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ACKLUND TRANSFORMATIONS FOR FINITE-DIMENSIONAL

INTEGRABLE SYSTEMS: A GEOMETRIC APPROACH

VADIM KUZNETSOV AND POL VANHAECKE

Abstra
t. We present a geometri
 
onstru
tion of B�a
klund transformations

and dis
retizations for a large 
lass of algebrai
 
ompletely integrable sys-

tems. To be more pre
ise, we 
onstru
t families of B�a
klund transformations,

whi
h are naturally parametrized by the points on the spe
tral 
urve(s) of the

system. The key idea is that a point on the 
urve determines, through the

Abel-Ja
obi map, a ve
tor on its Ja
obian whi
h determines a translation on

the 
orresponding level set of the integrals (the generi
 level set of an alge-

brai
 
ompletely integrable systems has a group stru
ture). Globalizing this


onstru
tion we �nd (possibly multi-valued, as is very 
ommon for B�a
klund

transformations) maps whi
h preserve the integrals of the system, they map

solutions to solutions and they are symple
ti
 maps (or, more generally, Pois-

son maps). We show that these have the spe
trality property, a property

of B�a
klund transformations that was re
ently introdu
ed. Moreover, we re-


over B�a
klund transformations and dis
retizations whi
h have been up to now

been 
onstru
ted by ad-ho
 methods, and we �nd B�a
klund transformations

and dis
retizations for other integrable systems. We also introdu
e another

approa
h, using pairs of normalizations of eigenve
tors of Lax operators and

we explain how our two methods are related through the method of separation

of variables.
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1. Introdu
tion

The theory of integrable maps got a boost, if was not virtually (re)started, a

de
ade ago, when Veselov developed a theory of Lagrange 
orresponden
es [24℄,

[25℄. Roughly speaking, integrable maps (also 
alled integrable Lagrange 
orrespon-

den
es) are symple
ti
 multi-valued mappings whi
h have enough integrals of mo-

tion, this de�nition being a proper analog of the 
lassi
al Liouville integrability. In

the main examples, studied by him and later by others, the integrable maps that are


onstru
ted are time-dis
retizations of some 
lassi
al Liouville integrable systems

(su
h as the Neumann system, the geodesi
 
ow on an ellipsoid, the Euler-Manakov

top, the Toda latti
e, Calogero-Moser systems and other integrable families), see,

for instan
e, [10℄, [11℄, [12℄, [14℄, [18℄, [3℄, [17℄ and [4℄. It follows that these sym-

ple
ti
 maps asso
iate to a given solution of the integrable system a new solution, a

property reminis
ent of B�a
klund transformations for soliton equations; thus, one

speaks in this 
ontext often of a B�a
klund transformation for the integrable system.

Re
ently [12℄ a new property of spe
trality of B�a
klund transformations was intro-

du
ed. Namely, it was observed that when one sear
hes for the simplest B�a
klund

transformations of an integrable system, then one a
tually �nds a one-dimensional

family fB

�

j � 2 C g of them and, most importantly, that the variable � whi
h is

essentially the 
onjugate

1

to � is bound to � by the equation of an algebrai
 
urve

(dependent on the integrals), whi
h is pre
isely the 
urve that appears in the lin-

earization (integration) of the integrable system. The term spe
trality stems from

the fa
t that these 
urves arise most often as spe
tral 
urves, e.g. when the ve
tor

�elds of the integrable system are given by Lax equations.

The purpose of this paper is to present a systemati
 
onstru
tion of B�a
klund

transformations for a large 
lass of integrable systems whi
h in
ludes most 
lassi
al

integrable systems and many new ones. Some of the 
avors of our methods and

results are:

1. Our B�a
klund transformations B

�

are given by expli
it formulas rather than

impli
it equations;

2. We �nd big families of maps: one 
an let the parameter � vary from one level

manifold of the integrals to another;

3. They are symple
ti
 (or Poisson) with respe
t to several 
ompatible symple
-

ti
 (or Poisson) stru
tures;

4. Although our maps are n-valued (two-valued in the examples), they lead to

single-valued maps on any level manifold of the integrals;

5. The resulting multi-point maps will dis
retize a family of 
ows of the inte-

grable system (and not just a parti
ular one).

6. The maps (and their iterates) are de�ned over an extension �eld Q (

p

p) of Q ,

where p depends on the initial 
onditions (values of the integrals) only.

These properties imply that our B�a
klund transformations are very well suited as

symple
ti
 integrators for the underlying integrable systems (see [15℄).

Our methods will be restri
ted to those integrable systems (de�ned over C ) whi
h

have \good" algebrai
 geometri
 properties. These systems, baptized algebrai


1

Sin
e B

�

is symple
ti
 it is given by a 
anoni
al transformation F

�

, whi
h depends on �. The


onjugate of � is given by �F

�

=��.
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ompletely integrable systems (a.
.i. systems) by Adler and van Moerbeke (see [1℄)

have algebrai
 integrals and Poisson stru
tures, and the generi
 
ommon level set of

the integrals is an aÆne part of a 
omplex algebrai
 torus (Abelian variety) on whi
h

the 
ow of the integrable ve
tor �elds evolves linearly. A B�a
klund transformation

B

�

, as de�ned above, will leave ea
h su
h level set invariant. But it is well-know that

Abelian varieties are rigid in the sense that a holomorphi
 map between Abelian

varieties is a group automorphism, followed by a translation. The automorphism

group of an Abelian variety being �nite, B

�


onsists of a pure translation if it

depends e�e
tively on � and is the identity map for some value of �. If one wants

to 
onstru
t B�a
klund transformations, one may therefore be tempted to pres
ribe

for every level set a g-dimensional ve
tor (g is the dimension of the level set) but

one is 
ertainly doomed to fail when one wants to write down expli
itly in algebrai



oordinates the map whi
h results from a translation over this family of ve
tors.

When the Abelian varieties that appear in the a.
.i. system are Ja
obians then

there is a spe
ial family of translations, given by pairs of points on the underlying

algebrai
 
urve (the Ja
obian of an algebrai
 
urve of genus g is a g-dimensional

Abelian variety). Using the expli
it 
orresponden
e between the points of phase

spa
e and the points on a Ja
obian (represented either as divisors or line bundles

on the underlying 
urve) we write down the meromorphi
 fun
tion on the 
urve

that realizes the linear equivalen
e

D + P �

l

~

D +Q;(1)

where P and Q are the two points on the 
urve and the divisors D and

~

D are the two

divisors whi
h 
orrespond to a generi
 point on phase spa
e and its image under the

B�a
klund transformation (this fun
tion is unique up to a 
onstant fa
tor). When

expressed in terms of the phase variables this provides us with the map that gives

the desired translation over the element [P � Q℄ of the Ja
obian. If one �xes one

of the points, say Q, one re
overs a 1-dimensional family of maps, indexed by a

point P on the 
urve. Noti
e that we 
an vary the points from one Ja
obian to

the other; however, there is an unavoidable monodromy problem, whi
h makes that

the points P and Q may get inter
hanged (leading to pre
isely the opposite ve
tor,

hen
e the inverse B�a
klund transformation), thus leading to a two-valued map.

For example, for the (g-dimensional) Mumford system (see [21℄), phase spa
e

is the aÆne spa
e of all matri
es L(x) =

�

v(x) w(x)

u(x) �v(x)

�

where u; v and w are

polynomials in x with u and w moni
 and

deg v(x) < degu(x) = degw(x) � 1 = g:

The family of maps that we 
onstru
t are given by the similarity transformation

L(x) 7!M(x)L(x)M

�1

(x)(2)

with

M(x) =

�

� x� �

f

+ �

2

1 �

�

;(3)

where � =

�

f

�v(�

f

)

u(�

f

)

and (�

f

; �

f

) is the 
hosen point P (dependent on f) on the

spe
tral 
urve y

2

= f(x) = � detL(x) and Q is the point at in�nity of this 
urve.

It is easy to see that these maps satisfy properties 1, 2, 4 and 6 above.
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By a dire
t 
omputation we �nd, in ea
h example, a large 
lass of Poisson maps.

In the 
ase of the Mumford system for example we show that when P varies su
h

that its �rst 
oordinate depends on the Casimirs of the Poisson stru
ture only, then

we get a Poisson map, thereby establishing property 3.

When the level manifolds of the a.
.i. system are not Ja
obians then they are, in

all known examples where the integrals are known expli
itly, 
overs of Ja
obians,

and we get B�a
klund transformations in an impli
it form, i.e., we get Lagrangian


orresponden
es as in Veselov's original paper [24℄. See Paragraph 3.5 for an ex-

ample. The same applies to g.a.
.i. systems (a.
.i. in the generalized sense, see

[2℄). When the level manifolds are more general Abelian algebrai
 groups (a.
.i.

in the sense of Mumford) then they are extensions of Abelian varieties by one or

more 
opies of C

�

and our te
hnique again applies, see Paragraphs 3.2 and 3.3 for

examples.

When we let Q ! P then we �nd at the �rst order a ve
tor �eld whi
h is 
on-

stant on every level manifold be
ause Q and P depend on the integrals only, so

their restri
tions to these level manifolds are linear 
ombinations of the integrable

ve
tor �elds. They need not be globally Hamiltonian, but we will present in our

examples one-parameter families of points (P;Q) whi
h lead to pre
isely the inte-

grable ve
tor �elds of the a.
.i. system (property 5). In these 
ases the B�a
klund

transformations should be 
onsidered as dis
retizations of the integrable system.

Sin
e these B�a
klund transformations 
ommute, by 
onstru
tion, one may think of

these as de�ning a dis
rete analog of an a.
.i. system.

Below we will also present another, but related, te
hnique to 
onstru
t the maps

that represent translations on the level manifolds (assumed to be aÆne parts of

Ja
obians) of the integrals. For this it is assumed that phase spa
e is given by Lax

operators. We 
hoose two di�erent normalizations of the eigenve
tors of the Lax

operator, leading to two di�erent separations of variables. This results in a map

whi
h is identi
al to the one that we 
onstru
ted before. The reason is that the two

di�erent normalizations, whi
h lead to linearly equivalent divisors, are 
hosen su
h

that ea
h has a di�erent �xed point in the resulting divisor; if we 
all these points

P and Q then we re
over pre
isely the above linear equivalen
e (1), and hen
e leads

to the same B�a
klund transformation.

2. The Mumford system

2.1. Translations on hyperellipti
 Ja
obians. For a �xed integer g � 1 the

phase spa
e M

g

of the (g-dimensional) Mumford system (see [16℄) is the aÆne

spa
e M

g

of Lax matri
es L(x) of the form

L(x) =

�

v(x) w(x)

u(x) �v(x)

�

;

where u(x); v(x) and w(x) are polynomials, subje
t to the following 
onstraints:

u(x) and w(x) are moni
 and their degrees are respe
tively g and g+1; the degree

of v(x) is at most g � 1. Writing

u(x) = x

g

+ u

1

x

g�1

+ : : :+ u

g

;

v(x) = v

1

x

g�1

+ : : :+ v

g

;

w(x) = x

g+1

+ w

0

x

g

+ : : :+ w

g

;
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we 
an take the 
oeÆ
ients of these three polynomials as 
oordinates on M

g

. In

parti
ular we will sometimes denote points of M

g

by triples (u(x); v(x); w(x)). Let

us denote by P

n

the aÆne spa
e of polynomials f 2 C [x℄ whi
h are moni
 and have

degree n. We will usually view P

2g+1

(or, in the next se
tion, P

2g+2

) as the spa
e

of hyperellipti
 
urves with equation y

2

= f(x); when all roots of f are distin
t

then su
h a 
urve is smooth and its genus is g. We denote su
h an aÆne 
urve by

�

f

and denote its smooth 
ompa
ti�
ation, whi
h is a 
ompa
t Riemann surfa
e,

by

�

�

f

. It is well-known that every 
ompa
t hyperellipti
 Riemann surfa
e of genus

g is obtained in this way. The surje
tive map � :M

g

! P

2g+1

de�ned by

�(L(x)) = � detL(x) = u(x)w(x) + v

2

(x)(4)

is the moment map of an algebrai
 
ompletely integrable system (a.
.i. system).

This means in the �rst pla
e that there is a Poisson stru
ture

2

onM

g

with respe
t to

whi
h �

�

(O(P

2g+1

)) is involutive (
ommutative for the Poisson bra
ket). Se
ondly,

it means that the tangent spa
e to a generi
 �ber �

�1

(f) of � is spanned by the

Hamiltonian ve
tor �elds asso
iated to this involutive algebra; by the �rst 
ondition

these ve
tor �elds 
ommute. Third, a generi
 �ber of � is an aÆne part of a


ommutative algebrai
 group; in the present 
ase, when the roots of f are distin
t

then �

�1

(f) is an aÆne part of a 
omplex algebrai
 torus, namely it is isomorphi


to the Ja
obian of

�

�

f

, minus its theta divisor. Finally, it means that the 
ow of the


ommuting Hamiltonian ve
tor �elds on ea
h 
omplex torus lifts to a linear 
ow on

its universal 
overing spa
e C

g

.

It is 
onvenient for our 
onstru
tions to introdu
e the universal 
urve C

g

of

P

2g+1

. Intuitively speaking, C

g

is 
onstru
ted out of P

2g+1

by repla
ing every

point of P

2g+1

by the 
urve whi
h it represents. Expli
itly, C

g


an be represented

as the aÆne variety

�

(x; y; f) j x; y 2 C ; f 2 P

2g+1

and y

2

= f(x)

	

;

the natural proje
tion C

g

! P

2g+1

will be denoted by �. The partial 
ompa
t-

i�
ation of � : C

g

! P

2g+1

, whi
h is the quasi-proje
tive variety obtained by


ompa
tifying the �bers of �, will be denoted as

�

C

g

and we use the same notation

� for the extension of � to

�

C

g

.

The �rst useful observation that we make is that any se
tion � of � : C

g

! P

2g+1

leads to a family of transformations of phase spa
e, where ea
h transformation

restri
ts to a translation on every Ja
obian of the system. This follows from the

fa
t that there is a natural se
tion �

1

of � :

�

C

g

! P

2g+1

, whi
h is given by

�

1

(f) = (1

f

; f), where 1

f

is the unique point needed to 
ompa
tify �

f

into

�

�

f

.

Indeed, if � is a se
tion of � : �

g

! P

2g+1

then we get a 
ommutative diagram

�

C

g

M

g

P

2g+1

�

�

�

�

�	

�

6

�

2

There are in fa
t in the present 
ase many (
ompatible) Poisson stru
tures whi
h make the

Mumford system into an a.
.i. system, see [19℄ and Paragraph 2.2 below.
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where � is de�ned as � = � Æ � and we get a map B

�

:M

g

!M

g

by

L 7! L
 [�(L) � �

1

(L)℄;(5)

(�

1

= �

1

Æ �). In this de�nition we use the fa
t that a generi
 point L(x) of M

g

(more pre
isely: ea
h point of any �ber �

�1

(f) for whi
h �

f

is smooth) admits a

natural interpretation as a holomorphi
 line bundle L of degree g over the Riemann

surfa
e

�

�

f

, where f = �(L(x)); thus L 2 Pi


g

(

�

�

f

)

�

=

Ja
(�

f

). Also, [D℄ stands

for the line bundle asso
iated to a divisor D. By 
onstru
tion, the restri
tion of

B

�

to a generi
 level �

�1

(f) of the moment map � is a translation over [�(f) �

�

1

(f)℄. On the one hand this implies that B

�

is isospe
tral: it leaves the �bers

of � invariant. On the other hand, translations in a 
ommutative group obviously

preserve translation invariant ve
tor �elds, hen
e B

�

leaves invariant all those ve
tor

�elds onM

g

whi
h restri
t to translation invariant ve
tor �elds on a generi
 �ber of

�; in parti
ular ea
h B

�

leaves the integrable ve
tor �elds of the Mumford system

invariant. Noti
e that it is unavoidable for su
h translation maps to have poles,

be
ause a non-zero translation moves the theta divisor, hen
e every �ber of � will

have a divisor of points whi
h are sent out of phase spa
e.

Our se
ond observation is that the maps B

�


an be e�e
tively 
omputed. In-

deed, following Mumford (who attributes this 
onstru
tion to Ja
obi) the above

mentioned interpretation of a generi
 element L(x) 2M

g

as a line bundle L 
an be


arried out expli
itly as follows: to the point L(x) = (u(x); v(x); w(x)) 2 �

�1

(f)

we asso
iate the divisor D =

P

g

i=1

(x

i

; y

i

) on �

f

(hen
e the line bundle L = [D℄

on

�

�

f

, when f is supposed to have no multiple roots) using the following simple

pres
ription:

x

1

; : : : ; x

g

are the zeros of u(x),(6)

y

i

= v(x

i

) for i = 1; : : : ; g:(7)

Assuming (u(x); v(x); w(x)) to be generi
, we let

~

L(x) = B

�

(L(x)) whi
h we also

write as

(~u(x); ~v(x); ~w(x)) = B

�

(u(x); v(x); w(x)):

Sin
e (u(x); v(x); w(x)) is generi
 its image does indeed belong to M

g

. We denote

by D the divisor

P

g

i=1

(x

i

; y

i

) given by (6) and (7). A

ording to (5) the line

bundle to whi
h [D℄ is mapped is obtained by tensoring with [�[D℄� �

1

[D℄℄. We

de�ne regular fun
tions � and � on P

2g+1

by �(f) = (�(f); �(f); f); in order to

simplify the notation we will write �

f

and �

f

for �(f) and �(f). Then (6) and

(7) asso
iate to (~u(x); ~v(x); ~w(x)) the line bundle

~

L = [

~

D℄ for whi
h we have two

di�erent des
riptions,

[

~

D℄ =

h

X

g

i=1

(~x

i

; ~y

i

)

i

=

h

X

g

i=1

(x

i

; y

i

) + (�

f

; �

f

)�1

f

i

:

The se
ond equality expresses that

P

g

i=1

(~x

i

; ~y

i

) +1

f

and

P

g

i=1

(x

i

; y

i

) + (�

f

; �

f

)

are linearly equivalent. This means that there is a rational fun
tion (unique up to

a non-zero 
onstant) on

�

� with poles at (x

i

; y

i

); (i = 1; : : : ; g) and (�

f

; �

f

) and

with a zero at 1

f

. For any � 2 C we 
onsider

F (x; y) =

y + v(x) + �u(x)

u(x)(x � �

f

)

:(8)

Taking a lo
al parameter t at 1

f

, su
h as x = 1=t

2

and y = 1=t

2g+1

(1 + O(t)),

we �nd that F has a zero at 1

f

. Moreover, both the numerator and denominator
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vanish at the points (x

i

;�y

i

), hen
e it is suÆ
ient to have that � is su
h that the

numerator vanishes at (�

f

;��

f

) to have the required fun
tion. Thus we take � to

be given by

� =

�

f

� v(�

f

)

u(�

f

)

=

w(�

f

)

�

f

+ v(�

f

)

:(9)

Noti
e that � depends on the phase variables; one may think of � itself as being

a phase variable, depending on the other phase variables (see also Paragraph 2.3

below). The zeros of F on

�

�

f

are the points (~x

i

; ~y

i

) and 
annot be expli
itly


omputed as su
h. However, the polynomials (~u(x); ~v(x); ~w(x)) to whi
h they


orrespond, take a simple form. Consider

(y � v(x)� �u(x))F (x; y) =

y

2

� (v(x) + �u(x))

2

u(x)(x � �

f

)

=

w(x) � 2�v(x) � �

2

u(x)

x� �

f

:

Counting degrees we �nd that the last expression is moni
 of degree g in x and is

independent of y, hen
e it is

Q

g

i=1

(x � ~x

i

), i.e., it is ~u(x). Thus we have obtained

an expli
it expression for the �rst 
omponent of B

�

:

~u(x) =

�

2

u(x) + 2�v(x)� w(x)

�

f

� x

:(10)

We 
laim that the se
ond 
omponent of B

�

is given by

~v(x) = �v(x)� �u(x) + �~u(x)

=

�(x � �

f

+ �

2

)u(x) + (x� �

f

+ 2�

2

)v(x) � �w(x)

�

f

� x

(11)

To show this, it suÆ
es to verify that for generi
 (u(x); v(x); w(x)) both sides take

the same value on g di�erent points (both sides are of degree at most g � 1 in x).

This is easily done by using the points (~x

j

; ~y

j

) (j = 1; : : : ; g); just express that

(~x

j

; ~y

j

) 2 �

f

and F (~x

j

; ~y

j

) = 0 for 1 � j � g, to �nd that

~y

j

= ~v(~x

j

) = �v(~x

j

)� �u(~x

j

);

for j = 1; : : : ; g. The formula for ~w(x) follows from

~u(x) ~w(x) + ~v

2

(x) = f(x) = u(x)w(x) + v

2

(x);

giving

~w(x) = �

(x� �

f

+ �

2

)

2

u(x) + 2�(x� �

f

+ �

2

)v(x) � �

2

w(x)

�

f

� x

(12)

Equations (10), (11) and (12) give expli
it formulas for all maps B

�

(� any se
tion

of C

g

! P

2g+1

). We will investigate the poissoni
ity of the maps B

�

in Paragraph

2.2.

We �nish this se
tion by rewriting B

�

in terms of matri
es. Sin
e B

�

preserves by


onstru
tion the spe
trum of the Lax matrix L(x), it must be given by a similarity

transformation of L(x),

~

L(x) =M(x)L(x)M(x)

�1

:(13)
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It is easy to verify that su
h a matrix M is given by the formula

M(x) =

�

� x� �

f

+ �

2

1 �

�

:(14)

Noti
e that detM(x) = �

f

� x.

2.2. Poissoni
ity. There are many (
ompabible) Poisson stru
tures for the Mum-

ford system on M

g

and they 
an be obtained from a redu
tion of a natural 
lass of

R-bra
kets on the loop algebra of sl(2) (see [19℄) or from (almost) 
anoni
al bra
k-

ets on the linearizing variables (see [22℄). Expli
itly, there is a Poisson stru
ture

for any univariate polynomial '(x) of degree at most g and they are given by the

following Poisson bra
kets for the polynomials u(x); v(x) and w(x):

fu(x); u(y)g

'

= fv(x); v(y)g

'

= 0;

fu(x); v(y)g

'

=

u(x)'(y)� u(y)'(x)

x� y

;

fu(x); w(y)g

'

= �2

v(x)'(y)� v(y)'(x)

x� y

;(15)

fv(x); w(y)g

'

=

w(x)'(y) � w(y)'(x)

x� y

� u(x)'(y);

fw(x); w(y)g

'

= 2 (v(x)'(y) � v(y)'(x)) :

We will show that B

�

: (u(x); v(x); w(x)) ! (~u(x); ~v(x); ~w(x)) is a Poisson map

for those se
tions � for whi
h � depends on the Casimirs of f� ; �g

'

only. More

pre
isely, denoting the algebra of Casimirs of f� ; �g

'

by Z

'

we assume in the sequel

that � fa
tors over the 
anoni
al

3

map p : P

2g+1

! Spe
Z

'

, as in the following

diagram.

C

Spe
Z

'

P

2g+1

�

�

�

�

�3

�

p

6

�

This assumption implies that � has trivial bra
kets with all phase variables; noti
e

that this does not imply that � has trivial bra
kets with all phase variables. One

parti
ular 
ase of interest is when � is 
onstant.

Using (15) it 
an be shown by dire
t 
omputation that the Poisson bra
kets

of the tilded variables are the same as those of the untilded variables | whi
h

proves that B

�

is a Poisson map | but su
h 
omputations are very long and

tedious. However, by using the Poisson bra
ket formalism that was introdu
ed by

the Leningrad s
hool these 
omputations be
ome feasible. In this formalism one


omputes the 4� 4 matrix fL(x)




; L(y)g , whi
h is de�ned similarly as the tensor

produ
t of L(x) and L(y), but taking the Poisson bra
ket of entries of L(x) with

entries of L(y) instead of their produ
t. Using this notation (15) 
an be written as

fL(x)




; L(y)g = [r(x � y); L

1

(x)'(y) + '(x)L

2

(y)℄� [�
�; L

1

(x)'(y) � '(x)L

2

(y)℄

(16)

3

p is dual to the algebra homomorphism Z

'

,!O(P

2g+1

)
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where L

1

(x) = L(x)
 Id, L

2

(y) = Id
L(y), � =

�

0 1

0 0

�

and

r(x) = �

1

x

0

B

B

�

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1

C

C

A

:

We need to verify that (16) also holds for the tilded variables, whi
h means, using

~

L(x) =M(x)L(x)M(x)

�1

, that

fM(x)L(x)M(x)

�1




; M(y)L(y)M(y)

�1

g =

�

r(x � y);M(x)L(x)M(x)

�1


 Id'(y) + '(x) Id
M(y)L(y)M(y)

�1

�

�(17)

�

�
�;M(x)L(x)M(x)

�1

'(y)
 Id� Id
'(x)M(y)L(y)M(y)

�1

�

:

In order to 
ompute the left hand side of this equation we need expli
it formulas

for fL(x)




; M(y)g , for fM(x)




; L(y)g and for fM(x)




; M(y)g . It is easy to see

that fM(x)




; M(y)g = 0. In order to �nd the other bra
kets we need the bra
kets

of � with the other phase variables. They were 
omputed from the de�nition (9)

of �, using the identity f�

2

f

� u(�

f

)w(�

f

)� v

2

(�

f

); �g

'

= 0.

fu(x); �g

'

=

�

f

'(x)� '(�

f

)(v(x) + �u(x))

�

f

(x� �

f

)

;

fv(x); �g

'

= �

2�

f

�'(x) � '(�

f

)(�

2

u(x) + w(x) � u(x)(x � �

f

))

2�

f

(x� �

f

)

;

fw(x); �g

'

= �

(�

2

+ x� �

f

)�

f

'(x) + '(�

f

)(�

2

v(x) � �w(x) � v(x)(x � �

f

))

�

f

(x� �

f

)

:

Using these formulas it is easy to verify that

fL(x)




; M(y)g =

�

'(�

f

)

2�

f

�

L(x);M(x)

�1

�M

��

�

+ '(x)M(x)

�1

�

�




�M

��

fM(x)




; L(y)g = �

�M

��




�

'(�

f

)

2�

f

�

L(y);M(y)

�1

�M

��

�

+ '(y)M(y)

�1

�

�

;

where � = diag(1;�1). For future use we note the following identity

Ad

M(x)
M(y)

(r(x � y) + �
�) = r(x � y) + �
� � �M(x)

�1




�M

��

M(y)

�1

:(18)

Sin
e fM(x)




; M(y)g = 0 we get

fM(x)L(x)M(x)

�1




; M(y)L(y)M(y)

�1

g

= Id
M(y) fM(x)




; L(y)gL(x)M(x)

�1


M(y)

�1

+M(x)
 Id fL(x)




; M(y)gM(x)

�1


L(y)M(y)

�1

+M(x)
M(y) fL(x)




; L(y)gM(x)

�1


M(y)

�1

�M(x)
M(y)L(y)M(y)

�1

fL(x)




; M(y)gM(x)

�1


M(y)

�1

�M(x)L(x)M(x)

�1


M(y) fM(x)




; L(y)gM(x)

�1


M(y)

�1

:

From here on the 
omputation is straightforward: substitute the above expressions

for fL(x)




; L(y)g , fL(x)




; M(y)g and fM(x)




; L(y)g and use, besides the

identity (18) the following formulas, valid for arbitrary matri
es: (A
B)(C
D) =
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AC
BD and [A
B;C
D℄ = AC
BD�CA
DB. Noti
e that sin
e ea
h expres-

sion is either linear in '(�

f

), in '(x) or in '(y) the 
omputation 
an be split up in

three shorter veri�
ations.

It follows that B

�

: (u(x); v(x); w(x)) ! (~u(x); ~v(x); ~w(x)) is a Poisson map for

those se
tions � for whi
h � depends on the Casimirs of f� ; �g

'

only. In view of the

pre
eeding se
tion they are B�a
klund transformations.

2.3. The existen
e of a se
tion �. We have deliberately omitted the question

of the existen
e of a (global) se
tion � of � : C

g

! P

2g+1

. In fa
t it is easy to

show that in the 
ase of the Mumford system su
h a (global) se
tion does not exist.

Indeed, let us suppose that � : P

2g+1

! C is given. Sin
e P

2g+1


onsists of all

moni
 polynomials of degree 2g+1 (g � 1) the regular fun
tion f 7! f(�

f

), de�ned

on P

2g+1

, is never a 
onstant map. Therefore it takes the value 0 at some point

f

0

, without being identi
ally zero on any neighborhood of f

0

. If � is to be the �rst


omponent of a se
tion �, i.e., �(f) = (�

f

; �

f

; f) then �

f

must be a regular map on

the aÆne spa
e P

2g+1

, satisfying �

2

f

= f(�

f

). On any neighborhood of f

0

this is

however impossible. On the other hand it is 
lear that in a small neighborhood U of

any f 2 P

2g+1

a se
tion � exists: 
hoose � : P

2g+1

! C su
h that f(�

f

) 6= 0. Thus

the 
onstru
ted B�a
klund transformations should either be interpreted semi-lo
ally

(i.e., on a neighborhood �

�1

(U) where U is a neighborhood of a �xed f

0

2 P

2g+1

),

or one has to think of the B�a
klund transformation B

�

as a two-valued map. In

the latter interpretation it is worth to observe that the two translations whi
h one

obtains are opposite to ea
h other, as follows from

[(x; y) + (x;�y)� 21

f

℄ = 0;

valid for any (x; y) 2 �

f

. On the one hand this implies that in a sense B

�

is its

own inverse, on the other hand it implies that even an n-fold iteration of B

�

is only

2-valued, not 2

n

-valued.

If one insists on having a B�a
klund transformation whi
h is single-valued then

one has to pass to a 
over of phase spa
e, pre
isely as in the 
lassi
al 
onstru
tion of

Riemann surfa
es as the natural obje
ts on whi
h multi-valued algebrai
 fun
tions

be
ome single-valued. We wish to show now that this larger phase spa
e inherits in

fa
t a Poisson stru
ture and an a.
.i. system from the Mumford system, so that we

have, in fa
t, 
onstru
ted a single-valued map for an a.
.i. system, whi
h redu
es

to the Mumford system after taking the quotient by an involution. Our arguments

will be given here for the Mumford system, but apply also to other systems, the

involution being in general repla
ed by a higher order automorphism. We �x a

regular map � : P

2g+1

! C and de�ne the following quasi proje
tive variety,

M

�

g

=

�

(u; v; w; �) j (u; v; w) 2M

g

; (�u(�

f

) + v(�

f

))

2

= f(�

f

); u(�

f

) 6= 0

	

:

The natural map M

�

g

!M

g

is a two-fold rami�ed 
over, and the dynami
s on this

larger spa
e, in parti
ular the Poisson bra
kets of u; v and w with � follow from

the relation

�

(�u(�

f

) + v(�

f

))

2

� f(�

f

); �

	

= 0;

(see [21℄ for general 
onstru
tions of this type). Sin
e all our formulas for the

B�a
klund transformation were expressed regularly in terms of u; v; w and � only,

the B�a
klund transformation is single-valued on this larger spa
e. Obviously, the

fun
tions in involution of the Mumford system lead to an algebra of fun
tions in
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involution on the 
over and, sin
e the dimension did not 
hange, they still form an

integrable system. To show that it is a
tually an a.
.i. system we must investigate

the nature of the generi
 �ber of the moment map. For a generi
 f 2 P

2g+1

we

have that f(�

f

) 6= 0. If we denote the two square roots of f(�

f

) by ��

f

then the

�ber over f is redu
ible and its two 
omponents are given by

u(x)w(x) + v

2

(x) = f(x);

�u(�

f

) + v(�

f

) = ��

f

:

Noti
e that the two 
omponents do not interse
t. Sin
e we know that the variety in

M

g

, given by u(x)w(x)+v

2

(x) = f(x) is an aÆne part of the Ja
obian Ja
(

�

�

f

), we

�nd that ea
h 
omponent is an aÆne part of Ja
(

�

�

f

); due to the fa
t that u(�

f

) = 0

along some divisor, the divisor whi
h is removed in the latter 
ase is slightly larger

than the one removed in the former 
ase. Sin
e the lifted ve
tor �elds are also linear

on these Ja
obians this shows that the integrable system that we have 
onstru
ted

is a
tually an a.
.i. system (with redu
ible �bers).

Another way in whi
h a global se
tion � in the 
ase of the Mumford system 
an

be found is by passing to a subsystem, i.e., restri
ting phase spa
e and its Poisson

stru
ture to a hyperplane on whi
h the algebra of fun
tions in involution restri
ts to

an a.
.i. system. This smaller a.
.i. system is also universal for hyperellipti
 
urves

in the sense that, just as for the Mumford system, every hyperellipti
 Ja
obian

(minus its theta divisor) appears as one of the �bers of its moment map. Suppose

that F is an aÆne subspa
e of P

2g+1

and � is a regular (or rational) fun
tion on

F su
h that the f(�

f

) = 
 where 
 is a 
onstant, 
 2 C . It 
an be shown that

this implies that the map � is 
onstant. By adding �
 to all elements of f we

�nd that all these polynomials have a 
ommon root r. By repla
ing x ! x + r in

f(x) this amounts to saying that up to isomorphism the only reasonable subvariety

of M

g

on whi
h a global se
tion � 
an exist is the subspa
e

4

M

0

g

of polynomials

(u(x); v(x); w(x)) for whi
h u(0)w(0)+v

2

(0) = 0; the map � must then be the zero

map, the se
tion is given by �

f

= (0; 0; f) and the translation on every �ber is given

by [(0; 0)

f

�1

f

℄. Then � = �v

g

=u

g

= w

g

=v

g

and the B�a
klund transformation

takes the following form

~u

i

= w

i�1

� 2

w

g

v

i�1

v

g

+

w

g

u

i�1

u

g

;

~v

i

= �v

i

+

v

g

u

g

u

i

�

v

g

w

i�1

u

g

+ 2

w

g

v

i�1

u

g

�

v

g

w

g

u

i�1

u

2

g

:

Sin
e (0; 0)

f

is a Weierstrass point for any f 2 F the divisor 2((0; 0)

f

�1

f

) is

linearly equivalent to zero, in other words (0; 0)

f

�1

f

is a half period (2-torsion

point) on ea
h Ja
obian. This explains why the two opposite translations are

identi
al and it shows that this B�a
klund transformation is an involution

5

.

2.4. Dis
retizations and 
ontinuum limits. We now wish to show that the

maps B

�

provide a dis
retization of the Mumford system. Mumford 
onstru
ts for

every element of P

1

a ve
tor �eld onM

g

whi
h is translation invariant (linear) when

4

This happens to be a Poisson subspa
e for many (but not all) of the Poisson stru
tures on

M

g

, see [19℄ or Paragraph 2.2 above.

5

The fa
t that this B�a
klund transformation is an involution should not be 
onfused with our

earlier 
laim that in a sense the B�a
klund transformation is its own inverse.
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restri
ted to ea
h �ber of �. His ve
tor �eld 
orresponding to 1 is re
onstru
ted

here as the limit

lim

t!0

B

�

t

(u(x); v(x); w(x)) � (u(x); v(x); w(x))

t

where �

t

: P

2g+1

! C

g


onverges as t ! 0 to the 
onstant se
tion �

1

: P

2g+1

!

�

C

g

: f 7! 1

f

. The limit taken here is the one for whi
h the se
tions �

t

(f) =

(�

f

(t); �

f

(t); f) take the form

�

t

(f) =

�

1

t

2

;

1

t

2g+1

�

1 +

a

0

2

t

2

+O(t

4

)

�

; f

�

;(19)

a

0

= u

1

+ w

0

is the se
ond 
oeÆ
ient of f , i.e., f(x) = x

2g+1

+ a

0

x

2g

+ � � � . Then

� =

1

t

�

1 +

w

0

� u

1

2

t

2

+O(t

3

)

�

;

hen
e (10), (11) and (12) take the form

~u(x) = u(x) + 2tv(x) +O(t

2

);

~v(x) = v(x) � t(w(x) � (x� u

1

+ w

0

)u(x)) +O(t

2

);(20)

~w(x) = w(x) � 2t(x� u

1

+ w

0

)v(x) +O(t

2

):

The 
oeÆ
ient of t in (20) is (up to a fa
tor of 2) pre
isely Mumford's ve
tor �eld

X

1

(see [16℄ page 3.43).

Let us now turn to Mumford's general ve
tor �elds X

a

(a 2 P

1

). These ve
tor

�elds have the property of being tangent to the 
urves P 7! [P + (g � 1)1℄ at the

points (a;�b

f

) on every 
urve f (here b

2

f

= f(a)), whi
h suggests that these more

general ve
tor �elds may be 
onstru
ted by taking an appropriate limit (�

f

; �

f

)!

(a; b

f

) of the 
omposition of two B�a
klund transformations 
orresponding to a shift

[(�

f

; �

f

)� (a; b

f

)℄ = [(�

f

; �

f

) + (a;�b

f

)� 21

f

℄

on ea
h Ja
obian. Our ve
tor �elds will be more general than Mumford's ve
tor

�elds be
ause we allow a

f

to depend on f . Con
retely, we will �rst shift over

[(a

f

;�b

f

)�1

f

℄ and then over [(�

f

(t); �

f

(t))�1

f

℄; the matri
es going with these

transformations (as in (14)) will be denoted by P (x) and Q

t

(x). Then

P (x) =

�

�� x� a

f

+ �

2

1 ��

�

with

� =

b

f

+ v(a

f

)

u(a

f

)

=

w(a

f

)

b

f

� v(a

f

)

;(21)

the transformed L is denoted by

~

L as in (13). In parti
ular,

~u(x) =

w(x) + 2�v(x) � �

2

u(x)

x� a

f

;(22)

~v(x) = �v(x) + �u(x)� �~u(x):

Also,

Q

t

(x) =

�

�(t) x� �

f

(t) + �

2

(t)

1 �(t)

�
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with

�(t) =

�

f

(t)� ~v(�

f

(t))

~u(�

f

(t))

:

Noti
e that �(0) = � sin
e (�

f

(0); �

f

(0)) = (a

f

; b

f

). Let M

t

(x) = Q

t

(x)P (x)

be the matrix de�ning their 
omposition. To the deformation family

~

L

t

(x) =

M

t

(x)L(x)M

�1

t

(x) there 
orresponds a ve
tor �eld on M

g

, de�ned by

dL

dt

a

f

(x) =

d

dt

j

t=0

�

M

t

(x)L(x)M

�1

t

(x)

�

:

In terms of Q(x) this ve
tor �eld is given by (a prime denotes a derivative with

respe
t to t)

dL

dt

a

f

(x) =

�

M

0

0

(x)M

0

(x)

�1

; L(x)

�

=

�

Q

0

0

(x)Q

�1

0

(x); L(x)

�

:

We 
onsider the family of se
tions �

t

= (�

f

(t); �

f

(t); f) where �

f

(t) = a

f

+ t and

�

f

(t) =

p

f(a

f

+ t). We will show below that

�

0

(0) =

u(a

f

)

2b

f

:(23)

Then

Q

0

0

(x)Q

�1

0

(x) = �

1

2b

f

(x� a

f

)

�

u(a

f

) 2v(a

f

)

0 u(a

f

)

��

� a

f

� x� �

2

�1 �

�

=

1

2b

f

(x� a

f

)

�

v(a

f

)� b

f

w(a

f

) + u(a

f

)(x � a

f

)

u(a

f

) �v(a

f

)� b

f

�

:

Removing a diagonal matrix from this matrix we get the following Lax equations

dL

dt

a

f

(x) =

1

2b

f

�

L(a

f

)

x� a

f

+

�

0 u(a

f

)

0 0

�

; L(x)

�

;

whi
h redu
es, when a

f

= a is 
hosen independently of f , to Mumford's ve
tor �eld

X

a

(up to a fa
tor 2b

f

whi
h 
an be absorbed in t).

Formula (23) remains to be shown.

�

0

(0) =

d

dt

j

t=0

�

f

(t)� ~v(�

f

(t))

~u(�

f

(t))

=

d

dt

j

t=0

�

f

(t) + v(a

f

+ t)� �u(a

f

+ t)

w(a

f

+ t) + 2�v(a

f

+ t)� �

2

u(a

f

+ t)

t

= lim

t!0

�

f

(t) + v(a

f

+ t)� �u(a

f

+ t)

w(a

f

+ t) + 2�v(a

f

+ t)� �

2

u(a

f

+ t)

=

�

0

f

(0) + v

0

(a

f

)� �u

0

(a

f

)

w

0

(a

f

) + 2�v

0

(a

f

)� �

2

u

0

(a

f

)

:

Taking the derivative of �

2

f

(t) = u(�

f

(t))w(�

f

(t)) + v

2

(�

f

(t)) at t = 0 we obtain

�

0

f

(0) =

1

2b

f

(u(a

f

)w

0

(a

f

) + u

0

(a

f

)w(a

f

) + 2v(a

f

)v

0

(a

f

))

and w(a

f

) is easily eliminated from this equation by using w(a

f

) = �2�v(a

f

) +

�

2

u(a

f

), a 
onsequen
e of (22). The announ
ed formula for �

0

(0) follows after

substituting this value of �

0

f

(0), upon using (21).
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2.5. Normalizations of eigenve
tors of Lax operators. In this se
tion we

des
ribe another approa
h to B�a
klund transformations and we explain how the

two approa
hes are related. For this approa
h we assume that the a.
.i. system is

given in Lax form.

Let us re
all (see e.g., [8℄) that a generi
 Lax matrix L(x) 2 End(C

n+1

)[x℄ de�nes

a line bundle on the asso
iated spe
tral 
urve � : det(L(x)�y Id) = 0; generi
 means

here that the aÆne 
urve � is assumed smooth and that for generi
 (x; y) 2 �

the eigenspa
e of L(x) 
orresponding to the eigenvalue y is 1-dimensional (both


onditions are veri�ed for the generi
 L(x) of the Mumford system). Assuming L(x)

to be generi
 we denote, as before, by

�

� the 
ompa
t Riemann surfa
e 
orresponding

to � and we 
onsider the eigenve
tor map � :

�

� ! P

n

, whi
h is de�ned, on the

aÆne pie
e �, by

L(x)�(x; y) = y�(x; y):

An expli
it des
ription of � on an aÆne pie
e of

�

� is given by the map

�

i

: (x; y) 7! (L(x)� y Id)

^

i

(24)

where 1 � i � n+1 is arbitrary, A

^

stands for the adjoint of the matrix A and A

i

stands for the i-th 
olumn of A. More pre
isely, every �

i

is de�ned on �nS

i

, where

S

i

is a 
olle
tion of points and \

i

S

i

= ;. We will see shortly that we need all lo
al

representatives �

i

(i = 1; : : : ; n+ 1) of � for our 
omputations. The line bundle L,

de�ned by L(x), is given by L = �

�

H, where H is the hyperplane bundle on P

n

.

The degree d of L follows from

degL = deg�(

�

�) deg �:(25)

It is a basi
 fa
t that pulling ba
k a se
tion s of H gives a se
tion �

�

s whose zero

lo
us is a divisor D on � su
h that [D℄ = �

�

H (see [9℄ Ch. 1.1). Sin
e a se
tion

of H is just a hyperplane, this gives us an expli
it way to 
ompute the line bundle

L 2 Pi


d

(

�

�) from the Lax matrix:

L =

�

�

�

(H \ �(

�

�))

�

;(26)

where H is any hyperplane in P

n

. Moreover, the isomorphism Pi


d

(

�

�)

�

=

Ja
(

�

�) is

not 
anoni
al and depends on the 
hoi
e of an element in Pi


d�g

(

�

�), a fa
t that we

will now exploit to 
onstru
t B�a
klund transformations.

To do this we assume that the given L(x) is generi
 in the above sense; without

loss of generality we may also assume that the image 
urve �(

�

�) is non-degenerate

(i.e., it is not 
ontained in a hyperplane). Our main assumption, whi
h will be

relaxed in Se
tion 3, is that degL = g + n. Sin
e the hyperplane bundle H on P

n

is the line bundle whi
h 
orresponds to any hyperplane of P

n

, �xing a se
tion of H

is equivalent to �xing a hyperplane H of P

n

. By non-degenera
y this 
an be done

by �xing n points p

i

on

�

� whi
h are in general position, and asking that H be su
h

that

P

p

i

� �

�

H (when all p

i

are di�erent this means that H = span f�(p

i

)g).

Let us take another 
olle
tion of n points ~p

i

in general position. We denote the


orresponding hyperplane by

~

H . If

~

L(x) is another Lax matrix, isospe
tral to L(x),

with 
orresponding map ~� :

�

�! P

n

then we will say that

~

L(x) = B(L(x)) if

~�

�

(

~

H \ ~�(

�

�))�

n

X

i=1

~p

i

= �

�

(H \ �(

�

�))�

n

X

i=1

p

i

:(27)
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Noti
e that (27) implies that

~

L = L
 [~p

1

� p

1

℄
 � � � 
 [~p

n

� p

n

℄;(28)

where L is given by (26) and

~

L is de�ned analogously. One noti
es that this

equation is the n-point analog of equation (5). In fa
t, let us spe
ialize this to

the 
ase n = 1 and globalize the 
onstru
tion to the phase spa
e of the Mumford

system and re
over exa
tly the B�a
klund transformations that we have 
onstru
ted

before.

If L(x) is a generi
 matrix of M

g

(the phase spa
e of the Mumford system) then

n = 1 and the two lo
al representatives (24) of the eigenvalue map � are given by

�

1

: (x; y) 7!

�

�v(x)� y

�u(x)

�

and �

2

: (x; y) 7!

�

�w(x)

v(x) � y

�

:

A hyperplane H of P is just a point: writing ~� = (r : s) we �nd the following

equations for the divisor D = �

�

(H \ �(�

f

)):

0 = (v(x) + y)r + u(x)s;

0 = �w(x)r + (v(x) � y)s:

The degree of the image 
urve being 1 it suÆ
es to determine the degree of � to

know the degree of the line bundle. Taking a (r : s) generi
, we easily �nd pre
isely

g+ 1 solutions hen
e degL = g + 1, showing that our main assumption is satis�ed

for the Mumford system. Sin
e n = 1 we need to pi
k one point on every 
urve

�

�

f

to represent L as an element of the Ja
obian Ja
(

�

�

f

) = Pi


g

(

�

�

f

) and we need

two points on every 
urve to 
onstru
t a B�a
klund transformation as in (27). We

do this by pi
king the se
tions �

1

and � whi
h were 
onstru
ted in Paragraph 2.1.

For the �rst 
hoi
e, whi
h 
orresponds to pi
king the point 1

f

at every 
urve, we

�nd ~�

0

= (0: 1); we let this 
hoi
e 
orrespond to the untilded variables. We let

the se
ond 
hoi
e, whi
h is given by �(f) = (�

f

; �

f

; f), 
orrespond to the tilded

variables and we �nd

6

~� = (~u(�

f

) : �~v(�

f

)� �

f

) = (~v(�

f

)� �

f

: ~w(�

f

)):

In order to simplify the 
omputation we will write ~� as (1 : ��); it will follow later

that this de�nition of � agrees with the one given in (9). (28) now expresses that

the solutions of

u(x) = 0; v(x) = y;

are the same as the solutions of

�

1 ��

�

�

�~v(x)� y � ~w(x)

�~u(x) ~v(x) � y

�

= 0;(29)

ex
ept that (29) also has (�

f

; �

f

) as a solution. If we eliminate y from (29) we �nd

that ~w(x) + 2�~v(x)� �

2

~u(x) = 0 has as solutions �

f

and the roots of u, so

u(x) =

�

2

~u(x) � 2�~v(x)� ~w(x)

�

f

� x

:(30)

In order to obtain the formula for v(x) we take the �rst equation in (29), �~v(x)�

y + �~u(x) = 0 whi
h has among its roots the solutions of u(x) = 0; v(x) = y. It

6

Given L(x) there are g (resp. g+1) values (�; �) where the �rst (resp. se
ond) representation

breaks down, i.e., it may be of the form ~� = (0 : 0). For generi
 L(x) those two sets of values are

disjoint, in the non-generi
 
ase it suÆ
es to take a limit.
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follows that the same is true for the polynomial �~v(x)� v(x)��u(x)+�~u(x) = 0,

but sin
e this polynomial has degree less than g it is zero, giving

v(x) = �~v(x)� �u(x) + �~u(x):(31)

If we express that (�

f

; �

f

) is a solution to (29), then (31) implies

� =

~v(�

f

) + �

f

~u(�

f

)

=

�

f

� v(�

f

)

u(�

f

)

;

as in (9). It follows that formulas (30) and (31) des
ribe exa
tly the maps B

�

,

given by (10) and (11), in their inverse form. Noti
e that we would have obtained

an expression for the maps B

�

in their dire
t form by expressing that the solutions

to

~u(x) = 0; ~v(x) = y;

are the same as the solutions of

�

1 ��

�

�

�v(x)� y �w(x)

�u(x) v(x) � y

�

= 0;(32)

ex
ept that (32) also has (�

f

;��

f

) as a solution (this follows from the linear equiv-

alen
e (�

f

; �

f

) + (�

f

;��

f

) �

l

21

f

).

It follows from [16℄ that the roots of the polynomial u(x) lead to a separation of

variables. This is one separation of variables; another one is given by the equations

(29) for the tilde-variables. Relating them by assuming that they have the same

divisor D as a solution, we 
reate a B�a
klund transformation whi
h 
orresponds to

a shift on ea
h Ja
obian parametrized by a point (�

f

; �

f

) on its underlying 
urve

�

f

. Thus, in the Lax approa
h, our 
onstru
tion of B�a
klund transformations leads

to alternative separation of variables (given one separation of variables) and given

a pair of separations of variables we re
over a B�a
klund transformation for the

system.

2.6. Spe
trality. We now 
ome to a remarkable property of our B�a
klund trans-

formations, whi
h was baptized spe
trality by [12℄. In order to establish this prop-

erty we will �rst 
onsider an isomorphism to another integrable system in whi
h

the Poisson stru
ture takes a simple form. We �x an irredu
ible moni
 polynomial

'(x) of degree g,

'(x) = (x� a

1

)(x� a

2

) � � � (x� a

g

);

and we de�ne an aÆne map M

g

! C

3g+1

by

1

'(x)

(u(x); v(x); w(x)) =

 

1 +

g

X

i=1

f

i

x� a

i

;

g

X

i=1

h

i

x� a

i

; x+ e

0

+

g

X

i=1

e

i

x� a

i

!

:

Expli
itly, the map 
an be 
omputed in terms of the 
oordinates e

0

; : : : ; h

g

on C

3g+1

by

f

i

=

u(a

i

)

Q

k 6=i

(a

i

� a

k

)

; h

i

=

v(a

i

)

Q

k 6=i

(a

i

� a

k

)

; e

i

=

w(a

i

)

Q

k 6=i

(a

i

� a

k

)

;

and e

0

= w

0

�

P

g

i=1

a

i

. Dividing both sides of the equations (15) by '(x)'(y) and

taking residues at x = a

i

and y = a

j

we �nd that the variables fh

i

; e

i

; f

i

g

g

i=1

are
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generators for the dire
t sum of g 
opies of the Lie-Poisson algebra of sl(2): for

i; j = 1; : : : ; g, we have fh

i

; h

j

g = ff

i

; f

j

g = fe

i

; e

j

g = 0 and

fe

i

; h

j

g = e

i

Æ

ij

; fh

i

; f

j

g = f

i

Æ

ij

; ff

i

; e

j

g = 2h

i

Æ

ij

:(33)

Let us denote the Casimir element 
oming from the i-th 
opy of sl(2) by C

i

, C

i

=

h

2

i

+ e

i

f

i

. Then the equation of the spe
tral 
urve looks as follows:

y

2

'

2

(x)

=

f(x)

'

2

(x)

= x+ C

0

+

g

X

i=1

�

C

i

(x� a

i

)

2

+

H

i

x� a

i

�

;(34)

where

H

i

=

X

j 6=i

2h

i

h

j

+ e

i

f

j

+ e

j

f

i

a

i

� a

j

+ e

i

+ (a

i

+ e

0

)f

i

and C

0

is an extra Casimir. If we de�ne �̂

f

= �

f

='(�

f

) then

�̂

2

f

= �

f

+ C

0

+

g

X

i=1

�

C

i

(�

f

� a

i

)

2

+

H

i

�

f

� a

i

�

;

and the relation (9) takes the form

� =

�̂

f

�

P

i

h

i

�

f

�a

i

1 +

P

i

f

i

�

f

�a

i

:(35)

Noti
e that on C

3g+1

the Poisson stru
ture is independent of ', but that the Hamil-

tonians are now dependent on the 
onstants a

i

whi
h en
ode the Poisson stru
ture

f� ; �g

'

on M

g

. In fa
t, the integrable system that we have obtained on C

3g+1

is the

�rst member of the deformed Gaudin magnet hierar
hy from [7℄ and our B�a
klund

transformations for the Mumford system are easily rewritten as B�a
klund transfor-

mations for this system. Expli
itly we �nd

~

f

i

=

�

2

f

i

+ 2�h

i

� e

i

�

f

� a

i

;

~

h

i

=

�(a

i

� �

f

+ �

2

)f

i

+ (a

i

� �

f

+ 2�

2

)h

i

� �e

i

�

f

� a

i

;(36)

~e

i

= �

(a

i

� �

f

+ �

2

)

2

f

i

+ 2�(a

i

� �

f

+ �

2

)h

i

� �

2

e

i

�

f

� a

i

;

where � is given by (35).

We �x a se
tion � of C

g

! P

2g+1

and we assume, as before, that �

f

depends on

the Casimirs of f� ; �g

'

only, where �(f) = (�

f

; �

f

). We restri
t our B�a
klund trans-

formation B

�

to a symple
ti
 leaf of the Poisson stru
ture by �xing generi
 values

of all Casimirs C

j

, j = 0; : : : ; g. Then we have only 2g independent (Darboux-

type) variables, whi
h we 
hoose to be fh

i

; f

i

g

g

i=1

, we 
an express the e

i

variables

in terms of those (the expression for e

0

was 
omputed from (34)),

e

i

=

C

i

� h

2

i

f

i

; e

0

= C

0

�

g

X

i=1

f

i

;

and �

f

be
omes a 
onstant, so we drop the index f from the notation.

We will use the theory of 
anoni
al transformations to show that B

�

has the

spe
trality property and we will �nd along the way an alternative, simpler, proof

that B

�

is a Poisson map. Re
all that a transformation (bije
tive map) between
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(2g-dimensional) symple
ti
 manifolds is 
anoni
al (symple
ti
) if and only if it

has a lo
al generating fun
tion F , i.e., in terms of 
anoni
al variables (x

i

; y

i

) and

(~x

i

; ~y

i

) one has a fun
tion F (x

1

; : : : ; x

g

j~x

1

; : : : ; ~x

g

) su
h that

y

i

=

�F

�x

i

and ~y

i

= �

�F

�~x

i

:(37)

In turn this is equivalent to the 
ompatibility relations

�y

i

�x

j

=

�y

j

�x

i

;

�~y

i

�~x

j

=

�~y

j

�~x

i

;

�~y

i

�x

j

= �

�y

j

�~x

i

;

where i; j = 1; : : : ; g; in these formulas one views the transformation lo
ally as

a map (x

1

; : : : ; x

g

; ~x

1

; : : : ; ~x

g

) ! (y

1

; : : : ; y

g

; ~y

1

; : : : ; ~y

g

). In the present 
ase this

means that we have to view h

1

; : : : ; h

g

;

~

h

1

; : : : ;

~

h

g

as fun
tions of f

1

; : : : ; f

g

;

~

f

1

; : : : ;

~

f

g

and that we need to verify the following 
ompatibility relations

f

j

�h

i

�f

j

= f

i

�h

j

�f

i

;

~

f

j

�

~

h

i

�

~

f

j

=

~

f

i

�

~

h

j

�

~

f

i

; f

j

�

~

h

i

�f

j

= �

~

f

i

�h

j

�

~

f

i

:(38)

To do this we need to express the variables h

i

;

~

h

i

and � in terms of the variables f

i

and

~

f

i

. Multiplying both sides of (10) by ��x and 
omparing the leading terms in

x we �nd �

2

= �+w

0

� u

1

, leading to the following expression for � as a fun
tion

of f

~

f

i

; f

i

g

g

i=1

:

�

2

= �+ C

0

�

g

X

i=1

(

~

f

i

+ f

i

):(39)

Ex
luding the e-variables from the equations (36) of the map B

�

: fh

i

; f

i

g

g

i=1

7!

f

~

h

i

;

~

f

i

g

g

i=1

we �nd the following 2g equations:

(h

i

+ �f

i

)

2

� (�� a

i

)

~

f

i

f

i

� C

i

= 0;(40)

~

h

i

= �h

i

+ �(

~

f

i

� f

i

):(41)

Noti
e that with � from (39) the �rst equation de�nes h

i

and then the se
ond

equation de�nes

~

h

i

, both as impli
it fun
tions of the variables f

~

f

i

; f

i

g

g

i=1

. Straight-

forward 
omputation leads to

�h

i

�f

j

=

f

i

2�

and

�

~

h

i

�

~

f

j

= �

~

f

i

2�

for i 6= j and to

�h

i

�

~

f

j

=

f

i

2�

+

(� � a

i

)f

i

2(h

i

+ �f

i

)

Æ

ij

and

�

~

h

i

�f

j

= �

~

f

i

2�

�

(�� a

i

)

~

f

i

2(h

i

+ �f

i

)

Æ

ij

;

for any i; j. The 
ompatibility 
onditions (38) follow at on
e.

In fa
t, in the same way we 
an prove another property of the B�a
klund transfor-

mation, its spe
trality, whi
h means that the variables �̂ and � are also 
anoni
al,

in a sense, or more pre
isely, that the parameter � enters in the generating fun
tion

F = F

�

in su
h a way that for the �̂ being expressed in terms of f

~

f

i

; f

i

g

g

i=1

variables

we have a similar expression as in (37):

�̂ =

�F

�

��

:
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It follows that the following 
ompatibility 
onditions are suÆ
ient for proving the

spe
trality property of the B�a
klund transformation:

f

i

��̂

�f

i

=

�h

i

��

and

~

f

i

��̂

�

~

f

i

= �

�

~

h

i

��

:(42)

It is easily 
he
ked from (35) that these 
ompatibility 
onditions indeed hold; the

values of the two expressions in (42) are given by

�

f

i

2�

+

f

i

~

f

i

2(h

i

+ �f

i

)

and �

~

f

i

2�

+

f

i

~

f

i

2(h

i

+ �f

i

)

:

We have shown that our B�a
klund transformations are Poisson maps and have the

spe
trality property when ' is moni
 of degree g and is irredu
ible. Obviously the

fa
t that ' is moni
 is inessential. Moreover, all Poisson bra
kets are polynomial

in terms of the roots a

i

of ' hen
e these properties hold when ' is any polynomial

of degree at most g.

2.7. Addition formulas for the } fun
tion. In this paragraph we show that our

formulas (10) and (11) generalize the 
lassi
al addition formulas for the Weierstra�

} fun
tion to the 
ase of (families of) hyperellipti
 
urves. Let � be an ellipti



urve, written in the Weierstra� form

Y

2

= 4X

3

� g

2

X � g

3

:

Points on this 
urve are parametrized by } and its derivative }

0

: for any (X;Y ) 2 �

there is a z 2 C su
h that (X;Y ) = (}(z); }

0

(z)). We write the equation of � as

y

2

= f(x) = x

3

�(g

2

=4)x�(g

3

=4), thereby �xing f 2 P

3

. We take two generi
 points

on � and their sum (� is its own Ja
obian, hen
e a group): (�

f

; �

f

)+(p; q) = (~p; ~q).

On the one hand we 
an asso
iate to the points (p; q) and (~p; ~q) the 
orresponding

polynomials of the Mumford system, on the other hand we 
an write them in terms

of the } fun
tion. As for the former we get

u(x) = x+ u

1

= x� p;

v(x) = v

1

= q;

w(x) = x

2

� u

1

x+ w

1

= x

2

+ px+ (4p

2

+ g

2

)=4;

for (p; q) and we get similar formulas for (~p; ~q) by putting tildes over all variables.

In terms of p; q; ~p and ~q formulas (10), (11) and (9) (in that order) take the form

�

2

= p+ ~p+ �; � = �

q + ~q

p� ~p

=

�� q

�

f

� p

:(43)

As for the latter, let (p; q) = (}(z); }

0

(z)=2); (~p; ~q) = (}(~z); }

0

(~z)=2) and (�

f

; �

f

) =

(}(z

0

); }

0

(z

0

)=2). Then (43) redu
es, after eliminating � to the following 
lassi
al

formulas:

1

4

�

}

0

(z) + }

0

(~z)

}(z)� }(~z)

�

2

= }(z) + }(~z) + }(z

0

);

1

4

�

}

0

(z

0

)� }

0

(z)

}(z

0

)� }(z)

�

2

= }(z) + }(~z) + }(z

0

);

with ~z = z + z

0

:
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3. B

�

a
klund transformations in more 
omplex situations

3.1. The even Mumford system. The Mumford system has a twin whi
h was

introdu
ed by the se
ond author in [23℄, where it was 
alled the even master system;

in this text we will 
all it the even Mumford system. The phase spa
e M

g

of the

even Mumford system 
onsists of Lax operators

L(x) =

�

v(x) w(x)

u(x) �v(x)

�

;

where u(x); v(x) and w(x) are now subje
t to the following 
onstraints: u(x) and

w(x) are moni
 and their degrees are respe
tively g and g+2; the degree of v(x) is

at most g � 1. In this 
ase we write

u(x) = x

g

+ u

1

x

g�1

+ � � �+ u

g

;

v(x) = v

1

x

g�1

+ � � �+ v

g

;

w(x) = x

g+2

+ w

�1

x

g+1

+ � � �+ w

g

:

The map � : M

g

! P

2g+2

is de�ned as in (4); noti
e that � takes its values now

in the aÆne spa
e of moni
 polynomials of degree 2g + 2, explaining the adje
tive

even. The main di�eren
e between the even and the odd Mumford system is that

the spe
tral 
urves �

f

: y

2

= f(x) = u(x)w(x) + v

2

(x) have now two points at

in�nity, a fa
t whi
h has drasti
 
onsequen
es for the geometry of the integrable

system (see [21℄).

Let us �rst 
onstru
t B�a
klund transformations for this system by using the

approa
h des
ribed in Paragraph 2.1. We denote by C

g

the universal 
urve over

P

2g+2

and we 
onsider se
tions of the natural proje
tion � : C

g

! P

2g+2

, as in

Paragraph 2.1. In this 
ase there is no natural se
tion of � :

�

C

g

! P

2g+2

, so we

need to 
hoose two se
tions of � to 
onstru
t a B�a
klund transformation (for the

existen
e of su
h se
tions the remarks from Paragraph 2.3 apply). To simplify the

formulas for the B�a
klund transformation and to make them very similar to the

formulas in the odd 
ase we pi
k one of the se
tions su
h that every f 2 P

2g+2

gets mapped to one of the two points at in�nity, i.e. in

�

�

f

n �

f

. We denote this

se
tion by �

1

and we pi
k another se
tion �. Sin
e Mumford's pres
ription (6) and

(7) applies un
hanged, the following variant to (8) realizes the linear equivalen
e

whi
h is needed in order to express a shift over [�(f)� �

1

(f)℄ on Ja
(

�

�

f

),

F (x; y) =

y + v(x) + u(x)(�(x� �

f

) + �)

u(x)(x � �

f

)

(44)

=

y + v(x) + �u(x)

u(x)(x � �

f

)

� 1 ;

where � is su
h that the numerator vanishes at (�

f

;��

f

), so that

� =

�

f

� v(�

f

)

u(�

f

)

:(45)

The � in (44) depends on the 
hosen se
tion �

1

, its a
tual value, for a given f

being determined by expressing x and y in terms of a lo
al parameter at the point
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�

1

(f). The rest of the 
omputation is similar to the one in Paragraph 2.1, giving

~u(x) =

u(x)(x � �

f

� �)

2

� 2v(x)(x � �

f

� �)� w(x)

(u

1

� w

�1

� 2�

f

� 2�)(x� �

f

)

;

~v(x) = �v(x)� u(x)(x � �

f

� �)� ~u(x)(x � �

f

+ u

1

� ~u

1

� �) ;(46)

~w(x) = (u(x)w(x) + v

2

(x) � ~v

2

(x))=~u(x) ;

� =

�

f

� v(�

f

)

u(�

f

)

:

The value of the variable ~u

1

in terms of the original variables is 
omputed from the

�rst equation in (46) to be given by

~u

1

= �

f

+

u

2

� 2v

1

� w

0

� 2u

1

(� � �

f

) + (� � �

f

)

2

u

1

� w

�1

� 2�

f

� 2�

:

The matrix M(x), de�ned as in (13) 
an in this 
ase be taken as

�

x� �

f

+ u

1

� ~u

1

� � �(u

1

� ~u

1

� �)� (x � �

f

)(x + �

f

+ w

�1

� ~u

1

)

�1 x� �

f

� �

�

:

(47)

Noti
e that detM(x) = (x� �

f

)(u

1

� w

�1

� 2�

f

� 2�).

The integrable ve
tor �elds of the even Mumford system are Hamiltonian with

respe
t to a family of Poisson bra
kets, similar to the bra
kets (15): if ' is a

univariate polynomial of degree at most g then one �nds pre
isely the bra
kets

(15), ex
ept for the following two bra
kets

fv(x); w(y)g

'

=

1

x� y

(w(x)'(y) � w(y)'(x)) � �(x; y)u(x)'(y);

fw(x); w(y)g = 2�(x; y) (v(x)'(y) � v(y)'(x)) ;

�(x; y) = x+ y + w

�1

� u

1

;

de�ne a Poisson stru
ture on M

g

. Assuming '(x) moni
 and irredu
ible, '(x) =

(x� a

1

)(x� a

2

) � � � (x � a

g

), we de�ne an aÆne map M

g

! C

3g+2

by

�

u(x)

'(x)

;

v(x)

'(x)

;

w(x)

'(x)

�

=

 

1 +

g

X

i=1

f

i

x� a

i

;

g

X

i=1

h

i

x� a

i

; x

2

+ e

�1

x+ e

0

+

g

X

i=1

e

i

x� a

i

!

:

As in the 
ase of the Mumford system we �nd that the variables fh

i

; e

i

; f

i

g

g

i=1

are

generators for the dire
t sum of g 
opies of the Lie-Poisson algebra of sl(2). The

equation of the spe
tral 
urve takes the form

y

2

'

2

(x)

=

f(x)

'

2

(x)

= x

2

+ C

�1

x+ C

0

+

g

X

i=1

�

C

i

(x � a

i

)

2

+

H

i

x� a

i

�

;

where C

i

= h

2

i

+ e

i

f

i

, the Casimir element 
oming from the i-th 
opy of sl(2);

moreover C

�1

= e

�1

+

P

g

i=1

f

i

and C

0

= e

0

+

P

g

i=1

f

i

(C

�1

+ a

i

) � (

P

g

i=1

f

i

)

2

are extra Casimirs. Fixing a generi
 symple
ti
 leaf, these Casimirs are used to

eliminate the variables e

�1

; : : : ; e

g

giving the following equations for the map (i =
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1; : : : ; g)

 

g

X

i=1

2f

i

� 2�� 2� � C

�1

!

(� � a

i

)f

i

~

f

i

+ (f

i

(a

i

� �� �)� h

i

)

2

� C

i

= 0;

~

h

i

= �h

i

� (f

i

�

~

f

i

)(a

i

� �� �)�

~

f

i

g

X

i=1

(f

j

�

~

f

j

)

and the following equation for �

�

2

� 2(u

1

� ~u

1

)� � �

2

+ �(2~u

1

� w

�1

� u

1

)� u

1

~u

1

� w

0

+ u

2

+ ~u

1

w

�1

� 2v

1

= 0;

where

u

1

=

g

X

i=1

(f

i

� a

i

); v

1

=

g

X

i=1

h

i

u

2

=

X

i<j

a

i

a

j

�

X

i 6=j

a

i

f

j

w

�1

= C

�1

�

g

X

i=1

(a

i

+ f

i

)

w

0

= C

0

� C

�1

g

X

i=1

(a

i

+ f

i

) +

 

g

X

i=1

f

i

!

2

+

X

i<j

a

i

a

j

+

X

i 6=j

a

i

f

j

:

Using these formulas the veri�
ation of (38) and (42) (where �̂

f

is in this 
ase again

de�ned by �̂

f

= �

f

='(�

f

) and it is assumed that �

f

depends on the Casimirs only)

is now straightforward (but lenghty). This shows again that our maps B

�

are

Poisson maps and have the spe
trality property when �

f

depends on the Casimirs

of f� ; �g

'

only.

In order to show that our maps B

�

give a dis
retization of the even Mumford

system, we pro
eed as in Paragraph 2.4. We let �

f

= 1=t so that the �rst few terms

of � are given by

� = �

1

t

�

1 +

w

�1

� u

1

2

t+

1

8

(3u

2

1

� 2u

1

w

�1

� w

2

�1

� 4u

2

+ 4w

0

� 8v

1

)t

2

+O(t

3

)

�

A dire
t substitution in (46) yields

~u(x) = u(x)� v(x)t+O(t

2

) ;

~v(x) = v(x)�

1

2

(�w(x) + u(x)(x

2

+ (w

�1

� u

1

)x+

u

2

1

+ w

0

� u

2

� u

1

w

�1

))t+O(t

2

) ;

~w(x) = w(x) � v(x)(x

2

+ (w

�1

� u

1

)x+ u

2

1

+ w

0

� u

2

� u

1

w

�1

)t+O(t

2

) :

Moreover we 
an 
onstru
t the analogs of Mumford's ve
tor �elds X

a

. We pro
eed

as in Paragraph 2.4, but spe
ial 
are has to be taken be
ause now the 
urve has

two points at in�nity, namely 1

f

and the point that 
orresponds to 1

f

under the

hyperellipti
 involution; the latter point will be denoted by 1

0

f

. Fixing a se
tion

�, we write �(f) = (a

f

; b

f

) and we do a translation over [(a

f

;�b

f

) � 1

f

℄. The

matrix going with this transformations is denoted by P (x). Then we translate over

[(�

f

(t); �

f

(t))�1

0

f

℄; its matrix is denoted by Q

t

(x). The produ
t then 
orresponds
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to a translation over [(�

f

(t); �

f

(t))�(a

f

; b

f

)℄. Expli
itly, for P (x) we take the lower

signs in (47) to get

P (x) =

�

x� a+ u

1

� ~u

1

+ � �(~u

1

� u

1

� �)� (x� a)(x+ a+ w

�1

� ~u

1

)

�1 x� a+ �

�

with

~u

1

= a

f

+

u

2

� 2v

1

� w

0

� 2u

1

(a

f

� �) + (a

f

� �)

2

u

1

� w

�1

� 2a

f

+ 2�

;

� =

b

f

+ v(a

f

)

u(a

f

)

=

w(a

f

)

b

f

� v(a

f

)

:

For Q

t

(x) we take the upper sign and we �nd

Q

t

(x) =

�

x� �

f

(t) + ~u

1

�

~

~u

1

+ �(t) ?

1 x� �

f

(t) + �(t)

�

where ? = �(t)(~u

1

�

~

~u

1

+ �(t)) + (x� �

f

(t))(x + �

f

(t) + ~w

�1

�

~

~u

1

) and

~

~u

1

= �

f

(t) +

~u

2

+ 2~v

1

� ~w

0

+ 2~u

1

(�(t)� �

f

(t)) + (�(t) + �

f

(t))

2

~u

1

� ~w

�1

� 2�

f

(t) + 2�(t)

;

�(t) =

�

f

(t)� ~v(�

f

(t))

~u(�

f

(t))

:

In order to express

~

~u

1

in terms of the original phase variables, as needed in the


omputation, one needs expli
it formulas for ~u

2

; ~v

1

; ~w

�1

and ~w

0

. For ~u

2

and ~v

1

we

�nd by expanding the �rst B�a
klund transformation in terms powers of t

~u

2

= a~u

1

+

u

3

� 2(a� �)u

2

+ (a� �)

2

u

1

� 2v

2

+ 2(a� �)v

1

� w

1

u

1

� w

�1

� 2a

f

+ 2�

;

~v

1

= �v

1

+ u

2

� (a� �)u

1

� ~u

2

+ ~u

1

(a� u

1

+ ~u

1

� �):

We �nd as in the 
ase of the Mumford system that �(0) = u

1

� ~u

1

+ � and that

�

0

(0) = 1� (u

1

� w

�1

� 2a+ 2�)

u(a)

2b

:

As we have seen in the Mumford 
ase the ve
tor �eld whi
h 
orresponds to the

deformation family is given by

dL

dt

a

f

(x) =

�

Q

0

0

(x)Q

�1

0

(x); L(x)

�

;

whi
h leads by dire
t substitution to

dL

dt

a

f

(x) =

1

2b

f

�

L(a

f

)

x� a

f

+

�

0 u(a

f

)(x + a

f

+ u

1

� w

�1

)

0 0

�

; L(x)

�

:

As far as we 
ould 
he
k these ve
tor �elds are new.
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3.2. Generalized Ja
obians (odd 
ase). We now 
onsider a �rst 
ase in whi
h

the �bers of the moment map are aÆne parts of generalized (hyperellipti
) Ja
o-

bians. The main di�eren
e between the generalized Ja
obian 
ase and the usual


ase is that generalized Ja
obians have a larger symmetry group, leading to more

general B�a
klund transformations.

We �rst de�ne phase spa
e, whi
h is denoted by

^

M

g

, a moment map �̂ :

^

M

g

!

P

2g+1

, we 
onstru
t a natural map � :

^

M

g

! M

g

onto the phase spa
e of the

Mumford system, and we give a geometri
 des
ription of the �bers of �. For any

g � 1;

^

M

g

is the spa
e of all Lax matri
es of the form

L(x) =

�

V (x) W (x)

U(x) �V (x)

�

;

where the entries of L(x) are now subje
t to the following 
onstraints: U(x) and

W (x) are moni
 and their degrees are respe
tively g and g + 1; the degree of V (x)

is at most g. Writing

U(x) = x

g

+ U

1

x

g�1

+ : : :+ U

g

;

V (x) = V

0

x

g

+ : : :+ V

g

;

W (x) = x

g+1

+W

0

x

g

+ : : :+W

g

;

we take the 
oeÆ
ients of these three polynomials as 
oordinates on

^

M

g

. It is 
lear

that the group of matri
es of the form

N

�

=

�

1 ��

0 1

�

(48)

a
ts on

^

M

g

by the adjoint a
tion, where � is any fun
tion on

^

M

g

. In parti
ular,

taking � = V

0

we get a map onto a subspa
e whi
h is exa
tly the phase spa
eM

g

of

the Mumford system; we denote this natural map by � and denote the 
omposition

� Æ � by �̂; expli
itly �̂ is given by L(x) 7! � detL(x). For f 2 P

2g+1

su
h

that �

f

is smooth the �ber �

�1

(f) is an aÆne part of Sym

g+1

�

�

f

, the (g + 1)-th

symmetri
 produ
t of

�

�

f

(re
all that

�

�

f

has genus g). To see this, one asso
iates to

(U(x); V (x);W (x)) 2 �

�1

(f) the divisor D =

P

g+1

i=1

(x

i

; y

i

), where x

i

are the roots

of W (x) and y

i

= �V (x

i

). It is easy to show that this realizes a bije
tion between

�

�1

(f) and an aÆne part of Sym

g+1

(

�

�

f

)

7

. The rational fun
tion

y � V (x)

W (x)

=

U(x)

y + V (x)

shows that D is linearly equivalent to the divisor D

0

+1

f

=

P

g

i=1

(x

0

i

; y

0

i

) +1

f

,

where x

0

i

are the zeros of U(x) and V (x

0

i

) = y

0

i

for i = 1; : : : ; g. This gives a

geometri
 interpretation of the map �, and it shows that, under the above 
or-

responden
e between points of

^

M

g

and divisors, the adjoint a
tion by N

�

maps

divisors to linearly equivalent divisors.

We will show that this geometri
 pi
ture leads, via our geometri
 
onstru
tion

of B�a
klund transformations, to a family of B�a
klund transformations B

�;�

:

^

M

g

!

^

M

g

whi
h makes the following diagram 
ommutative.

7

From this des
ription it follows easily that the �ber �

�1

(f) 
an also be des
ribed as an aÆne

part of the generalized Ja
obian of �

f

with respe
t to the divisor 21

f

. See [20℄.
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^

M

g

^

M

g

M

g

M

g

p p p p p p p-

B

�;�

?

�

?

�

-

B

�

(49)

It should be 
lear that, sin
e we are for
ed to work with divisors, we 
annot write (5)

as a de�nition for B

�;�

be
ause the e�e
tive divisor of degree g+1 that 
orresponds

to a line bundle of degree g+1 is not unique. A

ordingly we write down a general

formula for a map satisfying (5) and then we spe
ialize the arbitrary fun
tion that

�gures in it so as to obtain a B�a
klund transformation. Expli
itly, we let �(f) =

(�

f

; �

f

; f), as before, and we 
onsider for a generi
 point (U(x); V (x); W (x)) 2

^

M

g

the following fun
tion

F (x; y) =

(y � V (x))(x � �

f

+ ��) + �W (x)

W (x)(x � �

f

)

:

We have 
hosen a 
ombination of the parameters � and � su
h that, when we

express that the numerator of F vanishes at (�

f

;��

f

), then we �nd

� =

W (�

f

)

�

f

+ V (�

f

)

=

�

f

� V (�

f

)

U(�

f

)

;

so that � is formally given by the same formula (9) as in the Mumford system. With

this 
hoi
e of � we �nd for any � that F (x; y) has D + (�

f

; �

f

) =

P

g+1

i=1

(x

i

; y

i

) +

(�

f

; �

f

) as its polar divisor and vanishes at in�nity. It follows that the other zeros

of F (x; y) give a divisor

~

D whi
h is linearly equivalent to the divisor D whi
h is

asso
iated to (U(x); V (x); W (x)), up to a shift over (�

f

; �

f

) �1

f

. Multiplying

F (x; y) by (y + V (x))(x � �

f

+ ��) � �W (x) and using y

2

= U(x)W (x) + V

2

(x)

we �nd an equation for the x-
oordinates of the image divisor and we dedu
e, as

in the 
ase of the Mumford system,

~

W (x) = �

(x� �

f

+ ��)

2

U(x) + 2�(x� �

f

+ ��)V (x) � �

2

W (x)

�

f

� x

:(50)

By interpolation at the zeros of

~

W we also �nd

~

V (x) =

�(x � �

f

+ ��)U(x) + (x� �

f

+ 2��)V (x)� �W (x)

�

f

� x

;(51)

and the formula for

~

U(x) follows from

~

U(x)

~

W (x) +

~

V

2

(x) = U(x)W (x) + V

2

(x),

~

U(x) =

�

2

U(x) + 2�V (x)�W (x)

�

f

� x

:(52)

This gives expli
it formulas for the map B

�;�

. In terms of matri
es, B

�;�

is given

by L 7!MLM

�1

, where M 
an be taken as follows:

M(x) =

�

� x� �

f

+ ��

1 �

�

:(53)
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The 
ommutativity of (49) is a dire
t 
onsequen
e of the equality N

�V

0

+���

M =

�

MN

V

0

, where

�

M is given by

�

M(x) =

�

� + V

0

x� �

f

+ (� + V

0

)

2

1 � + V

0

�

:

If we 
ompare (14) and (53) then we see that both matri
es 
oin
ide when � = �,

but, as we will see, the 
hoi
e � = � does not lead to a B�a
klund transformation

(when � = � it is not a Poisson map).

We now 
ome to poissoni
ity of the maps that we have 
onstru
ted. The Poisson

stru
ture of the generalized Mumford system is given, in the notation of Paragraph

2.2, by

fL(x)




; L(y)g = [r(x � y); L

1

(x)'(y) + '(x)L

2

(y)℄ ;(54)

where '(x) is a polynomial of at most degree g. We take �

f

to be dependent on

the Casimirs only and we 
ompute, as before, the bra
kets with �, giving

fU(x); �g

'

=

�

f

'(x) � '(�

f

)(V (x) + �U(x))

�

f

(x� �

f

)

;

fV (x); �g

'

= �

2�

f

�'(x) � '(�

f

)(�

2

U(x) +W (x))

2�

f

(x� �

f

)

;(55)

fW (x); �g

'

= ��

��

f

'(x) + '(�

f

)(�V (x)�W (x))

�

f

(x� �

f

)

:

Using these formulas we 
an determine for whi
h 
hoi
es of � (whi
h 
ould, a priori,

be any fun
tion on phase spa
e) the map (U(x); V (x); W (x)) ! (

~

U(x);

~

V (x);

~

W (x))

is a Poisson map. A (quite long) 
omputation leads to the following 
onditions on

�.

f�;U(x)g = �C

V (x) + �U(x)

x� �

f

;

f�; V (x)g = �C

W (x) + �

2

U(x)

2(x� �

f

)

+D;

f�;W (x)g = C�

W (x) � �V (x)

x� �

f

+ '(x);

f�; �g = '(�

f

)=(2�

f

):

In these formulas C and D are any fun
tions on phase spa
e. However, sin
e the

left hand side of the �rst three expressions is polynomial in x, the same must be

true for the right hand side, whi
h implies that C = 0. Using the last equation and

the de�nition of � we �nd that D = 0 and we are left with

f�;U(x)g = f�; V (x)g = 0;

f�;W (x)g = '(x);(56)

f�; �g = '(�

f

)=(2�

f

):

It turns out that there is su
h an �, namely � = V

0

; to obtain the most general

solution it suÆ
es to add any Casimir of ' to V

0

. A dire
t 
he
k that one gets

for those values of � indeed a Poisson map 
an be done quite easily by using the
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following formulas, whi
h follow from (54), (55) and (56).

fL(x)




; M(y)g =

�

'(�

f

)

2�

f

[L(x); N(x)℄ + '(x)N(x)

�




�M

��

� '(x)

�

2

M

����




�M

��

;

fM(x)




; L(y)g = �

�M

��




�

'(�

f

)

2�

f

[L(y); N(y)℄ + '(y)N(y)

�

+ '(y)

�M

��




�

2

M

����

;

fM(x)




; M(y)g = �

'(�

f

)

2�

f

0

B

B

�

0 � �� 0

0 1 0 �

0 0 �1 ��

0 0 0 0

1

C

C

A

where N(x) =

1

�

f

�x

�

� �

2

�1 ��

�

. In 
on
lusion we have shown that when �

f

and

��V

0

depend only on the Casimirs then the map B

�;�

is a B�a
klund transformation

for the generalized Mumford system.

In order to 
he
k spe
trality of the map B

�;�

when �

f

and � � V

0

depend only

on the Casimirs one pro
eeds as in the 
ase of the Mumford system. We �x a moni


polynomial '(x) of degree g with distin
t roots a

1

; : : : ; a

g

and we de�ne an aÆne

map

^

M

g

! C

3g+2

by

�

U(x)

'(x)

;

V (x)

'(x)

;

W (x)

'(x)

�

=

 

1 +

g

X

i=1

f

i

x� a

i

; h

0

+

g

X

i=1

h

i

x� a

i

; x+ f

0

+

g

X

i=1

e

i

x� a

i

!

:

(57)

In this 
ase we get the bra
kets (33) with in addition one non-trivial bra
ket,

fh

0

; f

0

g = 1. We denote the Casimir element 
oming from the i-th 
opy of sl(2) by

C

i

, C

i

= h

2

i

+ e

i

f

i

and we denote the Casimir ��V

0

by C. We �x a symple
ti
 leaf

and we express the variables f

0

; : : : ; f

g

;

~

f

0

; : : : ;

~

f

g

in terms of h

0

; : : : ; h

g

;

~

h

0

; ; : : : ;

~

h

g

and �. To do this, �rst noti
e that

� = h

0

+ C; and � = C �

~

h

0

;

as follows easily from (57) and (51). The formulas for the variables f

1

; : : : ; f

g

follow

from

(�f

i

+ h

i

)

2

� f

i

~

f

i

(� � a

i

)� C

i

= 0;(58)

~

h

i

+ h

i

� �

~

f

i

+ �f

i

= 0;(59)

whi
h one derives from the equations (50), (51) and (52) for B

�

, expressed in terms

of the variables f

i

and h

i

. Indeed, if we use the se
ond equation to eliminate

~

f

i

from the �rst equation we get

f

2

i

~

h

0

(a

i

� �� h

0

~

h

0

) + f

i

((� � a

i

)(

~

h

i

+ h

i

) + 2h

i

h

0

~

h

0

) + h

0

(C

i

� h

2

i

) = 0;(60)

and this de�nes f

1

; : : : ; f

g

as a fun
tion of the variables h

j

and

~

h

j

; the se
ond

equation in (58) then de�nes

~

f

1

; : : : ;

~

f

g

as a fun
tion of these variables. As for f

0



28 VADIM KUZNETSOV AND POL VANHAECKE

and

~

f

0

, they are given by

f

0

= ��+

g

X

i=1

~

f

i

+

~

h

2

0

� 2h

0

~

h

0

;

~

f

0

= ��+

g

X

i=1

f

i

+ h

2

0

� 2h

0

~

h

0

;

as follows also from (50), (51) and (52). Using these formulas it is straightforward

to verify the following integrability 
onditions (i; j = 1; : : : ; g)

�f

i

��

= �f

i

��̂

�h

i

= �

�f

i

~

f

i

(�� a

i

)(�f

i

+ �

~

f

i

)� 2��(h

i

+ �f

i

)

;

�

~

f

i

��

=

~

f

i

��̂

�h

i

= �

�f

i

~

f

i

(�� a

i

)(�f

i

+ �

~

f

i

)� 2��(h

i

+ �f

i

)

;

�f

0

��

= �

��̂

�h

0

= �1� �

g

X

i=1

f

i

~

f

i

(�� a

i

)(�f

i

+ �

~

f

i

)� 2��(h

i

+ �f

i

)

;

�

~

f

0

��

=

��̂

�

~

h

0

= �1� �

g

X

i=1

f

i

~

f

i

(�� a

i

)(�f

i

+ �

~

f

i

)� 2��(h

i

+ �f

i

)

:

This shows that the maps B

�

have the spe
trality property. In the same way one


an verify the 
ompatibility 
onditions

f

j

�f

i

�h

j

= f

i

�f

j

�h

i

;

~

f

j

�

~

f

i

�

~

h

j

=

~

f

i

�

~

f

j

�

~

h

i

; f

j

�

~

f

i

�h

j

= �

~

f

i

�f

j

�

~

h

i

;

giving an alternative proof that the maps B

�

are Poisson maps.

We now show that these B�a
klund transformation dis
retize the underlying inte-

grable system. The 
omputation is similar as in the previous 
ases, ex
ept that one

has to 
hoose the Casimir �� V

0


arefully so as to obtain the identity transforma-

tion in the limit �

f

! 1. Sin
e the point at in�nity of the 
urve is a Weierstrass

point we let � = t

�2

and we 
hoose � = V

0

+ 1=t. Then

� =

1

t

� V

0

+

1

2

(W

0

� U

1

+ V

2

0

)t+O(t

2

);

and we �nd by dire
t substitution

~

U(x) = U(x) + 2t(V (x)� V

0

U(x)) +O(t

2

);

~

V (x) = V (x) + t(U(x)(2x +W

0

� U

1

� V

2

0

)=2�W (x))) +O(t

2

);

~

W (x) =W (x)� t(V (x)(2x +W

0

� U

1

� V

2

0

)� 2V

0

W (x)) +O(t

2

);

from whi
h we 
an read o� the ve
tor �eld. For the ve
tor �eldsX

a

the 
omputation

is very similar to the one in the 
ase of the Mumford system. Namely we take

P (x) =

�

� x� a

f

� ��

1 ��

�

with � = V

0

and � =

b

f

+v(a

f

)

u(a

f

)

; moreover we take

Q

t

(x) =

�

�(t) x� �

f

(t) + ��(t)

1 �(t)

�
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where �(t) =

~

V

0

= � (so that in fa
t � is independent of t) and �(t) =

�

f

(t)�

~

V (�

f

(t))

~

U(�

f

(t))

;

so that �(0) = ��. Using �

0

(0) = U(a)=(2b

f

) we �nd

Q

0

0

(x)Q

�1

0

(x) =

1

2b

f

(x � a)

�

V (a)� b

f

W (a)

U(a) �V (a)

�

;

so that, after removal of a diagonal matrix, we �nd the following Lax equation

dL

dt

a

f

(x) =

1

2b

f

�

L(a

f

)

x� a

f

; L(x)

�

:

We shortly indi
ate how the above maps B

�;�


an also be found from the eigen-

ve
tors of the Lax operator. Taking ~�

0

= (1; 0) and ~� = (
; Æ � x) we express that

the solutions to

�

1 0

�

�

�~v(x)� y � ~w(x)

�~u(x) ~v(x)� y

�

= 0;(61)

are the same as the solutions of

�


 Æ � x

�

�

�v(x)� y �w(x)

�u(x) v(x)� y

�

= 0;(62)

ex
ept that (62) also has (�

f

;��

f

) as a solution. By eliminating y from (62) we

�nd that

~

W (x) =

(x� Æ)

2

U(x)� 2(x� Æ)
V (x) � 


2

W (x)

x� �

f

;

be
ause the numerator of the above right hand side is moni
 of degree g + 2 and

vanishes at the roots of W as well as at x = �

f

. By interpolation at the zeros of

~

W we �nd that

~

V (x) =

(x� Æ)(Æ � �

f

)U(x) + (2Æ � �

f

� x)
V (x) + 


2

W (x)


(x� �

f

)

:

We re
over our formulas (50) and (51) (hen
e also (52)) by taking 
 = � and

Æ = �� ��).

3.3. Generalized Ja
obians (even 
ase). In this 
ase phase spa
e

^

M

g

is given

by the spa
e of triples of polynomials (U(x); V (x);W (x)) with the following degree


onstraints

U(x) = x

g+1

+ U

0

x

g

+ : : :+ U

g

;

V (x) = V

0

x

g

+ : : :+ V

g

;

W (x) = x

g+1

+W

0

x

g

+ : : :+W

g

:

In this 
ase the spe
tral 
urve is of the form y

2

= f(x) where f(x) = U(x)W (x) +

V

2

(x) is moni
 of degree 2g + 2. When f is irredu
ible the 
orresponding �ber of

the moment map �̂ (whi
h is given as in the other 
ases by �̂(L(x)) = � detL(x)) is

an aÆne part of Sym

g+1

�

�

f

; this is shown by asso
iating to (U(x); V (x);W (x)) 2

�

�1

(f) the divisor D =

P

g+1

i=1

(x

i

; y

i

), where x

i

are the roots of U(x) and y

i

=

V (x

i

). We 
hoose a se
tion � and we let �(f) = (�

f

; �

f

; f). For a generi
 point

(U(x); V (x); W (x)) 2

^

M

g

we 
onsider the fun
tion

F (x; y) =

(y + V (x))(x � �

1

)� U(x)(x � �

2

)

U(x)(x � �

f

)

;
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where �

1

and �

2

satisfy the following linear equation (zero of the numerator of F

at the point (�

f

;��

f

)):

(��

f

+ V (�

f

))(�

f

� �

1

)� U(�

f

)(�

f

� �

2

) = 0:

F (x; y) has D+(�

f

; �

f

) =

P

g+1

i=1

(x

i

; y

i

)+ (�

f

; �

f

) as its polar divisor and vanishes

at in�nity. It follows that the other zeros of F (x; y) give a divisor

~

D whi
h is linearly

equivalent to the divisor D whi
h is asso
iated to (U(x); V (x); W (x)), up to a shift

over (�

f

; �

f

)�1

f

. It leads to the following formulas for the map B

�

~

U(x) =

U(x)(x � �

2

)

2

� 2V (x)(x � �

1

)(x � �

2

)�W (x)(x � �

1

)

2

C(x � �

f

)

;

~

V (x) =

1

C(x� �

f

)

[�(x� �

2

)(x � �

4

)U(x)

+((x� �

2

)(x � �

3

) + (x� �

1

)(x� �

4

))V (x)� (x � �

1

)(x� �

3

)W (x)℄ ;

~

W (x) =

�U(x)(x� �

4

)

2

� 2V (x)(x � �

3

)(x� �

4

) +W (x)(x � �

3

)

2

C(x� �

f

)

;

where

C = 2(�

1

� �

2

) + U

0

� 2V

0

�W

0

(63)

and

�

3

= �

1

� C

�

1

� �

f

�

1

� �

2

; �

4

= �

2

� C

�

2

� �

f

�

1

� �

2

:(64)

The above transformation 
an be rewritten in the form of the matrix equation

M(x)L(x) =

~

L(x)M(x) with the following matrix M :

M(x) =

�

x� �

3

�(x� �

4

)

�(x� �

1

) x� �

2

�

;(65)

where the variables �

1

; : : : ; �

4

are given by

�

i

= �

f

+

(�

i

C � U

0

� 2V

0

+W

0

)((�1)

i�1

C �

~

U

0

� 2

~

V

0

+

~

W

0

)

4C

;(66)

with �

i

= 1 for i = 1; 2 and �

i

= �1 otherwise.

Let us now turn to poissoni
ity and spe
trality. For every polynomial ' of degree

at most g+1 we �nd a Poisson stru
ture f� ; �g

'

whi
h is given formally by pre
isely

the same formulas as in the 
ase 
onsidered in Paragraph 3.2. We 
an see from the

above formulas that it will be mu
h easier to do further 
al
ulations if we make a

simple similarity transform:

M(x) 7! SM(x)S

�1

; L(x) 7! SL(x)S

�1

;(67)

where

S =

�

1 �1

1 �1

�

:(68)

Let us denote the transformed matri
es L(x) and M(x) by small letters `(x) and

m(x), respe
tively:

`(x) = SL(x)S

�1

;

~

`(x) = S

~

L(x)S

�1

; m(x) = SM(x)S

�1

;

and 
orrespondingly,

`(x) =

�

v(x) w(x)

u(x) �v(x)

�

;

~

`(x) =

�

~v(x) ~w(x)

~u(x) �~v(x)

�

:
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The triple of new polynomials is as follows:

u(x) = u

0

x

g

+ : : :+ u

g

;

v(x) = �x

g+1

+ v

0

x

g

+ : : :+ v

g

;

w(x) = w

0

x

g

+ : : :+ w

g

;

and the matrix m(x) has the following form:

m(x) =

1

2C

�

4(C(x� �) + w

0

~u

0

) �2Cw

0

�2C~u

0

C

2

�

:

Note that the determinant of the matrix m(x), as well as of the matrix M(x), is

expressed in terms of C:

detM(x) = detm(x) = C(x� �):

Suppose now that the polynomial '(x) is moni
 and has distin
t roots a

0

; : : : ; a

g

and 
onsider the map de�ned by

1

'(x)

(u(x); v(x); w(x)) =

 

g

X

i=0

f

i

x� a

i

;�1 +

g

X

i=0

h

i

x� a

i

;

g

X

i=0

e

i

x� a

i

!

:

It is an isomorphism between

^

M

g

, equipped with the Poisson stru
ture f� ; �g

'

, and

the dire
t sum of g + 1 
opies of the Lie-Poisson algebra of sl(2). Noti
e that

u

0

=

P

g

i=0

f

i

and w

0

=

P

g

i=0

e

i

; so that m(x) depends only on variables e

i

and

~

f

i

.

Therefore we take (e

i

;

~

f

i

), i = 0; : : : ; g, as independent variables. Then, it is easy

to �nd the following formulas for the variables (h

j

;

~

h

j

), j = 0; : : : ; g:

C

2

h

2

j

� 4C~u

0

e

j

h

j

+ 4e

j

(C(a

j

� �)

~

f

j

+ ~u

2

0

e

j

)� C

2

C

j

= 0;

C

2

~

h

2

j

� 4Cw

0

~

f

j

~

h

j

+ 4

~

f

j

(C(a

j

� �)e

j

+ w

2

0

~

f

j

)� C

2

C

j

= 0;(69)

C(h

j

�

~

h

j

) = �2(~u

0

e

j

� w

0

~

f

j

):

As for the 
ompatibility 
onditions:

e

k

�h

j

�e

k

= e

j

�h

k

�e

j

;

~

f

k

�

~

h

j

�

~

f

k

=

~

f

j

�

~

h

k

�

~

f

j

;

~

f

k

�h

j

�

~

f

k

= e

j

�

~

h

k

�e

j

:

we have from (69) that

�h

j

�e

k

=

�

~

h

j

�

~

f

k

= 0; j 6= k:

whi
h leads at on
e to the �rst two equations and to the third equation for j 6= k.

The proof of the third equation for i = k is easy by dire
t 
omputation. The

spe
trality property also holds, as one easily veri�es the following formulas:

e

j

��̂

�e

j

= �

�h

j

��

;

~

f

j

��̂

�

~

f

j

= �

�

~

h

j

��

;

where �̂ = �='(�):

We �nish by 
omputing the 
ontinuum 
ows, obtained by taking the limit t! 0

of the family of se
tions �

t

given by � = 1=t and � = �(1 + (U

0

+ W

0

)t=2 +
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O(t

2

))=t

g+1

. In order for the limit to exist we must take the Casimir C of the form

C

0

� 4�, where C

0

does not depend on �. Then

a

1

=

C

0

� 2U

0

+ 2(�1� 1)V

0

+ 2W

0

4

;

a

2

=

2

t

�

C

0

� 2(1� 1)V

0

4

;

and in the limit our B�a
klund transformations lead, as in the other 
ases, to a

ve
tor �eld whi
h has the Lax form L

0

(x) = [L(x); N(x)℄, where N(x) is given (up

to a 
onstant fa
tor 1=8) by

�

(2� 2)V

0

�(4x� C

0

� 2U

0

� (2� 2)V

0

+ 2W

0

)

�(4x� C

0

+ 2U

0

+ (2� 2)V

0

� 2W

0

) �(2� 2)V

0

�

:

In terms of l(x) this be
omes l

0

(x) = [l(x); n(x)℄, where n(x) = V N(x)V

�1

is given

by

n(x) = �

1

8

�

4x� C

0

4w

0

4u

0

C

0

� 4x

�

:

The above ve
tor �elds is the analog of the ve
tor �eld X

1

of the Mumford system.

The analogs of the ve
tor �elds X

a

; a 2 P

1

are 
onstru
ted in the same way as in

the other 
ases.

3.4. Geodesi
 
ow on SO(4). We now look at the 
ase of an integrable geodesi



ow on SO(4), whose underlying metri
 appears as metri
 II in the 
lassi�
ation of

integrable geodesi
 
ows on SO(4). In suitable 
oordinates, the basi
 ve
tor �eld

X

1

of this a.
.i. system is given by the di�erential equations

_z

1

= 2z

5

z

6

; _z

2

= 2z

3

z

4

; _z

3

= z

5

(z

1

+ z

4

);

_z

4

= 2z

2

z

3

; _z

5

= z

3

(z

1

+ z

4

); _z

6

= 2z

1

z

5

:

and it admits the following quadrati
 �rst integrals:

H

1

= z

2

3

� z

2

5

;

H

2

= z

2

1

� z

2

6

;

H

3

= z

2

2

� z

2

4

;(70)

H

4

= (z

1

+ z

4

)

2

+ 4(z

2

3

� z

2

z

5

� z

3

z

6

):

Following [5℄ we let

u(x) = x

2

+

�

z

1

+ z

2

+ z

4

+ z

6

2(z

3

� z

5

)

� 1

�

x�

z

2

+ z

4

2(z

3

� z

5

)

;

and we let v(x) be the polynomial of degree at most 1, 
hara
terized by

v(0) = u(0)(z

1

+ z

4

+ 2z

3

); v(1) = u(1)(z

1

+ z

4

+ 2z

5

):

This map asso
iates to any point P in C

6

an unordered pair of points on the

algebrai
 
urve

� : y

2

= f(x) = x(1� x)

�

4x

3

h

1

� (4h

1

+ h

4

)x

2

+ (h

4

� h

3

� h

2

)x + h

3

�

;(71)

where h

i

denotes the value ofH

i

at P . Noti
e that the polynomial f whi
h de�nes �

is not moni
, its leading term being dependent on the integrals. As a 
onsequen
e,

the polynomial w, de�ned by w(x) = f(x)� v

2

(x)=u(x), will not be moni
 and the
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map does not de�ne a map to the Mumford system (indeed, for most of the Poisson

stru
tures of this system this leading term is not even a Casimir). For future use,

noti
e that w(0) = �u(0)(z

1

+z

4

+2z

3

)

2

and w(1) = �u(1)(z

1

+z

4

+2z

5

)

2

, be
ause f

has 0 and 1 as roots. Conversely, given three su
h polynomials u; v; w whi
h satisfy

v

2

(x)+u(x)w(x) = f(x), where f has the above form (71), the 
orresponding point

(z

1

; : : : ; z

6

) 2 C

6

is re
onstru
ted by using the following formulas.

z

3

� z

5

=

1

2

�

v(0)

u(0)

�

v(1)

u(1)

�

;

z

2

+ z

4

=

�

v(1)

u(1)

�

v(0)

u(0)

�

u(0);(72)

z

1

+ z

6

=

�

v(0)

u(0)

�

v(1)

u(1)

�

u(1);

in addition to the �rst three equations in (70).

In order to 
onstru
t B�a
klund transformations for this system we 
onsider, for

a �xed point P 2 C

6

, the following rational fun
tion

F (x; y) =

y + v(x) + �u(x)

u(x)(x � �

f

)

;(73)

and we demand that the numerator of F vanishes at the point (�

f

;��

f

), as in the


ase of the Mumford system. It leads to

~u(x) =

�

2

u(x) + 2�v(x)� w(x)

�4h

1

(�

f

� x)

;

~v(x) =

(�

3

� 4h

1

�(x � �

f

))u(x) + (2�

2

� 4h

1

(x� �

f

))v(x) � �w(x)

4h

1

(x� �

f

)

;(74)

the value of ~w(x) is not needed for the 
omputation. Writing (72) in terms of tilded

variables and substituting (74) in it we �nd

~z

3

� ~z

5

z

3

� z

5

= 2(z

3

+ z

5

)

�

�

f

z

1

+ z

4

+ 2z

3

+ �

�

�

f

� 1

z

1

+ z

4

+ 2z

5

+ �

�

;

~z

2

+ ~z

4

z

2

+ z

4

= �

1

4

~z

3

� ~z

5

z

3

� z

5

(z

1

+ z

4

+ 2z

3

+ �)

2

h

1

�

f

;

~z

1

+ ~z

6

z

1

+ z

6

= �

1

4

~z

3

� ~z

5

z

3

� z

5

(z

1

+ z

4

+ 2z

5

+ �)

2

h

1

(�

f

� 1)

:

Sin
e the map preserves the Hamiltonians the above three expressions are (in that

order) also equal to

z

3

+ z

5

~z

3

+ ~z

5

;

z

2

� z

4

~z

2

� ~z

4

;

z

1

� z

6

~z

1

� ~z

6

;
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so that the above equations 
an be solved linearly in terms of the variables ~z

i

. The

Poisson matrix of a Poisson stru
ture for this system is given by

0

B

B

B

B

B

B

�

0 z

6

�z

5

0 �z

3

z

2

� 2z

5

�z

6

0 0 z

6

� 2z

3

0 �z

1

� z

4

z

5

0 0 �z

5

0 0

0 2z

3

� z

6

z

5

0 z

3

�z

2

z

3

0 0 �z

3

0 0

2z

5

� z

2

z

1

+ z

4

0 z

2

0 0

1

C

C

C

C

C

C

A

:

If � depends on the Casimirs of this Poisson stru
ture only, then the above map is

a Poisson map, so it is a B�a
klund transformation; moreover it has the spe
trality

property. This 
an be veri�ed dire
tly by 
omputing the bra
kets f~z

i

; ~z

j

g and

verifying the 
ompatibility relations. Alternatively one uses the fa
t that the map

whi
h is indu
ed on the triples of polynomials (u(x); v(x); w(x)), as above, is a

B�a
klund transformation for an a.
.i. system obtained by removing in the Mumford

system the restri
tion that the polynomial w be moni
 (the Poisson stru
tures are

obtained from (16) by repla
ing �
� with �w � �
�, where �w denotes the leading


oeÆ
ient of w(x)). It suÆ
es then to verify that the map whi
h sends (z

1

; : : : ; z

6

)

to (u(x); v(x); w(x)) is a Poisson map and has the spe
trality property when one

takes on the target spa
e the Poisson stru
ture 
orresponding to '(x) = x(x� 1).

3.5. The H�enon-Heiles potential. In this paragraph we show on an example

how one gets B�a
klund transformations for a.
.i. systems whose generi
 level set

of the integrals is a �nite 
over of a Ja
obian. We do this by lifting the B�a
klund

transformation for the underlying family of Ja
obians to the 
over; sin
e su
h a

lifting is not unique we get, in general, an impli
itly de�ned 
orresponden
e, rather

than an expli
it map.

We treat the 
ase of the H�enon-Heiles system, whi
h is given by the following

Hamiltonian on C

4

, equipped with the standard symple
ti
 stru
ture,

H =

1

2

�

p

2

1

+ p

2

2

�

+ 8q

3

2

+ 4q

2

1

q

2

:

A �rst integral is given by

F = �q

2

p

2

1

+ q

1

p

1

p

2

+ q

2

1

(q

2

1

+ 4q

2

2

):

We use the map de�ned by

u(x) = x

2

� 2q

2

x� q

2

1

;

v(x) =

i

p

2

(p

2

x+ q

1

p

1

);(75)

w(x) = x

3

+ 2q

2

x

2

+ (q

2

1

+ 4q

2

2

)x�

p

2

1

2

;

whi
h is a morphism to the Mumford system, the latter being equipped with the

Poisson stru
ture 
orresponding to '(x) = x. It follows from the results of Se
tion

2 that for any 
onstant � 2 C we get a B�a
klund transformation, given by

~

L =

MLM

�1

, where

L(x) =

 

i

p

2

(p

2

x+ q

1

p

1

) x

3

+ 2q

2

x

2

+ (q

2

1

+ 4q

2

2

)x�

p

2

1

2

x

2

� 2q

2

x� q

2

1

�

i

p

2

(p

2

x+ q

1

p

1

)

!
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and

M(x) =

�

� x� �

f

+ �

2

1 �

�

; where � =

p

2�

f

� i(p

2

�

f

+ q

1

p

1

)

p

2(�

2

� 2q

2

�� q

2

1

)

:

Also �

2

f

= f(�

f

) with

f(x) = u(x)w(x) + v

2

(x) = x(x

4

� hx� g);

where h and g are the values of H and G at the point (q

1

; q

2

; p

1

; p

2

). Poissoni
ity

and spe
trality are a 
onsequen
e of the fa
t that the map (q

1

; q

2

; p

1

; p

2

)! (u; v; w),

given by (75) is a Poisson map. One noti
es that in this 
ase one does not get expli
it

formulas for ~q

1

; ~q

2

; ~p

1

; ~p

2

but for ~q

2

1

; ~q

2

; ~q

1

p

1

; ~p

2

, whi
h stems from the fa
t that the

generi
 level manifolds of the integrals are 2 : 1 unrami�ed 
overs of Ja
obians.

4. Con
luding remarks

We have 
onstru
ted B�a
klund transformations for a large 
lass of integrable

systems. Basi
ally, we have 
onsidered four large families of integrable systems

that are of interest in mathemati
al physi
s. Indeed, if we 
hoose the following

parametrization of the generators (h

j

; e

j

; f

j

) of a dire
t sum of g or g + 1 
opies

of the Lie-Poisson algebra of sl(2), in terms of the 
anoni
al Darboux variables

(
oordinates and momenta), (p

j

; q

j

), fp

j

; q

k

g = Æ

jk

:

h

j

=

1

2

p

j

q

j

; f

j

=

1

2

q

2

j

; e

j

= �

1

2

p

2

j

+

2C

j

q

2

j

;

then we deal with the following Hamiltonian systems.

(1) In the 
ase of the Mumford system the Hamiltonian is of the form:

H =

1

2

g

X

i=1

p

2

i

�

g

X

i=1

2C

i

q

2

i

�

1

2

g

X

i=1

q

2

i

(a

i

+ C

0

) +

1

4

 

g

X

k=1

q

2

k

!

2

;

so this 
ase is a generalization of the g-dimensional Garnier system.

(2) For the even Mumford system the Hamiltonian fun
tion des
ribes the motion

of a parti
le in a potential of order 6:

H =

1

2

g

X

i=1

p

2

i

�

g

X

i=1

2C

i

q

2

i

�

1

2

g

X

i=1

(a

2

i

+ a

i

C

�1

+ C

0

)q

2

i

+

1

4

 

g

X

k=1

q

2

k

!

g

X

i=1

(C

�1

+ 2a

i

)q

2

i

�

1

8

 

g

X

k=1

q

2

k

!

3

:

(3) In the odd generalized 
ase we have an integrable system with linear potential

H =

1

2

g

X

i=0

p

2

i

�

g

X

i=1

2C

i

q

2

i

+

1

2

q

0

:

(4) In the even generalized 
ase we have a g-dimensional harmoni
 os
illator

H =

1

2

g

X

i=0

p

2

i

�

g

X

i=0

2C

i

q

2

i

�

1

2

g

X

i=0

q

2

i

:

In other words we have showed how to 
onstru
t in a systemati
 way B�a
klund

transformations for integrable systems linearisable on hyperellipti
 Ja
obians or

generalized hyperellipti
 Ja
obians. Sin
e for many 
lassi
al integrable systems it is
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known how to embed them into Mumford systems [21℄, our 
onstru
tion produ
es

many new integrable dis
retizations of Liouville integrable systems, su
h as the

Kowalevski, Gorya
hev-Chaplygin and Euler tops, Toda latti
es and the Gaudin

magnet.
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