

ξ
(i)
n−1(α; u)ti,

where we recall that ε2 = 1. The functions ξ
(i)
n−1 are rational in α and u. We will now use the formal

implicit13 function theorem again, but in a form which is different from the one explained above:
putting xn−1(t) = ε + λ(t), i.e., we put

λ :=

∞
∑

i=1

ξ(i)(α; u)ti,

which we solve for t as a formal series in λ,

t(λ) =
∞
∑

i=1

τ (i)(α; u)λi, (73)

where it is important to note that the constant term in this series is absent. Indeed, let us first
substitute (73) in the series for ak that was obtained in proposition (7.1), to get ak = ak(α; λ; u).
Then, the latter and t(λ) are substituted in all xk(t), to yield series in λ whose coefficients are
rational functions of α = (αn−2N , . . . , αn−2) (and of u = (u1, . . . , uN )), which take the following
form.

xk(λ, α; u) =
∑∞

i=0 χ
(i)
k (α; u)λi, k < n − 2N,

xk(λ, α; u) = αk, n − 2N ≤ k < n − 1,

xn−1(λ, α; u) = ε + λ,

xn(λ, α; u) = 1
λ

∑∞
i=0 χ

(i)
n (α; u)λi,

xn+1(λ, α; u) = −ε +
∑∞

i=1 χ
(i)
n+1(α; u)λi,

xk(λ, α; u) =
∑∞

i=0 χ
(i)
k (α; u)λi, n + 1 < k.

It may seem that we have reached the final result, but we should not forget that these series are
constructed from solutions x = x(t) to the recursion relations Γk(x; u(t)), where u(t) = (u1 +
t, u2, . . . , uN ). However, letting U = (U1, . . . , Un) := u(t), and using (73) to get rid of t, we have
that

xk(λ, α; (U1 − t(λ), U2, . . . , UN )), k ∈ Z solves Γk(x; U) = 0, k ∈ Z.

Notice that, when it is all worked out, the xk are formal power series in λ (except xn which has a sim-
ple pole in λ), and their coefficients are rational functions of the initial conditions αn−2N , . . . , αn−2

and of the parameters U1, . . . , Un. Writing

xk(λ, α; (U1 − t(λ), U2, . . . , UN)) =

∞
∑

i=0

x
(i)
k (α; U)λi, k ∈ Z \ {n}

xn(λ, α; (U1 − t(λ), U2, . . . , UN)) =

∞
∑

i=−1

x(i)
n (α; U)λi,

13Call this the formal inverse function theorem, if you wish.

37



leads to our final result.

Theorem 7.2 The recursion relations Γk(x; U) = 0, k ∈ Z admit for any n ∈ Z two14 formal
Laurent solution x = (xk(α, λ; U))k∈Z, depending on 2N free parameters α = (αn−2N , . . . , αn−2)
and λ with xn having a (simple) pole for λ → 0, and no other singularities. Explicitly, these series
with coefficients rational in α are given by

xk(λ, α; U) =
∑∞

i=0 x
(i)
k (α; U)λi, k < n − 2N,

xk(λ, α; U) = αk, n − 2N ≤ k < n − 1,

xn−1(λ, α; U) = ε + λ,

xn(λ, α; U) = 1
λ

∑∞
i=0 x

(i)
n (α; U)λi,

xn+1(λ, α; U) = −ε +
∑∞

i=1 x
(i)
n+1(α; U)λi,

xk(λ, α; U) =
∑∞

i=0 x
(i)
k (α; U)λi, n + 1 < k.

The corresponding theorem for the recursion relations ∆k = 0, which was formulated in the intro-
duction (Theorem 1.1) follows in the same way, using the formal Laurent solutions z(t) that solve
the recursion relations.

8 Appendix

In this appendix we obtain the leading terms of the polynomials Γk and Γ̃k, which are needed in
sections 5 and 6. The notations are as in the body of the paper, namely P1 and P2 are polynomials
of degree N (see (19)), the matrices L1 and L2 are defined by (14) and the polynomials Γk and Γ̃k

are defined by (20). Since Γk is given by

Γk(x, y; u) :=
1 − xkyk

yk

(

−(L1P
′
1(L1))k+1,k+1 − (L2P

′
2(L2))k,k

+(P ′
1(L1))k+1,k + (P ′

2(L2))k,k+1

)

+ kxk, (74)

we need, by duality, only to determine the leading terms of (Ls
1)kk and of (Ls

1)k+1,k, for s, k ∈ Z,

with s ≥ 2, which will be done in the following lemma. Notice that the leading terms of Γ̃k will also
follow from it, by duality.

Lemma 8.1 For k ∈ Z and s ∈ N, with s ≥ 2, the diagonal and first subdiagonal entries of the
Toeplitz matrices L1 and L2, defined in (14), are polynomials in the following variables,

(Ls
1)kk ∈ R[xk−s+1, . . . , xk+s−1, yk−s, . . . , yk+s−2],

(Ls
1)k+1,k ∈ R[xk−s+1, . . . , xk+s, yk−s, . . . , yk+s−1].

More precisely15,

(Ls
1)kk = − xk+s−1yk−1

s−1
∏

i=1

(1 − xk+i−1yk+i−1) + x2
k+s−2yk+s−3yk−1

s−2
∏

i=1

(1 − xk+i−1yk+i−1)

14parametrized by ǫ = ±1.
15We give in each case the terms that will be used, no more, no less. When s = 2 only the first two lines survive;

the term on fourth line coincides with the first term on the second line and should only be counted once.
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− xk+s−2



yk−2(1 − xk−1yk−1) − 2yk−1

s−2
∑

j=1

xk+j−1yk+j−2





s−2
∏

i=1

(1 − xk+i−1yk+i−1)

+F1(xk−s+2, . . . , xk+s−3, yk−s+1, . . . , yk+s−3)

− xkyk−s

s−1
∏

i=1

(1 − xk−iyk−i)

and

(Ls
1)k+1,k = − xk+syk−1

s−1
∏

i=1

(1 − xk+iyk+i) − xk+1yk−s

s−1
∏

i=1

(1 − xk−iyk−i)

+F2(xk−s+2, . . . , xk+s−1, yk−s+1, . . . , yk+s−2)

where F1 and F2 are polynomials in their arguments.

Proof The following notation is useful for obtaining formulas of this type. To the bi-infinite vector x

we associate, for any k ∈ Z a bi-infinite diagonal matrices X(k) and Y (k) by putting X
(k)
ij := xi+kδij

and Y
(k)
ij := yi+kδij and (Kronecker delta). Similarly we introduce the diagonal matrices V (k), by

defining V
(k)
ij := (1−xi+kyi+k)δij . We denote by ∆ the shift operator, which we view as a bi-infinite

matrix, with entries ∆ij := δi+1,j . It is easy to verify that

∆iX(j) = X(i+j)∆i, i, j ∈ Z,

which is the main formula that we will use, as it allows us to push all ∆ to the right (or to the left).
One obvious consequence is that a monomial in X, Y, V and ∆ will only have a non-zero diagonal
when it is independent of ∆ (i.e., the sum of all powers of ∆ is zero). In order to apply this to obtain
the above formulas, observe that L1 and L2 can be written as

L1 = ∆V (−1) −
∑

i≥0

∆−iX(i)Y (−1) = V (0)∆ −
∑

i≥0

X(0)Y (−i−1)∆−i,

L2 = ∆−1V (0) −
∑

i≥0

∆iX(−i−1)Y (0) = V (−1)∆−1 −
∑

i≥0

X(−1)Y (i)∆i.

Notice that, in view of what we said, all diagonal entries of (V (0)∆)s−1 are zero. Therefore, it follows
from the second formula for L1 that the leading term in x of the diagonal terms of Ls

1 will be gotten
from the product

−(V (0)∆)s−1
∑

i≥0

X(0)Y (−i−1)∆−i. (75)

The diagonal entries of (75) are obtained by taking i = s − 1, which yields

(

−(V (0)∆)s−1X(0)Y (−s)∆−s+1
)

kk
= −

(

V (0) . . . V (s−2)X(s−1)Y (−1)
)

kk

= −xk+s−1yk−1

s−1
∏

i=1

(1 − xk+i−1yk+i−1).

Notice that this leading term already contains xk+s−2, and that it yields, through the factor 1 −
xk+s−2yk+s−2, the single term that contains yk+s−2, which is the highest y variable that appears in
(Ls

1)kk.
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In order to get the other terms in Ls
1 that lead to xk+s−2 we need ∆s−2 in front of X(0), i.e.,

we need s− 2 copies of V (0)∆ (not necessarily consecutive), on the left of −∑i≥0 X(0)Y (−i−1)∆−i.

For the remaining factor we can have another copy of V (0)∆ or of −
∑

i≥0 X(0)Y (−i−1)∆−i, inserted

at an arbitrary place inside the product −(V (0)∆)s−2
∑

i≥0 X(0)Y (−i−1)∆−i. This leads to three

possible types of terms. For the first one, we put another V (0)∆ at the end

−(V (0)∆)s−2
∑

i≥0

X(0)Y (−i−1)∆−i(V (0)∆),

and we get the k, k diagonal term by taking i = s − 1, which gives

(

−(V (0)∆)s−2X(0)Y (−s)∆1−sV (0)∆
)

kk
= −xk+s−2yk−2

s−2
∏

i=0

(1 − xk+i−1yk+i−1).

For the second one we put another −∑j≥0 X(0)Y (−j−1)∆−j at the end,

(V (0)∆)s−2
∑

i≥0

X(0)Y (−i−1)∆−i
∑

j≥0

X(0)Y (−j−1)∆−j ;

its diagonal terms are given by taking i + j = s − 2, i.e., from

(V (0)∆)s−2
s−2
∑

j=0

X(0)Y (j−s+1)X(j−s+2)Y (−s+1)∆2−s,

whose k, k term is given by

yk−1



x2
k+s−2yk+s−3 + xk+s−2

s−3
∑

j=0

xk+jyk+j−1





s−2
∏

i=1

(1 − xk+i−1yk+i−1).

The third term is obtained by inserting the constant term −X(0)Y (−1) of −∑j≥0 X(0)Y (−j−1)∆−j

at all possible places in the product (V (0)∆)s−2, namely from

s−3
∑

j=0

(V (0)∆)j(X(0)Y (−1))(V (0)∆)s−j−2
∑

i≥0

X(0)Y (−i−1)∆−i,

with i = s − 2, so that its k, k term is given by



yk−1xk+s−2

s−3
∑

j=0

xk+jyk+j−1





s−2
∏

i=1

(1 − xk+i−1yk+i−1),

which, combined with the first two terms, yields the leading terms of (Ls
1)kk. Using the first formula

for L1, the lowest term in y of the diagonal terms of Ls
1 is gotten from

−∆−s+1X(s−1)Y (−1)(∆V (−1))s−1 = −X(0)Y (−s)V (−s+1) . . . V (−1),

whose k, k entry is −xkyk−s

∏s−1
i=1 (1−xk−iyk−i). It contains the lowest term in x, through the factor

1 − xk−s+1yk−s+1.

40



One obtains similarly the entries of (Ls
1)k+1,k by selecting the terms in Ls

1 that contain precisely
∆−1. Notice in this respect that if M is a bi-infinite diagonal matrix then (M∆−1)k+1,k = Mk+1,k+1.
It follows that the leading term in x of (Ls

1)k+1,k, which contains also the leading term in y, is
obtained from the product (75), with i = s, yielding

−
(

V (0) . . . V (s−2)X(s−1)Y (−2)
)

k+1,k
= −xk+syk−1

s−1
∏

i=1

(1 − xk+iyk+i).

The lowest term in y, which contains the lowest term in x, is obtained in the same way.

The above lemma and (74) lead by direct substitution to the following proposition.

Proposition 8.2 For k ∈ Z, the polynomials Γk and Γ̃k depend on the following variables xi and
yi:

Γk(x, y; u) ∈ R[xk−N , . . . , xk+N , yk−N+1, . . . , yk+N−1],

Γ̃k(x, y; u) ∈ R[xk−N+1, . . . , xk+N−1, yk−N , . . . , yk+N ].

More precisely16,

Γk(x, y; u) = uNxk+N

N−1
∏

i=0

(1 − xk+iyk+i) − uNx2
k+N−1yk+N−2

N−2
∏

i=0

(1 − xk+iyk+i)

−uNxk+N−1



xkyk−1 + 2

N−2
∑

j=1

xk+jyk+j−1





N−2
∏

i=0

(1 − xk+iyk+i)

+ (uN−1xk+N−1 − u−Nyk+N−1xk−1xk)

N−2
∏

i=0

(1 − xk+iyk+i)

+ (1 − xkyk)F(xk−N+1, . . . , xk+N−2, yk−N+2, . . . , yk+N−2) + kxk

− (uNxkxk+1yk−N+1 − u−Nxk−N (1 − xk−N+1yk−N+1))

N−2
∏

i=0

(1 − xk−iyk−i),

where F is a polynomial in its arguments, with a similar statement for Γ̃k gotten by duality. In the
self-dual case, Γk takes the simpler form

Γk(x; u) = uNxk+N

N−1
∏

i=0

(1 − xk+iyk+i) + uN−1xk+N−1

N−2
∏

i=0

(1 − xk+iyk+i)

−uNxk+N−1



xk+N−1xk+N−2 + 2

N−2
∑

j=0

xk+jxk+j−1





N−2
∏

i=0

(1 − xk+iyk+i)

+ (1 − xkyk)F(xk−N+1, . . . , xk+N−2) + kxk

− uN(xkxk+1xk−N+1 − xk−N (1 − xk−N+1yk−N+1))

N−2
∏

i=0

(1 − xk−iyk−i).

16As in the case of lemma 8.1, when N = 2 then the term −u2xkxk+1yk−1(1− xkyk), which appears twice, should
only be taken into account once.
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