The moduli problem for integrable systems:

the example of a geodesic flow on SO(4)
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Abstract. We introduce the moduli problem for (algebraic completely) integrable sys-
tems. This problem consists in constructing a moduli space of affine algebraic varieties and
explicitly describing a map which associates to a generic affine variety, which appears as a
level set of the first integrals of the system (or, equivalently, a generic affine variety which
is preserved by the flows of the integrable vector fields), a point in this moduli space. As
an illustration, we work out the example of an integrable geodesic flow on SO(4). In this
case, the generic invariant variety is an affine part of the Jacobian of a Riemann surface
of genus two. Our counstruction relies heavily on the fact that these affine parts have the
additional property of being 4 : 1 unramified covers of Abelian surfaces of type (1,4).
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1. Introduction

An important property which distinguishes integrable systems from generic dynamical
systems is that the flow of an integrable vector field, starting from an arbitrary point, is
not dense in the corresponding energy level but is constrained to a subvariety of half the
dimension (or less) of phase space. These subvarieties are the level sets of the Poisson
commuting functions that make up the integrable system and the above property follows
from the fact that XgF = {F,G} = 0, where F' and G are any two Poisson commuting
functions (such as the Hamiltonian and any of its first integrals).

In a real setting the relevance of these invariant manifolds for understanding and
describing the mechanics of the integrable system can be seen from the Arnold-Liouville
theorem and from the existence of action-angle variables: if such an invariant manifold is
compact then it is diffeomorphic to a real torus and the flow is a linear flow on this torus;
moreover, such a linearizing diffeomorphism can be constructed semi-locally (on a neigh-
borhood of a compact invariant manifold) onto a product of a torus with a linear space,
the latter being equipped with the standard symplectic or Poisson structure. In particular,
it entails quasi-periodicity of the solutions, hence of the motion of the mechanical system.
See [4] or [5].

In a complex analytic or a complex algebraic setting the structure of the invariant
manifolds is more complicated. First, while two real tori are diffeomorphic if and only
if they have the same dimension, the conditions for two complex tori (quotients of C™
by a lattice) to be biholomorphic (or, in an algebraic setting, isomorphic) are much more
involved, as becomes already apparent in the one-dimensional case (Riemann surfaces of
genus 1; elliptic curves). Second, since complex tori are compact they cannot live in an
affine variety and the complex invariant manifolds are at best affine parts of complex
algebraic tori and this fact puts an extra condition on the possibility of two invariant
manifolds being biholomorphic or isomorphic: such an isomorphism must preserve the
divisor at infinity, i.e., the divisor to be glued to the affine variety in order to complete
it into a compact complex torus. Both aspects have their relevance for mechanics. First,
while the solutions corresponding to non-isomorphic complex tori can in both cases be
written in terms of theta functions, the characteristics of these quasi-periodic functions
will be different; and second, even when the tori are isomorphic, if their affine parts are
not isomorphic then the behaviour of the system for finite (complex) time will be different
because in an a.c.i. system on an affine variety every (complex) integral curve hits the
divisor at infinity after a finite time (see [2] or [3]).

These considerations lead us to what we call the moduli problem for integrable systems.
In order to give a precise definition we will restrict ourselves to algebraic completely
integrable systems (a.c.i. systems) on an affine variety; the definition can easily be adapted
to other situations when needed. We recall from [14] that the generic invariant manifold
of an a.c.i. system is an affine part of an Abelian variety (a complex algebraic torus) and
that a large amount of explicit information about these tori (such as equations for an
affine part, embeddings in projective space and equations for the divisor at infinity) can
be obtained by studying the Laurent solutions to the differential equations, which describe
the vector field defined by the Hamiltonian. The divisor which is needed to complete the
affine part into an Abelian variety induces a polarization on the corresponding torus; in
all known cases the polarization type, which is a discrete invariant of the Abelian variety,
is the same for all these invariant manifolds. We are thus led to consider, on one side,
the family of affine parts of Abelian varieties that appear as invariant manifolds in the
a.c.i. system, on the other side, the moduli space! of Abelian varieties with a prescribed

! In order to have a good moduli space (e.g. one that admits an algebraic structure),
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divisor (hence polarization type) and, finally, the map between these two spaces, which
sends an invariant manifold to its isomorphism class. The moduli problem for an a.c.i.
system consists in explicitly constructing the moduli space and the canonical map.

To illustrate our point, we will treat a non-trivial example, namely an integrable
system that appears in Adler and van Moerbeke’s classification of integrable geodesic
flows on SO(4) as the case of metric II (see [1]). It has the following geometric description
(for further details, see Section 2). Phase space is C® and there are four independent
quadratic polynomial functions Hy, ..., H4 which Poisson commute; in fact we will exhibit
a tri-Hamiltonian structure for this integrable system. The affine surfaces that appear as
the fibers of the map

p:Cl — C*:z=(21,...,2) — (Hi(2), Hy(2), H3(2), Hy(2))

are invariant for the flow of the two commuting vector fields X; and X5 and for generic
h € C* the invariant surface p~!(h) is isomorphic to an affine part of the Jacobian of a
(compact) Riemann surface I';,. We will construct such an isomorphism; in classical termi-
nology we separate the variables of the integrable system (leading to explicit solutions; as
far as we could check a separation of variables for this integrable system was not known).
From this isomorphism we can read off, in terms of the Weierstrass points on I'j,, the rel-
ative position of the four curves which are missing in the affine part A;. On the one hand
we can deduce from it that the quotient Ay /%, is an affine part of an Abelian surface of
type (1,4). On the other hand it will allow us to set up a basic correspondence between
the affine varieties A;, (modulo isomorphism) and the space of Riemann surfaces of genus
two, equipped with a decomposition of their Weierstrass points (modulo isomorphism).
As the latter space is in turn isomorphic to a moduli space of polarized Abelian surfaces
of type (1,4) (see [13]) this reduces the moduli problem to a question of determining the
moduli (i.e., the moduli space and the corresponding map) for the underlying Abelian
surfaces of type (1,4). This reduction will be done in Section 3.

Abelian surfaces of type (1,4) admit a holomorphic map to projective space P® and
the image is (in general) an octic surface with four singular points of order four, as was
shown in [6]. In order to find an equation of this octic we first compute the Laurent
solutions to the integrable vector field X; and deduce from it four independent sections,
invariant for the group action, of the line bundle [D},], which corresponds to the divisor at
infinity. When the four singular points of order four are taken as base points in P3, the
coefficients of the equation for the octic surface are closely related to moduli for Abelian
surfaces of type (1,4). Thus we need to reduce the equation of the octic that we have found
to its more symmetric form. This computation will be feasible thanks to the richness of
the underlying geometry.

When the octic is reduced to its symmetric form its coefficients are expressed in terms
of the coordinates of the Weierstrass points of I';, rather than A, an explicit dependence
which disappears in the final step of the computation. Indeed, it remains then to pass
from the coefficients of this octic to the moduli space of Abelian surfaces of type (1,4).
Incidently this moduli space was constructed by the second author when studying the
Garnier system, another a.c.i. system, whose invariant manifolds are Abelian surfaces of
type (1,4) (see [13]). The moduli space is described there as a Zariski open subset of a
cone in weighted projective space and we can use the explicitly given map from the space
of parameters of the octic to this cone to complete our example: we end up with five
explicit polynomials in the values h = (hy, hao, h3, hs) of the constants of motion which
take the same value (as an element of weighted projective space) on two sets of constants

in general one also has to throw out a few bad elements.

2



of motion if and only if the corresponding level sets are isomorphic affine varieties. This
final step will be done in Section 4.

It would be interesting to study the moduli problem for other integrable systems,
such as the Toda lattices and the classical integrable tops.

2. An integrable geodesic flow on SO(4)

It was shown by Adler and van Moerbeke (see [1, Theorem 4]) that there exist three
classes of left-invariant metrics on SO(4) for which the geodesic flow reduces to an algebraic
completely integrable system (a.c.i. system) on its Lie algebra $0(4). In the sequel, we
will consider the second case, known as the case of metric II. In suitable coordinates, the
first vector field X; of this a.c.i. system is given by the differential equations
Z1 = 22526, 22 = 22324, 23 = z5(21 + 24), (1)
2.4 = 22223, 25 = 23(21 + 24), 2.6 = 22125.

The second vector field X5, commuting with X, is given by the differential equations
Z.l = %226, 2'2 == Z4(2Z3 — 26), Z.3 = Z4%5, (2)

2y = 22(223 — %), 75 = 237, 26 = 21%2;

the vector fields X; and X admit four independent quadratic invariants, given by the
following expressions:

_ 2 2
Hl—Z3_Z5,

Hy =27 — 22,
> 2 (3)

Hs =25 — =z},

Hy = (21 4 24)% + 4(22 — 2025 — 2326).
It is easy to verify that there exist precisely three linearly independent linear Poisson struc-
tures on C® with respect to which X; and X, are Hamiltonian; moreover, these Poisson

structures are compatible, implying that the integrable system admits a tri-Hamiltonian
structure. Explicitly, for any (c, 8,7) € C3, the matrix

0 azg —Bzs 0 —Bzz —2vz5  B(z2 — 225)
—zg 0 224 a(zg — 223) 0 —azy — Bz
Bzs —2y24 0 —azs — 2z —y(z1 + 24) 0
0 a(2z3 — zg) azs+ 2729 0 az3 —Bz
Bz3 + 27vz¢ 0 v(z1 + 24) —az3 0 2v21
B(2z5 — z2) «azy + Bz 0 Bz —2v2 0

is the Poisson matrix of a Poisson structure P,g, on C°. If (o, 8,7) # (0,0,0) then P,z
generates the Hamiltonian vector fields X; and X5 as described in the following table;
generators for the algebra of Casimirs of these structures P,3, also follow from the table.

Hl H2 H3 H4
Proo 0 0 2X, —2X;
Poo | 0  2Xi—-Xs) 0 2X,
Poo1 2X, 0 0 8X,
Table 1



It was shown by Adler and van Moerbeke in [2, Section 4] that, for any h = (hy, hs, h3, ha)
which belongs to some? Zariski open subset H of C*, the affine surface

An={2€C® | Hi(z) =h;, i=1,...,4}

is isomorphic to an affine part of the Jacobian of a compact Riemann surface I';, of genus
two (which depends on h € H), A = Jac(T'y) \ Dy, and that the vector fields X; and X,
are linear® when restricted to these surfaces Ay, thereby proving that the above system
is algebraic completely integrable (see [2, Section 4]). The affine part A;,, the divisor Dy,
and the Riemann surface I';, can be described as follows. First notice that the group ¥ of
involutions, generated by

o1(z1,...,26) = (—21, —22, 23, —24, — 25, 26),

_ (4)

02(Z1’ s 7Z6) - (_Z17 R2y, 7R3, TR4,%5, _Z6)7
commutes with the vector fields X; and X5 and leaves the affine surfaces A;, invariant; in
fact they generate, for any h € H, a group %}, of translations over half periods in the tori
Jac(Th). As a consequence, the divisors Dy, are also stable under these translations. For a
more precise description of the divisors D, one applies Painlevé analysis to the vector field
X1 (or any combination of X; and X5). To do this one searches Laurent solutions to the
differential equations (1), depending on five free parameters (principal balances). There
are precisely four such families, labeled by €; = +1, e = £1, and they are explicitly given

as follows (a,b,...,e are the free parameters).

-1
o= % (1—bt+(b* —d—e)t> + O(t))),
Zg = % (a —abt + ((a — 1)(ae — ¢ — ab®) + a®d)t* + O(t*)),
73 = ;_2 (1406t — ((a —1)e+ad —c— ab®)t* + O(t*)) ,

2t ()

2= (~atabt +et? +O()),
2= 2 (L4 bt +df? + O(F)),

-1
Z6 = w (_1 + bt — et® + O(tg)) .

When any of these families of Laurent solutions is substituted in the equations H;(z) = h;,
1 = 1,...,4, the resulting expressions are independent of ¢. This leads to four algebraic
equations in the five free parameters, giving explicit equations for an affine part I', of T';,.
Each of these equations is easily rewritten as

y? = z(1 — ) [42°h1 — (4h1 + ha)2® + (ha — hg — ha)z + h3] . (6)

In what follows, we will refer to the curve in C2, given by (6), as the curve I'y,. In order
to recover the Riemann surface I';, from it one has to adjoin one point which we denote
by oop,. Since there are four families of Laurent solutions (5), the divisor D, consists of
four copies T'j,(e1,€2), €2 = €2 = 1, of the curve 'y, i.e.,

Dh = f1h(la 1) +f‘h(17_1) +f‘h(_17 1) +f‘h(_17 _1)'

2 Explicit equations for  will be given in the next section.
3 Recall e.g. from [7, Chapter 2.7] or [8, Chapter 11] that the Jacobian of an algebraic
curve is a complex torus.



The Laurent solutions can also be used to compute an explicit embedding of the tori
Jac(Ty,) in P1®: the sections of the line bundle on Jac(I';), defined by Dy, correspond to
the meromorphic functions on Jac([';) with a simple pole (at worst) at the divisor Dy, and,
in turn, these are found by constructing those polynomials on C® which have a simple
pole in ¢ (at worst) when any of the four families of Laurent solutions are substituted in
them (see [14, Chapter V]). Apart from the constant function zp = 1 and the functions z;,
1=1,...,0, one easily finds the following independent functions with this property:

27 = 25(223 — 26) — 2223,
o 9 212 = 212223 — 242526,
zg = 21( 23 — ZG) — Z4%6,
. 9 213 = 222326 — R1%4%5,
29 = 24( 25 — 22) — 2122,

2 2

214 = 222526 — R1X3%4,
Z10 — (225 — 22) — 26,

9 9 Z15 — Z1%225 — Z324%6-
Z11 — (223 — 26) — Z2,

The embedding of Jac(T;,) in P'® is given on the affine part Aj;, by the map
¢:Ah —P¥.pP= (Zl,...,Zﬁ) — (lzl(P) : 215(P))

These sections will be used later to construct two maps which are similar to ¢ and which
map two different quotients of Aj, birationally into P3.

3. Linearizing variables

In this section we show that from the point of view of moduli, the family of affine
surfaces Ay, h € H, can be replaced by a family of polarized Abelian surfaces of type
(1,4). In order to do this we will first construct an explicit map from the affine surface Aj,
(h € H) to an affine part of Jac(I';). We do this by following an algorithm, outlined in
[12, Section 3], which leads to linearizing variables for any two-dimensional a.c.i. system.
We note that although the characterization of the affine surfaces A; as affine parts of
hyperelliptic Jacobians was already given by Adler and van Moerbeke in [2, Section 4],
neither an explicit map nor linearizing variables follow from their results.

We define H to be the set of those h = (hy1, ha, h3, hy) € C* for which the curve (6)
is a non-singular curve of genus two, i.e., that its right hand side is of degree 5 and has
no multiple roots; notice that this entails in particular that hihohg # 0 for all h € H. It
will follow from our construction that, for every h € H, A, is indeed an affine part of the
Jacobian, thereby justifying the notation . In order to apply the procedure described
in [12, Section 3], we fix an arbitrary element A € H and we choose one component, say
C = T1(1,-1), of the divisor D;, on Jac(T'). The meromorphic functions on Jac(T'p,)
which have at worst a double pole along the divisor C' can be obtained by constructing
those polynomials on C® which have at worst a double pole in £ when the Laurent solutions
(5) corresponding to € = 1, e = —1 are substituted into them (and no poles when the
other solutions are substituted). It is easily computed that the space of such polynomials
is spanned by

90 = 1, 91 = (Zz +Z4)(Z3 +Z5), 92 = (Z3 +Z5)(Z1 +26), 93 = (Zl +26)(Z2 +Z4), (8)

where we think of these polynomials as being restricted to Ap. The mapping ¢, given on
Jac(I'y) \ C by

¢ :Jac(Tp) \C — P3: P = (21,20,...,25) — (0o(P) : 01(P) : 02(P) : 03(P))

maps the surface Jac(T'),) to its Kummer surface, which is a singular quartic in P2. An
equation for this quartic surface can be computed by eliminating the variables z1, ..., zg
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from the equations (3) and (8): solving the equations (8) and the first three equations in
(3) for the variables 21, 22, ...,z and substituting these values in the remaining equation,
the equation for the Kummer surface of Jac(I';) can be written in the form

03((01 + 02 — 2h1)? + 8h1601) + f3(61,02)03 + fa(01,62) =0, 9)

where f3 (respectively f4) is a polynomial of degree three (respectively four) in 6; and 6.
It follows from (9) (see [12, Theorem 9]) that a system of linearizing variables (z1, z2)
is given by the equations

—2h1(:v1 + LE2) = 01 + 02 - 2h1, —2h1$1$2 = 91. (10)

This is checked in the present case as follows. First make use of (8), to rewrite the equations
(10) as

(23 + 25)(22 + 24) = —2h12122, (Z3 + 25)(21 + Zﬁ) = 2h1($1 — 1)({1;'2 — 1) (11)

Since h € H the variables xz; and x5 are both different from 1 and from 0 so that below
we can divide by x; and by z; — 1 as necessary. Deriving the equations (11) with respect
to the vector field X; given by (1) we find that

. -1 . -1
T1T7~ + TaTy ™ = 21 + 24 + 223,

: 4 1 (12)

.’L‘l(.’L‘l—l) +.’E2(£B2—1) :Zl+Z4+2Z5.
Then we can solve the first three equations of (3), together with (11) and the difference of
the two equations in (12) for z1,...,2z¢. Substituting these values in the second equation
of (12) we find that

(ﬁ)z Bl (mz(xjf— 1))2 = 13;2 [4h1 t 1};?3;2 gyt ;32 . (13)

Notice that this equation is linear in #2 and 43. Finally we substitute the values for
21,-..,2¢ in the fourth equation of (3) to find another equation which is linear in %% and
i3, leading to

i=1,2,

where

f(z) = w(1 — z)[4h12® — (4hy + ha)a® + (ha — hy — hs)z + hs).

(We note that the curve y?> = f(z) is precisely the curve ', given by (6).) It follows that,
in terms of the coordinates z1,z> given by (10), the differential equations (1) reduce to
the Jacobi form
I T 121 Tola
+ =0, + =1, (14)
\/f(ivl) \/f(ivz) f(z1) f(z2)

so that x; and x5 are indeed linearizing variables.

The construction of these linearizing variables leads to an explicit map into the Jaco-
bian Jac(T';) as follows. Recalling that we denote by ooy, the point which is added to I'j,
in order to complete it into a compact Riemann surface, the map P — [P+ o0op,] defines an
embedding of [', into its Jacobian; we have defined here Jac(T';) as the space of divisors of
degree two on I';, modulo linear equivalence. We denote the image of this map by ©;, and
call it the theta divisor. It follows from Mumford’s description of hyperelliptic Jacobians
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(see [9, Section 3.1]) that the affine surface Jac(I'y) \ © is isomorphic to the space of
pairs of polynomials (u(z),v(z)) such that u(z) is monic of degree two, v(z) is of degree
less than two and f(z) —v?(x) is divisible by u(z). Let us describe the map from Ay, into
Jac(T},) in terms of these polynomials. We define the polynomial u(z) by demanding that
its roots are z; and zs, i.e.,

u(z) = 2 + (

214 22+ 24 + 26 _1>$_ Z2 + 24
2

2(z3 — 2s5) (23 —25) (15)

The polynomial v(z) is defined as the derivative of u(z) in the direction of X; and can be
most easily described by the following formulas:

v(0) = u(0)(z1 + 24 + 223), v(1) = u(l)(z1 + 24 + 225). (16)

It is easy to check that f(z) —wv?(x) is divisible by u(z) so that the above formulas indeed
define a point of Jac(I'y) \ ©p. Since h € H, h; # 0 and hence z3 — z5 # 0, showing that
the above map is regular; moreover it is birational because (16) gives

L _1(0) o)
o= () ) 1o

while, using (15), 23 + z4 and z1 + zg can be rewritten as follows:

= (2020

u(l)  u(0)
(19
(20 o),
o= (g - im0

Using the invariants Hy, Hy and H3 one easily finds formulas for z3 + 25, 20 — 24 and 21 — zg
showing that the map is birational. On the one hand this proves that when h € H, i.e.,
when I'; is a non-singular curve of genus two, then A is isomorphic to an affine part of
Jac(['y). On the other hand it leads to explicit solutions for (1) with respect to initial
conditions which correspond to a point h € H, in terms of theta functions, in view of the
following formulas

_[08)(At+ B)\? _(0[0](At + B)\*
u(0) = e ( O[)(At + B) ) ul) = (0[61(At+ B) ) |

v(0) and v(1) are the derivatives of u(0) and u(1) with respect to ¢ (see [9, page 3.81]). The
constants ¢y and c¢; can be written explicitly in terms of the coordinates of the Weierstrass
points and theta constants (see [9, page 3.113]) and the rational vectors J,dy and d; are
half-characteristics; the values of A and B depend in a transcendental way on A and on
the initial conditions.

We see that the inverse map, given by (17) and (18), is holomorphic away from the
divisors u(0) = 0, u(1) = 0 and u(1)v(0) — u(0)v(1) = 0. When u(0) = 0 then 0 is one
of the roots of u so that the corresponding divisors are of the form Wy + P, where W
stands for the Weierstrass point over 0, z(Wy) = 0 and P € ['y. Similarly, u(1) = 0
corresponds to the divisors W1 + P, where W1 stands for the Weierstrass point over 1. In
order to avoid a rather involved explicit computation for the third divisor we appeal to
the fact that the divisor at infinity Dy, is invariant for the group %;,. Knowing that Dy,
consists of the theta divisor (consisting of divisors cop,+ P) besides the two divisors that we
have just determined we can identify the elements of T}, as translations over [W; — W],
[cop, — W] and Wy — oop]. Thus, the divisor u(1)v(0) — u(0)v(1l) = 0 corresponds to
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the effective divisors in [Wy + W7 + P — oop]. It is now easy to see that the four points
200y, 00y, + Wy, 0o, + W1 and Wy + Wy (which constitute a single ¥, orbit) each belong
to exactly three of the four curves and that these four curves have no other intersection
points. Thus, as a byproduct, we have recovered* the following intersection pattern of the
components of the divisor Dj,.

01

ZANN

We will now use the above results to study the moduli space M defined by
M = {A | h € H}/isomorphism,

where isomorphism means isomorphism of affine algebraic surfaces. We will relate this
moduli space to a moduli space My 4y of Abelian surfaces of type (1,4) which is defined
as follows. If 7 is an Abelian surface and L is a line bundle which induces a polarization
w = c1(L) of type (1,4) on T then the induced map ¢, : T — P3 is birational onto an
octic surface (the generic case), or it is a double cover of a quartic surface. We define

M) ={(T,L) | ¢z : T — P? is birational onto an octic}/isomorphism,

in which an isomorphism (7,£) = (7',£’) is a biholomorphic map ¥ : 7 — 7’ which
preserves the polarization, U*(¢;1(L’)) = ¢1(L£). This moduli space was explicitly described
in [13] as a Zariski open subset of a cone in weighted projective space P(12:23:4) (see
Section 4 below). In the following two propositions we show how M and M 4) are
related.

Proposition 1. For any h € H the quotient Ay [T}, is an affine part of an Abelian
surface Tp,. The line bundle L, = [D, /1] induces a polarization of type (1,4) on T;, and
the induced map ¢, : Ty, — P3 is birational onto an octic surface.

Proof. It is a general fact that the quotient of Jac(I';) by a group of half periods is an
Abelian surface. For a group of half periods of order four it was shown in [13, Section 5]
that the quotient is an Abelian surface of type (1,4) if and only if the group of half
periods is of the form {0, [Wy — W], [W; — Wy, [Wy — W3]}, where Wy, Wy and Wy are
Weierstrass points on the underlying curve; we have shown above that ¥, is indeed of
this form. The divisor Dj, descends to the irreducible divisor Dy /%), which has a triple
point which corresponds to the singular points of Dj. Since D, induces a polarization of
type (4,4) on Jac(T}), Dy /%y induces a polarization of type (1,4) on 7. In order to see

* This intersection pattern was first determined in [2, Figure 4.3] by using the Laurent
solutions to the vector field X;.



that the induced map ¢, is birational onto its image one considers 7;,/K} where Kj, is
the group of two-torsion elements inside the kernel of the natural isogeny from T to its
dual Abelian surface 7;,. Since Tj, = Jac(['y)/Zy the map Jac([y) — Tr/ K} is an isogeny
whose kernel consists of the sixteen half periods of Jac(I';). This means that this isogeny
is multiplication by 2 in Jac(T';) and hence that 7;,/K}, is a Jacobi surface. This implies
that the map ¢, : T, — P2 is birational onto its image (see [6, Section 4]).

Proposition 2. The above correspondence between affine surfaces A; and Abelian
surfaces T induces a bijection x : M — My 4.

Proof. For h € H we know that T}, is a group of four translations of Jac(I';) over half
periods leaving Dj, invariant. Since the group of translations over half periods acts tran-
sitively on the set of theta curves (translates of the theta divisor over half periods) this
property characterizes ‘€;,. It follows that isomorphic surfaces A; and Ay lead to iso-
morphic quotients Ay, /Ty, and Ay /Ty and hence to isomorphic polarized Abelian surfaces
(Th, L1) and (T}, Ly). This shows that the given correspondence between affine surfaces
Ap and Abelian surfaces 7 induces a map x : M — My 4).

Starting from any polarized Abelian surface (7, ¢.) of type (1,4) for which the in-
duced map is birational there exists a Riemann surface I' and a partition W = W, UW, =
{Wo, W1, Wo} U{W3, Wy, W5} of its Weierstrass points such that 7 = Jac(T) /%, where ¥
is the group of translations, given by ‘T = {0, [Wo — W1], [W1 — Wa], [W2 — Wp]}. Moreover
the triple (', W;, W) is uniquely determined up to isomorphism (see [13, Theorem 4]).
Let us pick one particular triple (I', Wi, W,) and let us choose coordinates for P! such
that the image of W under the natural double cover I' — P! is given by 0,1 and oo (in
some order). Then we find an equation of the form

y?> = z(1 — z)(Az® + Ba? + Cz + D)

in which the right hand side has no double roots. Obviously then we can find at least
one h € H such that this above curve corresponds to the curve I'j,, given by (6). By
construction (the isomorphism class of) the affine surface A, is contained in the fiber
x~ (T, L), showing the surjectivity of x. Finally, a triple (I, W}, W}) which is isomorphic
to (I, W1, Ws) leads to an isomorphic surface A, because Aj, is intrinsically described in
terms of the triple (I', Wi, W,) as being the affine part of the Jacobian of T', obtained by
removing the translates of the theta divisor, corresponding to the half periods {0, [Wy —
Wl], [Wl - Wz], [W2 - Wo]}, where Wl = {W[), Wl, Wz}

4. The map to moduli space

It follows from Section 2 that for any h € H the line bundle £;, which corresponds to
Dy, /%, defines a birational map ¢r, from Tj, to an octic surface in P?. We will compute
an equation of this octic because the coefficients of this equation, which depend on h,
will allow us to solve the moduli problem. Since T, = Jac(I'y)/% ) the vector space of
functions which provide this map consists of the Tj,-invariant functions on Jac(I'y,) with a
simple pole along Dy, (at worst), i.e., the T-invariant functions in the span of {2, ..., 215}
Using (4) and (7) one finds the following four independent invariant functions:

90 =ZzZy = 1,
2 2
01 = z10 = (22 — 225)° — 25,
2 2
2 = 211 = (223 — 26)" — 23,

93 — 212 — 212223 — Z425%26-
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In order to compute an equation for the octic it suffices — in principle — to eliminate
the variables z1, ..., zg from the equations (3) and (19). In practice, doing the calculation
in a straightforward way leads to disastrous results, even when using a computer algebra
package such as Maple. Therefore we will describe in some detail how this computation can
be done. As a first step we notice that the octic which we want to compute is isomorphic
to the variety defined by the following equations:

hi = X3 — X5, 0=X,X4— 277,
hy = X1 — Xe, 0=X,X5 —Z3,
hs = Xy — X4, 0= X3X¢ — Z3,
hy = X1+ X4 +271 +4X3 — 47y — 473, (20)

0, =4X5 — 472, + Xy — X,
Oy = 4X3 — 4725+ Xg — Xo,
02 = X1 Xo X3 + Xy X5 X6 — 27172 75.

To see this, we consider a regular map ¢ from the variety given by (3) and (19) to the
variety given by (20). The map ¢ is given by X; = 27 and Z; = z;z; 43, where i = 1,...,6
and j = 1,2,3. On the one hand ¢ is constant on the orbits of T because all X; and Z; are
C-invariant; on the other hand it is easy to check that every fiber of ¢ contains precisely
four points, hence the degree of ¢ is four. This shows that (20) represents the image of
Ap /%y in projective space, obtained by using the sections of the line bundle associated to
Dy [T

Six of the equations in (20) are linear and we can use these equations to eliminate
X5, X3, X5, X6, Zs and Z3 from the four non-linear equations. Apart from X; X4 = Z12,
this leaves us with the following three equations (we have used X;X, = Z2 to simplify
them)

2 [ha X7 — hoX§ — (ho — h3 — 01 — 02) Z7] — 2(4h1 + hy — hg — ha + 01) X4 Z4
—2(hy — hs — hy 4 02) X1 2, + 2h3(4hy — hy + 01 + 02) X1 + 2ha(hy — 01 — 62) X4
— (hy + hs — hg + 05)(4hy — hy — hy — hy + 601)Z; — 862 = 0,

4h3 X1 — 4(hg — 01)(hs + X4) +4X, Xy — (hy — hg — hy + 0, +27,)? =0,

4(hs + 02)(X1 — hy) —4X4hy +4X 1 Xy — (4hy + hy — hs — hy + 01 + 2Z1)? = 0.

(21)
The first trick that we use to make the rest of the computation feasible stems from the
following observation. If we multiply the second equation by X; and the third equation
by X, to remove from the first equation in (21) those terms which contain X? and X3,
then the resulting equation is a linear equation in X3, X4 and Z; (the relation X; X4 = Z12
is again used to simplify this expression) so that (21) is equivalent to a linear system of
equations in X7, X4 and Z;, which is solved at once. An equation for the octic is then
given by substituting the expressions for X7, Xy and Z; in the only remaining equation
X1Xy =72,

The resulting equation is monstrous (it has 2441 terms), in contrast with the follow-
ing equation for the octic, corresponding to an Abelian surface of type (1,4) proposed
in [6, Section 2]°:

W YoyiysYs + ni(Yoyi + v2ys) + Ha(1ys + Yoyz) + 13 (Yoys + yivz)+
— 2pa 23yt +y5y3s) (Ways — y3ut) — 2peps(yys +ysud) vyl —vivy)  (22)

— 231 (ygys + yiva)(ays — yay3) = 0.

5> We have rescaled some of the coordinates by roots of —1 so as to obtain a more
symmetric equation.
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The difference between these two equations lies of course in the choice of coordinates.
In order to compute the coordinate transformation which reduces our equation to the
symmetric form (22) we use the following geometric fact. Since the octic that we obtained
has the form 405+ B#2+C? = 0 the octic has a singular point of order four at (0:0: 0 : 1)
and such a singular point necessarily comes from four of the sixteen half periods on Jac(L's).
Clearly, (22) also has a singular point of order four at (0 : 0: 0 : 1). On the other hand,
we remark that the tangent cone to (22) at (0:0:0: 1), is the union of four hyperplanes
because the zero locus of the coefficient of y3 in (22) has the form

(Yo +Y1 +Y2)(Yo — Y1 +Y2)(Yo + Y1 — Y2) (Yo — Y1 — Y2)

where Yo = /u3yo, Y1 = /peyr and Yo = i\/u1yo (the particular choices made for
each square root are irrelevant). The coefficient A of 5 in our equation for the octic
must also factor in four linear factors, but these are harder to determine because this can
only be done by passing to an extension field of the field Clhy, ho, hs, hs]. However, if
one uses the sections of a symmetric line bundle to map a Jacobian in projective space,
then symmetric equations for the image are usually obtained by explicitly introducing the
Weierstrass points on the curve, rather than working with the coefficients of a polynomial
that defines the underlying curve (see [11, Section 6]). In view of the equation (6) for I'j,
we are therefore led to defining®

42°hy — (4hy 4+ ha)z® + (hy — hs — ho)z + hy = Az — A1) (z — Xo)(z — A3).

Indeed, in terms of the A; one finds the following factorization for A,

3
A=00 [T (N = 1) — Ay — (A — 1)63).

=1

In order to find the required coordinate transformation, we can now use the following

ansatz:
Y0+Y]_+Y2 :00,

_YO — Yl + Y2 = K’l(>\>\1(>\1 - 1)00 - )\101 — ()\1 — 1)02),
—Y() + Yl - Y2 = K)z()\)\g()\g - 1)00 - )\201 — ()\2 — 1)02),
Yo — Y1 — Y2 = k3(AA3(A3 — 1)00 — X301 — (A3 — 1)62).

(23)

The coefficients k; are uniquely determined by the compatibility equations, which stem
from the vanishing of the sum of the left hand sides of these four equations. If we denote
A(z) = AM(x— A1) (z — A2)(x — A3) then the solution to the compatibility equations is given
by k; = —1/A'(N;), (1 = 1,...,3). Substituting these values for ; in (23) we can rewrite
our equation for the octic in terms of the coordinates Yy,...,Ys3. Putting Y; = p;y; we
can determine the p; such that we obtain precisely (22). It gives the following values for
sy o1y 2, H3°
g = A1 = A) i1 = Aiga)’,

2

) ) (24)
pe =12(05 — oi0o3) + 2(02 — 01) (0102 + 903),

where o; is the i-th symmetric function of A1, Ao, A3 and Ay = Ay, A5 = Ag. This determines
the parameters j; explicitly in terms of the Weierstrass points of the curve I';,. The sign
of the parameters p and p; is not important. Indeed, the coefficients (u, p1, p2, 13) are
only intermediate moduli for Abelian surfaces of type (1,4), the moduli themselves being

6 The final result will be symmetric in A{, A2, A3, hence does not depend on the order
of these parameters.
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given by the following expressions which realize the moduli space as the cone C : f2
f1(4f3 — 27f2) in weighted projective space P(1:%234) (see [13, Theorem 3]):

fO = /1'27
fi=(uf + p3 + p3)?,
fo = i+ py + ps — pipd — papd — pind,
2 a2 2N, 2 2
f3= (Mz Ml)(ﬂ3 Mz)(ﬂl M3)a
fo =3 + p3 + p3) (W] + 13 — 203) (03 + 13 — 2u3) (43 + pi — 2p3).

The standard action of the symmetric group S3 on C[A1, A2, A3] induces on C[u?, u2, 2]
an action which is determined by (1,2) - (u3,u3,p3) = (—u3,—p3, —p3) and (1,2,3) -

(12, u3, 13) = (p3, u3, p2). Therefore, every symmetric function in C[u?, u3, u3] is either

invariant or anti-invariant with respect to this induced action and it follows that the above

polynomials fy,..., f4 are symmetric in A1, Ao, A3. They are easily expressed in terms of

h = (hi, ha, hs, hy); the resulting map M — C C P(1,2.234) solves the moduli problem,

posed in the introduction.
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