
POISSON COHOMOLOGY OF THE AFFINE PLANE

CLAUDE ROGER AND POL VANHAECKE

Abstra
t. We 
ompute the Poisson 
ohomology of homogeneous Poisson

stru
tures on the plane. The singular lo
us � of su
h a Poisson stru
ture


onsists of a family of lines passing through O and we show how the dimen-

sions of the �rst and se
ond 
ohomology groups are related to the weight of O

as a singular point of �.
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1. Introdu
tion

Poisson stru
tures appear naturally in the study of rigidity/deformations of as-

so
iative 
ommutative algebras, in Lie theory and in 
lassi
al me
hani
s. Poisson


ohomology in turn appears when one 
onsiders rigidity/deformations of Poisson al-

gebras, it generalizes Lie algebra 
ohomology and the basi
 
on
epts of Hamiltonian

me
hani
s are 
onveniently expressed in terms of Poisson 
ohomology.

In order to justify the latter three 
laims, let (A; f� ; �g) be a Poisson algebra over

a �eld F of 
hara
teristi
 0 and let us introdu
e for k > 0 the ve
tor spa
e �

k

(A)

of antisymmetri
 k-derivations: a Q 2 �

k

(A) is a multilinear antisymmetri
 map

from A

k

to A su
h that for any a

1

; : : : ; a

k�1

the map a 7! Q(a; a

1

; : : : ; a

k�1

) is a

derivation. We set �

0

(A) = A. These spa
es are the elements of a 
omplex whose


oboundary operator Æ : �

k

(A)! �

k+1

(A) is de�ned for Q 2 �

k

(A) by

(ÆQ)(q

0

; q

1

; : : : ; q

k

) =

k

X

i=0

(�1)

i

fq

i

; Q(q

0

; : : : ; q̂

i

; : : : ; q

k

)g+

+

k

X

0�i<j

(�1)

i+j

Q(fq

i

; q

j

g; q

0

; : : : ; q̂

i

; : : : ; q̂

j

; : : : ; q

k

);
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where q

0

; : : : ; q

k

are arbitrary elements of A. In terms of the S
houten bra
ket

[� ; �℄

S

we have that ÆQ = [f� ; �g; Q℄

S

, yielding Æ

2

= 0, an immediate 
onsequen
e of

the graded Ja
obi identity for [� ; �℄

S

. Re
all that this bra
ket is the natural bra
ket

on the graded Lie algebra of derivations of the exterior algebra of A. The k-th


ohomology group of this 
omplex is 
alled the k-th Poisson 
ohomology group of

(A; f� ; �g) and is denoted by H

k

(A; f� ; �g).

(1) The relevan
e of H

2

(A; f� ; �g) and H

3

(A; f� ; �g) for the deformation theory

of Poisson algebras 
omes from the following. Suppose that f� ; �g

?

=

P

n

i=0

f� ; �g

i

h

i

is a n-th order deformation, i.e. (A[[h℄℄=(h

n+1

); f� ; �g

?

) is a Poisson algebra (over

C [[h℄℄), with f� ; �g

0

= f� ; �g (on A). Then f� ; �g

?


an be extended to an (n+ 1)-th

order deformation if and only if the three-
o
y
le

C

n+1

=

X

i+j=n+1

i;j>0

[f� ; �g

i

; f� ; �g

j

℄

S

is a 
oboundary. The extension of the k-th order deformation is then given by �

?

+

f� ; �g

k+1

h

k+1

, where Æf� ; �g

k+1

= C

k+1

. Moreover, any two su
h extensions di�er

by a 2-
o
y
le and this 
o
y
le is a 
oboundary if and only if the two extensions

de�ne equivalent (n+ 1)-th order deformations.

(2) Suppose that g is a (�nite-dimensional) Lie algebra. Sym g be
omes a Poisson

algebra, simply by de�ning fx; yg = [x; y℄ for any x; y 2 g, and extending f� ; �g to a

biderivation. Let us denote by Cas(f� ; �g) the algebra of Casimirs of f� ; �g, whi
h is

the 
entral part of the enveloping algebra and 
onsists of the symmetri
 invariants

of g. If g is redu
tive then Poisson 
ohomology H

?

(Sym g; f� ; �g) is related to Lie

algebra 
ohomology H

?

(g) by

H

k

(Sym g; f� ; �g) = H

k

(g)


F

Cas(f� ; �g);

where k is any non-negative integer.

(3) The phase spa
e of a 
lassi
al me
hani
al system 
omes always equipped with

a Poisson stru
ture (whi
h is not ne
essarily symple
ti
). The algebra of Casimirs

of (A; f� ; �g) is pre
isely H

0

(A; f� ; �g) and 
orresponds to the Hamiltonians with

trivial (zero) dynami
s. The 1-
oboundaries are the Hamiltonian derivations, i.e.,

the Hamiltonian ve
tor �elds in the smooth 
ase. Sin
e the 
oboundary of a ve
tor

�eld X is the Lie derivative of f� ; �g with respe
t to X the 1-
o
y
les are the sym-

metries of the Poisson stru
ture. Furthermore, a 2-
o
y
le whi
h de�nes a Poisson

stru
ture is 
ompatible with f� ; �g, leading to a multi-Hamiltonian stru
ture, and

a 2-
oboundary is the Lie derivative of f� ; �g with respe
t to some ve
tor �eld.

We also wish to point out that the S
houten bra
ket, whi
h de�nes a graded Lie

algebra stru
ture on the spa
e of antisymmetri
 derivations, indu
es a graded Lie

algebra stru
ture [� ; �℄

S

in Poisson 
ohomology,

[� ; �℄

S

: H

k

(A; f� ; �g)�H

l

(A; f� ; �g)! H

k+l�1

(A; f� ; �g):

For k = l = 1 this bra
ket is pre
isely the 
ommutator of derivations. There exists

moreover another algebra stru
ture on H

?

(A; f� ; �g): exterior produ
t de�nes a


ommutative graded algebra stru
ture on the spa
e of 
o
hains �

?

A and indu
es a


up-produ
t in Poisson 
ohomology,

^ : H

k

(A; f� ; �g)�H

l

(A; f� ; �g)! H

k+l

(A; f� ; �g):

These two di�erent graded produ
ts de�ne on H

?

(A; f� ; �g) a Gerstenhaber algebra

stru
ture, indu
ed from the one on �

?

A; the latter algebra stru
ture 
an, in the
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ase when A is the algebra of smooth fun
tions on a di�erentiable manifold, be

identi�ed with the S
houten algebra of antisymmetri
 
ontravariant tensors on a

manifold.

As was noti
ed by many authors, the 
omputation of the Poisson 
ohomology

of a given spa
e is very diÆ
ult. Ex
eptions are the Poisson 
ohomology of a

symple
ti
 manifold, whi
h is pre
isely its de Rham 
ohomology, and the Poisson


ohomology of a linear Poisson stru
ture, as dis
ussed in (2) above. Indeed, already

the 
al
ulation in the 
ase of the Poisson stru
ture on R

2

, de�ned by

fx; yg = x

2

+ y

2

has been the subje
t of several papers! The purpose of the present paper is to


ompute the Poisson 
ohomology for all Poisson stru
tures on F

2

whi
h are ho-

mogeneous, in the sense that they are given by fx; yg

'

= '(x; y), where ' is a

homogeneous polynomial of degree n 2 N . Noti
e that the singular lo
us �

'

�

�

F

2

of f� ; �g

'


onsists of m � n distin
t lines through the origin, a singular 
urve (if

m � 2). It is easy to show (Lemma 2.1) that dimH

2

(A; ') is in�nite-dimensional

when m 6= n and that dimH

2

(A; ') > 0 when m � 2. A more pre
ise statement,

obtained in Proposition 2.3, states that if m = n then dimH

2

(A; ') = n(n � 1),

a number whi
h is pre
isely twi
e the number of singularities of �

'

; indeed, the

origin is the only singular point, but it has weight

�

n

2

�

. Similarly we show that

under the same assumption dimH

1

(A; ') = n. In the more general 
ase where '

admits a 
omplete fa
torization into fa
tors of degree 1, whi
h means that �

'


on-

sists of arbitrary lines in the plane (assumed non-parallel) we show that 2

�

n

2

�

is

an upper bound for the dimension of H

2

(A; '). We 
onje
ture that the inequality,

given by this bound, is a
tually an equality. Noti
e that when the n lines of �

'

are

in general position then

�

n

2

�

is pre
isely the number of singular points of �

'

.

A
knowledgements. The �rst author wishes to thank the Laboratoire d'Anne
y

le Vieux de Physique Th�eorique, where a good deal of this work was done during

the a
ademi
 year 1999-2000.

2. Poisson 
ohomology of F

2

In this se
tion we will study the Poisson 
ohomology of (A; �; f� ; �g), in the 
ase

of A = F [x; y℄, the algebra of regular fun
tions on F

2

, where F is a �eld of 
har-

a
teristi
 0, and f� ; �g is a homogeneous Poisson stru
ture on A, as will be de�ned

below. Noti
e that if ' is any polynomial in two variables then there is a unique

antisymmetri
 biderivation f� ; �g

'

of F [x; y℄ su
h that fx ; yg

'

= '(x; y) and this

biderivation automati
ally satis�es the Ja
obi identity be
ause �

3

(A) = 0, hen
e

f� ; �g

'

is a Poisson bra
ket on A. Conversely every Poisson bra
ket on A is ob-

tained in this way for a unique ', so that the ve
tor spa
e of Poisson bra
kets

on A is isomorphi
 to A (as well as to �

2

(A)). In the sequel we freely use the

identi�
ation f� ; �g

'

$ '. In parti
ular we write H

k

(A; ') for H

k

(A; f� ; �g

'

), we

denote the 
oboundary operator 
orresponding to f� ; �g

'

by Æ

'

and we say that

f� ; �g

'

is a homogeneous Poisson stru
ture (of degree n) when ' is a homogeneous

polynomial (of degree n). We have that H

i

(A; ') = 0 for i � 3, be
ause �

i

(A) = 0

for i � 3. Also H

0

(A; 0) = A and H

0

(A; ') = F if ' 6= 0. Thus we are left with the
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omputation of H

1

(A; ') and H

2

(A; '). As we will see the properties of B

2

(A; ')

are re
e
ted in the properties of the plane algebrai
 
urve �

'

de�ned by

(1) �

'

= f(x; y) 2

�

F

2

j '(x; y) = 0g;

where

�

F is the algebrai
 
losure of F . Noti
e that the points on this 
urve are

those points on the plane

�

F

2

where the rank of the Poisson stru
ture vanishes; it

is the singular lo
us of f� ; �g

'

. We stress the fa
t that although we 
ompute the


ohomology of A and not of the Poisson algebra

�

A = A �

�

F , it is

�

F and not F

whi
h is relevant in the 
omputation.

2.1. The se
ond Poisson 
ohomology spa
e. Under the above identi�
ation

of antisymmetri
 biderivations and polynomials the ve
tor spa
e of 2-
o
y
les is

just A = F [x; y℄. On the other hand an antisymmetri
 biderivation f� ; �g

 

is a 2-


oboundary if and only if there exists a derivation X of A su
h that Æ

'

X = f� ; �g

 

.

In terms of polynomials,  is a 2-
oboundary if and only if there exist f; g 2 A

su
h that  = �(f; g), where � : A�A! A is the linear map de�ned by

(2) �(f; g) = f

�'

�x

+ g

�'

�y

�

�

�f

�x

+

�g

�y

�

':

In order to determine H

2

(A; ') it is thus suÆ
ient to expli
itly des
ribe the ve
tor

spa
e of polynomials given by (2). We denote this spa
e by B

2

(A; ') and we let

I(') denote the ideal (of (A; �)) generated by ';

�'

�x

and

�'

�y

. A

ording to (2) we

have that B

2

(A; ') � I('), but in general B

2

(A; ') is not an ideal of A and hen
e

it is stri
tly 
ontained in I('). Moreover, sin
e � is linear, its image B

2

(A; ')

is generated by the images �(m; 0) and �(0;m), where m runs over the set of all

(moni
) monomials.

Lemma 2.1.

(1) If �

'

is singular then dimH

2

(A; ') > 0.

(2) If �

'

is non-redu
ed then H

2

(A; ') is in�nite-dimensional.

Proof. If �

'

is singular then all elements of I(') have a 
ommon zero in

�

F , hen
e

I(') does not 
ontain the 
onstants, I(') 6= A. A fortiori B

2

(A; ') 6= A so

that dimH

2

(A; ') > 0. Similarly, if �

'

is not redu
ed, i.e., if ' 
ontains a fa
tor of

multipli
ity at least two (in

�

F [x; y℄), then all elements of I(') have a 
ommon fa
tor

in

�

F [x℄, hen
e I(') is of in�nite 
odimension inA, a fortiori dimH

2

(A; ') =1. �

We next 
onsider the 
ase in whi
h f� ; �g

'

is a homogeneous Poisson stru
ture

on A of degree n, i.e., ' is a homogeneous polynomial of degree n. Then the


urve �

'

, whi
h is de�ned by (1), is a singular 
urve 
onsisting of n lines that

pass through the origin. Noti
e that �

'

is redu
ed if and only if these n lines are

distin
t. The homogeneous 
ase be
omes feasible thanks to the fa
t that �(f; g) is

homogeneous when f and g are homogeneous of the same degree; more pre
isely, in

this 
ase deg�(f; g) = deg f+n�1 and the subspa
e of B

2

(A; ') whi
h 
onsists of

homogeneous elements of degree i is generated by the images �(m; 0) and �(0;m),

where m runs over the set of all (moni
) monomials of degree i + 1 � n. Let us

denote for i 2 N the linear map

(3) �

i

: A

i

�A

i

! A

i+n�1

;

whi
h is the restri
tion of � to A

i

�A

i

, with A

i

the subspa
e of A of homogeneous

polynomials of total degree i. Noti
e that A

i

has dimension i + 1 so that �

i

is a
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map between equi-dimensional spa
es pre
isely when i = n � 2. In terms of the

maps �

i

the dimension of H

2

(A; f� ; �g) is given by

dimH

2

(A; f� ; �g) =

n�2

X

i=0

dimA

i

+

X

i2N

(dimA

i+n�1

� rk�

i

)

=

n(n� 1)

2

+

X

i2N

(i+ n� rk�

i

)

In order to 
ompute the rank of the maps �

i

we will use the following lemma.

The lemma 
an easily be generalized to the 
ase of a pair of polynomials but we

will not need it in that degree of generality. For i 2 N we denote by F

i

[x℄ the

ve
tor spa
e of polynomials of degree at most i. For a linear map f : V ! W

between �nite-dimensional ve
tor spa
es we say that the rank of f is maximal when

rk f = minfdimV; dimWg. Moreover we de�ne 
ork f = minfdimV; dimWg�rkf .

Lemma 2.2. Let  2 F [x℄ be a polynomial of degree n and for any i 2 N let 	

i

be the linear map 	

i

: F

i

[x℄ � F

i+1

[x℄ ! F

n+i

[x℄ de�ned by 	

i

(f; g) = f + g 

0

,

where  

0

denotes the derivative of  . The rank of 	

i

is given by

rk	

i

=

�

2i+ 3 i � m� 2

i+m+ 1 i � m� 2

where m is the number of distin
t roots of  in

�

F . In parti
ular, if  is square-free

then 	

i

has maximal rank for all i 2 N .

Proof. We have that rk	

i

= 2i+3�dimKer	

i

. Therefore it suÆ
es to show that

the dimension of Ker	

i

is given by maxfi + 2 � m; 0g. Let us denote by r the

greatest 
ommon divisor (in F [x℄) of  and  

0

. Sin
e the degree of r is n�m the

degree of the polynomial  =r (resp.  

0

=r) is m (resp. m� 1). Sin
e  =r and  

0

=r

are 
oprime any pair (U; V ) su
h that U +V  

0

= 0 is of the form (F 

0

=r;�F =r).

It follows that

Ker	

i

=

��

F 

0

r

;�

F 

r

�

j degF � i+ 1�m

�

:

The above 
laim about the dimension of Ker	

i

follows. �

We 
an now give a 
omplete des
ription of H

2

(A; ') in 
ase ' is a homogeneous

polynomial.

Proposition 2.3. Suppose that ' is homogeneous of degree n � 1 and that ' has

m distin
t fa
tors in

�

F [x℄.

(1) The rank of �

i

is given by

(4) 
ork�

i

=

8

<

:

maxfi�m+ 2; 0g 0 � i � n� 2

n� 1 i = n� 1

n�m i � n

(2) If �

'

is redu
ed then the rank of �

i

is maximal for all i 6= n � 1, and

rk�

n�1

= n;

(3) If �

'

is redu
ed then dimH

2

(A; ') = n(n� 1):
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Proof. Suppose that we have established the �rst 
laim. Then 2. follows from the

fa
t that m = n if �

'

is redu
ed. Also rk�

i

= minf2i + 2; i + ng for i 6= n � 1,

hen
e

dimH

2

(A; f� ; �g) =

n(n� 1)

2

+

X

0�i�n�2

(n� i� 2) + n� 1 = n(n� 1):

In order to show 1, we write ' =

P

n

i=0

�

i

x

n�i

y

i

. By a linear 
hange on x; y we

may assume that �

0

= 1. We will show that the maps 	

i

and �

i

are intimately

related. The matrix of 	

i

is given, in terms of natural bases, by

(5)

0

B

B

B

B

B

B

B

B

B

B

B

�

1 n

�

1

1 (n� 1)�

1

n

.

.

. �

1

.

.

.

.

.

. (n� 1)�

1

.

.

.

�

n

.

.

.

.

.

.

1 �

n�1

.

.

.

.

.

.

n

�

n

�

1

�

n�1

(n� 1)�

1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n�1

1

C

C

C

C

C

C

C

C

C

C

C

A

with i+ 1 
olumns in the leftmost blo
k and i+2 
olumns in the rightmost blo
k.

Now subtra
t n times the �rst 
olumn from the (i+2)-th 
olumn and remove the �rst

row and the �rst 
olumn from the resulting matrix. The resulting (n+ i)� (2i+2)

matrix is given by

(6) M

i

=

0

B

B

B

B

B

B

B

B

B

�

1 �

1

n

�

1

.

.

.

2�

2

(n� 1)�

1

.

.

.

.

.

.

.

.

.

1

.

.

.

.

.

.

.

.

.

n

�

n

�

1

n�

n

�

n�1

(n� 1)�

1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n�1

1

C

C

C

C

C

C

C

C

C

A

and the rank of M

i

is one less than the rank of 	

i

,

rkM

i

=

�

2i+ 2 i � m� 2

i+m i � m� 2

We will show that when i 6= n�1 thenM

i

is the matrix of �

i

: A

i

�A

i

! A

i+n�1

with respe
t to appropriate bases for A

i

�A

i

and for A

i+n�1

. One easily 
omputes

that

�

i

(x

i�j+1

y

j�1

; x

i�j

y

j

) = (n� i� 1)x

i�j

y

j�1

'(x; y);

�

i

((n� j)x

i�j+1

y

j�1

; (i+ 1� j)x

i�j

y

j

) = (n� i� 1)x

i�j+1

y

j�1

�'

�x

(x; y);

for j = 1; : : : ; i, and 	(y

i

; 0) = y

i

�'

�x

; 	(0; x

i

) = x

i

�'

�y

. This produ
es (up to a

non-zero fa
tor) pre
isely all 
olumns of M

i

when i 6= n � 1, yielding Formula (4)

for i 6= n � 1. For i = n � 1 the pre
eeding 
omputation shows that n � 1 of the


olumns of the matrix of �

n�1

are dependent. The other n+1 
olumns lead to the
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following (2n� 1)� (n+ 1) matrix

(7)

0

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 �

1

0 2 2�

2

��

2

�

1

3 3�

3

.

.

.

.

.

. 2�

1

.

.

.

.

.

.

(1� n)�

n

(3� n)�

n�1

.

.

.

.

.

.

n n�

n

0 (2� n)�

n

(4� n)�

n�1

(n� 1)�

1

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 �

n�1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

It is easy to see that the last 
olumn is a linear 
ombination of the n other 
olumns,

whi
h are linearly independent. It follows that rk�

n�1

= n whi
h establishes

formula (4) for all i 2 N . �

Noti
e that the number n(n � 1) that appears here is pre
isely twi
e the num-

ber of singularities (with multipli
ities) of �

'

. We 
onje
ture that the number of

singularities �

'

is in general a lower bound for the dimension of H

2

(A; f� ; �g

'

).

2.2. The �rst Poisson 
ohomology spa
e. We pro
eed to 
ompute the dimen-

sion of the �rst Poisson 
ohomology spa
e for the 
ase in whi
h ' is homogeneous

of degree n � 1. We have in this 
ase a bije
tive 
orresponden
e between �

1

(A)

and A � A, given by �

1

(A) 3 X 7! (X(x); X(y)) 2 A � A. Sin
e H

1

(A; ') is

the spa
e of Poisson ve
tor �elds modulo the spa
e of Hamiltonian ve
tor �elds we

have, using this 
orresponden
e,

H

1

(A; ') =

n

(f; g) 2 A�A j f

�'

�x

+ g

�'

�y

�

�

�f

�x

+

�g

�y

�

' = 0

o

n�

'

�f

�y

;�'

�f

�x

�

j f 2 A

o

:

It follows that

dimH

1

(A; ') =

1

X

i=0

(dimKer�

i

� dim=�

i+1�n

);

where �

i

: A

i

! A

i+n�1

�A

i+n�1

is de�ned, for i � 0, by �

i

(f) =

�

'

�f

�y

;�'

�f

�x

�

,

and �

i

= 0 for i < 0. We obviously have that

dim=�

i+1�n

= dimA

i+1�n

� dimKer�

i+1�n

= i� n+ 2� Æ

i;n�1

:

On the other hand, sin
e 
ork�

i

= minf2i+ 2; i+ ng � rk�

i

we �nd that

dimKer�

i

= 
ork�

i

�minf0; n� i� 2g;

and we �nd a formula for dimKer�

i

by using the formula (4) for 
ork�

i

, giving

dimKer�

i

=

8

>

>

<

>

>

:

0 0 � i � m� 2

i+ 2�m m� 1 � i � n� 2

n i = n� 1

i+ 2�m i � n:

By a dire
t substitution we �nd that dimH

1

(A; ') is in�nite-dimensional when

m 6= n, i.e., when �

'

is non-redu
ed, that dimH

1

(A; ') = 0 when ' is 
onstant,

and that dimH

1

(A; ') = n when m = n � 1. Noti
e that this number equals the
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number of irredu
ible 
omponents of the 
urve �

'

and that the modular ve
tor

�eld

�

�

�'

�y

;

�'

�x

�

de�nes a non-trivial 
ohomology 
lass at level i = n � 1, 
orresponding to the

spe
ial term Æ

i;n�1

whi
h appears in the 
omputation. We 
onje
ture that the

number of irredu
ible 
omponents of the 
urve �

'

is in general a lower bound for

the dimension of the �rst Poisson 
ohomology spa
e.

3. Finite dimensionality of the se
ond Poisson 
ohomology spa
e

It follows from Se
tion 2 that H

2

(A; ') is �nite-dimensional when ' is a homoge-

neous polynomial whi
h is square-free. In the present se
tion we will generalize this

result to a general 
lass of polynomials. It will follow in parti
ular that H

2

(A; ')

is �nite-dimensional when ' is a generi
 polynomial of degree n.

For i 2 N let us denote by A

�i

the subspa
e of A 
onsisting of all polynomials

of total degree at most i. We also introdu
e for i � 0 the ve
tor spa
e A

i

=

A

�i

=A

�i�1

. We have a natural isomorphism A

i

�

=

A

i

, in parti
ular dimA

i

= i+1.

We denote for a polynomial f 2 A of total degree i its proje
tion on A

i

as well as

the 
orresponding element of A

i

by

^

f . Let ' be a polynomial of total degree n and

let � : A�A! A denote the linear map given by (2). � indu
es for any i 2 N a

linear map

(8)

^

�

i

: A

i

�A

i

! A

i+n�1

(

^

f; ĝ) 7!

\

�

i

(f; g):

Under the above isomorphism A

i

�

=

A

i

the map 	 is pre
isely the linear map

A

i

�A

i

! A

n+i�1

asso
iated to the leading term '̂ 2 A

n

, so that

(9) 
ork

^

�

i

=

8

<

:

maxfi�m+ 2; 0g 0 � i � n� 2

n� 1 i = n� 1

n�m i � n;

where m denotes the number of di�erent roots of the polynomial '̂. Noti
e that

this number is the number of points at in�nity of �

'

and that m < n if and only

if �

'

has a multiple point at in�nity if and only if '̂ 
ontains a square fa
tor. We

have that

dimH

2

(A; ') �

X

0�i�n�2

dimA

i

+

X

i2N

(dimA

i+n�1

� rk

^

�

i

);

so that dimH

2

(A; ') � dimH

2

(A; '̂) = 2

�

n

2

�

when '̂ is square-free, an inequal-

ity whi
h is by the pre
eeding se
tion an equality for all homogeneous polynomials

' that are square-free. We see in parti
ular that when ' is a generi
 polynomial of

degree n then dimH

2

(A; ') � 2

�

n

2

�

. Examples of this are given by polynomials

' that fa
torize 
ompletely into terms of degree at most one, so that �

'


onsists

of n lines in the plane: if the linear parts of ea
h fa
tor are all di�erent (so that

no two lines of �

'

are parallel) then the above inequality holds and it admits an

interpretation in terms of the number of interse
tion points of these lines, as in the


ase of a homogeneous polynomial '. We 
onje
ture that in this 
ase the inequality

is a
tually an equality.
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4. An example

The non-homogeneous 
ase not being tra
table in full generality at this point

we treat a simple example, whi
h shows that even when �

'

is as simple as a


ir
le (no singularities, genus zero) the dimension of dimH

2

(A; ') needs not be

zero. The te
hniques that we use may be useful to study more general examples.

We take ' = x

2

+ y

2

� 1, and write ' = '

1

+ '

2

, where '

1

= x

2

+ y

2

and

'

2

= �1. The 
orresponding 
oboundary operators then satisfy Æ = Æ

1

+ Æ

2

. Sin
e

Æ

2

= Æ

2

1

= Æ

2

2

= 0 we have that Æ

1

Æ

2

= �Æ

2

Æ

1

, so that Æ

2

indu
es a 
oboundary

operator

^

Æ

2

on H

?

(A; '

1

), making the latter into a 
omplex. Expli
itly, if we

denote the 
ohomology 
lass of an element in H

?

(A; '

1

) by square bra
kets, then

H

0

(A; '

1

) is generated by [1℄, H

1

(A; '

1

) is generated by f[(x; y)℄; [(y;�x)℄g and

H

2

(A; '

1

) by f[1℄; [x

2

+ y

2

℄g. By dire
t 
omputation we have

^

Æ

2

[(y;�x)℄ = 0 and

^

Æ

2

[(x; y)℄ = [1℄. It follows that 1 de�nes a trivial 
lass in H

2

(A; ') and that the

image of

^

Æ

2

is generated by [1℄. It is easy to see that x

2

+ y

2

de�nes a non-trivial


ohomology 
lass in H

2

(A; '), so that H

2

(A; ') is one-dimensional. Indeed, if we

suppose that there exists a pair (f; g) 2 A�A su
h that Æ(f; g) = x

2

+ y

2

then

^

Æ

2

[(f; g)℄ = [Æ

2

(f; g)℄ = [Æ(f; g)℄ = [x

2

+ y

2

℄;

a 
ontradi
tion be
ause the image of

^

Æ

2

is generated by [1℄.

5. Final remarks

(1) There is also Poisson homology, whi
h is in a sense dual to the 
ohomology

that we 
onsidered. The 
omplex H

?

(A; f� ; �g) is de�ned by using the A-modules




p

A

of di�erential p-forms on A with the di�erential de�ned as the Lie derivative

with respe
t to the Poisson bra
ket. In our polynomial setting Æ : 


p

A

! 


p�1

A

is

given by the formula

Æ(f

0

df

1

^ : : : ^ df

p

) =

p

X

i=1

(�1)

i+1

ff

0

; f

i

gdf

1

^ � � � ^




df

i

^ � � � ^ df

p

+

p

X

1�i<j

(�1)

i+j

f

0

dff

i

; f

j

g ^ df

1

^ � � � ^




df

i

^ � � � ^




df

j

^ � � � ^ df

p

;

for any polynomials f

0

; f

1

; : : : ; f

p

(
fr. [1℄, [8℄). If one translates this 
omplex in

a 
ontravariant setting, using the volume form (if it exists) then one obtains a

di�erential

~

Æ : �

p

(A)! �

p+1

(A), whi
h reads

~

ÆQ = ÆQ+Q ^Div(�);

where Div(�) denotes the modular ve
tor �eld. In the 
ase where the 
lass [Div(�)℄

is 
ohomologi
ally trivial, Poisson 
ohomology and Poisson homology are 
anoni-


ally dual to ea
h other. In our 
ase this 
lass never vanishes (
fr. Se
tion 2) and

it is not hard to 
ompute the homology: one has that H

0

(A; f� ; �g) = F and that

H

1

(A; f� ; �g) and H

2

(A; f� ; �g) are 
anoni
ally isomorphi
 to F [x; y℄=('), the ring of

regular fun
tions on �

'

. In general there exists a kind of duality theorem between

Poisson homology and 
ohomology with non-trivial 
oeÆ
ients (see [8℄).

(2) Poisson stru
tures and their 
ohomology 
lasses are a parti
ular 
ase of

the theory of Lie algebroids, initiated by J. Pradines in the di�erential geometri
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setting. Maybe the te
hniques we use here 
an be extended to the simplest 
ase of

Lie algebroids.

(3) We already mentioned that the Poisson 
ohomology we 
onsider here 
an

be used to study deformation theory of Poisson algebras, more pre
isely to study

deformations where the Poisson bra
ket is deformed without 
hanging the asso-


iative stru
ture. It is however also possible to deform both stru
tures (Lie and

asso
iative) preserving their 
ompatibility; the 
orresponding 
ohomology has been

studied by Flato, Gerstenhaber and Voronov (see [3℄). Analogous 
ohomologies

for Poisson algebras have been settled in the general framework of the theory of

operads.

(4) Ph. Monnier undertook in his thesis [5℄ the 
omputation of Poisson 
oho-

mology in 
ases analogous to ours, but at the level of jets, i.e., he is 
omputing

the lo
al Poisson 
ohomology (in a di�erential geometri
 setting). His approa
h

is based on di�erentiable singularity theory and the theory of normal forms. The

quadrati
 
ase was previously worked out by N. Nakanishi [6℄.

(5) We 
on
lude this arti
le with some indi
ations about its relations with de-

formation quantization. A fundamental result by M. Kontsevi
h (see [4℄) estab-

lishes a quasi-isomorphism between moduli spa
es of Poisson tensors and of asso-


iative multipli
ations on fun
tions, for any in�nitesimal. One dedu
es from this

quasi-isomorphism its in�nitesimal (linearized) part to obtain a multipli
ative iso-

morphism between Poisson 
ohomology for a given Poisson tensor and Ho
hs
hild


ohomology of the deformed asso
iative algebra (?-produ
t) 
anoni
ally asso
iated

to it. See the arti
le of Voronov [7℄ for a dedu
tion of this isomorphism from

the formality theorem. So our results provide information about the Ho
hs
hild


ohomology for ?-produ
ts on the plane; re
all that Ho
hs
hild 
ohomology for

?-produ
ts is a natural non-
ommutative analog of the De Rham 
omplex.
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