POISSON COHOMOLOGY OF THE AFFINE PLANE

CLAUDE ROGER AND POL VANHAECKE

ABSTRACT. We compute the Poisson cohomology of homogeneous Poisson
structures on the plane. The singular locus T' of such a Poisson structure
consists of a family of lines passing through O and we show how the dimen-
sions of the first and second cohomology groups are related to the weight of O
as a singular point of T'.
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1. INTRODUCTION

Poisson structures appear naturally in the study of rigidity /deformations of as-
sociative commutative algebras, in Lie theory and in classical mechanics. Poisson
cohomology in turn appears when one considers rigidity /deformations of Poisson al-
gebras, it generalizes Lie algebra cohomology and the basic concepts of Hamiltonian
mechanics are conveniently expressed in terms of Poisson cohomology.

In order to justify the latter three claims, let (A, {-,-}) be a Poisson algebra over
a field F of characteristic 0 and let us introduce for k > 0 the vector space AF(A)
of antisymmetric k-derivations: a @ € A*(A) is a multilinear antisymmetric map
from A* to A such that for any ai,...,a;—1 the map a = Q(a,ai,...,ap_1) is a
derivation. We set A°(A) = A. These spaces are the elements of a complex whose
coboundary operator § : A¥(A) — AFT1(A) is defined for Q € A*(A) by
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where qg, ..., qr are arbitrary elements of A. In terms of the Schouten bracket
[-,-]s we have that 6Q = [{-,-}, Q]s, yielding 6> = 0, an immediate consequence of
the graded Jacobi identity for [-,-]s. Recall that this bracket is the natural bracket
on the graded Lie algebra of derivations of the exterior algebra of A. The k-th
cohomology group of this complex is called the k-th Poisson cohomology group of
(A,{-,-}) and is denoted by HF(A, {-,-}).

(1) The relevance of H*(A,{-,-}) and H3(A,{-,-}) for the deformation theory
of Poisson algebras comes from the following. Suppose that {-,-}, = > " {-,-}:h!
is a n-th order deformation, i.e. (A[[Rh]]/(h"*1),{-,-}4) is a Poisson algebra (over
C[[n]]), with {-,-}o ={-,:} (on A). Then {-,-}, can be extended to an (n + 1)-th
order deformation if and only if the three-cocycle

Cn+1 = Z [{ ) '}ia { ) '}j]S
e
is a coboundary. The extension of the k-th order deformation is then given by 7, +
{-, Yer1h* 1, where 6{-,-}111 = Cry1. Moreover, any two such extensions differ
by a 2-cocycle and this cocycle is a coboundary if and only if the two extensions
define equivalent (n + 1)-th order deformations.

(2) Suppose that g is a (finite-dimensional) Lie algebra. Sym g becomes a Poisson
algebra, simply by defining {z,y} = [z,y] for any z,y € g, and extending {-,-} to a
biderivation. Let us denote by Cas({-,-}) the algebra of Casimirs of {-, -}, which is
the central part of the enveloping algebra and consists of the symmetric invariants
of g. If g is reductive then Poisson cohomology H*(Symg, {-,-}) is related to Lie
algebra cohomology H*(g) by

H*(Symg, {-,}) = H(g) @ Cas({-,}),

where k is any non-negative integer.

(3) The phase space of a classical mechanical system comes always equipped with
a Poisson structure (which is not necessarily symplectic). The algebra of Casimirs
of (A,{-,-}) is precisely H°(A,{-,-}) and corresponds to the Hamiltonians with
trivial (zero) dynamics. The 1-coboundaries are the Hamiltonian derivations, i.e.,
the Hamiltonian vector fields in the smooth case. Since the coboundary of a vector
field X is the Lie derivative of {-,-} with respect to X the 1-cocycles are the sym-
metries of the Poisson structure. Furthermore, a 2-cocycle which defines a Poisson
structure is compatible with {-,-}, leading to a multi-Hamiltonian structure, and
a 2-coboundary is the Lie derivative of {-,-} with respect to some vector field.

We also wish to point out that the Schouten bracket, which defines a graded Lie
algebra structure on the space of antisymmetric derivations, induces a graded Lie
algebra structure [-,-]¢ in Poisson cohomology,

[' ’ ']S : Hk(Aa{'a'}) X Hl(Aa{'a'}) - Hk+l71(Av{' ) })

For k =1 =1 this bracket is precisely the commutator of derivations. There exists
moreover another algebra structure on H*(A,{-,-}): exterior product defines a
commutative graded algebra structure on the space of cochains A*A and induces a
cup-product in Poisson cohomology,

A Hk(Av{v}) X Hl(Av{'v'}) - Hk+l(A7{'7'})'

These two different graded products define on H*(A, {-,-}) a Gerstenhaber algebra
structure, induced from the one on A*A; the latter algebra structure can, in the
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case when A is the algebra of smooth functions on a differentiable manifold, be
identified with the Schouten algebra of antisymmetric contravariant tensors on a
manifold.

As was noticed by many authors, the computation of the Poisson cohomology
of a given space is very difficult. Exceptions are the Poisson cohomology of a
symplectic manifold, which is precisely its de Rham cohomology, and the Poisson
cohomology of a linear Poisson structure, as discussed in (2) above. Indeed, already
the calculation in the case of the Poisson structure on R?, defined by

{z,y} =2° + ¢
has been the subject of several papers! The purpose of the present paper is to
compute the Poisson cohomology for all Poisson structures on F? which are ho-
mogeneous, in the sense that they are given by {z,y}? = p(z,y), where ¢ is a
homogeneous polynomial of degree n € N. Notice that the singular locus I', C F
of {-,-}¥ consists of m < n distinct lines through the origin, a singular curve (if
m > 2). Tt is easy to show (Lemma 2.1) that dim H2(A, ¢) is infinite-dimensional
when m # n and that dim H2(A, ) > 0 when m > 2. A more precise statement,
obtained in Proposition 2.3, states that if m = n then dim H2(A,¢) = n(n — 1),
a number which is precisely twice the number of singularities of I',; indeed, the

origin is the only singular point, but it has weight . Similarly we show that

n
2
under the same assumption dim H'(A, ) = n. In the more general case where ¢
admits a complete factorization into factors of degree 1, which means that I';, con-

2
an upper bound for the dimension of H2(A, ). We conjecture that the inequality,
given by this bound, is actually an equality. Notice that when the n lines of I'y, are

sists of arbitrary lines in the plane (assumed non-parallel) we show that 2 < n ) is

in general position then is precisely the number of singular points of I'y,.

n
2
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2. POISSON COHOMOLOGY OF F?

In this section we will study the Poisson cohomology of (A, -, {-,-}), in the case
of A = F[z,y], the algebra of regular functions on F?, where F is a field of char-
acteristic 0, and {-,-} is a homogeneous Poisson structure on A, as will be defined
below. Notice that if ¢ is any polynomial in two variables then there is a unique
antisymmetric biderivation {-,-}¥ of F[z,y] such that {z,y}¥ = ¢(z,y) and this
biderivation automatically satisfies the Jacobi identity because A*(A) = 0, hence
{-,-}¥ is a Poisson bracket on A. Conversely every Poisson bracket on A is ob-
tained in this way for a unique ¢, so that the vector space of Poisson brackets
on A is isomorphic to A (as well as to A2(A)). In the sequel we freely use the
identification {-,-}¥ < . In particular we write H*(A, ) for H*(A, {-,-}¥), we
denote the coboundary operator corresponding to {-,-}¥ by d, and we say that
{-,-}¥ is a homogeneous Poisson structure (of degree n) when ¢ is a homogeneous
polynomial (of degree n). We have that H(A, ) = 0 for i > 3, because A'(A) =0
fori > 3. Also H°(A,0) = A and H(A, ) = Fif ¢ # 0. Thus we are left with the
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computation of H'(A, ) and H2(A, ). As we will see the properties of B2(A, )
are reflected in the properties of the plane algebraic curve I', defined by

(1) Lo ={(z,y) €F | p(x,y) =0},

where F is the algebraic closure of F. Notice that the points on this curve are
those points on the plane T where the rank of the Poisson structure vanishes; it
is the singular locus of {-,-}¥. We stress the fact that although we compute the
cohomology of A and not of the Poisson algebra A = A x F, it is F and not F
which is relevant in the computation.

2.1. The second Poisson cohomology space. Under the above identification
of antisymmetric biderivations and polynomials the vector space of 2-cocycles is
just A = F[z,y]. On the other hand an antisymmetric biderivation {-,-}? is a 2-
coboundary if and only if there exists a derivation X of A such that §,X = {-,-}¥.
In terms of polynomials, ¢ is a 2-coboundary if and only if there exist f,g € A
such that ¥ = ®(f, g), where ® : A x A — A is the linear map defined by

dp  Op (Of  Og
8x+g8y <6x+6y v

In order to determine H2(A, ) it is thus sufficient to explicitly describe the vector
space of polynomials given by (2). We denote this space by B(A, ) and we let

Z(p) denote the ideal (of (A,-)) generated by ¢, g—f and g—;‘;. According to (2) we

have that B2(A, ) C Z(y), but in general B2(A, ) is not an ideal of A and hence
it is strictly contained in Z(p). Moreover, since ® is linear, its image B?(A, )
is generated by the images ®(m,0) and ®(0,m), where m runs over the set of all
(monic) monomials.

(2) o(f,9) =

Lemma 2.1.
(1) If Ty, is singular then dim H*(A, ) > 0.
(2) If Ty, is non-reduced then H?(A, p) is infinite-dimensional.

Proof. If T, is singular then all elements of Z(¢) have a common zero in [, hence
T(p) does not contain the constants, Z(p) # A. A fortiori B2(A,p) # A so
that dim H%(A, ¢) > 0. Similarly, if T, is not reduced, i.e., if ¢ contains a factor of
multiplicity at least two (in F[z, y]), then all elements of Z(¢) have a common factor
in F[z], hence Z() is of infinite codimension in A, a fortiori dim H2(A,¢) = co. O

We next consider the case in which {-,-}¥ is a homogeneous Poisson structure
on A of degree n, i.e., ¢ is a homogeneous polynomial of degree n. Then the
curve I',, which is defined by (1), is a singular curve consisting of n lines that
pass through the origin. Notice that I', is reduced if and only if these n lines are
distinct. The homogeneous case becomes feasible thanks to the fact that ®(f, g) is
homogeneous when f and g are homogeneous of the same degree; more precisely, in
this case deg ®(f,g) = deg f +n —1 and the subspace of B%(A, ) which consists of
homogeneous elements of degree i is generated by the images ®(m,0) and ®(0,m),
where m runs over the set of all (monic) monomials of degree i + 1 — n. Let us
denote for ¢ € N the linear map

(3) Qi A x Ay — Ay,

which is the restriction of ® to A; x A;, with A; the subspace of A of homogeneous
polynomials of total degree i. Notice that A; has dimension i + 1 so that ®; is a
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map between equi-dimensional spaces precisely when i = n — 2. In terms of the
maps ®; the dimension of H?(A, {-,-}) is given by

n—2
dim H*(A, {-,-}) =Y _dimA; + > _(dim Ajpy — 1k &;)
i=0 ieN
nin—1 .
= % + Z(z—l—n—rk‘bi)

ieN
In order to compute the rank of the maps ®; we will use the following lemma.
The lemma can easily be generalized to the case of a pair of polynomials but we
will not need it in that degree of generality. For i € N we denote by F;[z] the
vector space of polynomials of degree at most 7. For a linear map f : V — W

between finite-dimensional vector spaces we say that the rank of f is maximal when
rk f = min{dim V, dim W}. Moreover we define cork f = min{dim V, dim W} —rk f.

Lemma 2.2. Let ¢y € F[z] be a polynomial of degree n and for any i € N let U;
be the linear map U; : F;[z] x Fip1[z] = Foyiz] defined by U,(f,g9) = fo + g¢',
where 1’ denotes the derivative of 1. The rank of ¥; is given by

2 +3 i<m-—2
rk‘pi_{ itm+1 i>m—2

where m is the number of distinct roots of 1 in F. In particular, if ¢ is square-free
then ¥; has mazimal rank for all i € N.

Proof. We have that rk ¥; = 2i + 3 — dim Ker ¥;. Therefore it suffices to show that
the dimension of Ker ¥; is given by max{i + 2 — m,0}. Let us denote by r the
greatest common divisor (in F[z]) of ¢ and ¢’. Since the degree of r is n — m the
degree of the polynomial ¢/r (resp. ¢'/r) is m (resp. m — 1). Since ¢/r and ¢'/r
are coprime any pair (U, V') such that Uy + V' = 0is of the form (F'/r, —F/r).

It follows that
Yy F
Ker‘I’iz{< ;Z} ,—T¢> |degF§i+1—m}.

The above claim about the dimension of Ker ¥; follows. O
We can now give a complete description of H2(A, ¢) in case ¢ is a homogeneous
polynomial.

Proposition 2.3. Suppose that ¢ is homogeneous of degree n > 1 and that ¢ has
m distinct factors in Flz].

(1) The rank of ®; is given by
max{i —m+2,0} 0<i<n-—2
4) cork®, =¢ n—1 i=n-1
n—m i>n
(2) If Ty, is reduced then the rank of ®; is maximal for all i # n — 1, and

rk (I)n—l =n,
(3) If Ty, is reduced then dim H*(A,¢) = n(n — 1).
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Proof. Suppose that we have established the first claim. Then 2. follows from the
fact that m = n if ', is reduced. Also rk®; = min{2i + 2,i + n} for { # n — 1,
hence
. 9 n(n —1) .
dim H*(A, {-,-}) = =———+ > m—i-2)+n-1=n(n-1).
0<i<n—2

In order to show 1, we write ¢ = Y"1  0;z" y’. By a linear change on z,y we

may assume that oy = 1. We will show that the maps ¥; and ®; are intimately
related. The matrix of ¥; is given, in terms of natural bases, by

1 n
o 1 (n—1)oy n
o1 .. (TL — 1)0’1
(5) On 1 On—1 n
On o1 On—1 (n—1)o4
On On—1

with 7 4+ 1 columns in the leftmost block and i + 2 columns in the rightmost block.
Now subtract n times the first column from the (i+2)-th column and remove the first
row and the first column from the resulting matrix. The resulting (n +4) x (2i + 2)
matrix is given by

1 g1 n
o - 205 (n—1)oy
(6) M; = 1 n
On o1 noy, On—1 (n —1)oy
On On—1

and the rank of M; is one less than the rank of ¥;,

2%+2 i<m-—2

rkM”:{ itm i>m—2

We will show that when i # n—1 then M; is the matrix of &; : A; xA; = Aj1n1
with respect to appropriate bases for A; x A; and for A;;,_1. One easily computes
that

®;(z' Ity 2ty = (n—i - D)2ty (L y),

Dil(n = )Y (41 ey = (=i = DY T 2R ),
z
for j = 1,...,i, and ¥(y?,0) = y’g—ﬁ, U(0,2) = a:ig—“;. This produces (up to a
non-zero factor) precisely all columns of M; when i # n — 1, yielding Formula (4)
for i #n — 1. For ¢ = n — 1 the preceeding computation shows that n — 1 of the
columns of the matrix of ®,,_; are dependent. The other n + 1 columns lead to the



POISSON COHOMOLOGY OF THE AFFINE PLANE 7

following (2n — 1) x (n + 1) matrix

1 o1
0 2 20’2
—09 g1 3 30’3
20’1
(7) : :

(I-n)o, (B—n)op_1 : . n noy,

0 (2—-n)o, (4—n)op_1 (n—1oy O

0 0 On—1 0

It is easy to see that the last column is a linear combination of the n other columns,
which are linearly independent. It follows that rk ®, 1 = n which establishes
formula (4) for all ¢ € N. O
Notice that the number n(n — 1) that appears here is precisely twice the num-
ber of singularities (with multiplicities) of I',. We conjecture that the number of
singularities [',, is in general a lower bound for the dimension of H*(A,{-, }¥).

2.2. The first Poisson cohomology space. We proceed to compute the dimen-
sion of the first Poisson cohomology space for the case in which ¢ is homogeneous
of degree n > 1. We have in this case a bijective correspondence between A(A)
and A x A, given by A'(A) 3 X — (X(2),X(y)) € A x A. Since H'(A, ) is
the space of Poisson vector fields modulo the space of Hamiltonian vector fields we
have, using this correspondence,

{(f,g)eAxA|fg_5+gg_s;_(%+g_z)<p:0}
{(#35.—03L) | Fe A} '

H'(A,p) =

It follows that

00
dim H'(A, ) = Z(dim Ker ®; — dim Sx41-n),
i=0
where x; : A; = A1 X Ajppn—1 is defined, for i > 0, by x:(f) = ((pg—i, —go%),
and y; = 0 for i < 0. We obviously have that
dim Syir1-pn =dim Ay, —dimKer x;11-p
=i—n+2—0;n-1-
On the other hand, since cork ®; = min{2i + 2,i + n} — rk ®; we find that
dim Ker ®; = cork ®; — min{0,n — i — 2},

and we find a formula for dim Ker ®; by using the formula (4) for cork ®;, giving

0 0<i<m-—2
dimKerd; =4 'T27m m-1<i<n-—2
1=n-—1

1+2—m i>n.

By a direct substitution we find that dim H'(A, ) is infinite-dimensional when
m # n, i.e., when T, is non-reduced, that dim H'(A, ) = 0 when ¢ is constant,
and that dim H'(A,¢) = n when m = n > 1. Notice that this number equals the



8 CLAUDE ROGER AND POL VANHAECKE

number of irreducible components of the curve I', and that the modular vector

field
9 9p
0y’ Oz

defines a non-trivial cohomology class at level i = n — 1, corresponding to the
special term d;,_; which appears in the computation. We conjecture that the
number of irreducible components of the curve I', is in general a lower bound for
the dimension of the first Poisson cohomology space.

3. FINITE DIMENSIONALITY OF THE SECOND POISSON COHOMOLOGY SPACE

It follows from Section 2 that H? (A, ¢) is finite-dimensional when ¢ is a homoge-
neous polynomial which is square-free. In the present section we will generalize this
result to a general class of polynomials. It will follow in particular that H2(A, )
is finite-dimensional when ¢ is a generic polynomial of degree n.

For ¢ € N let us denote by A<; the subspace of A consisting of all polynomials
of total degree at most i. We also introduce for ¢ > 0 the vector space A; =
A<;/A<;_i. We have a natural isomorphism A; = A;, in particular dim A; = i+1.
We denote for a polynomial f € A of total degree i its projection on A; as well as
the corresponding element of A; by f . Let ¢ be a polynomial of total degree n and
let ®: A x A — A denote the linear map given by (2). ® induces for any i € N a
linear map

(8)

$i: My x Ai = Aipn

Under the above isomorphism A; =2 A; the map ¥ is precisely the linear map
A; x A; - A, ;-1 associated to the leading term ¢ € A, so that

X max{i —m+2,0} 0<i<n-—2
(9) cork®; =¢ n—1 i=n-—1
n—m i>n,

where m denotes the number of different roots of the polynomial ¢. Notice that
this number is the number of points at infinity of I', and that m < n if and only
if I', has a multiple point at infinity if and only if ¢ contains a square factor. We
have that

dim H>(A,0) < ) dimA; + ) (dim Aiyny — 1tk ®;),

0<i<n—2 ieN

so that dim H?(A, ) < dim H?(A, $) = 2 Z when ¢ is square-free, an inequal-

ity which is by the preceeding section an equality for all homogeneous polynomials
o that are square-free. We see in particular that when ¢ is a generic polynomial of

degree n then dim H?(A, ¢) < 2 ;L
¢ that factorize completely into terms of degree at most one, so that I', consists
of n lines in the plane: if the linear parts of each factor are all different (so that
no two lines of 'y, are parallel) then the above inequality holds and it admits an
interpretation in terms of the number of intersection points of these lines, as in the
case of a homogeneous polynomial . We conjecture that in this case the inequality
is actually an equality.

. Examples of this are given by polynomials
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4. AN EXAMPLE

The non-homogeneous case not being tractable in full generality at this point
we treat a simple example, which shows that even when I';, is as simple as a
circle (no singularities, genus zero) the dimension of dim H2(A,¢) needs not be
zero. The techniques that we use may be useful to study more general examples.
We take ¢ = 22 + y? — 1, and write ¢ = @1 + @, where ¢; = 22 + y? and
@2 = —1. The corresponding coboundary operators then satisfy § = §; + d2. Since
62 = 02 = 62 = 0 we have that §;02 = —d28;, so that ds induces a coboundary
operator 6, on H*(A,p;), making the latter into a complex. Explicitly, if we
denote the cohomology class of an element in H*(A, ¢1) by square brackets, then
HO(A, 1) is generated by [1], H' (A, p,) is generated by {[(z,y)], (s, —z)]} and
H2(A, ) by {[1],[z2 + y*]}. By direct computation we have d,[(y, —z)] = 0 and
[(z,y)] = [1]. It follows that 1 defines a trivial class in H2(A,¢) and that the
image of 5o is generated by [1]. It is easy to see that 2% + y? defines a non-trivial
cohomology class in H2(A, ), so that H?(A, ) is one-dimensional. Indeed, if we
suppose that there exists a pair (f,g) € A x A such that §(f,g) = 22 + y> then

6:1(f.9)] = [62(£, 9] = [6(f,9)] = [«* + ¥,

a contradiction because the image of &, is generated by [1].

5. FINAL REMARKS

(1) There is also Poisson homology, which is in a sense dual to the cohomology
that we considered. The complex H,(A,{-,-}) is defined by using the A-modules
Q’A of differential p-forms on A with the differential defined as the Lie derivative
with respect to the Poisson bracket. In our polynomial setting ¢ : Qf& — QK Lis
given by the formula

p
S(fodfu A .. Adfy) =D (=) {fo, fi}dfy A+ ANdfi A~ Adf,
i=1
p . . —~ L~
+ Y (O™ fod{fi, [y Ndfs Aee- Adfi Ao Adfy A A dfy,
1<i<j
for any polynomials fo, f1,..., fp (cfr. [1], [8]). If one translates this complex in

a contravariant setting, using the volume form (if it exists) then one obtains a
differential § : AP(A) — AP*1(A), which reads

6Q = 5Q + Q A Div(A),

where Div(A) denotes the modular vector field. In the case where the class [Div(A)]
is cohomologically trivial, Poisson cohomology and Poisson homology are canoni-
cally dual to each other. In our case this class never vanishes (cfr. Section 2) and
it is not hard to compute the homology: one has that Hyo(A,{-,-}) = F and that
Hy(A,{-,-}) and Hy(A,{-,-}) are canonically isomorphic to F[z, y]/(p), the ring of
regular functions on I',. In general there exists a kind of duality theorem between
Poisson homology and cohomology with non-trivial coefficients (see [8]).

(2) Poisson structures and their cohomology classes are a particular case of
the theory of Lie algebroids, initiated by J. Pradines in the differential geometric



10 CLAUDE ROGER AND POL VANHAECKE

setting. Maybe the techniques we use here can be extended to the simplest case of
Lie algebroids.

(3) We already mentioned that the Poisson cohomology we consider here can
be used to study deformation theory of Poisson algebras, more precisely to study
deformations where the Poisson bracket is deformed without changing the asso-
ciative structure. Tt is however also possible to deform both structures (Lie and
associative) preserving their compatibility; the corresponding cohomology has been
studied by Flato, Gerstenhaber and Voronov (see [3]). Analogous cohomologies
for Poisson algebras have been settled in the general framework of the theory of
operads.

(4) Ph. Monnier undertook in his thesis [5] the computation of Poisson coho-
mology in cases analogous to ours, but at the level of jets, i.e., he is computing
the local Poisson cohomology (in a differential geometric setting). His approach
is based on differentiable singularity theory and the theory of normal forms. The
quadratic case was previously worked out by N. Nakanishi [6].

(5) We conclude this article with some indications about its relations with de-
formation quantization. A fundamental result by M. Kontsevich (see [4]) estab-
lishes a quasi-isomorphism between moduli spaces of Poisson tensors and of asso-
ciative multiplications on functions, for any infinitesimal. One deduces from this
quasi-isomorphism its infinitesimal (linearized) part to obtain a multiplicative iso-
morphism between Poisson cohomology for a given Poisson tensor and Hochschild
cohomology of the deformed associative algebra (x-product) canonically associated
to it. See the article of Voronov [7] for a deduction of this isomorphism from
the formality theorem. So our results provide information about the Hochschild
cohomology for x-products on the plane; recall that Hochschild cohomology for
*-products is a natural non-commutative analog of the De Rham complex.

REFERENCES

1. Brylinski, J.-L., A differential complez for Poisson manifolds, J. Differential Geom. 28 (1988),
no. 1, 93-114.

2. Evens, S., Lu, J.-H., Weinstein, A., Transverse measures, the modular class and a cohomology
pairing for Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 200, 417-436.

3. Flato, M., Gerstenhaber, M., Voronov, A. A., Cohomology and deformation of Leibniz pairs,
Lett. Math. Phys. 34 (1995), no. 1, 77-90.

4. Kontsevich, M., Deformation quantization of Poisson manifolds, I, math.DG/0005261.

5. Monnier, Ph., Poisson cohomology in dimension 2, PhD. thesis, Université de Montpellier.

6. Nakanishi, N., Poisson cohomology of plane quadratic Poisson structures, Publ. Res. Inst.
Math. Sci. 33 (1997), no. 1, 73-89.

7. Voronov, A. A., Quantizing Poisson manifolds, Perspectives on quantization (South Hadley,
MA, 1996), 189-195, Contemp. Math., 214, Amer. Math. Soc., Providence, RI, 1998.

8. Xu, Ping, Poisson cohomology of regular Poisson manifolds, Ann. Inst. Fourier (Grenoble)
42 (1992), no. 4, 967-988.

INSTITUT GIRARD DESARGUES, UNIVERSITE CLAUDE-BERNARD (LYON I) 69622 VILLEURBANNE,
FRANCE
E-mail address: roger@desargues.univ-Lyonl.Fr

UNIVERSITE DE POITIERS, MATHEMATIQUES, SP2MI, BOULEVARD 3 — TELEPORT 2 — BP 179
86960 FUTUROSCOPE CEDEX, FRANCE
E-mail address: Pol.Vanhaecke@mathlabo.univ-Poitiers.Fr



