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INTEGRABLE SYSTEMS AND MODULI SPACES

OF RANK 2 VECTOR BUNDLES ON A

NON-HYPERELLIPTIC GENUS 3 CURVE

by POL VANHAECKE

1. Moduli spaces of rank 2 vector bundles on a
Riemann surface of genus 3.

Let Γ be a compact Riemann surface of genus g > 0. The simplest

non-trivial moduli space that is associated with Γ is Picd(Γ), the moduli

space of rank 1 vector bundles (line bundles) on Γ of degree d. When d = 0

we also speak of the Jacobian of Γ, denoted Jac(Γ); each of the Picd(Γ) is

isomorphic to Jac(Γ), but not in a canonical way. From the point of view of

complex geometry, Picd(Γ) is a rather simple object: Picd(Γ) is a complex

torus C
g/Λ, where Λ is a lattice in C

g ; notice that its dimension is the

genus g of Γ. Since a complex torus is essentially a linear object, in fact a

commutative group that is locally isomorphic to C
g, one usually thinks of

Picd(Γ) as the linearization/abelianization of Γ. From the algebraic point

of view, Picd(Γ) is a projective variety whose ideal is generated by quadratic

polynomials. It is a priori not clear how explicit formulas for these quadratic

polynomials can be found: it is only recently that quadratic equations have

been obtained for certain two-dimensional complex tori, and this by using

techniques that were developed by Adler and van Moerbeke (see [1] and [2]),

and that will be explained (and used) later in this article.

The next moduli spaces of interest on Γ are the moduli spaces of rank

two bundles on Γ. Let M0(Γ) denote the moduli space of rank two bundles

on Γ with trivial determinant. M0(Γ) is a smooth variety that compactifies
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naturally into a singular (in general) projective variety, which we denote

by M(Γ) (see [6]). This moduli space is closely related to the Kummer

variety Kum(Γ), which is the quotient Jac(Γ)/σ, where σ denotes the

reflection with respect to its origin, σ(ξ) = ξ−1, where ξ ∈ Pic0(Γ) = Jac(Γ).

Namely, the Kummer variety and the moduli space are naturally embedded

in the same projective space P
2g−1, and this in a way which is compatible

with the natural embedding of Kum(Γ) in M(Γ), i.e., the following diagram

is commutative:

Kum(Γ)
ı

−−−−−−−−−−−−−−→ M(Γ)

ϕL

y
y 

PH0(Jac(Γ),L)∗
W

−−−−−→ PH0
(
Picg−1(Γ), [2Θ]

)
.

Let us explain the different elements that appear in this diagram.

• If we write elements of Kum(Γ) as unordered pairs 〈ξ, ξ−1〉 with

ξ ∈ Jac(Γ), then ı is defined by

ı(〈ξ, ξ−1〉) = ξ ⊕ ξ−1,

which is a semi-stable rank 2 bundle on Γ with trivial determinant (it is

not a stable bundle, though).

• Θ is the canonical theta divisor on Picg−1(Γ); it consists of those

line bundles on Γ of degree g − 1 that admit a non-trivial section.

• [2Θ] is the line bundle that corresponds to (twice) this divisor.

• For E ∈ M(Γ) we define

DE :=
{
ξ ∈ Picg−1(Γ) | ξ ⊗ E has sections

}
.

It can be shown that DE is the support of a divisor linearly equivalent

to 2Θ, so that we can associate to DE (and hence to E) an element

of PH0(Picg−1(Γ), [2Θ]). This yields the map , which is an embedding.

On Jac(Γ) there is no canonical (theta) divisor, but there is a canonical

line bundle L which gives twice the principal polarization. Consider any

ξ ∈ Picg−1(Γ) and translate Θ to Jac(Γ) by ξ as well as by KΓ ⊗ ξ−1

and take their sum. This gives a divisor on Jac(Γ) which is not canonical,

since we chose ξ, but it only depends on the image of ξ in the Kummer

variety (of Picg−1(Γ)), hence the rational equivalence class of this divisor

is independent of the choice. This yields the above canonical line bundle L.
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Then the map ϕL is the embedding of Kum(Γ) into PH0(Jac(Γ),L)∗ that

is induced by the canonical map Jac(Γ) → PH0(Jac(Γ),L)∗. The projective

transformation W , which makes the diagram commute, is sometimes

referred to as Wirtinger duality; for its construction we refer to [9].

Narasimhan and Ramanan proved in 1969 (see [8]) the following

theorem.

THEOREM 1.1 (Narasimhan-Ramanan). — If Γ is a compact Riemann

surface of genus at least 3 then Kum(Γ) is the singular locus of M(Γ).

In this theorem, the singular varieties Kum(Γ) and M(Γ) are both

viewed as living in P
2g−1, via the embeddings ı and . Thus, every semi-

stable rank 2 bundle on Γ that is not stable is of the form ξ⊕ξ−1, where ξ is

a line bundle of degree zero on Γ. The case g = 2 is exceptional because the

moduli space M(Γ) is P
3, so it is non-singular (in a certain sense, however,

it is singular along Kum(Γ), see [7]).

Fifteen years later, Narasimhan and Ramanan proved the following

related result (see [9]).

THEOREM 1.2 (Narasimhan-Ramanan). — If Γ is a compact Riemann

surface of genus 3 and Γ is non-hyperelliptic then M(Γ) is a quartic

hypersurface of P
7.

Recall that a Riemann surface is non-hyperelliptic if and only if the

canonical map ϕKΓ
: Γ → PH0(Γ,KΓ)∗ is an embedding; a generic compact

Riemann surface of genus 3 is non-hyperelliptic. For the case of rank 2

vector bundles on hyperelliptic Riemann surfaces (of genus g), where the

moduli space can be explicitly described as a variety of linear subspaces

of P
2g+1, see [5].

Denoting by Q the quartic polynomial that defines M(Γ) (as a

quartic in P
7) it is a simple consequence of these two theorems that

Kum(Γ) is given as the intersection of eight cubic hypersurfaces, namely

the cubics ∂Q/∂xi = 0, for i = 0, . . . , 7, where x0, . . . , x7 are any projective

coordinates on P
7.

The purpose of this paper is to compute an explicit equation of this

quartic hypersurface for a family of non-hyperelliptic Riemann surfaces of

genus 3, and this by using the theory of integrable systems. Here, “explicit”

means that the coefficients of the quartic are explicit polynomials in the

coefficients that appear in an algebraic equation of the Riemann surface

as a plane algebraic curve. Our technique is to first construct an algebraic
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completely integrable systems whose generic fiber of the momentum map

is an affine part of the Jacobian of a non-hyperelliptic Riemann surface Γ of

genus 3. Then we construct an embedding of the Kummer variety Kum(Γ)

in P
7 by using the sections of L and we compute the (eight-dimensional)

vector space of all cubic polynomials that vanish on the image. In view

of Wirtinger duality we may think of these cubic polynomials as being

defined on PH0(Picg−1(Γ), [2Θ]), where they define the singular locus of

the moduli space M(Γ). The polynomial Q that defines M(Γ) is then

found by a simple integration procedure. Our equation, which is valid for

a whole family of curves, is easily specialized to particular curves; having

an equation for a whole family of moduli spaces is not just interesting from

the point of view of deformation theory, but it indispensable for possible

applications to the Knizhnik-Zamolodchikov equation.

2. Construction of the integrable system.

In this section we construct an integrable system whose invariant

manifolds are affine parts of Jacobians of non-hyperelliptic Riemann

surfaces of genus 3; see [10], Chapter VI for more details and generalizations.

We consider the space N of pairs (P, Q), where

• P, Q formal differential operators (in ∂ = ∂/∂x),

• ordQ = 3 and ordP = 4,

• P monic, P = ∂4 + O(∂3),

• Q normalized, Q = ∂3 + O(∂1),

• [P, Q] = 0.

There is a natural matrix, associated to such a commuting pair.

To construct it, we need to Sato Grassmannian, whose definition we

recall shortly. Let Ψ = C[[x]]((∂−1)) denote the algebra of formal pseudo-

differential operators and let Volt denote the group of monic, zeroth order

elements of Ψ, called the Volterra group. Let δ denote Dirac’s delta function,

thought of as a zeroth order differential operator. It has the fundamental

property that for any Q ∈ Ψ there exists a unique Qc ∈ Ψ with constant

coefficients, such that Qδ = Qcδ. The left coset V := C((∂−1))δ = Ψcδ is

a left Ψ-module in a natural way: for P ∈ Ψ and for Q ∈ C((∂−1)) ⊂ Ψ

we define P · (Qδ) = (PQ)δ. For Q ∈ Ψ we define WQ ⊂ C((∂−1))δ by

WQ = Q · H, where H ⊂ V is defined by H = C[∂]δ. The set of all WT ,

where T belongs to Volt is the Sato Grassmannian, denoted GR.
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We can now explain the construction. Since Q is normalized and

has order q, there exists an element T ∈ Volt such that Q = T−1∂qT .

Choosing such an element T we define W = WT = T · H ∈ GR. If we

let P̃ = TPT−1 then P̃ ∈ Ψ is monic of order p and [∂q, P̃ ] = 0, so

that P̃ has constant coefficients. Thus, there corresponds to the pair (P, Q)

a pair (P̃ , W ), where W ∈ GR and where P̃ ∈ Ψ has constant coefficients.

The pair is unique, up to multiplication by an element of Volt, with

constant coefficients. The important property is that W is stable under the

action of ∂3 and P̃ , i.e., ∂3 · W ⊂ W and P̃ · W ⊂ W . The first inclusion

follows from ∂q · W = T · (Q · H) ⊂ T · H = W,, where we have used

that Q · H ⊂ H holds because Q is a differential operator. The second

inclusion is proven in the same way. The first inclusion yields the existence

of a periodic basis for W , while the second one leads to a (trace-less) 3 × 3

matrix X̃, which is P̃ , written in terms of this periodic basis. The entries

of X̃ are polynomials in λ := ∂3; since P is monic of degree 4, the same is

true for P̃ , so that the degrees of the entries of X̃ have the following degree

constraints:(1) 


≤ 1 1 ≤ 0

≤ 1 ≤ 1 1

2 ≤ 1 ≤ 1


 .

The matrix X̃ is not unique, in fact it is only defined up to conjugation by a

lower triangular matrix. It is easy to see that this conjugation class contains

a unique element of the 10-dimensional affine subspace M of sl(3)[λ], whose

elements have the form

X(λ) :=




b11 λ + b12 b13

b21 b22 λ + b23

λ2 + a31λ + b31 a32λ + b32 −b11 − b22


 .

This yields a well-defined map N → M , that associates to a commuting pair

(P, Q) ∈ N an element X(λ) of M . In fact, it can be shown that inversely

to any element of M one can associate a pair of commmuting differential

operator (P, Q) ∈ N (see [10], Chap. VI), so that the constructed map is in

fact a bijection.

This affine space M is the manifold that underlies our integrable

system. To see how it relates to our original problem, consider for X(λ) ∈ M

(1) An entry such as “≤ 1” means that the degree of the polynomial is at most 1,
while “1” means that the polynomial is monic of degree 1.
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its characteristic polynomial |µ Id3 −X(λ)|, and let H :M → C
7 be the

polynomial map, which is defined by its coefficients in λ and µ, say

|µ Id3 −X(λ)| = µ3−µ(H1λ
2+H2λ+H3)−(λ4+H4λ

3+H5λ
2+H6λ+H7).

For any X(λ) ∈ M an affine algebraic curve Γ0
h ⊂ C

2 is defined by

|µ Id3 −X(λ)| = 0, where h := H(X(λ)). Thus, the spectral curves that we

find here are precisely the type of curves that we are interested in: if X(λ)

is a generic element of M then Γ0
h is a non-singular non-hyperelliptic curve

of genus 3. We denote by H the Zariski open subset of C
7 consisting of

those h for which Γ0
h is non-singular. For h ∈ H, the compact Riemann

surface that corresponds to Γ0
h is denoted by Γh. For future use we also

introduce the set H0 of those (α, β, γ) for which the affine curve

(1) y3 = λ4 + αλ2 + βλ + γ

is non-singular. Explicitly this means that the parameters α, β and γ are

such that

(2) 27β4 + 4α(α2 − 36γ)β2 − 16γ(α2 − 4γ)2 6= 0.

H0 is naturally identified with a subset of H.

We now get to the Hamiltonian structure and to the commuting

vector fields on M , that will make up the integrable system. On the space

of normalized differential operators of a fixed order, such as Q (which

has order 3) there is a natural set of commuting vector fields, the KP

hierarchy. Explicitly, it is given by dQ/dti = [Q
i/q
+ , Q], where + denotes

the differential part of a pseudo-differential operator. These vector fields

induce commuting vector fields on N , by putting

dQ

dti
= [Q

i/q
+ , Q],

dP

dti
= [Q

i/q
+ , P ].

Under the bijection N ↔ M these vector fields correspond to commuting

vector fields on M , where the simplest one is given by the Lax equation

Ẋ(λ) = [X(λ), Y (λ)], where

Y1(λ) :=




0 1 0

−b13 0 1

λ + a31 − b23 a32 − b13 0


 .

To write the commuting vector fields, we first point out that the matrix

Y1(λ) is of the form [X(λ)/λ]+ plus a strictly lower triangular matrix,
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where the index + means now hat we take the polynomial part (in λ).

Then Vi, for i = 2, 3 are of the form Ẋ(λ) = [X(λ), Yi(λ)], where

Yi(λ) =
[ A2(λ)

λi−1

]

+
+




0 0 0

ui 0 0

vi ui 0


 ,

with u2 = −b12−b23 and v2 = b11 on the one hand, and u3 = b13b22−b12b23

and v3 = b11b23 − b21b13 on the other hand. Moreover, these three vector

fields are Hamiltonian with respect to a Poisson bracket {. , .} on M which

is a reduction of the standard R-bracket that comes from the splitting of

the affine Lie algebra sl(3)[λ, λ−1] into polynomials in λ and polynomials

in λ−1 without constant term. For the details of this construction, we refer

to [10, Chap. VI].

The main characteristics of this integrable system are summarized in

the following theorem.

THEOREM 2.1. — (M, {. , .} ,H) is an algebraic completely integrable

system: it is integrable in the sense of Liouville and moreover, if h ∈ H then

the fiber H−1(h) is isomorphic to Jac(Γh) minus a divisor Dh, which is a

translate of the theta divisor Θh, and the Hamiltonian vector fields {. , Hi}

are linear on Jac(Γh).

The proof of the above theorem follows from the fact that the map

which assigns to a matrix X(λ) ∈ M the projectivized eigenvector map

X(λ) is injective; the proof of this injectivity is an essential ingredient

in establishing the bijection between M and the above space of pairs of

differential operators (see [10, Chap. VI]).

3. Embedding Kum(Γ) in P
7.

For fixed h ∈ H we use the techniques developed by Adler and

van Moerbeke (see [1] and [2, Chap. VII]) to compute explicitly a

basis for the 8-dimensional vector space of holomorphic functions on

H−1(h) ∼= Jac(Γh) \ Dh which have a double pole at most when extended

to meromorphic functions on Jac(Γh). To do this we search for the family of

Laurent solutions to V1 which depends on dimM − 1 = 9 free parameters

(this is also called the principal balance); there exists precisely one such

balance because the divisor Dh is a translate of the theta divisor, in

particular it is irreducible. In the present case this balance turns out to be
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weight homogeneous, hence it can be found algorithmically. In fact, if we

assign weights to the phase variables according to Table 1,

1 2 3 4 5 6

b13 b12 b11 b21 b31

a32 b23 b22 b32

a31

Table 1. The weights of the phase variables

then we find that the weights of the constants of motion Hi are given by

$(H1, . . . , H7) = (2, 5, 8, 3, 6, 9, 12),

and that V1 is a weight homogeneous vector field (which means that V1

has weight 1). Using these weights one computes algorithmically all weight

homogeneous Laurent solutions to V1 by substituting for each of the phase

variables x the first k + 1 terms of a general Laurent polynomial that starts

at t−$(x), where $(x) denotes the weight of x. For k = 0 this leads to a

non-linear system of equations, called the indicial equation, which admits

in the present case the solutions that are given in Table 2.

a31 a32 b11 b12 b13 b21 b22 b23 b31 b32

−4 2 −4 4 −2 0 0 0 8 −8

4 2 8 0 −2 16 0 −4 32 0

0 5 20 5 −5 80 −15 −5 200 −55

0 1 0 1 −1 0 1 −1 0 1

Table 2. The four solutions to the indicial equation

After the zeroth step one only gets linear equations, which are

governed by the Kowalevski matrix K, defined by

Kij :=
∂fi

∂xj
+ $(xi)δij , 1 ≤ i, j ≤ 10,

where x1, . . . , x10 are the phase variables, taken for example in the order

which is given in Table 2. Since ` free parameters can only appear at those

steps k for which k is an eigenvalue with multiplicity ` of K we compute for
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the four points given in Table 2 the characteristic polynomial |µI10 − K|

of K and we find, in that order,

(µ + 2)(µ + 1)(µ − 2)(µ − 3)2(µ − 4)(µ − 5)(µ − 6)(µ − 8)(µ − 9),

(µ + 2)(µ + 1)(µ − 2)(µ − 3)2(µ − 4)(µ − 5)(µ − 6)(µ − 8)(µ − 9),

(µ + 5)(µ + 2)(µ + 1)(µ − 2)(µ − 3)(µ − 5)(µ − 6)(µ − 8)(µ − 9)(µ − 12),

(µ + 1)(µ − 1)(µ − 2)(µ − 3)2(µ − 4)(µ − 5)(µ − 6)2(µ − 8).

It follows that only the last solution in Table 2 can lead to the principal

balance. By direct computation one finds that this solution leads indeed to

a family of Laurent solutions depending on 9 free parameters. The first few

terms are given by

a31(t) =
2a

t2
+ d + O(t),

a32(t) =
1

t2
+ 5a2 + 2b + (2ab − d − 2c)t + O(t2),

b11(t) =
2a

t3
+

2a2

t2
+

4ab − 2d − 4c

t
+ O(t0),

b12(t) =
1

t3
−

a

t2
+ d + c − 2ab + O(t),

b13(t) = −
1

t2
+ a2 + b + (d + 2c − 2ab)t + O(t2),

b21(t) =
2a

t4
+ 4

a2

t2
+

6ab + 4a3 − 2d − 4c

t2
+ O(t−1),

b22(t) =
1

t4
+

b

t2
+

2d + 4c − 4ab

t
+ O(t0),

b23(t) = −
1

t3
−

a

t2
− c + O(t),

b31(t) =
2a

t5
+

6a2

t4
+

8ab + 10a3 − 2d − 4c

t3
+ O(t−2),

b32(t) =
1

t5
+

a

t4
+

a2 + 2b

t3
+

2d + 3c − 4ab − a3

t2
+ O(t−1),

where a, b, . . . are the free parameters. A few more terms are needed to

do the computations that follow, but they are easily computed (using a

computer) from the given terms.

We now proceed to compute a basis for the 8-dimensional vector space

of regular functions (polynomials) on H−1(h) which have the property that,
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when they are viewed as meromorphic functions on Jac(Γh) then they have

a double pole at worst at Dh. This can be done by using the above Laurent

solutions in view of the following theorem ([2], Prop. 6.14, specialized to

our case).

THEOREM 3.1. — Let P be a polynomial in the phase variables and

let h ∈ H. The pole order of P H−1(h), viewed as a meromorphic function

on Jac(Γh), along Dh is equal to the pole order (in t) of the Laurent series

P (t), obtained by substituting the first few terms of the principal balance

in P .

It is easy to see that if P is a polynomial in the phase variables, such that

P (t) has a pole order p, and P = P0 + · · · + Ps, where Pi consists of the

terms of P that have weight i, then each Pi has a pole order smaller than

or equal to p. This implies that it suffices to search for weight homogeneous

polynomials P for which P (t) has a pole of order 2 at most. We arrive in

this case at the following list of eight weight homogeneous polynomials.

z0 := 1,

z1 := a32,

z2 := a31,

z3 := b22 − a2
32,

z4 := b22b13 − b12b23,

z5 := b13(a32b23 + a31b13) + b11b23 − b12(b11 + b22),

z6 := b13(b12b23 − b22b13 + b31) + b11(b11 + b22),

z7 := (b11 − b22)a
3
32 −

(
a31(b12 + b23) + b12b23 + b31

)
a2
32

−
(
a31(b21 + b32) − b23b32 − 2b2

22

)
a32 + a31b12(b11 + 2b22)

+ a31b23(b22 − b11) + b12b22b23 + b21b32.

Their weights are $(z0, . . . , z7) = (0, 2, 3, 4, 6, 7, 8, 10).

By computing the leading terms in the series zi(t) (which is a rational

function on the translate Dh of the theta divisor) one shows easily that

these functions are indeed linearly independent, when restricted to H−1(h).

Therefore the closure of the image of the canonical map

(3) ϕ :H−1(h) −→ P
7, p 7−→

(
1 : z1(p) : · · · : z7(p)

)

is Kum(Γh), embedded in PH0(Jac(Γh), 2Dh)∗.
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4. An equation for the moduli space.

The next step is to determine a basis of the (eight-dimensional)

vector space of homogeneous cubic polynomials that vanish on the image

of the map ϕ that we have constructed. The following considerations are

extremely helpful for doing this. We know that there exists a homogeneous

quartic polynomial Q(z0, . . . , z7) which yields eight linearly independent

cubic polynomials, vanishing on the image of ϕ, by differentiating Q which

respect to each of the zi. The coefficients of this polynomial are functions

of the values hj of the constants of motion Hj . Weight homogeneity of

the zi and the Hj (with respect of the weights for the phase variables that

were given in Table 2) implies that the rescaling map, which amounts to

multiplying each of the zi by ν$(zi) and hj by ν$(Hj) yields the same

quartic polynomial Q, up to a constant, which implies that Q is weight

homogeneous (taking into account the weights of the hi), and in particular

that the coefficients are polynomial functions in the hi. Moreover, we can

determine the weight of Q as soon as we know the cubic polynomial of

lowest weight that vanishes on the image of ϕ, since that one is necessarily

∂Q/∂z7, and since $(Q) = $(∂Q/∂zi) + $(zi); the latter formula then

allows us to determine the weights of the other cubics.

In order to find a cubic polynomial C of a given weight d that vanishes

on the image of ϕ, write

C =

7∑

i≤j≤k=0

Cijk(H)zizjzk,

where each Cijk is the most general polynomial in H1 . . . , H7, which is

weight homogeneous of weight d−$(zi)−$(zj)−$(zk). Then substitute

the definitions of the zi and the Hj in terms of the phase variables and

express that the resulting polynomial in the phase variables is identically

zero, which gives a huge system of linear equations on all the coefficients

that appear in the polynomials Cijk. The non-trivial polynomial of lowest

weight that is found has weight 14 and is given (up to a constant) by

C1 := 2(z7 − αz3)z
2
1 + (2γz2

0 + (βz2 − 2αz4)z0 + 2z2
4 − z3z6)z1

+ (z2
5 − 4z4z6)z0 − z2z3z5 − z2

2z6 − z2
3z4,

where we have taken h = (α, β, γ) ∈ H0, the full C1 for h ∈ H being three

times as long (but it has the same degree and contains, among others, the

above terms). It follows that Q has weight $(Q) = $(C1) + $(z7) = 24,
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and Q can be found by taking the most general quartic polynomial in

z0, . . . , z7, whose coefficients are polynomials in H1, . . . , H7, and expressing

that each of its first order derivatives vanishes on the image of ϕ. In

practice this amounts to solving more than 1000 linear equations in a

comparable number of unknowns, which most (all?) current computer

programs (on a PC) have trouble with. There is however a less costly

procedure, that we describe now. First one computes a basis C1, . . . , C8 for

the cubic polynomials that vanish on the image of ϕ, using the method

that is described above. We know that such a basis can be constructed with

cubic polynomials of weight $(Ci) = 24 − $(zi), which amounts to

$(C1, . . . , C8) = (14, 16, 17, 18, 20, 21, 22, 24).

This has to be done somehow carefully, because we want these cubic

polynomials to be linearly independent, when restricted to particular

values h of H. Indeed, if we multiply C1 by H1 then we find a cubic

polynomial of weight 16 that vanishes on the image of ϕ, but its restriction

to H = h is just a multiple of C1. Besides this fact the computation of these

cubic polynomials is long but straightforward.

Having found these cubic polynomials C1, . . . , C8 it is because of

the choices involved in their construction unlikely that they will exist a

polynomial Q such that ∂Q/∂z8−i = Ci, for i = 1, . . . , 8; in fact this will

only be the case if the integrability property ∂Ci/∂z8−j = ∂Cj/∂z8−i

holds for 1 ≤ i, j ≤ 8. However, we know that some other basis

of Span{C1, . . . , C8} must satisfy this property. To find this basis, let

Rij := ∂Ci/∂z8−j and let A be an 8 × 8 matrix. Then the elements of AC

satisfy the mentioned integrability property if and only if AR is symmetric.

Thus, by simple linear algebra we determine a basis (C ′
1, . . . , C

′
8) of the

cubic polynomials which are derivatives of the quartic polynomial Q.

Below, we state the result for a particular (3-dimensional) family

of curves Γh (namely h ∈ H0), since the formula for the whole seven-

dimensional space (where h ∈ H) is much longer; the reader will have no

difficulty computing it, using the same methods.

THEOREM 4.1. — Let (α,β,γ) ∈ H0 so that the algebraic curve

y3 = λ4 + αλ2 + βλ + γ

is smooth, and let Γh denote its compact Riemann surface. The moduli

space M(Γh) is given by the following quartic hypersurface in P
7,

(4) γ2z4
0 + P1z

3
0 + P2z

2
0 + P3z0 + P4 = 0,
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where

P1 = (2αγ − β2)z4 + βγz2 ,

P2 = (2γz7 + (2αγ − β2)z3)z1 + βz5z6 + αγz2
2

− αβz2z4 + 3γz3z6 + (α2 + 2γ)z2
4 ,

P3 = (4γα − β2)z3
1 + 4γz6z

2
1 + (βz2z7 − 2αz4z7 − αβz2z3

− 2βz4z5 + 4γz2z5 + 2α2z3z4 − αz2
6)z1 + z2

5z7

+ αz2z5z6 − z3
6 + 2αz3

4 + 3αz3z4z6 − 4z4z6z7

+ γz3
3 + βz2

3z5 − 3βz2z
2
4 + βz2z3z6 + 4γz2

2z4 ,

P4 = ((z7 − αz3)
2 + γz2

3 + αz2
5 + βz3z5)z

2
1 + (z2

5z6 − z3z6z7

+ αz2
3z6 + βz2

2z5 + 2z2
4z7 − 2αz2z4z5 − 2αz3z

2
4 + 2γz2

2z3

− βz2z3z4)z1 − z2z3z5z7 − z2
3z4z7 − z2

2z6z7 − z3z
2
4z6

+ αz2
2z3z6 − 2z2z4z5z6 + γz4

2 + z4
4 + αz2

2z2
4 + αz3

3z4

− βz3
2z4 + αz2z

2
3z5 + z3z4z

2
5 + z2z

3
5 .

Notice that the cubic polynomial Q1 is indeed given by C1 = ∂Q/∂z7.

The other basic cubic polynomials are found by computing ∂Q/∂zi

for i = 0, . . . , 6.

Acknowledgment. — I would like to thank Professor S. Ramanan for

having explained Wirtinger duality to me.

BIBLIOGRAPHY

[1] M. ADLER, P. VAN MOERBEKE, The complex geometry of the Kowalewski-Pain-
levé analysis, Invent. Math., 97-1 (1989), 3–51.

[2] M. ADLER, P. VAN MOERBEKE, P. VANHAECKE, Algebraic integrability, Pain-
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