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1. Introduction

The purpose of this paper is to give a short survey on algebraic integrability, with
the purpose of making the ideas and techniques accessible to a larger community.
We present the general theory, giving at each step an example that is simple, but
non-trivial, highlighting the concept that has been introduced.

The paper is divided in two parts (Sections 2 and 3). In Section 2 we first
recall the notion of a Poisson manifold and we recall the main examples, namely
symplectic manifolds and the dual of a Lie algebra (Paragraph 2.1). We introduce
in Paragraph 2.2 the notion of an integrable system on a Poisson manifold and we
formulate the classical Liouville Theorem, adapted to the case of Poisson manifolds.
The major tool for constructing integrable systems is the Adler-Kostant-Symes
Theorem, given in Paragraph 2.3.

Section 3 deals with algebraic integrability. We mainly focus on algebraic com-
plete integrability in the sense of Adler-van Moerbeke (a.c.i.). We present in detail
the example of the periodic 5-particle Kac-van Moerbeke lattice in Paragraph 3.2.
This paragraph is the most technical part of the paper, aimed at showing, on an
example, how algebraic integrability can be proven, when only the functions in in-
volution are given (no Lax equation or geometric data are given). It can be skipped
on first reading; it is included because it contains many useful ideas and illustrates
almost all difficulties that are generally encountered when proving algebraic inte-
grability. We discuss in Paragraph 3.3 Lax equations with a parameter, a mayor
source of a.c.i. systems. We finish the paper with some comments on the general
notion of algebraic integrability and we illustrate the latter with two examples.
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2. Integrable systems on Poisson manifolds

The phase space of the simplest mechanical systems has the structure of a sym-
plectic manifold: a smooth manifold M which is equipped with a closed, non-
degenerate 2-form, which allows one to identify the tangent and cotangent bundles
to M , and hence to associate to any one-form on M a vector field on M . Using the
energy (function) H of the system one associates through this to dH a vector field
whose flow describes precisely the evolution of the mechanical system with energy H
(see e.g. [5]). For more complex systems, still finite-dimensional, one uses the more
general notion of a Poisson manifold (see [16]). For the infinite-dimensional case,
which will not be discussed here, see [6].

2.1. Poisson manifolds.

Definition 2.1. Let M be a differentiable manifold and let {· , ·} be a Lie algebra
structure on F(M), the algebra of smooth functions on M . One says that {· , ·} is a
Poisson bracket on M when it is a derivation in each of its arguments (biderivation),
i.e., for any H ∈ F(M) it satisfies the Leibniz rule

∀F, G ∈ F(M) {FG, H} = F {G, H} + {F, H}G.

The derivation (vector field) XH , defined by XH := {· , H} is then called the Hamil-
tonian vector field associated to H . Functions H for which XH = 0 are called
Casimirs.

It is clear that the notion of a Poisson manifold makes sense also for complex
manifolds (taking for F(M) the algebra of holomorphic functions), for complex
affine varieties, that are possibly singular (taking for F(M) the algebra of regular
functions), and so on. This will be relevant later in this text.

It follows easily from the definition that the Hamiltonian vector fields form a Lie
subalgebra Ham(M) of the Lie algebra X(M) of all vector fields on M and that the
Casimirs form a subalgebra of F(M), denoted Cas(M). Considering the bracket
on F(R2n), defined by the formula

(1) {F, G} :=

n
∑

i=1

(

∂F

∂qi

∂G

∂pi

−
∂G

∂qi

∂F

∂pi

)

,

where q1, p1, . . . , qn, pn are coordinates on R2n we recover Hamilton’s equations of
motion

q̇i = pi,
ṗi = −∂V/∂qi,

i = 1, . . . , n,

in their most symmetric form

q̇i = {qi, H} ,
ṗi = {pi, H} ,

i = 1, . . . , n,

where H : R2n → R is the Hamiltonian, H =
∑

i p2
i /2 + V (q) (the sum of the

kinetic and potential energy, expressed in terms of position q and momentum p).
It is clear that, in general, the constants of motion, i.e., the functions which are
constant on the integral curves of XH , are the functions F for which {F, H} = 0.
Finding such functions is important for integrating the equations of motion, as we
will see.
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Example 2.2. As suggested above, a symplectic manifold (M, ω) is a Poisson man-
ifold. The Poisson bracket is defined for F, G ∈ F(M) by {F, G} := ω (XF ,XG) ,
where the vector field XH is defined for symplectic manifolds by ω (XH , ·) = dH,
where H ∈ F(M). It follows easily that {· , H} = XH , so that this definition of XH

actually is consistent with the one given earlier. The Jacobi identity for {· , ·} is a
consequence of the fact that ω is closed.

Example 2.3. The dual g∗ of a (finite-dimensional) Lie algebra g has a natural
Poisson structure that derives from the Lie bracket [· , ·]. For smooth functions F, G
on g∗ the Poisson bracket is defined at ξ ∈ g∗ by

(2) {F, G} (ξ) := 〈ξ, [dF (ξ), dG(ξ)]〉 .

In this formula, dF (ξ) and dG(ξ), which belong to (g∗)
∗
, are interpreted as elements

of g when computing the bracket [· , ·]. The Jacobi identity for {· , ·} follows from the
Jacobi identity for [· , ·]. This Poisson structure is called the Lie-Poisson structure
on g∗. When g is semi-simple one can use the Killing form to transfer it to get a
Poisson structure on g.

The Hamiltonian vector fields define a generalized distribution, which is inte-
grable, i.e., it admits a (unique) integral manifold through each point. These inte-
grable manifolds carry a Poisson structure which is symplectic. In the case of the
dual of a Lie algebra, for example, these leaves are precisely the coadjoint orbits.

Definition 2.4. For m ∈ M the (even) dimension of {XH(m) | H ∈ F(M)} is
denoted by Rkm {· , ·} and is called the rank of {· , ·} at m. The rank of {· , ·},
denoted by Rk {· , ·}, is the maximum of all ranks Rkm {· , ·} with m ∈ M . For
s ∈ N we denote by M(s) the subset

M(s) := {m ∈ M | Rkm {· , ·} > 2s} .

A Poisson manifold of constant rank is called a regular Poisson manifold.

It can be shown that each of the subsets M(s) is open and is invariant for the
flows of all Hamiltonian vector fields XH .

Example 2.5. The Poisson structure that corresponds to a symplectic structure
is regular. Indeed, its rank at any point is equal to the dimension of the symplectic
manifold. Moreover, the latter property characterizes symplectic manifolds. For the
Lie-Poisson structure on g∗ the rank at a point m is the dimension of the coadjoint
orbit that passes through m, so g∗ is only a regular Poisson manifold when g is
abelian.

If the rank is constant in the neighborhood of a point m ∈ M , say it is equal
to 2r, then there exist local coordinates (q1, . . . , qr, p1, . . . , pr, z1, . . . , zs) around m,
such that, on this neighborhood, the Poisson bracket takes the following canonical
form,

{qi, qj} = {pi, pj} = {qi, zk} = {pi, zk} = {zk, zl} = 0, {qi, pj} = δij ,

where 1 6 i, j 6 r and 1 6 k < l 6 s. Such coordinates are called Darboux coordi-
nates. For a symplectic manifold the existence of Darboux coordinates implies that
a symplectic manifold has no local invariants. Clearly, this is not true for general
Poisson manifolds.
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2.2. Liouville integrability. We have seen that constants of motion are functions
that Poisson-commute with the Hamiltonian (functions that Poisson-commute are
often said to be in involution). Liouville’s fundamental observation was that if one
is given n independent functions on R2n which are (pairwise) in involution with
respect to the Poisson bracket (1) then the equations of motion can be integrated
by quadratures. In the general context of Poisson manifolds this is stated in the
following theorem.

Theorem 2.6. Let (M, {· , ·}) be a Poisson manifold of rank 2r and suppose that
F1, . . . , Fs are s = dimM − r functions in involution. Let m ∈ M(r) and suppose
that we are given a system of coordinates around m. If the differentials dF1, . . . , dFs

are independent at m then the integral curve, starting at m, of each of the Hamil-
tonian vector fields XFi

can be obtained locally by using only algebraic operations,
the implicit function theorem and integration.

Let us call an s-tuple of functions F = (F1, . . . , Fs) independent when the open
subset

UF := {m ∈ M | dF1(m) ∧ · · · ∧ dFs(m) 6= 0}

is dense in M . Then the above theorem naturally leads to the following definition
of integrability.

Definition 2.7. Let (M, {· , ·}) be a Poisson manifold of rank 2r and let F =
(F1, . . . , Fs) be involutive and independent, with s = dimM − r. We say that F is
(Liouville) integrable and that (M, {· , ·} ,F) is a (Liouville) integrable system. The
vector fields XFi

are then called integrable vector fields and the map F is called the
momentum map.

The definition makes also sense when M is a complex manifold (such as a smooth
affine variety), equipped with a Poisson structure on its algebra of holomorphic
functions.

Example 2.8. For any fixed α, β ∈ R, consider the following two polynomial
functions

H =
1

2
(p2

1 + p2
2) + (q2

1 + q2
2)

2 + αq2
1 + βq2

2 ,

F = (q1p2 − q2p1)
2 + (β − α)(p2

1 + 2q4
1 + 2q2

1q
2
2 + 2αq2

1),

where p1, . . . , q2 are coordinates on R4. Then obviously H and F are independent
and it follows by direct computation that they are in involution with respect to
the Poisson bracket {· , ·} defined in (1) (with n = 2). Letting F := (H, F ) it
follows that (R4, {· , ·} ,F) is a Liouville integrable system. It descibes the motion
of an anisotropic harmonic oscillator in a central field. This system (actually its n-
dimensional generalization) was first considered by Garnier in [10] and appeared as
a by-product of his study of isomonodromic deformations of differential equations.
It is nowadays referred to as the Garnier system.

If (M, {· , ·} ,F) is a Liouville integrable system then the integrable vector fields
define an integrable distribution D of rank r on the (non-empty) open subset UF ∩
M(r), where 2r denotes the rank of {· , ·}. For m in this open subset we denote by
F′

m the leaf of D that passes through m. We call it the invariant manifold of F,
passing through m. It is the connected component of F−1(F(m)) ∩ UF ∩M(r) that
contains m. The Liouville Theorem gives, under some additional assumption, a
precise description of the invariant manifolds.
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Theorem 2.9 (Liouville). Let (M, {· , ·} ,F) be a real integrable system, where
F = (F1, . . . , Fs), and let m ∈ UF ∩ M(r), where 2r denotes the rank of {· , ·}.

(1) If F′
m is compact then it is diffeomorphic to a torus Tr = (R/Z)r.

(2) If F′
m is not compact, but the flow of each of the vector fields XFi

is complete
on F′

m then F′
m is diffeomorphic to a cylinder Rr−q × Tq (0 6 q < r).

In both cases the diffeomorphism can be chosen in such a way that the vector fields
XF1 , . . . ,XFs

are mapped to linear (i.e., translation invariant) vector fields.

In the case of a regular Poisson manifold M of rank r one has that M(r) = M .

For generic c in the image of F one has then that F−1(c) is a disjoint union of
smooth manifolds F′

m, which support r everywhere independent commuting vector
fields. If one of the functions Fi is proper then the fiber consists of a finite number
of invariant manifolds F′

m, each of which is an r-dimensional torus.

Example 2.10. If α and β are positive real constants then the energy H of the
Garnier system is a proper map, hence all fibers of the momentum map F are
compact. If we take a regular value (h, f) of F for which F−1(h, f) is not empty
then F−1(h, f) is the union of a finite number of two-dimensional tori.

A stronger statement can be made around a torus that appears as an invariant
manifold. Namely, the torus has a neighborhood which is Poisson diffeomorphic to
the product of the torus and a ball of complementary dimension, where the Poisson
structure on this product is such that the natural coordinates on it are Darboux
coordinates. These coordinates are then called action-angle coordinates. It was
shown by Duistermaat (see [8]) that in general global action-angle coordinates do
not exist, due to monodromy.

2.3. The Adler-Kostant-Symes Theorem. The most powerful theorem for con-
structing integrable systems is the Adler-Kostant-Symes Theorem. To be precise, it
is a theorem which allows one to construct a large family of functions in involution,
associated to a splitting of a Lie algebra g; in many cases it can be shown, by a
separate argument, that this family of functions contains an independent subset
that is large enough to insure integrability.

By a splitting of a Lie algebra g we mean a (vector space) direct sum decom-
position g = g+ ⊕ g−, where g+ and g− are subalgebras of g; the corresponding
Lie groups will be denoted by G, G+ and G−. In the version that we give here
we assume that g is semi-simple, so that we can identity g with its dual by using
the Killing form 〈·|·〉. Then the orthogonal complement g⊥− of g− (with respect
to 〈·|·〉) is isomorphic to g∗+, hence it inherits a Poisson structure {· , ·}+ from the
Lie-Poisson structure on g∗+.

Consider the alternative Lie bracket on g, defined by

[X, Y ]R := [X+, Y+] − [X−, Y−],

where we have decomposed X and Y according to the above splitting of g. This
yields another Lie-Poisson structure on g∗, and hence on g, denoted {· , ·}R. It can
be shown that the restriction of {· , ·}R to g⊥− is precisely {· , ·}+. For H ∈ F(g)
and X ∈ g the Killing form allows us to view dH(X) ∈ g∗ as an element of g; we
will denote it by ∇H(X). For ǫ ∈ g and H ∈ F(g) we denote by Hǫ the function
defined on g⊥− by Hǫ(X) := H(X + ǫ).

We are now ready to state the Adler-Kostant-Symes Theorem on g.
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Theorem 2.11. Let F and H be G-invariant functions on g and suppose that ǫ ∈ g

satisfies [ǫ, g+] ∈ g⊥+ and [ǫ, g−] ∈ g⊥−. Then

(1) {F, H}R = 0 and {Fǫ, Hǫ}g
⊥
−

= 0;

(2) The Hamiltonian vector fields XH := {· , H}R ∈ Ham(g, {· , ·}R) and XHǫ
:=

{· , Hǫ}g
∗
+
∈ Ham

(

g+, {· , ·}+

)

are respectively given by

XH(X) = ± [X, (∇H(X))∓] and XHǫ
(Y ) = ±[Y, (∇H(Y ))∓],

where Y ∈ g⊥− + ǫ;
(3) For X0 ∈ g and for |t| small, let g+(t) and g−(t) denote the smooth curves

in G+ resp. G− which solve the factorisation problem

exp(t∇H(X0)) = g+(t)−1g−(t), g+(0) = e.

Then the integral curve of XH which starts at X0 is given for |t| small by

X(t) = Adg+(t) X0 = Adg−(t) X0.

The above equations for XH and for XHǫ
are called Lax equations. There is also

a more intrinsic version of the Adler-Kostant-Symes Theorem on g∗ (it does not
use the Killing form), but it does not lead to Lax equations.

It follows from the theorem, or by a direct computation, that the spectral invari-
ants of X are preserved by the flow of XH , where H is any G-invariant function
on g. One often speaks of isospectral flow. Lax equations become particularly
interesting when the Lie algebra is a loop algebra, as we will see.

Example 2.12. Consider the Lie algebra splitting sln+1 = ∆<
n+1 ⊕ ∆>

n+1, where

∆<
n+1 (resp. ∆>

n+1) denotes the Lie algebra of strictly lower triangular matrices
(resp. of upper triangular matrices). Letting 〈A|B〉 = Trace(AB) we have that
(

∆>
n+1

)⊥

= ∆>
n+1, the vector space of all strictly upper triangular matrices in

sln+1. It can be shown that for any p 6 n the set of p-band matrices in ∆>
n+1 forms

a Poisson subspace of ∆>
n+1. Taking p = 1 and

ǫ =











0 0
1 0

. . .
. . .

0 1 0











and H : X 7→ 1
3 TraceX3 we find the Hamiltonian vector field XHǫ

, given by the

Lax equation Ẋ = [X, Y+] = −[X, Y−], where

X :=















0 a1 0
1 0 a2

. . .
. . .

. . .

1 0 an

0 1 0















, Y+ :=

















0 0 a1a2 0
. . .

. . .
...

. . .
. . . an−1an

0
0 . . . 0

















and where Y− = X2 − Y+. The coefficients of the characteristic polynomial of X
yield enough (independent) functions in involution to insure integrability.
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3. Algebraic integrability

We now come to the notion of algebraic integrability. The idea is to consider
complex integrable systems, whose (complex) geometry is the best possible analog
of the (real) geometry that appears in the Liouville Theorem. Following the original
idea of Adler and van Moerbeke we will mainly consider the case in which the fibers
of the (complex) momentum map are affine parts of complex algebraic tori, leaving
the general case to the end of this section.

3.1. A.c.i. systems. We first recall that an Abelian variety is a complex torus
Cr/Λ (Λ a lattice in Cr) which is algebraic, which means that it admits an em-
bedding in some projective space PN ; when r > 1 then most complex tori are
not algebraic. The embedding can be done by using theta functions, which are
quasi-periodic functions on Cr (periodic in r directions, while periodic up to an ex-
ponential factor in r other directions). From the geometric point of view this means
that one considers sections of a fixed (very ample) line bundle on the Abelian va-
riety. From the analytic point of view it means that one considers functions with
a fixed pole order along some (ample) divisor on the Abelian variety. The class of
integrable systems that we will consider makes it possible to construct a basis of
these functions, for the families of Abelian varieties that appear as the fibers of the
momentum map; no other general method for constructing such a basis is known.

Definition 3.1. Let (M, {· , ·} ,F) be an integrable system, where M is a non-
singular affine variety and where F = (F1, . . . , Fs). We say that (M, {· , ·} ,F) is an
algebraic completely integrable system or an a.c.i. system if for generic m ∈ M the
invariant manifold F′

m is an affine part of an Abelian variety and if the Hamiltonian
vector fields XFi

are translation invariant, when restricted to these tori.

We restrict ourselves to a.c.i. systems which are irreducible in the sense that
the generic Abelian variety of the a.c.i. system does not contain a subtorus (an
Abelian variety that contains a (non-trivial) subtorus is essentially a product of
this subtorus with a complementary subtorus). It turns out that many (most)
of the integrable systems that were known classically, turn out to be a.c.i., when
complexified. This means that the powerful tools of the theory of Abelian varieties
(dating mainly from the 19-th century) can be used to solve and to study these
systems.

Example 3.2. Let us reconsider the Garnier system. R4 and the functions H and
F are complexified in the obvious way. If α 6= β then for generic (h, f) ∈ C2 the
fiber F−1(h, f) ⊂ C4 is an affine part of an Abelian surface of type (1, 4), which
means that the lattice Λ that defines the torus is spanned by the columns of a

matrix which has the form

(

1 0 a b
0 4 b c

)

with

(

a b
b c

)

positive definite. The

divisor to be added to this affine part to complete it into an Abelian surface is
a Riemann surface of genus 5. The commuting vector fields XH and XF extend
to linear vector fields on these Abelian surfaces, hence the Garnier system is a.c.i.
Notice that it follows that, if h and f are generic, then the affine variety defined by

h =
1

2
(p2

1 + p2
2) + (q2

1 + q2
2)

2 + αq2
1 + βq2

2 ,

f = (q1p2 − q2p1)
2 + (β − α)(p2

1 + 2q4
1 + 2q2

1q
2
2 + 2αq2

1),

is an affine part of an Abelian surface of type (1, 4).
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The vector fields of an a.c.i. system have good properties at infinity; after all,
a linear vector field on a complex torus is the same along the divisor, which will
happen to be absent in phase space, as on the rest of the torus. In fact, since every
holomorphic function on a complex torus can be written as a quotient of theta func-
tions, the integral curves (solutions) to any of the vector fields of an a.c.i. system
can be written as a quotient of holomorphic functions. Intuitively speaking this
means that we can consider not only Taylor solutions to the differential equations
that describe these vector fields but also Laurent solutions, which will correspond to
initial conditions at infinity (precisely: on the divisor that needs to be adjoined to
the fibers of the momentum map to complete them into Abelian varieties). More-
over, these Laurent solutions must depend on dimM − 1 free parameters, which
corresponds to the freedom of choice of the initial condition at infinity. This idea
is due to Kowalevski, who used it to find her top; her idea was further developed
by Adler and van Moerbeke who applied it in several other cases of interest and
who used the Laurent solutions to further explore the geometry of the invariant
manifolds. A modern version of this idea is given in the following theorem (see [4]).

Theorem 3.3 (Kowalevski-Painlevé criterion). Let (Cn, {· , ·} ,F) be an irreducible,
a.c.i. system, where F = (F1, . . . , Fs) is a polynomial map, and let (x1, . . . , xn) be a
system of linear coordinates on Cn. Let V be any one of the integrable vector fields
XF1 , . . . ,XFs

. For every 1 6 i 6 n such that xi is not constant along the integral
curves of V, i.e., ẋi 6= 0, there exists a Laurent solution x(t) = (x1(t), . . . , xn(t)),
depending on n − 1 free parameters, for which xi(t) has a pole.

This criterion has been used to single out from a family of Hamiltonian vector
fields those that are integrable, and admit a good complexification (making them
the most natural members of the family). Of course, in the end one still has to show
that the Hamiltonians that have been selected lead indeed to an integrable system,
resp. to an a.c.i. system. The most beautiful example is the following (see [3]).

Example 3.4. For l > 1 let e0, . . . , el be linearly dependent vectors in an Euclidean
vector space (Rl+1, 〈·|·〉), any l of which are linearly independent. Let us suppose

that the non-zero real numbers p0, p1, . . . , pl which satisfy
∑l

i=0 piei = 0 have a

non-zero sum, i.e.,
∑l

i=0 pi 6= 0. Let A be the (l + 1, l + 1) matrix, defined by

aij :=
2 〈ei|ej〉

〈ej|ej〉
, (0 6 i, j 6 l).

Consider the vector field V on C2(l+1) which is given by

ẋ = x · y,

ẏ = Ax,

where x, y ∈ Cl+1 and where x · y is defined by (x · y)i = xiyi, i = 0, . . . , l.
Theorem 3.3 can be used to show that, if the vector field V is one of the integrable
vector fields of an irreducible a.c.i. system, then A is the Cartan matrix of a twisted
affine Lie algebra.

An interesting feature of a.c.i. systems is that their solutions, with any initial
conditions, are single-valued. The non single-valuedness of solutions to differential
equations, in general, comes from the fact that analytic continuation of solutions
usually depends on the (homotopy class of) the path along which the solution
is analytically continued, and not just on the endpoints. This leads to a second
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criterion for a.c.i. which was first used by Lyapounov. The proof of it is due to Luc
Haine (see [13]).

Theorem 3.5 (Lyapunov criterion). Let (Cn, {· , ·} ,F) be an a.c.i. system and let
F be an arbitrary element of F. All solutions to the integrable vector field XF are
single-valued. Moreover, if γ : [0, 1] → C is any closed path and x(t) is a solution to
XF that is holomorphic in a neighborhood of the path, then the analytic continuation
along γ of the solution to the variational equations which correspond to the x(t), is
single-valued.

This theorem seems (at least!) as powerful as the above Kowalevski-Painlevé
criterion but, up to now, it has only be used in one example (also due to Luc
Haine, see [13]).

Example 3.6. Geodesic flow for a left invariant metric on a Lie group G reduces to
a Hamiltonian flow on its Lie algebra g. The corresponding vector field is described
by the following Lax equation

Ẋ = [X,∇H(X)],

where H is the quadratic form on g that describes the metric. It is a Hamiltonian
vector field, with H as Hamiltonian, the Poisson structure being the Lie-Poisson
structure on g (g and its dual are identified by using H). Suppose now that g = son

and that H is diagonal in the sense that (∇H(X))ij = λijXij where X ∈ son and
λij = λji for 1 6 i < j 6 n. Theorem 3.5 can be used to show that, if all λij

are distinct, then the vector field XH is a.c.i. if and only if there exists constants
a1, . . . , an, b1, . . . , bn such that

λij =
bi − bj

ai − aj

,

i.e., H defines a Manakov metric on son.

The above criteria for algebraic integrability are related to the non-integrability
theory developed by Morales-Ruiz and Ramis (see [15]), but the precise relationship
still has to be worked out.

3.2. Proving a.c.i. The problem arises to show that a given integrable system is
a.c.i. In exceptional cases this may follow from abstract arguments, for example the
integrable system may have been constructed essentially from algebraic-geometric
data. Prime examples of this are the Hitchin system and its generalizations (see [7]
and [14]). The construction involves beautiful geometric constructions but it is not
known how to realize these systems explicitly (e.g. to write down the functions in
involution, the equations of motion, . . . ). What we wish to describe in this section
is the other extreme, namely what to do when not much more is given than explicit
formulas for the functions in involution and the Poisson structure (which gives the
commuting vector fields). In particular it is not assumed that Lax equations for the
vector field are known; they come indeed often only at the end, when the geometry
of the problem has been reveiled, which is done while (and by) proving a.c.i. The
ideas that underlie the technique, based on the work of Adler and van Moerbeke
(see [2] and [4]), will be illustrated on a non-trivial example, that we refer to as the
KM5 lattice, which stands for periodic 5-particle Kac-van Moerbeke lattice. The
latter is given by the quadratic vector field

ẋi = xi(xi−1 − xi+1), (i = 1, . . . , 5),
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where x1, . . . , x5 are coordinates on C5 and xi+5 = xi for i ∈ Z. This vector field
V admits the following three independent constants of motion,

F1 = x1 + x2 + x3 + x4 + x5,

F2 = x1x3 + x2x4 + x3x5 + x4x1 + x5x2,

F3 = x1x2x3x4x5.

A vector field W that commutes with V is given by

x′
i = xi(xi+2xi−1 − xi+1xi−2), (i = 1, . . . , 5),

having the same constants of motion. In fact, V and W are both Hamiltonian with
respect to the quadratic Poisson structure that is defined by

{xi, xj} = xixj(δi,j+1 − δj,i+1),

where 1 6 i, j 6 5. Namely, we recover both vector fields by taking F1 and F2 as
Hamiltonians, while F3 is a Casimir. Notice also that both vector fields and the
constants of motion are invariant with respect to the order 5 automorphism σ of
C5, which is defined by σ(xi) = xi+1. It follows that each invariant manifold (and
its compactification) admits an automorphism of order 5, also denoted by σ. This
has a pronounced implication for the geometry of these manifolds, as we will see.

The rank of {· , ·} is 0 on the five 2-planes, which are defined by three non-
consecutive xi being zero (i.e., the plane x1 = x2 = x4 = 0 and its image, under
all powers of σ); the rank is at most 2 on the ten 3-planes which are given by
xi = xj = 0, where 1 6 i < j 6 5. On the remaining dense open subset, the rank
is 4. Letting F := (F1, F2, F3) it follows that (C5, {· , ·} ,F) is Liouville integrable.

In order to show that the KM5 lattice is a.c.i. we fix a generic c ∈ C3 and we
show that F−1(c) is an affine part of an Abelian variety, on which V and W restrict
to linear vector fields. To do this we verify that F−1(c) satisfies the conditions of
the following theorem, which is a complex analog of the Liouville Theorem.

Theorem 3.7 (Complex Liouville Theorem). Let A ⊂ Cs be a non-singular affine
variety of dimension r which supports r holomorphic vector fields V1, . . . ,Vr and let
ϕ : A → CN ⊂ PN be an embedding. We define ∆ := ϕ(A) \ ϕ(A) and we denote
the union of all irreducible components of ∆ of dimension r− 1 by ∆′. Suppose the
following.

(1) The vector fields commute pairwise, [Vi,Vj ] = 0 for 1 6 i, j 6 r;
(2) At every point m ∈ A the vector fields V1, . . . ,Vr are independent;
(3) The vector field ϕ∗V1 extends to a vector field V1 which is holomorphic on

a neighborhood of ∆′ in PN ;
(4) The integral curves of V1 that start at points m ∈ ∆′ go immediately into

ϕ(A).

Then ϕ(A) is an Abelian variety of dimension r and the vector fields ϕ∗V1, . . . , ϕ∗Vr

extend to holomorphic (hence linear) vector fields on ϕ(A). Moreover, ∆′ = ∆.

For our example, we take for A the smooth manifold Ac := F−1(c), where c is a
regular value of F, satisfying c3 6= 0 (a generic c ∈ C3 has these properties). Notice
that if c = (c1, c2, c3) ∈ C3 is such that c3 6= 0 then F−1(c) is entirely contained
in M(2), so that each invariant manifold is a connected component of a fiber of
the momentum map; in fact, since Ac is irreducible it coincides with the invariant
manifold through any of its points. Thus, Ac is a non-singular affine variety of
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dimension r, equipped with r holomorphic vector fields that satisfy conditions (1)
and (2). It therefore suffices to construct an embedding ϕc : Ac → CN ⊂ PN

which satisfies (3) and (4) to conclude that the generic invariant manifold satisfies
the conditions, given in the definition of a.c.i.

To do this, we use the Laurent solutions to V . These are rather easily found
because one can show that, in this case, each of the Laurent series xi(t) has a
simple pole at worst. Substituting

xi(t) =
1

t

∞
∑

k=0

x
(k)
i tk, (i = 1, . . . , 5),

we find that the leading coefficients of the series satisfiy

x
(0)
i (1 + x

(0)
i−1 − x

(0)
i+1) = 0, (i = 1, . . . , 5),

the so-called indicial equation. It has 10 solutions, namely the points

p1 := (−1, 1, 0, 0, 0),

q1 := (−2, 1,−1, 2, 0),

and their images pi := σi−1(p1), qi := σi−1(q1) under repeated application of
the order 5 automorphism σ. The other terms are then obtained recursively, but
linearly, from the solutions to the indicial equation. We give the first few terms of
the Laurent solution for which the leading term is given by p1/t,

x1(t; p1) = −
1

t
+ a −

1

3
(a2 + 2b + c)t + O(t2),

x2(t; p1) =
1

t
+ a +

1

3
(a2 − b − 2c)t + O(t2),

x3(t; p1) = ct + O(t2),(3)

x4(t; p1) = d + O(t2).

x5(t; p1) = bt + O(t2),

where the four free parameters have been denoted by a, . . . , d. Using the majora-
tion method one shows that they are actually convergent. Using the automorphism
σ we find in total 5 such Laurent solutions x(t; pi), depending on 4 free parame-
ters. The Laurent solutions (depending on 4 free parameters) for W (or any linear
combination of V and W) can be computed from it, but they will not be needed
(in certain examples, such as the periodic Toda lattice, these Laurent solutions are
needed to prove a.c.i.). The points qi lead to Laurent solutions that depend only
on 3 free parameters; they are not used in what follows.

Since the functions Fi are constants of motion, a direct substitution of x(t; p1)
in each of them yields a Laurent series in t, of which only the term in t0 survives.
Clearly this term can be computed by using only the first terms of the series x(t; p1).
In the present case the terms that are given, suffice to do this for each of the
functions Fi. We find three algebraic relations between the free parameters a, . . . , d
and the values of the constants of motion c1, c2, c3, to wit,

2a + d = c1,

b − c + 2ad = c2,

bcd = −c3.



12 POL VANHAECKE

This defines an affine algebraic curve, denoted Γ
(1)
c , in C4. Clearly, Γ

(1)
c is isomor-

phic to the non-singular plane curve

Γc : bd(b − c2 + d(c1 − d)) + c3 = 0.

By Riemann-Hurwitz the genus of Γc is two. It is easy to see that Γc has three
points at infinity, corresponding to d = 0 or d = ∞; they will be denoted by
∞c, ∞

′
c

and ∞′′
c
. In terms of a local parameter ς a neighborhood of these points

is parametrized as follows.

(4)
∞c : d = ς−1, b = ς−2 − c1ς

−1 + c2 − c3ς
3 + O(ς4),

∞′
c

: b = ς−1, d = −c3ς
2 − c2c3ς

3 − c2
2c3ς

4 + O(ς5),
∞′′

c
: d = ς−1, b = c3ς

3 + c1c3ς
4 + O(ς5).

It is clear that, if we use any other principal balance x(t; pi) then we get an affine

curve Γ
(i)
c , which is also isomorphic to Γc. Thus, considering all 5 Laurent solutions

that depend on 4 free parameters (they are obtained from the given one by using
the automorphism σ) we get 5 isomorphic curves of genus two. Each of them is
compactified into a Riemann surface by adding three points at infinity.

We now construct the embedding ϕc : Ac → PN . The idea of the construction
is based on the following fact. If KM5 is indeed an irreducible a.c.i. system then
a divisor D can be added to a Zariski open subset of phase space C5, having the
effect of compactifying all fibers Ac, where c is generic; the divisor that is added
to Ac will be denoted by Dc and the resulting torus by T2

c
. The KM5 vector

fields V and W extend to linear (hence holomorphic) vector field V and W on this
partial compactification of C5, hence we may consider the integral curves of V ,

starting from any irreducible component D
(i)
c of this divisor. This gives a Laurent

solution, depending on 4 free parameters, hence it must coincide with one of the
Laurent solutions x(t; pi) that we have computed. Let f be a polynomial function
on Cn. Since V is transveral to the divisor D the pole order of the Laurent series
f(t; pi) (which can be obtained by substituting the series x(t; pi) in f) equals the

pole order of f|Tr
c

along the divisor D
(i)
c , where f|Tr

c

is by definition f|Ac
, viewed as

a meromorphic function on Tr
c
. Since the third power of an ample divisor on an

Abelian variety is very ample we look for all the polynomials which have a triple
pole at most when x(t; p1) is substituted in them, and no pole at all when x(t; pi)
for 2 6 i 6 5 is substituted in them. Precisely, we look for a maximal independent
set of such functions which are independent when restricted to Ac. One finds easily,
besides z0 := 1 the following independent functions,

z1 := x1x2, z5 := x1x
2
2x4,

z2 := x1x2x4, z6 := x1x2x4((x3 + x4)x1 − (x4 + x5)x2),
z3 := x1x2(x1 + x5), z7 := x2

1x
2
2x4x5,

z4 := x2
1x2x4, z8 := x1x

2
2x4((x4 + x5)

2 + x3x4).

In the sequel we think of these functions as being restricted to Ac, and we consider
the map

(5)
ϕc : Ac ⊂ C5 → P8

(x1, . . . , x6) 7→ (1 : z1 : · · · : z8).

Since c3 6= 0, Ac does not intersect any of the hyperplanes xi = 0, so that ϕc is
birational on its image, namely

x1 = z4/z2, x2 = z5/z2, x4 = z2/z1, x5 = z7/(z1z2),
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while x3 is recovered from F1 = c1. In particular, ϕc is an embedding. The closure
of ϕc(Ac) (with respect to the Zariski topology, or, what is the same, with respect

to the complex topology) is denoted by ϕc(Ac). Also, we denote by ∆′
c

the union

of all irreducible components of ϕc(Ac) \ ϕc(Ac) of dimension r − 1 = 1, as in
Theorem 3.7.

The leading terms of the above Laurent series zi(t; p1) lead to a map ϕ
(1)
c : Γc →

P8, given by

(6) ϕ(1)
c

: (b, d) 7→ (0 : 0 : 0 : 1 : d : −d : 2d2 : bd : −d3),

which is obviously an embedding (recall that b 6= 0 on Γc). Similarly, the Taylor
(!) series z(t; p2), . . . , z(t; p5) lead to four different embeddings of this curve, to wit

ϕ(2)
c

: (b, d) 7→ (1 : −b : 0 : −bd : 0 : bc : c3 : 0 : bc(c + d2)),

ϕ(3)
c

: (b, d) 7→ (1 : 0 : bd : 0 : bd2 : 0 : bd(2ad − b) : 0 : 2ab2d),

ϕ(4)
c

: (b, d) 7→ (1 : 0 : −cd : cd : 0 : −cd2 : cd(c + 2ad) :(7)

−(cd)2 : −cd2(4a2 − b)),

ϕ(5)
c

: (b, d) 7→ (1 : c : 0 : 2ac : bc : 0 : −c3 : −bc2 : bc2),

where we recall that a = (c1 − d)/2 and c = b− c2 − d(c1 − d). Since bcd = −c3 6= 0
we see at once that the five image curves are disjoint. However, these images are
not complete, so we check if maybe their closures intersect. In order to do this, we
compute the image of ∞c,∞

′
c

and ∞′′
c

under each of the above five embeddings.
This is done by substituting the above local parametrizations (4) in the embeddings

ϕ
(i)
c ; taking an extra term in the computation we can also determine the tangent

line to the image of ∞c, ,∞
′
c

and ∞′′
c

to deduce from it whether these closures are
non-singular and how they intersect.

Table 1. The image of the points at infinity on Γc under the five

embeddings ϕ
(i)
c of Γc, given by (6) and (7).

ϕ
(1)
c ϕ

(2)
c ϕ

(3)
c ϕ

(4)
c ϕ

(5)
c

∞c P5 P1 P2 P3 P4

∞′
c

P1 P2 P3 P4 P5

∞′′
c

P2 P3 P4 P5 P1

In this table the points Pi are the following points in P8.

P1 = (0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0),

P2 = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1),

P3 = (1 : 0 : 0 : 0 : 0 : 0 : c3 : 0 : −c1c3),

P4 = (1 : 0 : 0 : 0 : 0 : 0 : −c3 : 0 : 0),

P5 = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : −1).

Denoting ϕ
(i)
c (Γc) by ∆

(i)
c , we find that ∆

(i)
c contains the points Pi−1, Pi and Pi+1

and that each ∆
(i)
c intersects its neighbor ∆

(i+1)
c in two different points Pi and

Pi+1, while being tangent to the divisors ∆
(i−2)
c and ∆

(i+2)
c . The resulting divisor

is depicted in Figure 1. We need to show that (ϕc)∗V extends to a holomorphic
vector field on a neighborhood of ∆′

c
in P8 (condition (3) of Theorem 3.7). Notice
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Figure 1. The divisor ∪5
i=1∆

(i)
c consists of five genus two curves

that intersect in five points, each of which is a triple point of the
divisor. To make the picture exact one has to identify the two
points labeled P1, as well as the two points labeled P5 in such a

way that the curves ∆
(2)
c and ∆

(5)
c are tangent, as well as the curves

∆
(1)
c and ∆

(4)
c . As we will show later, ∆c = ∪5

i=1∆
(i)
c .

∆
(1)
c ∆

(3)
c ∆

(5)
c

∆
(2)
c ∆

(4)
c

P5
P2 P4

P1

P1 P3 P5

that we do not know yet whether ∆′
c

coincides with ∪5
i=1∆

(i)
c , so we do not really

have control over ∆′
c
. In fact, we will be able to show that (ϕc)∗V extends to a holo-

morphic vector field on all of P8, which implies in particular holomorphicity in a
neighborhood of ∆′

c
, whatever the latter may be. The constuction of the extension

is based on the following theorem, which says that, in appropriate projective coor-
dinates, any holomorphic vector field on an Abelian variety is a quadratic vector
field, hence it is globally defined and holomorphic (on all of PN ).

Theorem 3.8. Let L be an ample line bundle on an irreducible Abelian variety
Tr and let V be a holomorphic vector field on Tr. Denoting by ϕ : Tr → PN the
Kodaira embedding that corresponds to L⊗3, there exists a quadratic vector field V
on PN , such that ϕ∗V = V.

Thus, even if we do not know yet that our example is a.c.i., we look for quadratic
differential equations on P8, whose restriction to ϕc(Ac) describes (ϕc)∗V . This
can be done in an algorithmic way, because V and all invariants are homogeneous.
In the chart Z0 6= 0 of P8 we arrive at the following1 result.

ż1 = z2 + 2z3 − c1z1,

ż2 = z4 − z5,

1The result is not unique because one can always add to the right hand side any quadratic
polynomial that vanishes on the Abelian variety; we have used this fact to keep the formulas as
simple as possible.
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ż3 = z4 + 2z5 − 3z2
1 + c1z3 − 2c2z1,

ż4 = −3z1z2 + c1z4 +
1

2
(c3 − c2z2 − z6),

ż5 = 3z1z2 − c1z5 −
1

2
(c3 − c2z2 + z6),

ż6 = (2z1 + c2)(z4 + z5) − 4z2
2 − 2c1z1z2,

ż7 = 3z2z5 + c1z7 +
1

2
(3z1z6 − 3c2z1z2 − c3z1),

ż8 = −3z2(z4 + z5 − c1z2) + c3z1 +
1

2
c2(z6 − c2z2 + c3).

In the same way one easily finds the differential equations in another chart. In view
of Hartog’s Theorem we may conclude that the vector field (ϕc)∗V extends to a
holomorphic vector field on P8, which we denote by V. Thus, we have verified that
ϕc satisfies (3) in the Complex Liouville Theorem.

The final thing to be shown is that the integral curves of V that start at points
m ∈ ∆′

c
go immediately into ϕc(Ac). We repeat that we do not know if ∆′

c
=

∪5
i=1∆

(i)
c . Therefore, there are three types of points that we need to consider.

(1) Points in the image ϕ
(i)
c (Γc), where i = 1, . . . , 5;

(2) Points in ∆
(i)
c \ ϕ

(i)
c (Γc), where i = 1, . . . , 5;

(3) Points in ∆′
c
\ ∪5

i=1∆
(i)
c .

For (1) one uses that the embedding functions zi are polynomials in the phase
variables x1, . . . , x5 and the fact that the Laurent series are convergent to conclude
that, for small |t|, all series zi(t; p1) are finite, hence the flow starting from the
points as in (1) does not belong to the hyperplane z0 = 0. Similarly all quotients

zi/zj(t; p1) are finite, so we do not flow into any of the other ∆
(i)
c . For (2), we do

the check for P1 = ϕ
(1)
c (∞′

c
). Since the only non-zero entry corresponds to z3 we

substitute the parametrization (4) of a neighborhood of ∞′
c

into 1/z3(t; p1). Since
z3(t; p1) = 1

t3
− a

t2
+ O(1) we have that

(8) z−1
3 (t; p1) = t3(1 + at + O(t2)) = t3

(

1 +
1

2
(c1 + c3ς

2 + O(ς3))t + O(t2)

)

,

which yields, in the limit ς → 0, the series t3(1 + c1t/2 + O(t2)), which is different

from zero. This means that, starting from P1, we do not flow into the divisor ∆
(1)
c .

In order to show that we flow into the affine ϕc(Ac) we show that z1/z3(t; p1) and
z2/z3(t; p1) have also a non-zero limit, as ς → 0. For the first one, this is trivial
since

z1

z3
(t; p1) =

(

−
1

t2
+ O(1)

)

(t3 + O(t4)) = −t + O(t2),

as follows from (3). For the second one, the computation is longer, since the first
terms of the series z2/z3(t; p1) vanish when taking the limit; besides this fact, which
only makes the computation longer, the calculation is trivial and we only state the
final formula,

lim
ς→0

z2

z3
(t; p1) = −

c3

4
t5 + O(t6).

This shows that we flow into the affine, starting from P1.
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Finally, we turn to the points (3). We show that there are no such points. Since
Ac is irreducible and since ϕc is regular the divisor ∆′

c
is connected. Therefore, if

∆′
c

contains irreducible components that are different from the ∆
(i)
c then at least

one of the former ones must intersect one of the latter ones. Moreover, this must
happen at points where the series break down, i.e., at the points (2). We can
however compute the degree of ∆′

c
at these points. We do this for the point P1.

Letting y0 := 1/z3 we have that y0 is a defining function for the divisor around P1

and since V is transveral to ∆
(1)
c at P1 we can read off from (8) that the degree

of ∆c equals 3. Since ϕ
(1)
c (Γ) passes through P1 and since this divisor is taken with

multiplicity 3, the divisor that we have found already account for the degree three
and there cannot be another divisor, passing through P1. For the points P2, . . . , P5

one proceeds in the same way, thereby concluding the proof that KM5 is a.c.i.
Since the torus T2

c
contains a curve Γc of genus two it is the Jacobian of this

curve and this curve is a translate of the theta divisor. Notice that three times the
theta divisor induces on the Jacobian a polarization of type (3, 3), which leads to
an embedding of the Jacobian in P8; the above embedding is a concrete realization
of this. For an alternative characterization of these tori in terms of hyperelliptic
Prym varieties, and for an alternative proof of algebraic integrability of KM5 (in
fact of all KM), see [9]. For more elaborate examples and a justification of the facts
that are used in the above proof, see [4].

3.3. Lax equations with a parameter. The integrable vector fields of most
a.c.i. systems can be written down in the form of a Lax equation with a parameter,
defined as follows.

Definition 3.9. Let M be a finite dimensional affine subspace of the Lie algebra
glN [h], let {· , ·} be a Poisson structure on M and let H ∈ F(M). If the Hamiltonian
vector field XH on M can be written in the form

(9) Ẋ(h) = [X(h), Y (h)],

where Y (h) is a function on M with values in glN [h, h
−1

] then (9) is called a Lax
equation with parameter for XH .

As in the case of Lax equations (without a parameter) one has that the functions
qij which are defined by the coefficients of the characteristic polynomial of X(h),

Q(h, z) = det(z IdN −X(h)) = z

N +
∑

(i,j)∈I

qijh
i
z

j .

are constants of motion of (9). Therefore, if we associate to each X(h) the plane
algebraic curve

ΓX :=
{

(h, z) ∈ C× C | det(z IdN −X(h)) = 0
}

we have that ΓX is preserved by the flow of (9). Similarly, for each X(h) the variety
of matrices

AX :=
{

X ′(h) | X(h) and X ′(h) have the same characteristic polynomial
}

is preserved by the flow of (9). Each of the curves ΓX is called a spectral curve
and each of the varieties AX is an isospectral variety; when AX is smooth we also
use the name isospectral manifold. Let us suppose that for generic X(h) ∈ M the
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affine curve ΓX is non-singular and that for generic (h, z) ∈ ΓX , the eigenspace of
X(h) with eigenvalue z is one-dimensional. Let (possibly after some relabeling)

ξ(h, z) = (ξ1(h, z), . . . , ξN (h, z))⊤

be the eigenvector which is normalized at ξ1(h, z) = 1. Then each ξi(h, z) is a rational
function in (h, z), whose coefficients are functions on M . When X(h) flows according
to (9), the normalized eigenvector ξ(h, z) also evolves, satisfying the autonomous
equation

ξ̇ + Y (h)ξ = λ(h, z)ξ.

where λ = λ(h, z) is also a rational function whose coefficients are functions on M .
The isospectral manifolds and isospectral curves are linked by a map that we

introduce next. For simplicity we will assume that c is chosen such that Γc is
non-singular and such that Ac is connected. Since Γc is non-singular it can be
completed into a compact Riemann surface Γ̄c by adding a few points, which will
be denoted by p1, . . . , pd. Denote for i = 1, . . . , N and for U an open subset of
Γ̄c by (ξi)U the divisor of zeros and poles of ξi, restricted to U . Since ξi depends
in a holomorphic way on t (for |t| small) we have that for a generic X(h) ∈ Ac,
with corresponding normalized eigenvector ξ, the minimal effective divisor DX on
Γc which satisfies

(ξi)Γc
> −DX , i = 1, . . . , N,

has a degree d which is independent of X = X(h). This leads, by continuity, to an
effective divisor DX of degree d in Γ̄c for any X = X(h) ∈ Ac. The resulting map

ıc : Ac → Divd(Γ̄c)
X(h) 7→ DX

is called the divisor map. When X(h) evolves according to (9), the image of X(h, t)

under ıc evolves on Divd(Γ̄c); we will denote ıc(X(h, t)) by DX(t). Choose a basis

(ω1, . . . , ωg) of Γ̄c, where g is the genus of Γ̄c, and let ~ω := (ω1, . . . , ωg)
⊤. The map

X(0), defined by

(10)
X(0) : U → Jac(Γc)

t 7→
∫ DX(t)

DX(0)
~ω,

is called the linearizing map, starting at X(0) (with respect to ~ω). The following
theorem gives a criterion to check whether this map linearizes the isospectral flow.

Theorem 3.10 (Linearization Criterion). Suppose that c is chosen such that Γc is
smooth, and let X(0) be an element of Ac. The linearizing map X(0) linearizes the
isospectral flow defined by (9) if and only if there exists a meromorphic function φ
on Γ with (φ) > −N(h)∞, and such that for all pi

(11)
d

dt
(Laurent tail of λ at pi) = (Laurent tail of φ at pi).

For a list of examples that satisfy the linearization criterion, see [1, Theorem 4.3,
page 302]. Our example 2.12 is easily adapted to write the KM5 vector field as a
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Lax equation (with parameter) Ẋ(h) =
[

X(h), Y (h)
]

, by taking

X(h) :=













0 x1 0 0 h

−1

1 0 x2 0 0
0 1 0 x3 0
0 0 1 0 x4

x5h 0 0 1 0













.

In this case all Laurent tails are constant at infinity, so KM5 satisfies the lineariza-
tion criterion.

3.4. Other notions of algebraic integrability. For certain examples of interest
the generic invariant manifold is not an affine part of an Abelian variety, but still
the flow of the integrable vector fields induces on them the action of a local group
and the group law is algebraic. In order to cover these cases, we propose here the
following definition that generalizes Definition 3.1.

Definition 3.11. Let (M, {· , ·} ,F) be a complex integrable system, where M is a
(non-singular) affine variety, and where F = (F1, . . . , Fs). We say that (M, {· , ·} ,F)
is a generalized a.c.i. system if for generic m ∈ M the integrable vector fields
XF1 , . . . ,XFs

define the local action of an algebraic group on F′
m.

Notice that the algebraic group is necessarily commutative because the vector
fields XFi

commute pairwise. The case of an a.c.i. system is a particular example: in
this case the algebraic group is a compact algebraic group, i.e., an Abelian variety.
We give two examples where the group is not compact.

Example 3.12. Let Σ be a compact oriented topological surface of genus g ≥ 1
with fundamental group π1(Σ) and let G be a reductive algebraic group. Then
Hom(π1(Σ),G) is an affine variety on which G acts by conjugation, more precisely
if ρ : π1(Σ) → G and g ∈ G then g·ρ is the homomorphism π1(Σ) → G defined by

g ·ρ (C) = g(ρ(C))g−1,

for C ∈ π1(Σ). It turns out (see [12]) that the quotient

M := Hom(π1(Σ),G)/G

(which is an affine variety since G is reductive) has a natural Poisson structure
which can very explicitly be described for the classical groups. For simplicity let us
consider the case G = SL(n) in the standard representation. For a curve C ∈ π1(Σ)
the function

fC : M → G : ρ 7→ Trace(ρ(C))

is a well-defined regular function on M and these functions generate F(M). It was
shown by Goldman that on such functions a Poisson bracket of maximal rank is
given by

(12) {fC , fC′} =
∑

p∈C#C′

ǫ(p; C, C′)

(

fCpC′
p
−

1

n
fCfC′

)

.

The sum runs over the intersection points of C and C′ (one may suppose that the
curves intersect transversally) and ǫ(p; C, C′) is a sign which is determined by the
way the (oriented) curves C and C′ intersect at p, upon using the orientation of Σ.
Finally, CpC

′
p is the curve on Σ, based at p, which is obtained by first following C

and then following C′.
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Let us consider the case G = SL(2). Since π1(Σ) has a system of 2g generators,
which are bound by one relation, Hom(π1(Σ), SL(2)) has dimension 6g − 3, hence
M has dimension 6g − 6. Since the rank of the Poisson structure is maximal we
need to find 3g − 3 independent functions on M that are in involution. Now Σ can
be decomposed (in an infinite number of different ways) into so-called trinions; a
trinion, also called a pair of pants, is just a three-holed sphere and such a decom-
position will consist of 2g− 2 trinions. Each trinion being bounded by three curves
(which are identified two by two) one gets 3g−3 curves on Σ and what is important
here is that they are non-intersecting. Calling these curves C1, . . . , C3g−3 we find
from Goldman’s formula (12) that the functions fC1 , . . . , fC3g−3 are in involution.
They can be shown to be independent, hence they lead to an integrable system
on M . The fibers of the momentum map are in this case toric varieties and (for a
generic point in M) the non-compact algebraic group is C3g−3.

In the following example the algebraic group is a mixture of the two types of
algebraic groups considered up to now, namely it is an extension of an Abelian
variety with several copies of C∗.

Example 3.13. The Lagrange top is by definition a rigid body with a fixed point
(“spinning top”) which is symmetric with respect to an axis passing through the
center of gravity and the fixed point. It admits a complexification, which is the
integrable system, defined by the Hamiltonian

H :=
1

2
(Ω2

1 + Ω2
2 + (1 + m)Ω2

3) − Γ3,

where Ω1, . . . , Ω3, Γ1, . . . , Γ3 are coordinates on C6 . The Poisson structure, which
comes from the Lie-Poisson structure of so(3), the Lie algebra of the group of
Euclidean motions in three-space, is given by

{IiΩi, IjΩj} = −ǫijkIkΩk, {IiΩi, Γj} = −ǫijkΓk, {Γi, Γj} = 0,

where 1 6 i, j, k 6 3 and where ǫijk is the totally anti-symmetric tensor for which
ǫ123 = 1. The constants I1, . . . , I3 are the moments of inertia and they satisfy
I1 = I2; the constant m is given by m := I3/I1 − 1. It follows that the Hamiltonian
vector field XH is given, up to a constant, by

Ω̇1 = −mΩ2Ω3 − Γ2, Γ̇1 = Γ2Ω3 − Γ3Ω2,

Ω̇2 = mΩ3Ω1 + Γ1, Γ̇2 = Γ3Ω1 − Γ1Ω3,

Ω̇3 = 0, Γ̇3 = Γ1Ω2 − Γ2Ω1.

One shows by direct computation that, besides the Hamiltonian, one has the fol-
lowing three constants of motion, making the Lagrange top integrable:

F1 := Γ2
1 + Γ2

2 + Γ2
3,

F2 := Ω1Γ1 + Ω2Γ2 + (1 + m)Ω3Γ3,

F3 := Ω3.

It is shown in [11] that, in this form, the Lagrange top is a generalized a.c.i.
system. The following characterization is given: the generic level of the momentum
map is isomorphic to an affine part of the generalized Jacobian of an elliptic curve,
which two points (at infinity) identified. Thus, the algebraic group is in this case a
(non-trivial) C∗-extension of an elliptic curve (which is a one-dimensional Abelian
variety).
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Further examples of a.c.i. systems and generalized a.c.i. systems are the periodic
and non-periodic Toda lattices, the periodic and non-periodic Kac-van Moerbeke
lattices, the Mumford system and some of its generalizations, the Hitchin system
and its generalizations, the classical integrable tops (with the exception of the
Goryachev-Chaplygin top), three families of geodesic flows on SO(4), and many,
many others. See [4] and the references therein. For a large family of polynomial
integrable systems, associated to an arbitrary algebraic curve, but which are not
(generalized) a.c.i. see [17].
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