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Abstra
t. We introdu
e the moduli problem for (algebrai
 
ompletely) integrable sys-

tems. This problem 
onsists in 
onstru
ting a moduli spa
e of aÆne algebrai
 varieties and

expli
itly des
ribing a map whi
h asso
iates to a generi
 aÆne variety, whi
h appears as a

level set of the �rst integrals of the system (or, equivalently, a generi
 aÆne variety whi
h

is preserved by the 
ows of the integrable ve
tor �elds), a point in this moduli spa
e. As

an illustration, we work out the example of an integrable geodesi
 
ow on SO(4). In this


ase, the generi
 invariant variety is an aÆne part of the Ja
obian of a Riemann surfa
e

of genus two. Our 
onstru
tion relies heavily on the fa
t that these aÆne parts have the

additional property of being 4 : 1 unrami�ed 
overs of Abelian surfa
es of type (1; 4).
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1. Introdu
tion

An important property whi
h distinguishes integrable systems from generi
 dynami
al

systems is that the 
ow of an integrable ve
tor �eld, starting from an arbitrary point, is

not dense in the 
orresponding energy level but is 
onstrained to a subvariety of half the

dimension (or less) of phase spa
e. These subvarieties are the level sets of the Poisson


ommuting fun
tions that make up the integrable system and the above property follows

from the fa
t that X

G

F = fF;Gg = 0, where F and G are any two Poisson 
ommuting

fun
tions (su
h as the Hamiltonian and any of its �rst integrals).

In a real setting the relevan
e of these invariant manifolds for understanding and

des
ribing the me
hani
s of the integrable system 
an be seen from the Arnold-Liouville

theorem and from the existen
e of a
tion-angle variables: if su
h an invariant manifold is


ompa
t then it is di�eomorphi
 to a real torus and the 
ow is a linear 
ow on this torus;

moreover, su
h a linearizing di�eomorphism 
an be 
onstru
ted semi-lo
ally (on a neigh-

borhood of a 
ompa
t invariant manifold) onto a produ
t of a torus with a linear spa
e,

the latter being equipped with the standard symple
ti
 or Poisson stru
ture. In parti
ular,

it entails quasi-periodi
ity of the solutions, hen
e of the motion of the me
hani
al system.

See [4℄ or [5℄.

In a 
omplex analyti
 or a 
omplex algebrai
 setting the stru
ture of the invariant

manifolds is more 
ompli
ated. First, while two real tori are di�eomorphi
 if and only

if they have the same dimension, the 
onditions for two 
omplex tori (quotients of C

n

by a latti
e) to be biholomorphi
 (or, in an algebrai
 setting, isomorphi
) are mu
h more

involved, as be
omes already apparent in the one-dimensional 
ase (Riemann surfa
es of

genus 1; ellipti
 
urves). Se
ond, sin
e 
omplex tori are 
ompa
t they 
annot live in an

aÆne variety and the 
omplex invariant manifolds are at best aÆne parts of 
omplex

algebrai
 tori and this fa
t puts an extra 
ondition on the possibility of two invariant

manifolds being biholomorphi
 or isomorphi
: su
h an isomorphism must preserve the

divisor at in�nity, i.e., the divisor to be glued to the aÆne variety in order to 
omplete

it into a 
ompa
t 
omplex torus. Both aspe
ts have their relevan
e for me
hani
s. First,

while the solutions 
orresponding to non-isomorphi
 
omplex tori 
an in both 
ases be

written in terms of theta fun
tions, the 
hara
teristi
s of these quasi-periodi
 fun
tions

will be di�erent; and se
ond, even when the tori are isomorphi
, if their aÆne parts are

not isomorphi
 then the behaviour of the system for �nite (
omplex) time will be di�erent

be
ause in an a.
.i. system on an aÆne variety every (
omplex) integral 
urve hits the

divisor at in�nity after a �nite time (see [2℄ or [3℄).

These 
onsiderations lead us to what we 
all themoduli problem for integrable systems.

In order to give a pre
ise de�nition we will restri
t ourselves to algebrai
 
ompletely

integrable systems (a.
.i. systems) on an aÆne variety; the de�nition 
an easily be adapted

to other situations when needed. We re
all from [14℄ that the generi
 invariant manifold

of an a.
.i. system is an aÆne part of an Abelian variety (a 
omplex algebrai
 torus) and

that a large amount of expli
it information about these tori (su
h as equations for an

aÆne part, embeddings in proje
tive spa
e and equations for the divisor at in�nity) 
an

be obtained by studying the Laurent solutions to the di�erential equations, whi
h des
ribe

the ve
tor �eld de�ned by the Hamiltonian. The divisor whi
h is needed to 
omplete the

aÆne part into an Abelian variety indu
es a polarization on the 
orresponding torus; in

all known 
ases the polarization type, whi
h is a dis
rete invariant of the Abelian variety,

is the same for all these invariant manifolds. We are thus led to 
onsider, on one side,

the family of aÆne parts of Abelian varieties that appear as invariant manifolds in the

a.
.i. system, on the other side, the moduli spa
e

1

of Abelian varieties with a pres
ribed

1

In order to have a good moduli spa
e (e.g. one that admits an algebrai
 stru
ture),

1



divisor (hen
e polarization type) and, �nally, the map between these two spa
es, whi
h

sends an invariant manifold to its isomorphism 
lass. The moduli problem for an a.
.i.

system 
onsists in expli
itly 
onstru
ting the moduli spa
e and the 
anoni
al map.

To illustrate our point, we will treat a non-trivial example, namely an integrable

system that appears in Adler and van Moerbeke's 
lassi�
ation of integrable geodesi



ows on SO(4) as the 
ase of metri
 II (see [1℄). It has the following geometri
 des
ription

(for further details, see Se
tion 2). Phase spa
e is C

6

and there are four independent

quadrati
 polynomial fun
tions H

1

; : : : ;H

4

whi
h Poisson 
ommute; in fa
t we will exhibit

a tri-Hamiltonian stru
ture for this integrable system. The aÆne surfa
es that appear as

the �bers of the map

� : C

6

! C

4

: z = (z

1

; : : : ; z

6

) 7! (H

1

(z);H

2

(z);H

3

(z);H

4

(z))

are invariant for the 
ow of the two 
ommuting ve
tor �elds X

1

and X

2

and for generi


h 2 C

4

the invariant surfa
e �

�1

(h) is isomorphi
 to an aÆne part of the Ja
obian of a

(
ompa
t) Riemann surfa
e

�

�

h

. We will 
onstru
t su
h an isomorphism; in 
lassi
al termi-

nology we separate the variables of the integrable system (leading to expli
it solutions; as

far as we 
ould 
he
k a separation of variables for this integrable system was not known).

From this isomorphism we 
an read o�, in terms of the Weierstrass points on

�

�

h

, the rel-

ative position of the four 
urves whi
h are missing in the aÆne part A

h

. On the one hand

we 
an dedu
e from it that the quotient A

h

=T

h

is an aÆne part of an Abelian surfa
e of

type (1; 4). On the other hand it will allow us to set up a basi
 
orresponden
e between

the aÆne varieties A

h

(modulo isomorphism) and the spa
e of Riemann surfa
es of genus

two, equipped with a de
omposition of their Weierstrass points (modulo isomorphism).

As the latter spa
e is in turn isomorphi
 to a moduli spa
e of polarized Abelian surfa
es

of type (1; 4) (see [13℄) this redu
es the moduli problem to a question of determining the

moduli (i.e., the moduli spa
e and the 
orresponding map) for the underlying Abelian

surfa
es of type (1; 4). This redu
tion will be done in Se
tion 3.

Abelian surfa
es of type (1; 4) admit a holomorphi
 map to proje
tive spa
e P

3

and

the image is (in general) an o
ti
 surfa
e with four singular points of order four, as was

shown in [6℄. In order to �nd an equation of this o
ti
 we �rst 
ompute the Laurent

solutions to the integrable ve
tor �eld X

1

and dedu
e from it four independent se
tions,

invariant for the group a
tion, of the line bundle [D

h

℄, whi
h 
orresponds to the divisor at

in�nity. When the four singular points of order four are taken as base points in P

3

, the


oeÆ
ients of the equation for the o
ti
 surfa
e are 
losely related to moduli for Abelian

surfa
es of type (1; 4). Thus we need to redu
e the equation of the o
ti
 that we have found

to its more symmetri
 form. This 
omputation will be feasible thanks to the ri
hness of

the underlying geometry.

When the o
ti
 is redu
ed to its symmetri
 form its 
oeÆ
ients are expressed in terms

of the 
oordinates of the Weierstrass points of

�

�

h

rather than h, an expli
it dependen
e

whi
h disappears in the �nal step of the 
omputation. Indeed, it remains then to pass

from the 
oeÆ
ients of this o
ti
 to the moduli spa
e of Abelian surfa
es of type (1; 4).

In
idently this moduli spa
e was 
onstru
ted by the se
ond author when studying the

Garnier system, another a.
.i. system, whose invariant manifolds are Abelian surfa
es of

type (1; 4) (see [13℄). The moduli spa
e is des
ribed there as a Zariski open subset of a


one in weighted proje
tive spa
e and we 
an use the expli
itly given map from the spa
e

of parameters of the o
ti
 to this 
one to 
omplete our example: we end up with �ve

expli
it polynomials in the values h = (h

1

; h

2

; h

3

; h

4

) of the 
onstants of motion whi
h

take the same value (as an element of weighted proje
tive spa
e) on two sets of 
onstants

in general one also has to throw out a few bad elements.

2



of motion if and only if the 
orresponding level sets are isomorphi
 aÆne varieties. This

�nal step will be done in Se
tion 4.

It would be interesting to study the moduli problem for other integrable systems,

su
h as the Toda latti
es and the 
lassi
al integrable tops.

2. An integrable geodesi
 
ow on SO(4)

It was shown by Adler and van Moerbeke (see [1, Theorem 4℄) that there exist three


lasses of left-invariant metri
s on SO(4) for whi
h the geodesi
 
ow redu
es to an algebrai



ompletely integrable system (a.
.i. system) on its Lie algebra so(4). In the sequel, we

will 
onsider the se
ond 
ase, known as the 
ase of metri
 II. In suitable 
oordinates, the

�rst ve
tor �eld X

1

of this a.
.i. system is given by the di�erential equations

_z

1

= 2z

5

z

6

;

_z

4

= 2z

2

z

3

;

_z

2

= 2z

3

z

4

;

_z

5

= z

3

(z

1

+ z

4

);

_z

3

= z

5

(z

1

+ z

4

);

_z

6

= 2z

1

z

5

:

(1)

The se
ond ve
tor �eld X

2

, 
ommuting with X

1

, is given by the di�erential equations

_z

1

= z

2

z

6

;

_z

4

= z

2

(2z

3

� z

6

);

_z

2

= z

4

(2z

3

� z

6

);

_z

5

= z

3

z

4

;

_z

3

= z

4

z

5

;

_z

6

= z

1

z

2

;

(2)

the ve
tor �elds X

1

and X

2

admit four independent quadrati
 invariants, given by the

following expressions:

H

1

= z

2

3

� z

2

5

;

H

2

= z

2

1

� z

2

6

;

H

3

= z

2

2

� z

2

4

;

H

4

= (z

1

+ z

4

)

2

+ 4(z

2

3

� z

2

z

5

� z

3

z

6

):

(3)

It is easy to verify that there exist pre
isely three linearly independent linear Poisson stru
-

tures on C

6

with respe
t to whi
h X

1

and X

2

are Hamiltonian; moreover, these Poisson

stru
tures are 
ompatible, implying that the integrable system admits a tri-Hamiltonian

stru
ture. Expli
itly, for any (�; �; 
) 2 C

3

, the matrix

0

B

B

B

B

B

�

0 �z

6

��z

5

0 ��z

3

� 2
z

6

�(z

2

� 2z

5

)

��z

6

0 2
z

4

�(z

6

� 2z

3

) 0 ��z

1

� �z

4

�z

5

�2
z

4

0 ��z

5

� 2
z

2

�
(z

1

+ z

4

) 0

0 �(2z

3

� z

6

) �z

5

+ 2
z

2

0 �z

3

��z

2

�z

3

+ 2
z

6

0 
(z

1

+ z

4

) ��z

3

0 2
z

1

�(2z

5

� z

2

) �z

1

+ �z

4

0 �z

2

�2
z

1

0

1

C

C

C

C

C

A

is the Poisson matrix of a Poisson stru
ture P

��


on C

6

. If (�; �; 
) 6= (0; 0; 0) then P

��


generates the Hamiltonian ve
tor �elds X

1

and X

2

as des
ribed in the following table;

generators for the algebra of Casimirs of these stru
tures P

��


also follow from the table.

H

1

H

2

H

3

H

4

P

100

0 0 2X

2

�2X

1

P

010

0 2(X

1

�X

2

) 0 2X

1

P

001

2X

1

0 0 8X

2

Table 1
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It was shown by Adler and van Moerbeke in [2, Se
tion 4℄ that, for any h = (h

1

; h

2

; h

3

; h

4

)

whi
h belongs to some

2

Zariski open subset H of C

4

, the aÆne surfa
e

A

h

= fz 2 C

6

j H

i

(z) = h

i

; i = 1; : : : ; 4g

is isomorphi
 to an aÆne part of the Ja
obian of a 
ompa
t Riemann surfa
e

�

�

h

of genus

two (whi
h depends on h 2 H), A

h

�

=

Ja
(

�

�

h

) n D

h

and that the ve
tor �elds X

1

and X

2

are linear

3

when restri
ted to these surfa
es A

h

, thereby proving that the above system

is algebrai
 
ompletely integrable (see [2, Se
tion 4℄). The aÆne part A

h

, the divisor D

h

and the Riemann surfa
e

�

�

h


an be des
ribed as follows. First noti
e that the group T of

involutions, generated by

�

1

(z

1

; : : : ; z

6

) = (�z

1

;�z

2

; z

3

;�z

4

;�z

5

; z

6

);

�

2

(z

1

; : : : ; z

6

) = (�z

1

; z

2

;�z

3

;�z

4

; z

5

;�z

6

);

(4)


ommutes with the ve
tor �elds X

1

and X

2

and leaves the aÆne surfa
es A

h

invariant; in

fa
t they generate, for any h 2 H, a group T

h

of translations over half periods in the tori

Ja
(

�

�

h

). As a 
onsequen
e, the divisors D

h

are also stable under these translations. For a

more pre
ise des
ription of the divisors D

h

one applies Painlev�e analysis to the ve
tor �eld

X

1

(or any 
ombination of X

1

and X

2

). To do this one sear
hes Laurent solutions to the

di�erential equations (1), depending on �ve free parameters (prin
ipal balan
es). There

are pre
isely four su
h families, labeled by �

1

= �1; �

2

= �1, and they are expli
itly given

as follows (a; b; : : : ; e are the free parameters).

z

1

=

(a� 1)�

1

t

�

1� bt+ (b

2

� d� e)t

2

+O(t

3

)

�

;

z

2

=

�

1

�

2

t

�

a� abt+ ((a� 1)(ae � 
� ab

2

) + a

2

d)t

2

+O(t

3

)

�

;

z

3

=

�

2

2t

�

1 + bt� ((a� 1)e+ ad� 
� ab

2

)t

2

+O(t

3

)

�

;

z

4

=

�

1

t

�

�a+ abt+ 
t

2

+O(t

3

)

�

;

z

5

=

�

1

�

2

2t

�

1 + bt+ dt

2

+O(t

3

)

�

;

z

6

=

(a� 1)�

2

t

�

�1 + bt� et

2

+O(t

3

)

�

:

(5)

When any of these families of Laurent solutions is substituted in the equations H

i

(z) = h

i

,

i = 1; : : : ; 4, the resulting expressions are independent of t. This leads to four algebrai


equations in the �ve free parameters, giving expli
it equations for an aÆne part �

h

of

�

�

h

.

Ea
h of these equations is easily rewritten as

y

2

= x(1� x)

�

4x

3

h

1

� (4h

1

+ h

4

)x

2

+ (h

4

� h

3

� h

2

)x+ h

3

�

: (6)

In what follows, we will refer to the 
urve in C

2

, given by (6), as the 
urve �

h

. In order

to re
over the Riemann surfa
e

�

�

h

from it one has to adjoin one point whi
h we denote

by 1

h

. Sin
e there are four families of Laurent solutions (5), the divisor D

h


onsists of

four 
opies

�

�

h

(�

1

; �

2

), �

2

1

= �

2

2

= 1, of the 
urve

�

�

h

, i.e.,

D

h

=

�

�

h

(1; 1) +

�

�

h

(1;�1) +

�

�

h

(�1; 1) +

�

�

h

(�1;�1):

2

Expli
it equations for H will be given in the next se
tion.

3

Re
all e.g. from [7, Chapter 2.7℄ or [8, Chapter 11℄ that the Ja
obian of an algebrai



urve is a 
omplex torus.
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The Laurent solutions 
an also be used to 
ompute an expli
it embedding of the tori

Ja
(

�

�

h

) in P

15

: the se
tions of the line bundle on Ja
(

�

�

h

), de�ned by D

h

, 
orrespond to

the meromorphi
 fun
tions on Ja
(

�

�

h

) with a simple pole (at worst) at the divisor D

h

and,

in turn, these are found by 
onstru
ting those polynomials on C

6

whi
h have a simple

pole in t (at worst) when any of the four families of Laurent solutions are substituted in

them (see [14, Chapter V℄). Apart from the 
onstant fun
tion z

0

= 1 and the fun
tions z

i

,

i = 1; : : : ; 6, one easily �nds the following independent fun
tions with this property:

z

7

= z

5

(2z

3

� z

6

)� z

2

z

3

;

z

8

= z

1

(2z

3

� z

6

)� z

4

z

6

;

z

9

= z

4

(2z

5

� z

2

)� z

1

z

2

;

z

10

= (2z

5

� z

2

)

2

� z

2

6

;

z

11

= (2z

3

� z

6

)

2

� z

2

2

;

z

12

= z

1

z

2

z

3

� z

4

z

5

z

6

;

z

13

= z

2

z

3

z

6

� z

1

z

4

z

5

;

z

14

= z

2

z

5

z

6

� z

1

z

3

z

4

;

z

15

= z

1

z

2

z

5

� z

3

z

4

z

6

:

(7)

The embedding of Ja
(

�

�

h

) in P

15

is given on the aÆne part A

h

by the map

� : A

h

! P

15

: P = (z

1

; : : : ; z

6

) 7! (1 : z

1

(P ) : � � � : z

15

(P )):

These se
tions will be used later to 
onstru
t two maps whi
h are similar to � and whi
h

map two di�erent quotients of A

h

birationally into P

3

.

3. Linearizing variables

In this se
tion we show that from the point of view of moduli, the family of aÆne

surfa
es A

h

, h 2 H, 
an be repla
ed by a family of polarized Abelian surfa
es of type

(1; 4). In order to do this we will �rst 
onstru
t an expli
it map from the aÆne surfa
e A

h

(h 2 H) to an aÆne part of Ja
(

�

�

h

). We do this by following an algorithm, outlined in

[12, Se
tion 3℄, whi
h leads to linearizing variables for any two-dimensional a.
.i. system.

We note that although the 
hara
terization of the aÆne surfa
es A

h

as aÆne parts of

hyperellipti
 Ja
obians was already given by Adler and van Moerbeke in [2, Se
tion 4℄,

neither an expli
it map nor linearizing variables follow from their results.

We de�ne H to be the set of those h = (h

1

; h

2

; h

3

; h

4

) 2 C

4

for whi
h the 
urve (6)

is a non-singular 
urve of genus two, i.e., that its right hand side is of degree 5 and has

no multiple roots; noti
e that this entails in parti
ular that h

1

h

2

h

3

6= 0 for all h 2 H. It

will follow from our 
onstru
tion that, for every h 2 H, A

h

is indeed an aÆne part of the

Ja
obian, thereby justifying the notation H. In order to apply the pro
edure des
ribed

in [12, Se
tion 3℄, we �x an arbitrary element h 2 H and we 
hoose one 
omponent, say

C =

�

�

h

(1;�1), of the divisor D

h

on Ja
(

�

�

h

). The meromorphi
 fun
tions on Ja
(

�

�

h

)

whi
h have at worst a double pole along the divisor C 
an be obtained by 
onstru
ting

those polynomials on C

6

whi
h have at worst a double pole in t when the Laurent solutions

(5) 
orresponding to �

1

= 1, �

2

= �1 are substituted into them (and no poles when the

other solutions are substituted). It is easily 
omputed that the spa
e of su
h polynomials

is spanned by

�

0

= 1; �

1

= (z

2

+ z

4

)(z

3

+ z

5

); �

2

= (z

3

+ z

5

)(z

1

+ z

6

); �

3

= (z

1

+ z

6

)(z

2

+ z

4

); (8)

where we think of these polynomials as being restri
ted to A

h

. The mapping �, given on

Ja
(

�

�

h

) n C by

� : Ja
(

�

�

h

) n C ! P

3

: P = (z

1

; z

2

; : : : ; z

6

) 7! (�

0

(P ) : �

1

(P ) : �

2

(P ) : �

3

(P ))

maps the surfa
e Ja
(

�

�

h

) to its Kummer surfa
e, whi
h is a singular quarti
 in P

3

. An

equation for this quarti
 surfa
e 
an be 
omputed by eliminating the variables z

1

; : : : ; z

6

5



from the equations (3) and (8): solving the equations (8) and the �rst three equations in

(3) for the variables z

1

; z

2

; : : : ; z

6

and substituting these values in the remaining equation,

the equation for the Kummer surfa
e of Ja
(

�

�

h

) 
an be written in the form

�

2

3

((�

1

+ �

2

� 2h

1

)

2

+ 8h

1

�

1

) + f

3

(�

1

; �

2

)�

3

+ f

4

(�

1

; �

2

) = 0; (9)

where f

3

(respe
tively f

4

) is a polynomial of degree three (respe
tively four) in �

1

and �

2

.

It follows from (9) (see [12, Theorem 9℄) that a system of linearizing variables (x

1

; x

2

)

is given by the equations

�2h

1

(x

1

+ x

2

) = �

1

+ �

2

� 2h

1

; �2h

1

x

1

x

2

= �

1

: (10)

This is 
he
ked in the present 
ase as follows. First make use of (8), to rewrite the equations

(10) as

(z

3

+ z

5

)(z

2

+ z

4

) = �2h

1

x

1

x

2

; (z

3

+ z

5

)(z

1

+ z

6

) = 2h

1

(x

1

� 1)(x

2

� 1): (11)

Sin
e h 2 H the variables x

1

and x

2

are both di�erent from 1 and from 0 so that below

we 
an divide by x

i

and by x

i

� 1 as ne
essary. Deriving the equations (11) with respe
t

to the ve
tor �eld X

1

given by (1) we �nd that

_x

1

x

�1

1

+ _x

2

x

�1

2

= z

1

+ z

4

+ 2z

3

;

_x

1

(x

1

� 1)

�1

+ _x

2

(x

2

� 1)

�1

= z

1

+ z

4

+ 2z

5

:

(12)

Then we 
an solve the �rst three equations of (3), together with (11) and the di�eren
e of

the two equations in (12) for z

1

; : : : ; z

6

. Substituting these values in the se
ond equation

of (12) we �nd that

�

_x

1

x

1

(x

1

� 1)

�

2

�

�

_x

2

x

2

(x

2

� 1)

�

2

=

1

x

1

� x

2

�

4h

1

+

h

2

(x

1

� 1)(x

2

� 1)

+

h

3

x

1

x

2

�

: (13)

Noti
e that this equation is linear in _x

2

1

and _x

2

2

: Finally we substitute the values for

z

1

; : : : ; z

6

in the fourth equation of (3) to �nd another equation whi
h is linear in _x

2

1

and

_x

2

2

, leading to

_x

2

i

=

f(x

i

)

(x

1

� x

2

)

2

; i = 1; 2;

where

f(x) = x(1� x)[4h

1

x

3

� (4h

1

+ h

4

)x

2

+ (h

4

� h

2

� h

3

)x+ h

3

℄:

(We note that the 
urve y

2

= f(x) is pre
isely the 
urve �

h

given by (6).) It follows that,

in terms of the 
oordinates x

1

; x

2

given by (10), the di�erential equations (1) redu
e to

the Ja
obi form

_x

1

p

f(x

1

)

+

_x

2

p

f(x

2

)

= 0;

x

1

_x

1

p

f(x

1

)

+

x

2

_x

2

p

f(x

2

)

= 1; (14)

so that x

1

and x

2

are indeed linearizing variables.

The 
onstru
tion of these linearizing variables leads to an expli
it map into the Ja
o-

bian Ja
(

�

�

h

) as follows. Re
alling that we denote by 1

h

the point whi
h is added to �

h

in order to 
omplete it into a 
ompa
t Riemann surfa
e, the map P 7! [P +1

h

℄ de�nes an

embedding of

�

�

h

into its Ja
obian; we have de�ned here Ja
(

�

�

h

) as the spa
e of divisors of

degree two on

�

�

h

modulo linear equivalen
e. We denote the image of this map by �

h

and


all it the theta divisor. It follows from Mumford's des
ription of hyperellipti
 Ja
obians

6



(see [9, Se
tion 3.1℄) that the aÆne surfa
e Ja
(

�

�

h

) n �

h

is isomorphi
 to the spa
e of

pairs of polynomials (u(x); v(x)) su
h that u(x) is moni
 of degree two, v(x) is of degree

less than two and f(x)� v

2

(x) is divisible by u(x). Let us des
ribe the map from A

h

into

Ja
(

�

�

h

) in terms of these polynomials. We de�ne the polynomial u(x) by demanding that

its roots are x

1

and x

2

, i.e.,

u(x) = x

2

+

�

z

1

+ z

2

+ z

4

+ z

6

2(z

3

� z

5

)

� 1

�

x�

z

2

+ z

4

2(z

3

� z

5

)

: (15)

The polynomial v(x) is de�ned as the derivative of u(x) in the dire
tion of X

1

and 
an be

most easily des
ribed by the following formulas:

v(0) = u(0)(z

1

+ z

4

+ 2z

3

); v(1) = u(1)(z

1

+ z

4

+ 2z

5

): (16)

It is easy to 
he
k that f(x)� v

2

(x) is divisible by u(x) so that the above formulas indeed

de�ne a point of Ja
(

�

�

h

) n �

h

. Sin
e h 2 H, h

1

6= 0 and hen
e z

3

� z

5

6= 0, showing that

the above map is regular; moreover it is birational be
ause (16) gives

z

3

� z

5

=

1

2

�

v(0)

u(0)

�

v(1)

u(1)

�

; (17)

while, using (15), z

2

+ z

4

and z

1

+ z

6


an be rewritten as follows:

z

2

+ z

4

=

�

v(1)

u(1)

�

v(0)

u(0)

�

u(0);

z

1

+ z

6

=

�

v(0)

u(0)

�

v(1)

u(1)

�

u(1):

(18)

Using the invariants H

1

;H

2

and H

3

one easily �nds formulas for z

3

+z

5

, z

2

�z

4

and z

1

�z

6

showing that the map is birational. On the one hand this proves that when h 2 H, i.e.,

when �

h

is a non-singular 
urve of genus two, then A

h

is isomorphi
 to an aÆne part of

Ja
(

�

�

h

). On the other hand it leads to expli
it solutions for (1) with respe
t to initial


onditions whi
h 
orrespond to a point h 2 H, in terms of theta fun
tions, in view of the

following formulas

u(0) = 


0

�

�[Æ

0

℄(At+B)

�[Æ℄(At+B)

�

2

u(1) = 


1

�

�[Æ

1

℄(At+B)

�[Æ℄(At+B)

�

2

;

v(0) and v(1) are the derivatives of u(0) and u(1) with respe
t to t (see [9, page 3.81℄). The


onstants 


0

and 


1


an be written expli
itly in terms of the 
oordinates of the Weierstrass

points and theta 
onstants (see [9, page 3.113℄) and the rational ve
tors Æ; Æ

0

and Æ

1

are

half-
hara
teristi
s; the values of A and B depend in a trans
endental way on h and on

the initial 
onditions.

We see that the inverse map, given by (17) and (18), is holomorphi
 away from the

divisors u(0) = 0, u(1) = 0 and u(1)v(0) � u(0)v(1) = 0. When u(0) = 0 then 0 is one

of the roots of u so that the 
orresponding divisors are of the form W

0

+ P , where W

0

stands for the Weierstrass point over 0, x(W

0

) = 0 and P 2

�

�

h

. Similarly, u(1) = 0


orresponds to the divisors W

1

+P , where W

1

stands for the Weierstrass point over 1. In

order to avoid a rather involved expli
it 
omputation for the third divisor we appeal to

the fa
t that the divisor at in�nity D

h

is invariant for the group T

h

. Knowing that D

h


onsists of the theta divisor (
onsisting of divisors1

h

+P ) besides the two divisors that we

have just determined we 
an identify the elements of T

h

as translations over [W

1

�W

0

℄,

[1

h

� W

1

℄ and [W

0

� 1

h

℄. Thus, the divisor u(1)v(0) � u(0)v(1) = 0 
orresponds to

7



the e�e
tive divisors in [W

0

+W

1

+ P �1

h

℄. It is now easy to see that the four points

21

h

;1

h

+W

0

;1

h

+W

1

and W

0

+W

1

(whi
h 
onstitute a single T

h

orbit) ea
h belong

to exa
tly three of the four 
urves and that these four 
urves have no other interse
tion

points. Thus, as a byprodu
t, we have re
overed

4

the following interse
tion pattern of the


omponents of the divisor D

h

.

02

00

12

01

We will now use the above results to study the moduli spa
e M de�ned by

M = fA

h

j h 2 Hg=isomorphism;

where isomorphism means isomorphism of aÆne algebrai
 surfa
es. We will relate this

moduli spa
e to a moduli spa
e M

(1;4)

of Abelian surfa
es of type (1; 4) whi
h is de�ned

as follows. If T is an Abelian surfa
e and L is a line bundle whi
h indu
es a polarization

! = 


1

(L) of type (1; 4) on T then the indu
ed map �

L

: T ! P

3

is birational onto an

o
ti
 surfa
e (the generi
 
ase), or it is a double 
over of a quarti
 surfa
e. We de�ne

M

(1;4)

= f(T ;L) j �

L

: T ! P

3

is birational onto an o
ti
g=isomorphism;

in whi
h an isomorphism (T ;L)

�

=

(T

0

;L

0

) is a biholomorphi
 map 	 : T ! T

0

whi
h

preserves the polarization, 	

�

(


1

(L

0

)) = 


1

(L). This moduli spa
e was expli
itly des
ribed

in [13℄ as a Zariski open subset of a 
one in weighted proje
tive spa
e P

(1;2;2;3;4)

(see

Se
tion 4 below). In the following two propositions we show how M and M

(1;4)

are

related.

Proposition 1. For any h 2 H the quotient A

h

=T

h

is an aÆne part of an Abelian

surfa
e T

h

. The line bundle L

h

= [D

h

=T

h

℄ indu
es a polarization of type (1; 4) on T

h

and

the indu
ed map �

L

h

: T

h

! P

3

is birational onto an o
ti
 surfa
e.

Proof. It is a general fa
t that the quotient of Ja
(

�

�

h

) by a group of half periods is an

Abelian surfa
e. For a group of half periods of order four it was shown in [13, Se
tion 5℄

that the quotient is an Abelian surfa
e of type (1; 4) if and only if the group of half

periods is of the form f0; [W

2

�W

1

℄; [W

1

�W

0

℄; [W

0

�W

2

℄g, where W

0

;W

1

and W

2

are

Weierstrass points on the underlying 
urve; we have shown above that T

h

is indeed of

this form. The divisor D

h

des
ends to the irredu
ible divisor D

h

=T

h

whi
h has a triple

point whi
h 
orresponds to the singular points of D

h

. Sin
e D

h

indu
es a polarization of

type (4; 4) on Ja
(

�

�

h

), D

h

=T

h

indu
es a polarization of type (1; 4) on T

h

. In order to see

4

This interse
tion pattern was �rst determined in [2, Figure 4.3℄ by using the Laurent

solutions to the ve
tor �eld X

1

.
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that the indu
ed map �

L

h

is birational onto its image one 
onsiders T

h

=K

h

where K

h

is

the group of two-torsion elements inside the kernel of the natural isogeny from T

h

to its

dual Abelian surfa
e

^

T

h

. Sin
e T

h

= Ja
(

�

�

h

)=T

h

the map Ja
(

�

�

h

)! T

h

=K

h

is an isogeny

whose kernel 
onsists of the sixteen half periods of Ja
(

�

�

h

). This means that this isogeny

is multipli
ation by 2 in Ja
(

�

�

h

) and hen
e that T

h

=K

h

is a Ja
obi surfa
e. This implies

that the map �

L

h

: T

h

! P

3

is birational onto its image (see [6, Se
tion 4℄).

Proposition 2. The above 
orresponden
e between aÆne surfa
es A

h

and Abelian

surfa
es T indu
es a bije
tion � :M!M

(1;4)

.

Proof. For h 2 H we know that T

h

is a group of four translations of Ja
(

�

�

h

) over half

periods leaving D

h

invariant. Sin
e the group of translations over half periods a
ts tran-

sitively on the set of theta 
urves (translates of the theta divisor over half periods) this

property 
hara
terizes T

h

. It follows that isomorphi
 surfa
es A

h

and A

k

lead to iso-

morphi
 quotients A

h

=T

h

and A

k

=T

k

and hen
e to isomorphi
 polarized Abelian surfa
es

(T

h

;L

h

) and (T

k

;L

k

). This shows that the given 
orresponden
e between aÆne surfa
es

A

h

and Abelian surfa
es T indu
es a map � :M!M

(1;4)

.

Starting from any polarized Abelian surfa
e (T ; �

L

) of type (1; 4) for whi
h the in-

du
ed map is birational there exists a Riemann surfa
e

�

� and a partitionW =W

1

[W

2

=

fW

0

;W

1

;W

2

g[fW

3

;W

4

;W

5

g of its Weierstrass points su
h that T = Ja
(

�

�)=T, where T

is the group of translations, given by T = f0; [W

0

�W

1

℄; [W

1

�W

2

℄; [W

2

�W

0

℄g. Moreover

the triple (

�

�;W

1

;W

2

) is uniquely determined up to isomorphism (see [13, Theorem 4℄).

Let us pi
k one parti
ular triple (

�

�;W

1

;W

2

) and let us 
hoose 
oordinates for P

1

su
h

that the image of W

1

under the natural double 
over

�

� ! P

1

is given by 0; 1 and 1 (in

some order). Then we �nd an equation of the form

y

2

= x(1� x)(Ax

3

+Bx

2

+ Cx+D)

in whi
h the right hand side has no double roots. Obviously then we 
an �nd at least

one h 2 H su
h that this above 
urve 
orresponds to the 
urve �

h

, given by (6). By


onstru
tion (the isomorphism 
lass of) the aÆne surfa
e A

h

is 
ontained in the �ber

�

�1

(T ;L), showing the surje
tivity of �. Finally, a triple (

�

�

0

;W

0

1

;W

0

2

) whi
h is isomorphi


to (

�

�;W

1

;W

2

) leads to an isomorphi
 surfa
e A

k

be
ause A

h

is intrinsi
ally des
ribed in

terms of the triple (

�

�;W

1

;W

2

) as being the aÆne part of the Ja
obian of

�

�, obtained by

removing the translates of the theta divisor, 
orresponding to the half periods f0; [W

0

�

W

1

℄; [W

1

�W

2

℄; [W

2

�W

0

℄g, where W

1

= fW

0

;W

1

;W

2

g.

4. The map to moduli spa
e

It follows from Se
tion 2 that for any h 2 H the line bundle L

h

whi
h 
orresponds to

D

h

=T

h

de�nes a birational map �

L

h

from T

h

to an o
ti
 surfa
e in P

3

. We will 
ompute

an equation of this o
ti
 be
ause the 
oeÆ
ients of this equation, whi
h depend on h,

will allow us to solve the moduli problem. Sin
e T

h

= Ja
(

�

�

h

)=T

h

the ve
tor spa
e of

fun
tions whi
h provide this map 
onsists of the T

h

-invariant fun
tions on Ja
(

�

�

h

) with a

simple pole along D

h

(at worst), i.e., the T-invariant fun
tions in the span of fz

0

; : : : ; z

15

g.

Using (4) and (7) one �nds the following four independent invariant fun
tions:

�

0

= z

0

= 1;

�

1

= z

10

= (z

2

� 2z

5

)

2

� z

2

6

;

�

2

= z

11

= (2z

3

� z

6

)

2

� z

2

2

;

�

3

= z

12

= z

1

z

2

z

3

� z

4

z

5

z

6

:

(19)
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In order to 
ompute an equation for the o
ti
 it suÆ
es | in prin
iple | to eliminate

the variables z

1

; : : : ; z

6

from the equations (3) and (19). In pra
ti
e, doing the 
al
ulation

in a straightforward way leads to disastrous results, even when using a 
omputer algebra

pa
kage su
h as Maple. Therefore we will des
ribe in some detail how this 
omputation 
an

be done. As a �rst step we noti
e that the o
ti
 whi
h we want to 
ompute is isomorphi


to the variety de�ned by the following equations:

h

1

= X

3

�X

5

; 0 = X

1

X

4

� Z

2

1

;

h

2

= X

1

�X

6

; 0 = X

2

X

5

� Z

2

2

;

h

3

= X

2

�X

4

; 0 = X

3

X

6

� Z

2

3

;

h

4

= X

1

+X

4

+ 2Z

1

+ 4X

3

� 4Z

2

� 4Z

3

;

�

1

= 4X

5

� 4Z

2

+X

2

�X

6

;

�

2

= 4X

3

� 4Z

3

+X

6

�X

2

;

�

2

3

= X

1

X

2

X

3

+X

4

X

5

X

6

� 2Z

1

Z

2

Z

3

:

(20)

To see this, we 
onsider a regular map ' from the variety given by (3) and (19) to the

variety given by (20). The map ' is given by X

i

= z

2

i

and Z

j

= z

j

z

j+3

, where i = 1; : : : ; 6

and j = 1; 2; 3. On the one hand ' is 
onstant on the orbits of T be
ause all X

i

and Z

j

are

T-invariant; on the other hand it is easy to 
he
k that every �ber of ' 
ontains pre
isely

four points, hen
e the degree of ' is four. This shows that (20) represents the image of

A

h

=T

h

in proje
tive spa
e, obtained by using the se
tions of the line bundle asso
iated to

D

h

=T

h

.

Six of the equations in (20) are linear and we 
an use these equations to eliminate

X

2

;X

3

;X

5

;X

6

; Z

2

and Z

3

from the four non-linear equations. Apart from X

1

X

4

= Z

2

1

,

this leaves us with the following three equations (we have used X

1

X

4

= Z

2

1

to simplify

them)

2

�

h

3

X

2

1

� h

2

X

2

4

� (h

2

� h

3

� �

1

� �

2

)Z

2

1

�

� 2(4h

1

+ h

2

� h

3

� h

4

+ �

1

)X

4

Z

1

� 2(h

2

� h

3

� h

4

+ �

2

)X

1

Z

1

+ 2h

3

(4h

1

� h

4

+ �

1

+ �

2

)X

1

+ 2h

2

(h

4

� �

1

� �

2

)X

4

� (h

2

+ h

3

� h

4

+ �

2

)(4h

1

� h

2

� h

3

� h

4

+ �

1

)Z

1

� 8�

2

3

= 0;

4h

3

X

1

� 4(h

2

� �

1

)(h

3

+X

4

) + 4X

1

X

4

� (h

2

� h

3

� h

4

+ �

2

+ 2Z

1

)

2

= 0;

4(h

3

+ �

2

)(X

1

� h

2

)� 4X

4

h

2

+ 4X

1

X

4

� (4h

1

+ h

2

� h

3

� h

4

+ �

1

+ 2Z

1

)

2

= 0:

(21)

The �rst tri
k that we use to make the rest of the 
omputation feasible stems from the

following observation. If we multiply the se
ond equation by X

1

and the third equation

by X

4

to remove from the �rst equation in (21) those terms whi
h 
ontain X

2

1

and X

2

4

,

then the resulting equation is a linear equation in X

1

;X

4

and Z

1

(the relation X

1

X

4

= Z

2

1

is again used to simplify this expression) so that (21) is equivalent to a linear system of

equations in X

1

;X

4

and Z

1

, whi
h is solved at on
e. An equation for the o
ti
 is then

given by substituting the expressions for X

1

;X

4

and Z

1

in the only remaining equation

X

1

X

4

= Z

2

1

.

The resulting equation is monstrous (it has 2441 terms), in 
ontrast with the follow-

ing equation for the o
ti
, 
orresponding to an Abelian surfa
e of type (1; 4) proposed

in [6, Se
tion 2℄

5

:

�

2

y

2

0

y

2

1

y

2

2

y

2

3

+ �

2

1

(y

4

0

y

4

1

+ y

4

2

y

4

3

) + �

2

2

(y

4

1

y

4

3

+ y

4

0

y

4

2

) + �

2

3

(y

4

0

y

4

3

+ y

4

1

y

4

2

)+

� 2�

1

�

2

(y

2

0

y

2

1

+ y

2

2

y

2

3

)(y

2

0

y

2

2

� y

2

3

y

2

1

)� 2�

2

�

3

(y

2

0

y

2

2

+ y

2

3

y

2

1

)(y

2

0

y

2

3

� y

2

1

y

2

2

)

� 2�

3

�

1

(y

2

0

y

2

3

+ y

2

1

y

2

2

)(y

2

0

y

2

1

� y

2

2

y

2

3

) = 0:

(22)

5

We have res
aled some of the 
oordinates by roots of �1 so as to obtain a more

symmetri
 equation.

10



The di�eren
e between these two equations lies of 
ourse in the 
hoi
e of 
oordinates.

In order to 
ompute the 
oordinate transformation whi
h redu
es our equation to the

symmetri
 form (22) we use the following geometri
 fa
t. Sin
e the o
ti
 that we obtained

has the form A�

4

3

+B�

2

3

+C

2

= 0 the o
ti
 has a singular point of order four at (0 : 0 : 0 : 1)

and su
h a singular point ne
essarily 
omes from four of the sixteen half periods on Ja
(

�

�

h

).

Clearly, (22) also has a singular point of order four at (0 : 0 : 0 : 1). On the other hand,

we remark that the tangent 
one to (22) at (0 : 0 : 0 : 1), is the union of four hyperplanes

be
ause the zero lo
us of the 
oeÆ
ient of y

4

3

in (22) has the form

(Y

0

+ Y

1

+ Y

2

)(Y

0

� Y

1

+ Y

2

)(Y

0

+ Y

1

� Y

2

)(Y

0

� Y

1

� Y

2

)

where Y

0

=

p

�

3

y

0

, Y

1

=

p

�

2

y

1

and Y

2

= i

p

�

1

y

2

(the parti
ular 
hoi
es made for

ea
h square root are irrelevant). The 
oeÆ
ient A of �

4

3

in our equation for the o
ti


must also fa
tor in four linear fa
tors, but these are harder to determine be
ause this 
an

only be done by passing to an extension �eld of the �eld C[h

1

; h

2

; h

3

; h

4

℄. However, if

one uses the se
tions of a symmetri
 line bundle to map a Ja
obian in proje
tive spa
e,

then symmetri
 equations for the image are usually obtained by expli
itly introdu
ing the

Weierstrass points on the 
urve, rather than working with the 
oeÆ
ients of a polynomial

that de�nes the underlying 
urve (see [11, Se
tion 6℄). In view of the equation (6) for �

h

we are therefore led to de�ning

6

4x

3

h

1

� (4h

1

+ h

4

)x

2

+ (h

4

� h

3

� h

2

)x+ h

3

= �(x� �

1

)(x� �

2

)(x� �

3

):

Indeed, in terms of the �

i

one �nds the following fa
torization for A,

A = �

0

3

Y

i=1

[��

i

(�

i

� 1)�

0

� �

i

�

1

� (�

i

� 1)�

2

℄:

In order to �nd the required 
oordinate transformation, we 
an now use the following

ansatz:

Y

0

+ Y

1

+ Y

2

= �

0

;

�Y

0

� Y

1

+ Y

2

= �

1

(��

1

(�

1

� 1)�

0

� �

1

�

1

� (�

1

� 1)�

2

);

�Y

0

+ Y

1

� Y

2

= �

2

(��

2

(�

2

� 1)�

0

� �

2

�

1

� (�

2

� 1)�

2

);

Y

0

� Y

1

� Y

2

= �

3

(��

3

(�

3

� 1)�

0

� �

3

�

1

� (�

3

� 1)�

2

):

(23)

The 
oeÆ
ients �

i

are uniquely determined by the 
ompatibility equations, whi
h stem

from the vanishing of the sum of the left hand sides of these four equations. If we denote

�(x) = �(x��

1

)(x��

2

)(x��

3

) then the solution to the 
ompatibility equations is given

by �

i

= �1=�

0

(�

i

), (i = 1; : : : ; 3). Substituting these values for �

i

in (23) we 
an rewrite

our equation for the o
ti
 in terms of the 
oordinates Y

0

; : : : ; Y

3

. Putting Y

i

= �

i

y

i

we


an determine the �

i

su
h that we obtain pre
isely (22). It gives the following values for

�; �

1

; �

2

; �

3

:

�

2

i

= �

i

(1� �

i

)(�

i+1

� �

i+2

)

3

;

�

2

= 12(�

2

2

� �

2

1

�

3

) + 2(�

2

� �

1

)(�

1

�

2

+ 9�

3

);

(24)

where �

i

is the i-th symmetri
 fun
tion of �

1

; �

2

; �

3

and �

4

= �

1

; �

5

= �

2

. This determines

the parameters �

i

expli
itly in terms of the Weierstrass points of the 
urve

�

�

h

. The sign

of the parameters � and �

i

is not important. Indeed, the 
oeÆ
ients (�; �

1

; �

2

; �

3

) are

only intermediate moduli for Abelian surfa
es of type (1; 4), the moduli themselves being

6

The �nal result will be symmetri
 in �

1

; �

2

; �

3

, hen
e does not depend on the order

of these parameters.

11



given by the following expressions whi
h realize the moduli spa
e as the 
one C : f

2

4

=

f

1

(4f

3

2

� 27f

2

3

) in weighted proje
tive spa
e P

(1;2;2;3;4)

(see [13, Theorem 3℄):

f

0

= �

2

;

f

1

= (�

2

1

+ �

2

2

+ �

2

3

)

2

;

f

2

= �

4

1

+ �

4

2

+ �

4

3

� �

2

1

�

2

2

� �

2

2

�

2

3

� �

2

3

�

2

1

;

f

3

= (�

2

2

� �

2

1

)(�

2

3

� �

2

2

)(�

2

1

� �

2

3

);

f

4

= (�

2

1

+ �

2

2

+ �

2

3

)(�

2

1

+ �

2

2

� 2�

2

3

)(�

2

2

+ �

2

3

� 2�

2

1

)(�

2

3

+ �

2

1

� 2�

2

2

):

The standard a
tion of the symmetri
 group S

3

on C[�

1

; �

2

; �

3

℄ indu
es on C[�

2

1

; �

2

2

; �

2

3

℄

an a
tion whi
h is determined by (1; 2) � (�

2

1

; �

2

2

; �

2

3

) = (��

2

2

;��

2

1

;��

2

3

) and (1; 2; 3) �

(�

2

1

; �

2

2

; �

2

3

) = (�

2

2

; �

2

3

; �

2

1

). Therefore, every symmetri
 fun
tion in C[�

2

1

; �

2

2

; �

2

3

℄ is either

invariant or anti-invariant with respe
t to this indu
ed a
tion and it follows that the above

polynomials f

0

; : : : ; f

4

are symmetri
 in �

1

; �

2

; �

3

. They are easily expressed in terms of

h = (h

1

; h

2

; h

3

; h

4

); the resulting map M ! C � P

(1;2;2;3;4)

solves the moduli problem,

posed in the introdu
tion.
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