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Abstra
t. We introdu
e two algebrai
 
ompletely integrable analogues of the

Mumford systems whi
h we 
all hyperellipti
 Prym systems, be
ause every

hyperellipti
 Prym variety appears as a �ber of their momentum map. As

an appli
ation we show that the generi
 �ber of the momentum map of the

periodi
 Volterra latti
e
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); i = 1; : : : ; n; a
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;

is an aÆne part of a hyperellipti
 Prym variety, obtained by removing n trans-

lates of the theta divisor, and we 
on
lude that this integrable system is alge-

brai
 
ompletely integrable.
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1. Introdu
tion

In this paper we introdu
e two algebrai
 
ompletely integrable (a.
.i.) systems,

similar to the even and odd Mumford systems (see [12℄ for the odd system and [15℄

for the even system). By a.
.i we mean that the general level sets of the momentum

map are isomorphi
 to aÆne abelian varieties and the 
ows are linearized by this
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isomorphism ([16℄). The phase spa
e of these systems is des
ribed by triplets of

polynomials (u(x); v(x); w(x)), as in the 
ase of the Mumford system, but now we

have the extra 
onstraints that u;w are even and v odd for the �rst system (the

\odd" 
ase), and with the opposite parities for the other system (the \even" 
ase).

We show that in the odd 
ase the generi
 �ber of the momentum map is an aÆne

part of a Prym variety, obtained by removing three translates of its theta divisor,

while in the even 
ase the generi
 �ber has two aÆne parts of the above form.

We 
all these system the odd and the even hyperellipti
 Prym system be
ause

every hyperellipti
 Prym variety (more pre
isely an aÆne part of it) appears as

the �ber of their momentum map. Thus we �nd the same universality as in the

Mumford system: in the latter every hyperellipti
 Ja
obian appears as the �ber of

its momentum map.

To show that the hyperellipti
 Prym systems are a.
.i. we exhibit a family of


ompatible (linear) Poisson stru
tures, making these system multi-Hamiltonian.

These stru
tures are not just restri
tions of the Poisson stru
tures on the Mumford

system. Rather they 
an be identi�ed as follows: the hyperellipti
 Prym systems

are �xed point varieties of a Poisson involution (with respe
t to 
ertain Poisson

stru
tures of the Mumford system) and we prove a general proposition stating that

su
h a subvariety always inherits a Poisson stru
ture (Proposition 3.4).

As an appli
ation we study the algebrai
 geometry and the Hamiltonian stru
ture

of the periodi
 Volterra latti
e

(1) _a

i

= a

i

(a

i�1

� a

i+1

) i = 1; : : : ; n; a

n+1

= a

1

:

Although systems of this form go ba
k to Volterra's work on population dynami
s

([20℄), they �rst appear (in an equivalent form) in the modern theory of integrable

system in the pioneer work of Ka
 and van Moerbeke ([10℄), who 
onstru
ted this

system as a dis
retization of the Korteweg-de Vries equation and who dis
overed

its integrability. Though those authors only 
onsidered the non-periodi
 
ase, we

shall refer to it as the KM system. In the se
ond part of the paper we give a pre
ise

des
ription of the �bers of the momentum map of the periodi
 KM system and we

prove its algebrai
 
omplete integrability.

In order to link the periodi
 KM system to the hyperellipti
 Prym system we

establish a 
ommutative diagram

T

� //
M

0

K

�

//
� ?

OO

P

� ?

OO

in whi
h M

0

; P ; T ; K are (in that order) the phase spa
es of the (even) Mumford

system, the hyperellipti
 Prym system (odd or even), the periodi
 sl Toda latti
e

and the periodi
 KM system. The verti
al arrows are natural in
lusion maps ex-

hibiting for both spa
es the subspa
e as �xed points varieties and the horizontal

arrows are inje
tive maps that map every �ber of the momentum map on the left

inje
tively into (but not onto) a �ber of the momentum map on the right. In or-

der to make these morphisms into morphisms of integrable systems, the horizontal

maps should be, in addition, Poisson maps, so we 
onstru
t a pen
il of quadrati


bra
kets making the map Toda ! Mumford a Poisson map. For one bra
ket in
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this pen
il the indu
ed map for the KM system is also Poisson, again upon using

Proposition 3.4, so the diagram also has a meaning in the Poisson 
ategory.

A des
ription of the generi
 invariant manifold of the periodi
 KM system as

an aÆne part of a hyperellipti
 Prym variety follows. Sin
e the 
ows of the KM

system are restri
tions of 
ertain linear 
ows of the Toda latti
e this enables us to

show that the periodi
 KM system is a.
.i.; moreover the above map leads to an

expli
it linearization of the KM system.

In order to determine pre
isely whi
h divisors are missing from the aÆne varieties

that appear in the momentum map we use Painlev�e analysis, sin
e it is diÆ
ult

to read this o� from the map �. The result is that n (= the number of KM

parti
les) translates of the theta divisor are missing from these aÆne parts. We

also show that ea
h hyperellipti
 Prym variety that we get is 
anoni
ally isomorphi


to the Ja
obian of a related hyperellipti
 Riemann surfa
e, whi
h 
an be 
omputed

expli
itly, thereby providing an alternative, simpler des
ription of the geometry of

the KM systems.

The plan of this paper is as follows. In Se
tion 2 we re
all the de�nition of a

Prym variety and spe
ialize it to the 
ase of a hyperellipti
 Riemann surfa
e with an

involution (di�erent from the hyperellipti
 involution). We show that su
h a Prym

variety is 
anoni
ally isomorphi
 to a hyperellipti
 Ja
obian and use this result

to des
ribe the aÆne parts that show up in Se
tion 3, in whi
h the hyperellipti


Prym systems are introdu
ed and in whi
h their algebrai
 
omplete integrability

is proved. In Se
tion 4 we establish the pre
ise relation between the periodi
 KM

system and the periodi
 Toda latti
e and we 
onstru
t the inje
tive morphism �.

We use it to give a �rst des
ription of the generi
 �bers of the momentum map of the

periodi
 KM system and derive its algebrai
 
omplete integrability. A more pre
ise

des
ription of these �bers is given in Se
tion 5 by using Painlev�e analysis. We �nish

the paper with a worked out example (n = 5) in whi
h we �nd a 
on�guration of

genus two 
urves on an Abelian surfa
e that looks very familiar (Figure 2).

As a �nal note we remark that the (periodi
) KM system has re
eived mu
h less

attention than the (periodi
) Toda latti
e, another dis
retization of the Korteweg-

de Vries equation, whi
h besides admitting a Lie algebrai
 generalization, is also

interesting from the point of view of representation theory. It is only re
ently that

the interest in the KM system has revived (see e.g. [6℄, [18℄, and referen
es therein).

We hope that the present work 
lari�es the 
onne
tions between these systems and

the mastersystems (Mumford and Prym systems). It was pointed out to us by

Vadim Kuznetsov, that an embedding of the KM system in the Heisenberg magnet

was 
onstru
ted by Volkov in [19℄.

2. Hyperellipti
 Prym varieties

In this se
tion we re
all the de�nition of a Prym variety and spe
ialize it to the


ase of a hyperellipti
 Riemann surfa
e �, equipped with an involution �. We 
on-

stru
t an expli
it isomorphism between the Prym variety of (�; �) and the Ja
obian

of a related hyperellipti
 Riemann surfa
e and we use this isomorphism to give a

pre
ise des
ription of the aÆne part of the Prym variety that will appear further

as the �ber of the momentum map of an integrable system related to the Ka
-van

Moerbeke system.

2.1. The Prym variety of a hyperellipti
 Riemann surfa
e. Let � be a


ompa
t Riemann surfa
e of genus G, equipped with an involution � with p �xed
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points. The quotient surfa
e �

�

= �=� has genus g

0

, with G = 2g

0

+ p=2� 1, and

the quotient map � ! �

�

is a double 
overing whi
h is rami�ed at the p �xed

points of �. We assume that g

0

> 0, i.e., � is not the hyperellipti
 involution on a

hyperellipti
 Riemann surfa
e �. The group of divisors of degree 0 on �, denoted

by Div

0

(�), 
arries a natural equivalen
e relation, whi
h is 
ompatible with the

group stru
ture and whi
h is de�ned by D � 0 i� D is the divisor of zeros and poles

of a meromorphi
 fun
tion on �. The quotient group Div

0

(�)= � is a 
ompa
t


omplex algebrai
 torus (Abelian variety) of dimension G, 
alled the Ja
obian of

� and denoted by Ja
(�) ([9℄, Ch. 2.7), its elements are denoted as [D℄, where

D 2 Div

0

(�) and we write 
 for the group operation in Ja
(�). Note that �

indu
es an involution on Div

0

(�) and hen
e on Ja
(�); we use the same notation

� for these involutions.

De�nition 2.1. The Prym variety of (�; �) is the (G � g

0

)-dimensional subtorus

of Ja
(�) given by

Prym(�=�

�

) = f[D � �(D)℄ j D 2 Div

0

(�)g:

We will be interested in the 
ase in whi
h � is the Riemann surfa
e of a hyper-

ellipti
 
urve �

(0)

: y

2

= f(x), where f is a moni
 even polynomial of degree 2n

without multiple roots (in parti
ular 0 is not a root of f), so that the 
urve is non-

singular. The Riemann surfa
e � has genus G = n�1 and is obtained from �

(0)

by

adding two points, whi
h are denoted by 1

1

and 1

2

. The two points of �

(0)

for

whi
h x = 0 are denoted by O

1

and O

2

. The 2nWeierstrass points of � (the points

(x; y) of �

(0)

for whi
h y = 0) 
ome in pairs (X; 0) and (�X; 0); �xing some order

we denote them by W

i

= (X

i

; 0) and �W

i

= (�X

i

; 0), where i = 1; : : : ; n. The

Riemann surfa
e � admits a group of order four of involutions, whose a
tion on

�

(0)

and on the Weierstrass points (X

i

; 0) and whose �xed point set are des
ribed

in Table 1 for n odd, n = 2g + 1 and in Table 2 for n even, n = 2g + 2 ({ is the

hyperellipti
 involution).

Table 1: n odd

(x; y) O

1

O

2

1

1

1

2

W

i

�W

i

Fix

{ (x;�y) O

2

O

1

1

2

1

1

W

i

�W

i

W

i

; �W

i

� (�x; y) O

1

O

2

1

2

1

1

�W

i

W

i

O

1

; O

2

� (�x;�y) O

2

O

1

1

1

1

2

�W

i

W

i

1

1

; 1

2

Table 2: n even

(x; y) O

1

O

2

1

1

1

2

W

i

�W

i

Fix

{ (x;�y) O

2

O

1

1

2

1

1

W

i

�W

i

W

i

; �W

i

� (�x;�y) O

2

O

1

1

2

1

1

�W

i

W

i

{

� (�x; y) O

1

O

2

1

1

1

2

�W

i

W

i

O

1

; O

2

; 1

1

; 1

2

For future use we also point out that for points P 2 � whi
h are not indi
ated on

these tables, neither �(P ) nor �(P ) 
oin
ide with {(P ).
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The involutions � and � lead to two quotient Riemann surfa
es �

�

:= �=� and

�

�

:= �=� , and to two 
overing maps �

�

: �! �

�

and �

�

: �! �

�

. It follows from

Tables 1 and 2 that the genus of �

�

equals g, while the genus g

0

of �

�

is g or g+1

depending on whether n is odd or even. Also, the dimension of Prym(�=�

�

) = g

(whether n is odd or even). If the equation of �

(0)

is written as y

2

= g(x

2

) then

for n odd, �

(0)

�

has an equation v

2

= g(u) while �

(0)

�

has an equation v

2

= ug(u);

for n even the roles of �

(0)

�

and �

(0)

�

are inter
hanged.

In order to des
ribe Prym(�=�

�

), whi
h we will 
all a hyperellipti
 Prym variety,

we need the following 
lassi
al results about hyperellipti
 Riemann surfa
es and

their Ja
obians (for proofs, see [12℄, Ch. IIIa).

Lemma 2.2. Let D be a divisor of degree H > G on �, where G is the genus of �,

and let P be any point on �. There exists an e�e
tive divisor E of degree G on �

su
h that

D � E + (H �G)P:

Corollary 2.3. For any �xed divisor D

0

of degree G, Ja
(�) is given by

Ja
(�) =

("

G

X

i=1

P

i

�D

0

#

j P

1

; : : : ; P

G

2 �

)

:

Lemma 2.4. Let D be a divisor on � of the form D =

P

H

i=1

(P

i

�Q

j

) where H � G

and P

i

6= Q

j

for all i and j. Then [D℄ = 0 if and only if H is even and D is of the

form

D =

H=2

X

i=1

(R

i

+ {(R

i

)� S

i

� {(S

i

));

for some points R

i

; S

i

2 �.

2.2. Hyperellipti
 Prym varieties as Ja
obians. In the following theorem we

show that for any n the Prym variety Prym(�=�

�

) asso
iated with the hyperellipti


Riemann surfa
e � is 
anoni
ally isomorphi
 to the Ja
obian of �

�

.

This result was �rst proven by D. Mumford (see [13℄) for the 
ase in whi
h

�

�

: � ! �

�

is unrami�ed (n even) and by S. Dalaljan (see [7℄) for the 
ase in

whi
h �

�

: � ! �

�

has two rami�
ation points (n odd). Our proof, whi
h is valid

in both 
ases, is di�erent and has the advantage of allowing us to des
ribe expli
itly

the aÆne parts of the Prym varieties that we will en
ounter as aÆne parts of the


orresponding Ja
obians.

Theorem 2.5. Let �

�

�

denote the homomorphism Div

0

(�

�

)! Div

0

(�) whi
h sends

every point of �

�

to the divisor on � whi
h 
onsists of its two ante
edents (under �).

The indu
ed map

� : Ja
(�

�

) ! Prym(�=�

�

)

[D℄ 7! [�

�

�

D℄

is an isomorphism.

Proof. It is 
lear that the homomorphism � is a well-de�ned: if [D℄ = 0 then D

is the divisor of zeros and poles of a meromorphi
 fun
tion f on �

�

, hen
e �

�

�

D is

the divisor of zeros and poles of f Æ � and [�

�

�

D℄ = 0. To see that the image of �
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is 
ontained in Prym(�=�

�

), just noti
e that �

�

�

(D) 
an be written as E + �(E) for

some E 2 Div

0

(�), so that

[�

�

�

(D)℄ = [E + �(E)℄ = [E � �(E)℄ 2 Prym(�=�

�

):

Sin
e Ja
(�

�

) and Prym(�=�

�

) both have dimension g it suÆ
es to show that � is

inje
tive. Suppose that [�

�

�

D℄ = 0 for some D 2 Div

0

(�

�

). We need to show that

this implies [D℄ = 0. It follows from Corollary 2.3 that we may assume that D is of

the form

P

g

i=1

p

i

� g�

�

(1

1

), where p

i

2 �

�

. Then �

�

�

D =

P

g

i=1

P

i

+ �(P

i

)� 2g1

1

(�

�

(P

i

) = p

i

). Sin
e 2g � G and 1

1

6= {(1

1

) Lemma 2.4 implies that P

i

= 1

1

,

i.e., p

i

= �

�

(1

1

) for all i. �

2.3. The theta divisor. We introdu
e two divisors on Ja
(�) by

�

1

=

("

G�1

X

i=1

P

i

� (G� 1)1

1

#

j P

i

2 �

)

;(2)

�

2

=

("

G�1

X

i=1

P

i

+1

2

�G1

1

#

j P

i

2 �

)

:(3)

These two divisors are both translates of the theta divisor and they di�er by a shift

over [1

2

�1

1

℄. Sin
e 1

2

= {(1

1

) they are tangent along their interse
tion lo
us,

whi
h is given by


 =

("

G�2

X

i=1

P

i

+1

2

� (G� 1)1

1

#

j P

i

2 �

)

:

Proposition 2.6. When n is odd Prym(�=�

�

)\ (�

1

[�

2

) 
onsists of three trans-

lates of the theta divisor of Ja
(�

�

), interse
ting as in the following �gure.

PSfrag repla
ements

[1

1

+O℄ [1

2

+O℄

[1

1

+1

2

℄

�

1

�

2

�

Figure 1

Proof. We use the isomorphism � to determine whi
h divisors of Ja
(�

�

) get

mapped into �

1

and �

2

. Sin
e O

1

and O

2

are the only points of � on whi
h {

and � 
oin
ide Lemma 2.4 implies that the only divisors D =

P

g

i=1

p

i

� g�

�

(1

1

) 2

Div(�

�

) for whi
h �

�

�

D 
ontains, up to linear equivalen
e, 1

1

or 1

2

are those for
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whi
h at least one of them 
ontains �

�

(1

1

) or �

�

(1

2

) or �

�

(O

1

) (=�

�

(O

2

)). De-

noting O = �

�

(O

1

) we �nd that these points 
onstitute the following three divisors

on Ja
(�

�

).

�

1

=

("

g�1

X

i=1

p

i

� (g � 1)�

�

(1

1

)

#

j p

i

2 �

�

)

;

�

2

=

("

g�1

X

i=1

p

i

+ �

�

(1

2

)� g�

�

(1

1

)

#

j p

i

2 �

�

)

;

� =

("

g�1

X

i=1

p

i

+O � g�

�

(1

1

)

#

j p

i

2 �

�

)

:

They all pass through

! =

("

g�2

X

i=1

p

i

+ �

�

(1

2

)� (g � 1)�

�

(1

1

)

#

j p

i

2 �

�

)

;

whi
h is the tangen
y lo
us of �

1

and �

2

, and �

i

interse
ts � in addition in

!

i

=

("

g�2

X

i=1

p

i

+ �

�

(1

i

) +O � g�

�

(1

1

)

#

j p

i

2 �

�

)

;

whi
h is a translate of !. �

When n is even then 
learly Prym(�=�

�

) is 
ontained in �

1

, but the following

result, similar to Proposition 2.6, holds for an appropriate translate of Prym(�=�

�

).

The proof is left to the reader.

Proposition 2.7. When n is even and i 2 f1; 2g then (Prym(�=�

�

)
 [O

1

�1

i

℄)\

(�

1

[ �

2

) 
onsists of three translates of the theta divisor of Ja
(�

�

), interse
ting

as in Figure 1 (in whi
h O should now be repla
ed by O

2

).

We will see in the next se
tion how in both 
ases (n even/odd) the aÆne

variety obtained by removing these three translates from the theta divisor from

Prym(�=�

�

) 
an be des
ribed by simple, expli
it equations.

3. The hyperellipti
 Prym systems

In this se
tion we introdu
e two families of integrable systems, whose mem-

bers we 
all the odd and the even hyperellipti
 Prym systems, where the adje
tive

\odd/even" refers to the parity of n, as in the previous se
tion, and where \hy-

perellipti
 Prym" refers to the fa
t that the �bers of the momentum map of these

systems are pre
isely the aÆne parts of the hyperellipti
 Prym varieties that were


onsidered in the previous se
tion. These systems are intimately related to the even

Mumford systems, 
onstru
ted by the se
ond author (see [15℄), as even analogs of

the (odd) Mumford systems, 
onstru
ted by Mumford (see [12℄).

3.1. Phase spa
e and momentummap. As in the 
ase of the Mumford systems,

the phase spa
e of the hyperellipti
 Prym systems 
onsists of triples (u(x); v(x); w(x))

of polynomials, often represented as Lax operators

L(x) =

0

�

v(x) w(x)

u(x) �v(x)

1

A

;
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where u(x); v(x) and w(x) are subje
t to 
ertain 
onstraints. Denoting by M

n

(resp. M

0

n

) the phase spa
e of the n-th odd (resp. even) Mumford system and

by P

n

(resp. P

0

n

) the phase spa
e of the n-th odd (resp. even) hyperellipti
 Prym

system these 
onstraints are indi
ated in the following table.

Table 3

phase spa
e dim u(x) v(x) w(x)

M

n

3n+ 1

moni


deg = n

deg < n

moni


deg = n+ 1

M

0

n

3n+ 2

moni


deg = n

deg < n

moni


deg = n+ 2

P

n

3n+ 1

moni


even

deg = 2n

odd

deg < 2n

moni


even

deg = 2n+ 2

P

0

n

3n+ 2

moni


odd

deg = 2n+ 1

even

deg < 2n+ 1

moni


odd

deg = 2n+ 3

In ea
h of these four 
ases phase spa
e is an aÆne spa
e, whose dimension is

indi
ated in the table, and we 
an use the 
oeÆ
ients of the three polynomials as


oordinates on this spa
e: for M

n

for example we write

u(x) = x

n

+ u

n�1

x

n�1

+ � � �+ u

0

and similarly for v(x) and w(x) and for the other phase spa
es.

We de�ne on ea
h of these spa
es a momentum map H with values in (a �nite-

dimensional aÆne subspa
e of) C [x℄ by

H(L(x)) = � det(L(x)) = u(x)w(x) + v

2

(x):

Ea
h of these spa
es 
arries a multi-hamiltonian stru
ture for whi
h H is the mo-

mentum map of an integrable system, as we will see in the next paragraph. We

now des
ribe the generi
 �bers of H , using the results of the previous se
tion.

We start by re
alling the des
ription of these �bers for the Mumford systems

(see [12℄ for the odd 
ase and [15℄ for the even 
ase).

Proposition 3.1. Let f(x) be a moni
 polynomial of degree 2g + 1 (resp. 2g + 2)

without multiple roots and let � denote the Riemann surfa
e 
orresponding to the

(smooth) aÆne 
urve (of genus g) de�ned by �

(0)

: y

2

= f(x). Then the �ber over

f(x) of H : M

g

! C [x℄ (resp. H : M

0

g

! C [x℄) is isomorphi
 to Ja
(�) minus

its theta divisor (resp. minus two translates of its theta divisor whi
h are tangent

along their interse
tion lo
us).

Proof. We shortly indi
ate the idea of the proof, sin
e it will be useful later. To

(u(x); v(x); w(x)) in the �ber over f(x) of H :M

g

! C [x℄ one asso
iates a divisor

D =

P

g

i=1

(x

i

; y

i

) � g1 on � (where f1g := � n �

(0)

) by taking for x

i

the roots

of u(x) and y

i

= v(x

i

). This map is inje
tive and its image 
onsists of those
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divisors

P

g

i=1

P

i

� g1 for whi
h P

i

2 �

(0)

and for whi
h i 6= j ) P

i

6= {(P

j

).

Mapping D to its equivalen
e 
lass [D℄ we get an inje
tive map into Ja
(�) and

the 
omplement of its image is the theta divisor

nh

P

g�1

i=1

P

i

� (g � 1)1

i

j P

i

2 �

o

.

For (u(x); v(x); w(x)) 2 M

0

g

the 
onstru
tion is similar but the 
omplement of the

image 
onsists of two translates of the theta divisor be
ause � n�

(0)


onsist now of

two points. �

In the following two propositions we des
ribe the �bers of H for the hyperellipti


Prym systems. Noti
e that for these systems H takes values in C [x

2

℄ hen
e the


orresponding Riemann surfa
e � is of the type 
onsidered in the previous se
tion.

Proposition 3.2. Let f(x) be a moni
 even polynomial of degree 4g + 2 without

multiple roots and let � denote the Riemann surfa
e 
orresponding to the (smooth)

aÆne 
urve (of genus 2g) de�ned by �

(0)

: y

2

= f(x). The �ber of H : P

g

! C [x

2

℄

over f(x) is isomorphi
 to Prym(�=�

�

)

�

=

Ja
(�

�

) minus three translates of its

theta divisor, interse
ting as in Figure 1.

Proof. Sin
e the �ber over f(x) ofH : P

g

! C [x

2

℄ is 
ontained in the �ber over f(x)

of H : M

0

2g

! C [x℄ it is a subset of Ja
(�). In fa
t it is a subset of Prym(�=�

�

).

To see this, 
onsider the divisor D =

P

2g

i=1

(x

i

; y

i

) � 2g1

1

whi
h 
orresponds to a

triple (u(x); v(x); w(x)), with u;w even and v odd. The roots of u 
ome in pairs

(x

i

; x

j

= �x

i

) and y

j

= v(x

j

) = v(�x

i

) = �v(x

i

) = �y

i

(re
all that 0 
an never

be a root of u be
ause then f would have 0 as a double root), hen
e the points in D


ome in pairs P; �(P ) and [D℄ belongs to Prym(�=�

�

). The points of Prym(�=�

�

)

whi
h do not belong to the �ber are those

h

P

2g

i=1

P

i

� 2g1

1

i

2 Prym(�=�

�

) for

whi
h at least one of the P

i

equals 1

1

or 1

2

, i.e., the points on �

1

[ �

2

, as

de�ned in (2) and (3). By Proposition 2.6 the �ber is isomorphi
 to an aÆne part

of Prym(�=�

�

) obtained by removing three translates of the theta divisor. �

Proposition 3.3. Let f(x) be a moni
 even polynomial of degree 4g + 4 without

multiple roots and let � denote the Riemann surfa
e 
orresponding to the (smooth)

aÆne 
urve (of genus 2g + 1) de�ned by �

(0)

: y

2

= f(x). The �ber over f(x)

of H : P

0

g

! C [x

2

℄ is redu
ible and ea
h of its two 
omponents is isomorphi
 to

Prym(�=�

�

)

�

=

Ja
(�

�

) minus three translates of its theta divisor, interse
ting as

in Figure 1.

Proof. Consider the divisor D =

P

2g+1

i=1

(x

i

; y

i

) � (2g + 1)1 whi
h 
orresponds to

a triple (u(x); v(x); w(x)), with u;w odd and v even. 0 is a root of u and its other

roots 
ome in pairs x

i

; x

j

= �x

i

and y

j

= v(x

j

) = v(x

i

) = y

i

, hen
e the points in

D 
onsist of O

1

or O

2

and the others 
ome in pairs P; �(P ). It follows that [D℄

belongs to Prym(�=�

�

)
 [O

1

�1

1

℄ or to Prym(�=�

�

)
 [O

1

�1

2

℄. The points of

Prym(�=�

�

) whi
h do not belong to the �ber are those

h

P

2g+1

i=1

P

i

� (2g + 1)1

1

i

for whi
h at least one of the P

i

equals 1

1

or 1

2

, i.e., the points on �

1

[ �

2

,

as de�ned in (2) and (3). By Proposition 2.6 the �ber 
onsists of two 
opies of

an aÆne part of Prym(�=�

�

) obtained by removing three translates of the theta

divisor. Noti
e that the fa
t that the �ber is redu
ible 
an also be dedu
ed from

the fa
t that f(0) = u(0)w(0) + v

2

(0) = v

2

0

. �

3.2. Flows and Hamiltonian stru
ture. The ve
tor �elds of the even Mumford

system are a family of 
ommuting ve
tor �elds, tangent to the �bers of H :M

0

g

!
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C [x℄, and they are linear (translation invariant) when restri
ted to these �bers.

Expli
itly, for y 2 C 
onsider the ve
tor �eldX

y

onM

0

g

de�ned by the Lax equation

(4) X

y

L(x) =

1

x� y

[L(x); L(y) + (x� y)B(x; y)℄;

where

B(x; y) =

0

�

0 �(x + y)u(y)

0 0

1

A

; �(x) = x+ w

g+1

� u

g�1

:

Ea
h of the ve
tor �elds X

y

is Hamiltonian with respe
t to a family of 
ompatible

Poisson stru
tures on M

0

g

, namely for any polynomial ' 2 C [x℄ n f0g of degree at

most g the formulas

fu(x); u(x

0

)g

'

M

= fv(x); v(x

0

)g

'

M

= 0;

fu(x); v(x

0

)g

'

M

=

u(x)'(x

0

)� u(x

0

)'(x)

x� x

0

;

fu(x); w(x

0

)g

'

M

= �2

v(x)'(x

0

)� v(x

0

)'(x)

x� x

0

;(5)

fv(x); w(x

0

)g

'

M

=

w(x)'(x

0

)� w(x

0

)'(x)

x� x

0

� �(x+ x

0

)u(x)'(x

0

);

fw(x); w(x

0

)g

'

M

= 2�(x+ x

0

) (v(x)'(x

0

)� v(x

0

)'(x)) ;

de�ne a Poisson stru
ture (of rank 2g on a Zariski open subset). Sin
e

(6) fH(x); H(x

0

)g

'

M

=

�

u(x)w(x) + v

2

(x); u(x

0

)w(x

0

) + v

2

(x

0

)

	

'

M

= 0;

the 
omponents of H are in involution and by taking

H

'

(y) '

H(y)

'(y)

=

u(y)w(y) + v

2

(y)

'(y)

as Hamiltonian we see that for every y 2 C , whi
h is not a root of ', the ve
tor �eld

X

y

is Hamiltonian with respe
t to f�; �g

'

M

. Moreover, for any two values of y the


orresponding ve
tor �elds X

y


ommute in view of (6). Noti
e that taking ' = 1

one sees that the ve
tor �elds X

y

generate a Hamiltonian abelian (lo
al) a
tion

with momentum map H :M

0

g

! C [x℄. Sin
e the ve
tor �elds X

y

span the tangent

spa
e of the generi
 �bers of H , whi
h are aÆne parts of Ja
obians, and sin
e they

are linear on these Ja
obians, they de�ne an algebrai
 
ompletely integrable system

(a.
.i. system) on M

0

g

(see [16℄ for details).

We now 
onstru
t the 
orresponding Poisson stru
tures and integrable ve
tor

�elds for the hyperellipti
 Prym systems and establish their algebrai
 
omplete

integrability. Consider the natural in
lusions P

g

,! M

0

2g

and P

0

g

,! M

0

2g+1

and


onsider the involution | :M

0

n

!M

0

n

de�ned by:

| :

0

�

v(x) w(x)

u(x) �v(x)

1

A

7�!

0

�

�v(�x) w(�x)

u(�x) v(�x)

1

A

:

Then we see that the image of P

g

,!M

0

2g

is the �xed point variety of |, while the

image of P

0

g

,!M

0

2g+1

is the �xed point variety of �|. We 
laim that | (resp. �|)
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is a Poisson automorphism of (M

0

2g

; f�; �g

'

M

) (resp. (M

0

2g+1

; f�; �g

'

M

)), whenever '

is an even (resp. odd) polynomial. In fa
t, taking ' even we have

fu(x) Æ |; v(x

0

) Æ |g

'

M

= fu(�x);�v(�x

0

)g

'

M

=

u(�x)'(x

0

)� u(�x

0

)'(x)

x� x

0

= fu(x); v(x

0

)g

'

M

Æ |;

showing that for any i and j, fu

i

Æ |; v

j

Æ |g

'

M

= fu

i

; v

j

g

'

M

and similarly for the

Poisson bra
kets of the other 
omponents. Sin
e all bra
kets are linear in ' the

result for ' odd also follows, when | is repla
ed by �|.

The following proposition, whi
h 
an be seen as a parti
ular 
ase of Dira
 redu
-

tion, yields a Poisson stru
ture on the �xed point variety of a Poisson involution.

For the general theorem on Dira
 redu
tion, see Weinstein ([21℄, Prop. 1.4) and

Courant ([4℄, Thm. 3.2.1). For our 
onvenien
e we give a proof in the algebrai



ategory; the proof is easily adapted to smooth manifolds.

Proposition 3.4. Suppose that (M; f�; �g) is an aÆne Poisson variety, equipped

with an involution | whi
h is a Poisson map. Let N be the subvariety of M 
on-

sisting of the �xed points of | and denote the in
lusion map N ,!M by {. Then N


arries a (unique) Poisson stru
ture f�; �g

N

su
h that

(7) {

�

fF;Gg = f{

�

F; {

�

Gg

N

for all F;G 2 O(M) that are |-invariant.

Proof. For f; g 2 O(N) we 
hoose F;G 2 O(M) su
h that f = {

�

F and g = {

�

G.

We may assume that F and G are |-invariant by repla
ing F by (F + |

�

(F ))=2

and similarly for G. We de�ne ff; gg

N

= {

�

fF;Gg and show that this de�nition is

independent of the 
hoi
e of F and G. To do this it is suÆ
ient to show that if G is

|-invariant and {

�

F = 0, then {

�

fF;Gg = 0. Sin
e the ideal of fun
tions vanishing

on N is generated by |-anti-invariant fun
tions (|

�

F = �F ) it suÆ
es to show this

for F 2 O(M) su
h that |

�

F = �F . By assumption | is a Poisson map, | Æ { = |

and |

�

G = G so that

{

�

fF;Gg = {

�

|

�

fF;Gg = {

�

f|

�

F; |

�

Gg = �{

�

fF;Gg ;

showing our 
laim. Similarly, the bra
ket of any two |-invariant fun
tions is |-

invariant. In view of this and be
ause the de�nition of f�; �g

N

is independent of the


hoi
e of F and G we have for any f; g; h 2 O(N) that

fff; gg

N

; hg

N

= {

�

ffF;Gg ; Hg ;

leading at on
e to the Ja
obi identity for f�; �g

N

. Similarly the fa
t that f�; �g

N

is

an anti-symmetri
 biderivation follows. �

The Hamiltonian stru
ture of the hyperellipti
 Prym systems and its algebrai



omplete integrability is des
ribed in the following proposition.

Proposition 3.5. Let ' be an even (resp. odd) polynomial of degree at most 2g+1,

' 6= 0. The Poisson bra
ket f�; �g

'

M

onM

0

2g

, (resp. onM

0

2g+1

), given by (5) indu
es

a Poisson bra
ket f�; �g

'

P

on P

g

(resp. on P

0

g

), the 
omponents of H : P

g

! C [x

2

℄

(resp. H : P

0

g

! C [x

2

℄) are in involution and they de�ne an (algebrai
 
ompletely)

integrable system on P

g

(resp. on P

0

g

).
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Proof. Sin
e for ' even (resp. odd) the image of P

g

,! M

0

2g

(resp. P

g

,! M

0

2g

)

is the �xed point set of the Poisson involution | (resp. -|) it follows from Proposi-

tion 3.4 that P

g

(resp. P

0

g

) inherits a Poisson bra
ket from M

0

2g

, whi
h we denote

in both 
ases by f�; �g

'

P

. We exemplify the 
omputation of the redu
ed bra
kets by

deriving the formula for fu(x); v(x

0

)g

'

P

on P

g

(' even). Noti
e that sin
e u is even

and v is odd the polynomial fu(x); v(x)g

'

P

, whi
h is a generating fun
tion for the

Poisson bra
kets fu

i

; v

j

g

'

P

, is even in x and odd in x

0

. Obvious |-invariant exten-

sions of the fun
tions u

2i

and v

2i+1

are the 
orresponding fun
tions u

2i

and v

2i+1

on M

0

2g

. Therefore fu(x); v(x

0

)g

'

P

is 
omputed by taking in fu(x); v(x

0

)g

'

M

the

terms that are even in x and odd in x

0

and restri
ting the resulting polynomial to

the image of P

g

, as embedded in M

2g

. Using the fa
t that the terms of a bivariate

polynomial F (x; x

0

) that are even in x and odd in x

0

are pi
ked by taking

1

4

(F (x; x

0

) + F (�x; x

0

)� F (x;�x

0

)� F (�x;�x

0

))

we �nd for

F (x; x

0

) = fu(x); v(x

0

)g

'

M

=

u(x)'(x

0

)� u(x

0

)'(x)

x� x

0

that the redu
ed Poisson bra
ket, for ' even, is given by

fu(x); v(x

0

)g

'

P

=

x

0

2

�

(u(x) + u(�x))'(x

0

)� (u(x

0

) + u(�x

0

))'(x)

x

2

� x

0

2

�

�

�

�

�

P

g

= x

0

u(x)'(x

0

)� u(x

0

)'(x)

x

2

� x

0

2

:

Repeating the same 
omputation for the other 
oordinates we �nd the following

formulas for f�; �g

'

P

,

fu(x); u(x

0

)g

'

P

= fv(x); v(x

0

)g

'

P

= 0;

fu(x); v(x

0

)g

'

P

= x

0

u(x)'(x

0

)� u(x

0

)'(x)

x

2

� x

0

2

;

fu(x); w(x

0

)g

'

P

= �2

xv(x)'(x

0

)� x

0

v(x

0

)'(x)

x

2

� x

0

2

;

fv(x); w(x

0

)g

'

P

= x

w(x)'(x

0

)� w(x

0

)'(x)

x

2

� x

0

2

� xu(x)'(x

0

);

fw(x); w(x

0

)g

'

P

= 2 (xv(x)'(x

0

)� x

0

v(x

0

)'(x)) :

Using the fa
t that all Poisson bra
kets are linear in ' one �nds that the formulas

for the redu
ed bra
ket on P

0

g

(with ' odd) are formally identi
al to the above

ones. It is now obvious that the 
omponents of the new momentum map H are

in involution. Sin
e we know that the �bers of H : P

g

! C [x

2

℄ are aÆne parts of

Abelian varieties of dimension g, the 
omponents of the new H are independent.

The integrable ve
tor �elds X

y

on P

g

are 
omputed from f� ; H(y)g

1

P

, to wit

(8) X

y

L(x) =

1

x

2

� y

2

2

4

L(x);

0

�

yv(y) xw(y) + x(x

2

� y

2

)u(y)

xu(y) �yv(y)

1

A

3

5

:

Sin
e the formulas for the redu
ed bra
kets on P

g

and on P

0

g

are formally the same

the ve
tor �elds X

y

on P

0

g

are also given by (8). Finally, the 
ows of all ve
tor
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�elds X

y

are linear sin
e they are restri
tions of linear 
ows, showing that the odd

hyperellipti
 Prym systems are algebrai
 
ompletely integrable. �

4. The periodi
 Toda latti
es and KM systems

In this se
tion we show that the periodi
 KM systems are related to the periodi


sl Toda latti
es in the same way as the hyperellipti
 Prym systems are related to

the even Mumford systems and we 
onstru
t a morphism from the Toda latti
es

to the even Mumford systems, whi
h indu
es a morphism from the KM systems to

the odd or the even hyperellipti
 Prym systems. The latter map is then used to

des
ribe the level sets of the momentum map of the KM systems.

4.1. Flows and Hamiltonian stru
ture. The phase spa
e T

n

of the periodi


sl(n) Toda latti
e (n-body Toda latti
e for short) is the aÆne variety of all Lax

operators in sl[h; h

�1

℄ of the form

(9) L(h) =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

b

1

a

1

0 � � � 0 h

�1

1 b

2

a

2

0

0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 b

n�1

a

n�1

ha

n

0 � � � � � � 1 b

n

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

with

Q

n

i=1

a

i

= 1. It 
arries a natural Z=n a
tion, de�ned by

((a

1

; a

2

: : : ; a

n

); (b

1

; b

2

: : : ; b

n

)) 7! ((a

2

; a

3

: : : ; a

1

); (b

2

; b

3

; : : : ; b

1

)):

For this reason it is 
onvenient to view the indi
es as elements of Z=n and we put

a

n

= a

0

; b

n

= b

0

; a

n+1

= a

1

; b

n+1

= b

1

; : : : . The Hamiltonians I

i

, de�ned by

I

i

=

1

1 + i

tr(L(h)

i+1

):

are in involution with respe
t to the linear Poisson bra
ket f�; �g

1

T

, de�ned by

fa

i

; a

j

g

1

T

= fb

i

; b

j

g

1

T

= 0, fa

i

; b

j

g

1

T

= a

i

(Æ

ij

� Æ

i+1;j

), as well as with respe
t

to the quadrati
 Poisson bra
ket f�; �g

x

T

, de�ned by

fa

i

; a

j

g

x

T

= a

i

a

j

(Æ

i;j+1

� Æ

i+1;j

);

fb

i

; b

j

g

x

T

= a

i

(Æ

i;j+1

� Æ

i+1;j

);

fa

i

; b

j

g

x

T

= a

i

b

j

(Æ

i;j

� Æ

i+1;j

):

Sin
e f�; �g

x

T

and f�; �g

1

T

are 
ompatible we may de�ne, for any ' 2 C [x℄ of degree

at most 1 a Poisson bra
ket on T

n

by f�; �g

'

T

= '

1

f�; �g

x

T

+'

0

f�; �g

1

T

, where '(x) =

'

1

x+ '

0

.

The 
ommuting ve
tor �elds X

i

= f� ; I

i

g

1

T

admit the Lax representation

(10) X

i

L(h) = [L(h); (L(h)

i

)

+

℄;

where the subs
ript + denotes proje
tion into the Lie subalgebra of sl[h; h

�1

℄ gen-

erated by the positive roots. They are also Hamiltonian with respe
t to f�; �g

x

T

and
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their 
ows are linear on the generi
 �bers of the momentum map K : T

n

! C [x℄

whi
h is de�ned by

det(x Id�L(h)) = �h�

1

h

+K(x)=2;

sin
e these �bers are aÆne parts of hyperellipti
 Ja
obians, the Toda latti
e is an

a.
.i. system (see [3℄ for details). For higher order bra
kets for the Toda latti
e,

see [5℄.

We now turn to the n body, periodi
, Ka
-van Moerbeke system (periodi
 KM,

for short). Its phase spa
e K

n

is the subspa
e of T

n


onsisting of all Lax operators

(9) with zeros on the diagonal. K

n

is not a Poisson subspa
e of T

n

. However, K

n

is the �xed manifold of the involution | : T

n

! T

n

de�ned by

((a

1

; a

2

: : : ; a

n

); (b

1

; b

2

: : : ; b

n

)) 7! ((a

1

; a

2

: : : ; a

n

); (�b

1

;�b

2

: : : ;�b

n

));

whi
h is a Poisson automorphism of (T

n

; f�; �g

x

T

). Therefore, by Theorem 3.4, K

n

inherits a Poisson bra
ket f�; �g

K

from f�; �g

x

T

, whi
h is given by

fa

i

; a

j

g

K

= a

i

a

j

(Æ

i;j+1

� Æ

i+1;j

):

It follows that the restri
tion of the momentum map K to K

n

is a momentum map

for the KM system. Noti
e that this restri
tion, whi
h we will also denote by K,

takes now values in C [x

2

℄. In parti
ular, K

i

= 0 for even i, while for i odd the Lax

equations (10) lead to Lax equations for the KM systems, merely by putting all b

i

equal to zero. Taking i = 1 we �nd the ve
tor �eld

(11) _a

i

= a

i

(a

i�1

� a

i+1

); i = 1; : : : ; n;

whi
h we 
alled the KM ve
tor �eld in the introdu
tion. More generally, taking

i odd we �nd a family of 
ommuting Hamiltonian ve
tor �elds on K

n

whi
h are

restri
tions of the Toda ve
tor �elds, while for i even the Toda ve
tor �elds X

i

are

not tangent to K

n

. In order to 
on
lude that the KM systems are a.
.i. we need to

des
ribe the �bers of the momentum map K : T

n

! C [x

2

℄. This will be done in

the next paragraph.

4.2. Algebrai
 integrability of KM. We �rst de�ne a map � : T

n

! M

0

n�1

whi
h maps the Toda systems to the even Mumford system. The following identity,

valid for tridiagonal matri
es, will be needed.

Lemma 4.1. Let M be a tridiagonal matrix,

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

�

1

�

1

0 � � � 0 0




1

�

2

�

2

0

0 


2

�

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 �

n�1

�

n�1

0 0 � � � � � � 


n�1

�

n

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

and denote by �

i

1

;:::;i

k

the determinant of the minor of M obtained by removing

from M the rows i

1

; : : : ; i

k

and the 
olumns i

1

; : : : ; i

k

. Then:

(12) �

1

�

n

���

1;n

=

n�1

Y

i=1

�

i




i

:
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Proof. For n = 2 this is obvious. For n > 2 one pro
eeds by indu
tion, using the

following formula for 
al
ulating the determinant � of M ,

(13) � = �

n

�

n

� �

n�1




n�1

�

n�1;n

:

�

In the sequel we use the notation �

i

1

;:::;i

k

from the above lemma taking asM the

tridiagonal matrix obtained from x Id�L(h) in the obvious way, i.e., by removing

the two terms that depend on h. In this notation the 
hara
teristi
 polynomial of

L(h) is given by

(14) det(x Id�L(h)) = �h� h

�1

+�� a

n

�

1;n

:

Proposition 4.2. For any m = 1; : : : ; n the map �

m

: T

n

!M

0

n�1

de�ned by

u(x) = �

m

;

v(x) = a

m�1

�

m�1;m

� a

m

�

m;m+1

(15)

w(x) = (x� b

m

)

2

�

m

+ 2(x� b

m

)(a

m�1

�

m�1;m

+ a

m

�

m;m+1

)

+ 4a

m

a

m�1

�

m�1;m;m+1

;

maps ea
h �ber of the momentum map K : T

n

! C [x℄ into a �ber of the momentum

map H :M

0

n�1

! C [x℄. The restri
tion of �

m

to K

n

takes values in P
n�1

2

when n

is odd and in P

0

n

2

�1

when n is even, mapping in both 
ase the �ber of the momentum

map K : K

n

! C [x

2

℄ into the �ber of the momentum map H : P
n�1

2

! C [x

2

℄ (or

H : P

0

n

2

�1

! C [x

2

℄).

Proof. Sin
e the momentum map is equivariant with respe
t to the Z=n a
tion on

T

n

it suÆ
es to prove the proposition for m = n.

It is easy to see that the triple (u; v; w), de�ned by (15) satis�es the 
onstraints

u;w moni
, degw = degu+ 2 = n+ 1 and deg v < n� 1, so that �

n

takes values

inM

0

n�1

. Moreover, taking �

1

= � � � = �

n

= x in (13) implies that when all entries

on the diagonal of L(h) are zero then �

i

1

;:::;i

p

has the same parity as n� p, so that

the triples (u; v; w) whi
h 
orrespond to points in K

n

have the additional property

that v has the same parity as n while u and w have the opposite parity. Therefore

the restri
tion of �

n

to K

n

takes values in P
n�1

2

when n is odd and in P

0

n

2

�1

when

n is even.

For p(x) a moni
 polynomial of degree n, let L(h) 2 K

�1

(2p(x)), i.e.,

(16) p(x) = (x� b

n

)�

n

� a

n

�

1n

� a

n�1

�

n�1;n

:

Proving that �

n

(L(h)) belongs toH

�1

(p

2

(x)�4) amounts to showing that u(x)w(x)+

v

2

(x) = p

2

(x) � 4, whi
h follows from a dire
t 
omputation, using (12). The 
om-

mutativity of the following diagram follows:

T

n

� //

K

��

M

0

n�1

H

��
C [x℄

�

//
C [x℄

where � is de�ned by �(q) = (q=2)

2

� 4, for q 2 C [x℄.

To show that the map �

n

is inje
tive let (u(x); v(x); w(x)) 2 �

n

(T

n

). We show

that the matrix L(h) 2 T

n

whi
h is mapped to this point is unique.
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First observe that the moni
 polynomial p(x) = � � a

n

�

1;n


an be re
overed

from u(x)w(x) + v(x)

2

= p(x)

2

� 4. We 
an then determine b

n

from the following

two formulas:

p(x) = x

n

�

 

n

X

i=1

b

i

!

x

n�1

+ � � � ;

u(x) = �

n

= x

n�1

�

 

n�1

X

i=1

b

i

!

x

n�2

+ � � � :

Next, the se
ond relation in (15) and (16) lead to the system:

8

<

:

a

n�1

�

n�1;n

� a

n

�

1;n

= v(x);

a

n�1

�

n�1;n

+ a

n

�

1;n

= (x� b

n

)u(x)� p(x):

This linear system 
ompletely determines the produ
ts a

n

�

1;n

and a

n�1

�

n�1;n

.

Be
ause the determinants of the prin
ipal minors of x Id�L(h) are moni
 poly-

nomials, this means that we know a

n

; �

1;n

and �

n�1;n

separately. From � =

p(x) + a

n

�

1;n

we also obtain �.

We have now shown how b

n

, a

n

, �, �

n

and �

n�1;n

are determined. We pro
eed

by indu
tion, showing how to determine b

n�k�1

, a

n�k�1

, �

n�k�1;:::;n

on
e we

know b

n�i

, a

n�i

and �

n�i;:::;n

for i = 0; : : : ; k. We use (13) to obtain the re
ursive

relation:

�

n�k+1;:::;n

= (x� b

n�k

)�

n�k;:::;n

� a

n�k�1

�

n�k�1;:::;n

:

This determines the produ
t a

n�k�1

�

n�k�1;:::;n

, but also a

n�k�1

and �

n�k�1;:::;n

separately, again be
ause �

n�k�1;:::;n

is moni
. Now from�

n�k�1;:::;n

and �

n�k;:::;n

we know, as above, the sums

P

n�k�2

i=1

b

i

and

P

n�k�1

i=1

b

i

. Hen
e, b

n�k�1

is deter-

mined. �

We saw in Proposition 3.3 that the �bers of the momentum map of the even

Prym system are redu
ible (two isomorphi
 pie
es), so there remains the question

if the same is true for the KM system for even n. To 
he
k that this is so, note that

the highest degree 
oeÆ
ient of the 
hara
teristi
 polynomial of L(h) gives, for n

even, the �rst integral I = a

1

a

3

a

5

� � � a

n�1

+ a

2

a

4

a

6

� � � a

n

. Sin
e a

1

a

2

:::a

n

= 1, for

generi
 values of I , the variety de�ned by

a

1

a

3

a

5

� � � a

n�1

= 
onstant; a

2

a

4

a

6

� � �a

n

= 
onstant;

is redu
ible, and the 
laim follows. Note however that both a

1

a

3

a

5

� � � a

n�1

and

a

2

a

4

a

6

� � � a

n

are �rst integrals themselves, so we 
an 
onstru
t a momentum map

using these integrals (instead of their sum and produ
t) and then the generi
 �ber

is irredu
ible.

The map �

m

: T

n

! M

0

n�1

not only maps �bers to �bers of the momentum

maps, but it maps the whole hierar
hy of Toda 
ows to the Mumford 
ows de�ned

by (4). To see this, we 
onstru
t a family of quadrati
 Poisson bra
kets f�; �g

'

M;q

on M

0

n�1

whi
h make this map Poisson.

First observe that there exist unique polynomials p(x) and r(x), with p(x) moni


of degree n and r(x) of degree less than n, su
h that

(17) u(x)w(x) + v(x)

2

= p(x)

2

+ r(x):
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The 
oeÆ
ients of p(x) and r(x) are regular fun
tions of u

i

, v

i

and w

i

. Hen
e,

we 
an de�ne a skew-symmetri
 biderivation on the spa
e of regular fun
tions of

M

0

n�1

by setting, for any ' 2 C [x℄ of degree at most 1,

fu(x); u(x

0

)g

'

M;q

= fv(x); v(x

0

)g

'

M

= 0;

fu(x); v(x

0

)g

'

M;q

= fu(x); v(x

0

)g

p'

M

+ �

'

(x+ x

0

)u(x)u(x

0

);

fu(x); w(x

0

)g

'

M;q

= fu(x); w(x

0

)g

p'

M

� 2�

'

(x+ x

0

)u(x)v(x

0

);

fv(x); w(x

0

)g

'

M;q

= fv(x); w(x

0

)g

p'

M

+ �

'

(x + x

0

)u(x)w(x

0

));

fw(x); w(x

0

)g

'

M;q

= fw(x); w(x

0

)g

p'

M

+ 2�

'

(x + x

0

) (w(x)v(x

0

)� w(x

0

)v(x)));

where �

'

(x) = '(�(2x)=2). Noti
e that the polynomial p', used in the de�nition

of the bra
ket, depends on the phase variables.

Proposition 4.3. Let ' be a polynomial of degree at most 1. Then

(i) f�; �g

'

M;q

is a Poisson bra
ket on M

0

n�1

and the maps

�

m

: (T

n

; f�; �g

'

T

)! (M

0

n�1

; f�; �g

'

M;q

)

are Poisson and map the Toda 
ows to the Mumford 
ows;

(ii) For ' odd, the bra
ket f�; �g

'

M;q

indu
es a Poisson bra
ket f�; �g

P;q

on

P

(n�1)=2

(resp. on P

0

n=2�1

), and the maps

�

m

: (K

n

; f�; �g

K

)! (P

(n�1)=2

; f�; �g

P;q

)

�

m

: (K

n

; f�; �g

K

)! (P

0

n=2�1

; f�; �g

P;q

)

are Poisson and map the KM 
ows to the 
ows of the hyperellipti
 Prym

systems.

Proof. We take the bra
ket of both sides of (17) with u(x) to obtain

2p(y)'(y)

u(x)v(y) � u(y)v(x)

x� y

= 2p(y) fu(x); p(y)g

'

M;q

+ fu(x); r(y)g

'

M;q

:

It follows that fu(x); r(y)g

'

M;q

is divisible by p(y). Sin
e fu(x); r(y)g

'

M;q

is of degree

less than n in y and sin
e p(y) is moni
 of degree n we must have fu(x); r(y)g

'

M;q

= 0

and

fu(x); p(y)g

'

M;q

=

u(x)v(y)� u(y)v(x)

x� y

'(y):

Similarly, we �nd fv(x); r(y)g

'

M;q

= fw(x); r(y)g

'

M;q

== 0 and also that:

fv(x); p(y)g

M;q

=

'(y)

2

�

w(x)u(y) � u(x)w(y)

x� y

� �(x + y)u(x)u(y)

�

;

fw(x); p(y)g

M;q

= '(y)

�

v(x)w(y) � w(x)v(y)

x� y

+ �(x+ y)v(x)u(y)

�

:

These expressions also allow one to 
ompute the bra
kets of u(x), v(x), w(x) and

p(x) with �(y), and the 
he
k of the Ja
obi identity follows easily from it. Therefore,

f�; �g

'

M;q

is a Poisson bra
ket for whi
h the 
oeÆ
ients of r(x) are Casimirs.

If we 
ompare the expressions above for the bra
kets with p(y) with expressions

(4) for the Mumford ve
tor �elds, we 
on
lude that they are Hamiltonian with

respe
t to f�; �g

1

M;q

with Hamiltonian fun
tion K. Che
king that �

m

is Poisson 
an
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be done by a straightforward (but rather long) 
omputation using the following

expressions for the derivatives of �

i

1

;:::;i

k

:

��

i

1

;:::;i

k

�a

i

=

8

<

:

��

i;i+1;i

1

;:::;i

k

; i; i+ 1 62 fi

1

; : : : ; i

k

g ;

0 otherwise,

��

i

1

;:::;i

k

�b

i

=

8

<

:

��

i;i

1

;:::;i

k

; i 62 fi

1

; : : : ; i

k

g ;

0 otherwise.

For the se
ond statement, one easily 
he
ks that when ' is odd then | is a Poisson

involution, so that there is an indu
ed bra
ket on P

(n�1)=2

or on P

0

n=2�1

. Expli
it

formulas for this bra
ket are 
omputed as in the proof of Proposition 3.5. The other

statements in (ii) then follow from (i). �

It is easy to 
he
k that the Poisson bra
kets f�; �g

'

M;q

and f�; �g

 

M

on M

0

n�1

are


ompatible, when ' and  have degree at most 1. This is however not true when

 is of higher degree.

5. Painlev

�

e Analysis

The results in the previous se
tion show that the generi
 �ber of the momentum

map of the KM system is an aÆne part of a hyperellipti
 Prym variety (or two


opies of it), whi
h 
an also be des
ribed as a hyperellipti
 Ja
obian. In order to

des
ribe pre
isely whi
h aÆne part we determine the divisor whi
h needs to be

adjoined to ea
h aÆne part in order to 
omplete it into an Abelian variety. Sin
e

it is diÆ
ult to do this by using the maps �

m

we do this by performing Painlev�e

analysis of the KM system.

The method that we use is based on the bije
tive 
orresponden
e between the

prin
ipal balan
es of an integrable ve
tor �eld (Laurent solutions depending on the

maximal number of free parameters) and the irredu
ible 
omponents of the divisor

whi
h is missing from the �bers of the momentum map (see [1℄).

We look for all Laurent solutions

(18) a

i

(t) =

1

t

r

1

X

j=0

a

(j)

i

t

j

;

to the �rst KM 
ow. The following lemma shows that any su
h Laurent solution of

the KM system (11) 
an have at most simple poles. We may suppose that r in (18)

is maximal, i.e., a

(0)

i

6= 0 for at least one i, and we 
all r the order of the Laurent

solution. The order of pole (or zero) of a

i

(t) is denoted by r

i

, so r = max

i

r

i

.

Lemma 5.1. Let the Laurent series a

i

(t); i = 1; : : : ; n, given by (18) be a solution

to the �rst ve
tor �eld (11) of the KM system. If at least one of the a

i

has a pole

(for t = 0) then it is a Laurent solution of order 1. Moreover the orders of the pole

(or zero) of ea
h a

i

(t) satisfy

(19) r

i

= a

(0)

i+1

� a

(0)

i�1

:

Proof. For s 2 N we �nd from (18):

Res

t=0

_a

i

(t)

a

i

(t)

t

s

=

8

<

:

�r

i

; s = 0

0; s > 0:
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On the other hand, if we use the �rst KM ve
tor �eld (11) then we �nd

Res

t=0

_a

i

(t)

a

i

(t)

t

s

= Res

t=0

(a

i�1

(t)� a

i+1

(t)) t

s

= a

(r�s�1)

i�1

� a

(r�s�1)

i+1

:

We 
on
lude that

(20) a

(k)

i�1

� a

(k)

i+1

=

8

<

:

�r

i

; k = r � 1

0; 0 � k � r � 2:

Now substituting (18) into (11) and 
omparing the 
oeÆ
ient of 1=t

r+1

the

following equation (the indi
ial equation) is obtained:

(21) �ra

(0)

i

= a

(0)

i

(a

(0)

i�1

� a

(0)

i+1

); i = 1; : : : ; n:

If a

i

has a pole of order r > 0 then a

(0)

i

6= 0 and (21) implies a

(0)

i�1

� a

(0)

i+1

= �r.

Comparing with (20) we see that we must have r = 1 and that (19) holds.

�

Noti
e that in view of the periodi
ity of the indi
es (a

i+n

= a

i

) the linear system

1 = (a

(0)

i+1

� a

(0)

i�1

); i = 1; : : : ; n;

has no solutions, so that at least one of the a

(0)

i

vanishes. If, say, a

(0)

0

= a

(0)

k+1

= 0

while a

(0)

i

6= 0 for i = 1; : : : ; k for some k in the range 1; : : : ; n � 1 (this in
ludes

the 
ase of a single i for whi
h a

(0)

i

= 0) then the indi
ial equation spe
ializes to

a

(0)

2

= 1;

a

(0)

i+1

� a

(0)

i�1

= 1; i = 2; : : : ; k � 1;

a

(0)

k�1

= �1;

whi
h has no solution for k odd, and whi
h has a unique solution (a

(0)

1

; : : : ; a

(0)

k

) =

(�l; 1; 1� l; 2; : : : ;�1; l) for even k, k = 2l. The other variables a

(0)

k+1

: : : ; a

(0)

n


an

either be all zero, or they 
an 
onstitute one or several other solutions of this type

(with varying k = 2l), separated by zeroes. Using periodi
ity the other solutions

to the indi
ial equation are obtained by 
y
li
 permutation.

Thus we are led to the following 
ombinatorial des
ription of the solutions to

the indi
ial equation of the n body KM system. For a subset A of Z=n, and for

p 2 Z=n let us denote by A(p) � Z=p the largest subset of A that 
ontains p and

that 
onsists of 
onse
utive elements (with the understanding that A(p) = ; when

p =2 A). If we de�ne

�

n

= fA � Z=n j p 2 A) #A(p) is eveng;

then we see that the solutions to the indi
ial equation are in one to one 
orre-

sponden
e with the elements of �

n

. In the sequel we freely use this bije
tion. For

A 2 �

n

we 
all the integer #A=2 its order, denoted by ordA.

For ea
h solution to the indi
ial equation (i.e., for ea
h A 2 �

n

) we 
ompute the

eigenvalues of the Kowalevski matrix K, whose entries are given by

K

ij

=

�F

i

�a

j

(a

(0)

1

; : : : ; a

(0)

n

) + Æ

ij

where F

i

= a

i

(a

i�1

� a

i+1

), the i-th 
omponent of the �rst KM ve
tor �eld (11).

The number of non-negative integer eigenvalues of this matrix are pre
isely the
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number of free parameters of the family of Laurent solutions whose leading term is

given by (a

(0)

1

; : : : ; a

(0)

n

) (see [1℄), hen
e we 
an dedu
e from it whi
h strata of the

Abelian variety, whose aÆne part appears as a �ber of the momentum map, are

parameterized by it.

Proposition 5.2. For a solution of the indi
ial equation 
orresponding to A 2 �

n

the Kowalevski matrix K has n� ordA non-negative integer eigenvalues.

Proof. In view of (19) the entries of K 
an be written in the form

K

ij

=

8

<

:

(1� r

i

)Æ

i;j

; if a

(0)

i

= 0

a

(0)

i

(Æ

i;j+1

� Æ

i;j�1

); if a

(0)

i

6= 0:

Note also that, by using the Z=n a
tion, we 
an assume that 1 2 A, n =2 A,

and that A is a disjoint union of A(p

1

); : : : ; A(p

s

), with p

1

< p

2

< � � � < p

s

. Let

l

i

= ordA(p

i

). Then K has the following form

K =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

C

1

E

1

�l

1

D

1

0

C

2

E

2

D

2

.

.

.

0 C

s

E

s

D

s

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

On the upper right 
orner the matrix has entry �l

1

, and the blo
ks C

i

,D

i

and E

i

,

i = 1; : : : ; s, are matri
es as follows:

� C

i

is a tridiagonal matrix of size 2l

i

of the form:

C

i

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

0 l

i

1 0 �1

1� l

i

0 l

i

� 1

2 0 �2

.

.

.

.

.

.

.

.

.

l

i

� 1 0 1� l

i

�1 0 1

l

i

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

� D

i

is a diagonal matrix of the form D

i

= diag (1 + l

i

; 1; : : : ; 1; 1 + l

i+1

),

with the 
onvention that if D

i

is 1� 1 then its only entry is 1 + l

i

+ l

j

;

� E

i

is a matrix with only one non-zero entry �l

i

in the lower left 
orner;

It is 
lear that the set of eigenvalues of K is the union of the set of eigenvalues

of the C

i

's and D

i

's. Now we have:
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Lemma 5.3. The eigenvalues of the matrix C

i

are f�1;�2; : : : ;�l

i

g.

Assuming the lemma to hold we �nd that the number of negative eigenvalues of

K is equal to

P

s

i=1

l

i

=

P

s

i=1

ordA(p

i

) = ordA, so the proposition follows.

So we are left with the proof of the lemma. We write l for l

i

and we denote by e

j

the j-th ve
tor of the standard basis of C

2l

. In the basis e

1

; e

3

; : : : ; e

2l�3

; e

2l�1

;

e

2l

; e

2l�2

; : : : ; e

4

; e

2

the matrix C

i

takes form

0

�

0 A

A 0

1

A

;

where A is the transpose of the matrix

� =

0

B

B

B

B

B

B

B

B

B

�

0 : : : : : : 0 1

.

.

. 0 2 �1

.

.

.

.

.

.

3 �2 0

0

.

.

.

.

.

.

.

.

.

.

.

.

l l � 1 0 : : : 0

1

C

C

C

C

C

C

C

C

C

A

:

We show that this matrix has eigenvalues 1; �2; 3; : : : ; (�1)

l�1

l: Then the result

follows be
ause the eigenvalues of C are � the eigenvalues of A.

For j = 1; : : : ; l, let f

j

= [1

j�1

; 2

j�1

; : : : ; l

j�1

℄

T

and let V

j

denote the span of

f

1

; : : : ; f

j

. For v = [v

1

; : : : ; v

l

℄

T

2 C

l

we have that v 2 V

j

if and only if there exists

a polynomial P of degree less than j su
h that v

k

= P (k) for k = 1; : : : ; l. Sin
e

the k-th 
omponent of �f

j

is given by

k(l � k + 1)

j�1

+ (1� k)(l � k + 2)

j�1

= (�1)

j�1

jk

j�1

�

1 +O

�

1

k

��

;

we have that �f

j

� V

j

, more pre
isely

�f

j

2 (�1)

j�1

jf

j

+ V

j�1

:

This means that in terms of the basis ff

j

g the matrix � is upper triangular, with

the integers 1; �2; 3; : : : ; (�1)

l�1

l on the diagonal.

�

By the proposition above we 
an have a Laurent solution depending on n�1 free

parameters only for the n 
hoi
es of A given by (a

(0)

1

; : : : ; a

(0)

n

) = (�1; 1; 0; : : : ; 0)

and their 
y
li
 permutations. Let us 
he
k that there are indeed asymptoti
 ex-

pansions (18) whi
h formally solve the KM system (11). By x2 in [1℄, these solutions

are a
tually 
onvergent and so they de�ne 
onvergent Laurent solutions.

We start with the solution (a

(0)

1

; : : : ; a

(0)

n

) = (�1; 1; 0; : : : ; 0) of the indi
ial equa-

tion. By (19), we know that the order of the singularities of this solution are

(r

1

; : : : ; r

n

) = (1; 1;�1; 0; : : : ;�1) so we have the following ansatz for the formal
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expansions:

a

1

(t) = �

1

t

+ �

1

+ �

1

t+O(t

2

);

a

2

(t) =

1

t

+ �

2

+ �

2

t+O(t

2

);

a

3

(t) = �

3

t+O(t

2

);

a

j

(t) = �

j

+ �

j

t+O(t

2

); 4 � j � n� 1:

a

n

(t) = �

n

t+O(t

2

);

If we repla
e these expansions in the equations (11) de�ning the KM system we

obtain the 
onsisten
y equations:

�

1

� �

2

= 0;

2�

1

� �

2

= ��

1

�

2

� �

n

;

�

1

� 2�

2

= ��

1

�

2

+ �

3

;

�

j

= �

j

(�

j�1

� �

j+1

); 4 � j � n� 1:

They give exa
tly the n�1 free parameters �

1

; �

4

; : : : ; �

n�1

; �

3

; �

n

. The 
oeÆ
ients

a

(k)

= (a

(k)

1

; : : : ; a

(k)

n

) for k > 2 are then 
ompletely determined sin
e they satisfy

an equation of the form

(K � kI) � a

(k)

= some polynomial in the a

(j)

i

with j < k;

and the eigenvalues of the Kowalevski matrix K are �1; 1; 2, by the proof above.

This leads to the following result.

Theorem 5.4. When n is odd the generi
 �ber of the momentum map of the KM

system on K

n

is an aÆne part of a hyperellipti
 Prym variety, obtained by removing

n translates of its theta divisor. When n is even the generi
 �ber 
onsists of two

isomorphi
 
omponents whi
h admit the same des
ription as in the odd 
ase. In

both 
ases the Prym variety admits an alternative des
ription as a hyperellipti


Ja
obian.

6. Example: n=5

In this se
tion we study the 5 body KM system in more detail. Its phase spa
e is

four-dimensional and is given by K

5

= f(a

1

; a

2

; a

3

; a

4

; a

5

) j a

1

a

2

a

3

a

4

a

5

= 1g, with

Lax operator

L =

0

B

B

B

B

B

B

B

B

�

0 a

1

0 0 h

�1

1 0 a

2

0 0

0 1 0 a

3

0

0 0 1 0 a

4

ha

5

0 0 1 0

1

C

C

C

C

C

C

C

C

A

:

The spe
tral 
urve det(x Id�L) = 0 is expli
itly given by

h+

1

h

= x

5

�Kx

3

+ Lx;
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where

K = a

1

+ a

2

+ a

3

+ a

4

+ a

5

;

L = a

1

a

3

+ a

2

a

4

+ a

3

a

5

+ a

4

a

1

+ a

5

a

2

:

These fun
tions are in involution with respe
t to the quadrati
 Poisson stru
ture,

given by fa

i

; a

j

g = (Æ

i;j+1

� Æ

i+1;j

)a

i

a

j

. It follows from the previous se
tion that

for generi
 k; l the aÆne surfa
e P

kl

de�ned by K = k; L = l is an aÆne part of

the Ja
obian of the genus two Riemann surfa
e �

�

minus �ve translates of its theta

divisor, whi
h is isomorphi
 to �

�

. As we have seen, an equation for �

(0)

�

is given

by

(22) �

(0)

�

: y

2

= (u

3

� ku

2

+ lu)

2

� 4u:

The two 
ommuting Hamiltonian ve
tor �elds X

K

and X

L

are given by

_a

1

= a

1

(a

5

� a

2

) a

0

1

= a

1

(a

3

a

5

� a

2

a

4

)

_a

2

= a

2

(a

1

� a

3

) a

0

2

= a

2

(a

4

a

1

� a

3

a

5

)

_a

3

= a

3

(a

2

� a

4

) a

0

3

= a

3

(a

5

a

2

� a

4

a

1

)

_a

4

= a

4

(a

3

� a

5

) a

0

4

= a

4

(a

1

a

3

� a

5

a

2

)

_a

5

= a

5

(a

4

� a

1

) a

0

5

= a

5

(a

2

a

4

� a

1

a

3

):

The prin
ipal balan
e of X

K

for whi
h a

1

and a

2

have a pole 
orresponds, a
-


ording to Se
tion 5, to the following solution of the indi
ial equations

(a

(0)

1

; a

(0)

2

; a

(0)

3

; a

(0)

4

; a

(0)

5

) = (�1; 1; 0; 0; 0)

and its �rst few terms are given by

a

1

= �

1

t

+ ��

1

3

(�

2

+ 2� + 
)t+O(t

2

);

a

2

=

1

t

+ �+

1

3

(�

2

� � � 2
)t+O(t

2

);

a

3

= 
t+O(t

2

);(23)

a

4

= Æ +O(t

2

);

a

5

= �t+ O(t

2

):

Here �; �; 
 and Æ are the free parameters. If we look for Laurent solutions that


orrespond to the divisor to be added to P

kl

we �nd by substituting the above

Laurent solution in K = k; L = l; a

1

a

2

a

3

a

4

a

5

= 1,

8

>

>

<

>

>

:

2�+ Æ = k;

2�Æ + � � 
 = l;


�Æ = �1;

whi
h means that the Laurent solution depends on two parameters � and Æ, bound

by the relation

(24) (k � Æ)Æ + � +

1

�Æ

= l;
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whi
h is an (aÆne) equation for the theta divisor, i.e., for �

�

; it is easy to see that

this 
urve is birational to the 
urve (22). The other four prin
ipal balan
es are

obtained by 
y
li
 permutation from (23).

P

kl


an be embedded expli
itly in proje
tive spa
e by using the fun
tions with

a pole of order at most 3 along one of the translates of the theta divisor and no

other poles. Sin
e the theta divisor de�nes a prin
ipal polarization on its Ja
obian,

the ve
tor spa
e of su
h fun
tions has dimension 3

2

= 9, giving an embedding in

P

8

. One 
he
ks by dire
t 
omputation that the following fun
tions z

0

; : : : ; z

8

form

a basis for the spa
e of fun
tions with a pole of order at most 3 along the divisor

asso
iated with the Laurent solution (23) (the �rst two fun
tions are obvious 
hoi
es

from the expression (23), while the others 
an be obtained from them by taking

the derivative along the two 
ows):

z

0

= 1;

z

1

= a

1

a

2

;

z

2

= a

1

a

2

a

4

;

z

3

= a

1

a

2

(a

1

+ a

5

);

z

4

= a

1

a

2

a

4

(a

3

+ a

4

+ a

5

);

z

5

= a

1

a

2

a

4

(a

1

� a

2

);

z

6

= a

1

a

2

a

4

((a

3

+ a

4

)a

1

� (a

4

+ a

5

)a

2

);

z

7

= a

2

1

a

2

2

a

4

a

5

;

z

8

= a

1

a

2

2

a

4

((a

4

+ a

5

)

2

+ a

3

a

4

):

The 
orresponding embedding of the Ja
obian in P

8

is then given expli
itly on the

aÆne surfa
e P

kl

by (a

1

; : : : ; a

5

) 7! (z

0

: � � � : z

8

). By substituting the �ve prin
ipal

balan
es in this embedding and letting t ! 0 we �nd an embedding of the �ve


urves �

1

; : : : ;�

5

(in that order) whi
h 
onstitute the divisor Ja
(�

�

) n P

kl

:

(�; Æ) 7!

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(0 : 0 : 0 : 1 : 0 : 2Æ : 2Æ

2

: �Æ : �Æ

3

)

(�Æ

2

: ��

2

Æ

2

: 0 : ��

2

Æ

3

: �Æ : �Æ : �Æ

2

: 0 : 1� �Æ

3

)

(1 : 0 : �Æ : 0 : �Æ(k � Æ) : �Æ

2

: ��Æ(� + Æ

2

� kÆ) : 0 : �

2

Æ(k � Æ))

(�

2

Æ : 0 : �Æ : ��Æ : �Æ(k � Æ) : ��Æ

2

: 1 + �Æ

2

(Æ � k) :

: �Æ : ��Æ

2

(� � (Æ � k)

2

))

(�Æ

2

: �Æ : 0 : Æ(Æ � k) : �Æ : ��Æ : ��Æ

2

: �1 : 1)

The points on the divisor that 
orrespond to the above Laurent solutions are the

ones for whi
h � and Æ are �nite; noti
e that all these points in P

8

are di�erent. In

order to determine the 
oordinates of the other points and the in
iden
e relations

between these points and the 
urves �

i

we 
hoose a lo
al parameter around ea
h

of the three points needed to 
omplete (24) into a 
ompa
t Riemann surfa
e:

(a) Æ = 1=u; � = 1=u

2

(1 +O(t));

(b) Æ = 1=u; � = u

3

(1 +O(t));

(
) � = 1=u; Æ = �u

2

(1 +O(t)).
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Substituting these in the equations of the �ve embedded 
urves we �nd the following

5 points (ea
h one is found 3 times be
ause it belongs to three of the 
urves �

i

)

p

1

= (0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0);

p

2

= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1);

p

3

= (1 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : �k);

p

4

= (1 : 0 : 0 : 0 : 0 : 0 : �1 : 0 : 0);

p

5

= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : �1):

With this labeling of the points p

i

we have that �

i


ontains the points p

i�1

; p

i

and

p

i+1

. As a 
orollary we �nd a 5

3


on�guration on the Ja
obian, where the in
iden
e

pattern of the 5 Painlev�e divisors and the 5 points p

i

is as in the following pi
ture

(to make the pi
ture exa
t one has to identify the two points labeled p

3

, as well as

the two points labeled p

4

in su
h a way that the 
urves �

2

and �

4

are tangent, as

well as the 
urves �

3

and �

5

).

PSfrag repla
ements

p

1

p

2

p

3

p

3

p

4

p

4

p

5

�

1

�

2

�

3

�

4

�

5

Figure 2

Obviously the order 5 automorphism

(a

1

; a

2

; a

3

; a

4

; a

5

) 7! (a

2

; a

3

; a

4

; a

5

; a

1

)

preserves the aÆne surfa
es P

kl

and maps every 
urve �

i

and every point p

i

to its

neighbor. Sin
e this automorphism does not have any �xed points it is a translation

on Ja
(�

�

), and sin
e its order is 5 it is a translation over 1=5 of a period. Noti
e also

that with the above labeling of points and divisors the interse
tion point between �

i

and �

i+2

is p

i+1

(so they are tangent), while the interse
tion points between �

i

and

�

i+1

are p

i

and p

i+1

. Dually, the divisors that pass through p

i

are pre
isely �

i�1

;�

i

and �

i+1

. The usual Olympi
 rings are nothing but an asymmetri
 proje
tion of

this most beautiful Platoni
 
on�guration!
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