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Abstra
t. The (�1)-involution on the Ja
obian J

�

of an arbitrary Riemann

surfa
e � of genus two leads to a singular surfa
e, the Kummer surfa
e K

�

of J

�

, whi
h, after desingularization, de�nes a K-3 surfa
e

~

K

�

. We 
onsider

ample line bundles on

~

K

�


oming from the even or odd se
tions of [n�℄ with

pres
ribed vanishing at the 2-division points of J

�

(� is the theta divisor of

J

�

). We use an integrable system to show that in the 
ases we study the linear

system is base-point-free, to determine whi
h 
urves are 
ontra
ted to singular

points and to 
ompute an expli
it equation for the surfa
e in proje
tive spa
e.

Our expli
it methods apply to the Kummer surfa
e of any Abelian surfa
e,

given as the �ber of the moment map of an algebrai
 
ompletely integrable

system.
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1. Introdu
tion

When studying quarti
 surfa
es in three-spa
e with sixteen nodes, Kummer dis-


overed a very beautiful geometry, relating su
h a surfa
e on the one hand to the

Ja
obian of a hyperellipti
 
urve (of genus two) and on the other hand to the singu-

lar surfa
e of a quadrati
 
omplex (for a modern a

ount of this, see [10, Chapter

6℄). These singular surfa
es, whi
h form a three-dimensional family, are 
alled (sin-

gular) Kummer surfa
es. They reappeared re
ently in the 
ompa
ti�
ation of the

1991 Mathemati
s Subje
t Classi�
ation. 14H40, 14J28, 58F07.

Key words and phrases. Integrable Systems, Abelian Surfa
es, Kummer Surfa
es, K-3

Surfa
es.
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moduli spa
e of stable rank two bundles (of �xed determinant) on a Riemann sur-

fa
e (see [20℄) and as the singular lo
us of a natural Poisson stru
ture on a moduli

spa
e of 
at SU(2) 
onne
tions on a Riemann surfa
e (see [13℄).

The easiest way to obtain abstra
tly the Kummer surfa
e K

�

whi
h is asso
i-

ated to a 
ompa
t Riemann surfa
e � of genus two is as the singular quotient

J

�

=(�1) of the Ja
obian J

�

of � by the (�1)-involution x 7! �x (re
all that J

�

is a two-dimensional 
omplex torus). As su
h the Kummer surfa
e has an obvious

generalization to other Ja
obians (i.e., to Riemann surfa
es of higher genus) and to

other 
omplex algebrai
 tori (Abelian varieties) (see [16, Se
tion 4.8℄). To obtain

the Kummer surfa
e 
on
retely, i.e., as an algebrai
 surfa
e in proje
tive spa
e, one


onsiders the image of the regular map

�

[2�℄

: J

�

! PH

0

(J

�

; [2�℄)

�

yielding a quarti
 surfa
e in P

3

; the divisor � whi
h appears in this map is the

divisor of Riemann's theta fun
tion, and the 2 : 1 map �

[2�℄

assigns to any point

P 2 J

�

the hyperplane of se
tions of the line bundle [2�℄ that vanish at P . For

higher dimensional Ja
obians the image of �

[2�℄

also provides a proje
tive image

of its Kummer varieties (see [16, Se
tion 4.8℄), but for other Abelian varieties,

even for Abelian surfa
es, the situation is more 
ompli
ated (see [6℄). Getting

expli
it equations for Kummer surfa
es is still a di�erent matter and relies in all

situations that have been 
onsidered on arguments that depend heavily on the

spe
i�
 geometry of the Kummer surfa
e at hand (for higher dimensional Kummer

varieties no su
h equations are known at present). One 
lassi
al 
omputation of

the equation of the Kummer surfa
e K

�

as a surfa
e in P

3

for example relies on the

symmetries of the level two Heisenberg group (a 
entral extension of the group of

half periods (2-division points) of J

�

) (see [12, Chapter 8℄); it is not 
lear how to

adapt this approa
h to other Kummer surfa
es. The other 
lassi
al 
omputation

relies on the above mentioned fa
t that the minimal resolution of K

�

is the singular

surfa
e of the quadrati
 
omplex (see [14, Se
t. 82℄) and is thus even more dependent

on the spe
i�
s of the geometri
 situation.

The purpose of this paper is to show how equations for proje
tive images of

Kummer surfa
es 
an be obtained in a systemati
 way. Although our te
hniques

are valid for other Abelian varieties, we will restri
t ourselves here to Kummer

surfa
es of two-dimensional Ja
obians, but we will 
onsider besides the 
lassi
al

Kummer surfa
e in P

3

also other, less singular, proje
tive models in P

3

; P

4

, and

P

5

. Abstra
tly, these Kummer surfa
es are obtained by desingularizing K

�

at some

but not all of its singular points: note that on any Abelian surfa
e the (�1)-

involution has sixteen �xed points, hen
e the quotient K

�

has sixteen singular

points. The desingularization of K

�

is a K-3 surfa
e whi
h is denoted by

~

K

�

, and

the partial desingularizations are 
alled intermediate Kummer surfa
es. Con
retely,

as algebrai
 surfa
es in proje
tive spa
e, the K-3 surfa
e and the intermediate

Kummer surfa
es are obtained by 
onstru
ting line bundles on the (abstra
t) K-3

surfa
e

~

K

�

. We 
onstru
t su
h line bundles as follows. Let

p :

~

J

�

! J

�

be the blow-up of J

�

at its sixteen half periods. The (�1)-involution on J

�

indu
es

an involution on

~

J

�

whi
h leads to a non-singular quotient � :

~

J

�

!

~

K

�

. We pi
k a

symmetri
 line bundle L on J

�

and denote the line bundle p

�

L on

~

J

�

by

~

L. For any

� = (�

i

)

i=1;:::;16

we 
onsider the spa
e j

~

Lj

+

�

(resp. j

~

Lj

�

�

) of even (resp. odd) se
tions
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of

~

L whi
h vanish at least �

i

times at the ex
eptional divisor E

i

whi
h lies over the

half period e

i

. These linear systems des
end to 
omplete linear systems jM

+

�

j (resp.

jM

�

�

j) on

~

K

�

. Using standard algebrai
 geometri
 arguments we will determine the

dimension of su
h linear systems (Proposition 3.2), i.e., the dimension of the target

spa
e of the map

�

M

�

�

:

~

K

�

! PH

0

(

~

K

�

;M

�

�

):

The main fo
us of the paper is then on studying the map �

M

�

�

and on obtaining

expli
it equations for the image of this map. We do this by using an algebrai



ompletely integrable system (a.
.i. system) whose �bers of the (
omplex) moment

map are aÆne parts of genus two Ja
obians. Our methods do not depend on

the parti
ular a.
.i. system that we use and 
an hen
e be used to 
ompute expli
it

equations for other Kummer varieties, as long as the 
orresponding Abelian varieties

appear as the �ber of the moment map of some a.
.i. system. Let us explain

shortly the role of this deus ex ma
hina (for more information, see [3℄ or [28℄). It

was observed by Kowalewski that an a.
.i. system on an n-dimensional spa
e M

must have one or several families of Laurent solutions depending on n � 1 free

parameters. A 
areful analysis shows that ea
h su
h family F

i


orresponds to an

irredu
ible 
omponent D

i

of the divisor D to be adjoined to a generi
 �ber �

�1

(
)

of the moment map

� :M ! Spe
A

(A is the algebra of �rst integrals of the a.
.i. system; D depends on 
) in order

to 
omplete it into an Abelian variety. Moreover, for any fun
tion f on M the

restri
tion f

j�

�1

(
)

of f to this �ber has a pole along D

i

whi
h equals the pole

of the Laurent series of f , as 
omputed from the family F

i

. Sin
e (the �rst few

terms of) the Laurent solutions of an a.
.i. system 
an be e�e
tively 
omputed,

we have an e�e
tive way to 
ompute a basis for the meromorphi
 fun
tions having

pres
ribed poles at a given divisor and hen
e an e�e
tive way to 
ompute expli
itly

the se
tions of any of the line bundles L = [

P

n

i

D

i

℄. Sin
e the (�1)-involution

reverses the signs of all the integrable ve
tor �elds of the a.
.i. system the splitting

in even and odd se
tions 
an also be determined expli
itly. Finally, having these

se
tions at hand one expresses easily the 
ondition that a se
tion has a pres
ribed

vanishing at some of the half periods. Summarizing, starting from an a.
.i. system

whi
h has a given Ja
obian J

�

(or, more generally, an Abelian variety) as one of

its �bers, we 
an �nd an expli
it basis for H

0

(

~

K

�

;M

�

�

) and hen
e also expli
it

formulas for the (non-linear) relations whi
h hold between those se
tions, i.e., for

the equations that de�ne the proje
tive image of

~

K

�

.

The integrable system 
omes in handy for many other things. We use it for

example to determine the base lo
us of the linear system under 
onsideration: in

the 
ases of interest to us, this base lo
us will be shown to be empty, showing

that our maps �

M

�

�

are regular maps. Moreover we 
an use it to determine whi
h

divisors are 
ontra
ted: in our 
ase the only possible 
ontra
tions will be divisors

on

~

K

�

whi
h 
orrespond to translates of the theta divisor (theta 
urves) or to the

ex
eptional divisors E

i

. Our arguments have the advantage that they 
onsist of an

algebrai
 
omputation only, in 
ontrast with the more geometri
 arguments, whi
h

are spe
i�
 to the parti
ular 
lass of Abelian surfa
es and to the linear system under


onsideration.
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Finally, using the expli
it se
tions we 
an 
ompute the 
oordinates of the singular

points of the image, whi
h allows us to rewrite the equation(s) of the embedded

intermediate Kummer surfa
e in a very symmetri
 form. In those 
ases in whi
h no

vanishing at the half periods is pres
ribed we will also provide an equation whose


oeÆ
ients are expli
itly expressed in terms of the 
oeÆ
ients of the 
urve, de�ning

the Riemann surfa
e �; from the point of view of number theory su
h equations

are more useful than equations that depend on the 
oordinates of the Weierstrass

points of the surfa
e. As far as we know su
h equations for Kummer surfa
es do not

appear in the 
lassi
al or modern literature. When rewritten in a more symmetri


form, depending on the 
oordinates of the Weierstrass points, we re
over in some


ases known equations and otherwise new equations for proje
tive images of

~

K

�

. In

the following table we summarize some geometri
 information about the proje
tive

images that we 
onsider.

Table 1

L parity � P

N

sing. points eq. 1 eq. 2

[2�℄ even 0 P

3

16+0=16 (22) (25)

[3�℄ even 0 P

3

6+0=6 (27) (29)

[3�℄ odd 0 P

4

10+1=11 (30) (31)

[3�℄ odd (2,0, : : : ,0) P

3

9+1=10 | (34)

[4�℄ odd 0 P

5

0+0=0 (35) (36)

[4�℄ odd (1, : : : ,1,3) P

3

0+6=6 (27) (29)

[4�℄ even (2,2,2,2,0, : : : ,0) P

5

12+0=12 | (37)

The meaning of the �rst three 
olumns is 
lear. In the fourth 
olumn, P

N

=

PH

0

(

~

K

�

;M

�

�

)

�

. The �rst number appearing in the sum in 
olumn �ve is the

number of ex
eptional 
urves that get 
ontra
ted while the se
ond number is the

number of theta 
urves that get 
ontra
ted. The sum in 
olumn �ve is the total

number of irredu
ible divisors that get 
ontra
ted. In the last two 
olumns we give

a referen
e to the equations for the image of the Kummer surfa
e in P

N

, the �rst

equation being the one that does not involve the 
oordinates of the Weierstrass

points expli
itly, while the se
ond equation is more symmetri
 but does depend

on the 
oordinates of the Weierstrass points. Equations (25) and (36) appear

already in [14℄ but all other equations are new. Using a related integrable system

the se
ond author has, in 
ollaboration with Jos�e Bertin, obtained equations for a

one-dimensional family of generalized Kummer surfa
es in P

4

(see [9℄).

A
knowledgements. The �rst author wishes to thank the Universit�e Catholique

de Louvain for its hospitality. The se
ond author would like to thank Jos�e Bertin

for drawing his attention to the 
lassi
al paper [23℄ by Remy and is grateful to

Fran
es
o Botta
in for useful dis
ussions; he also a
knowledges the Universidad

Na
ional del Sur in Bah��a Blan
a for its hospitality.

2. Abelian and K-3 surfa
es

In this se
tion we 
onsider some basi
 fa
ts about 
omplex Abelian surfa
es and

K-3 surfa
es. These surfa
es are nonsingular and their 
anoni
al bundles are trivial.
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For any surfa
e X we will write O

X

for its stru
ture sheaf and K

X

for its 
anoni
al

divisor. When X is non-singular then the line bundle L (invertible sheaf) whi
h


orresponds to a divisor D will be denoted by [D℄ and the dimension of the i-th


ohomology group H

i

(X;L) is written as h

i

(L) or h

i

(D). When D is e�e
tive we

denote its 
omplete linear system PH

0

(X; [D℄) by jDj; for L = [D℄ we also write

jLj for jDj. An e�e
tive redu
ed divisor on X will be 
alled a 
urve on X . Linear

equivalen
e of divisors is denoted by �.

For an Abelian or K-3 surfa
e X the birational invariants are summarized in the

following table.

Table 2

invariant notation de�nition K-3 Abelian

irregularity q(X) h

1

(O

X

) 0 2

arith. genus p

a

(X) �(O

X

)� 1 1 �1

geom. genus p

g

(X) h

2

(O

X

) 1 1

We will use line bundles on Abelian and K-3 surfa
es to 
onstru
t images of Kum-

mer surfa
es and K-3 surfa
es in proje
tive spa
e. Re
all that to a line bundle

L = [D℄ there is asso
iated a holomorphi
 map

�

L

: X nB(L)! PH

0

(X;L)

�

whi
h assigns to any point P (whi
h is not in the base lo
us B(L) of L) the spa
e

of se
tions of L that vanish at P . We 
all L (and D) very ample when � is an

embedding and B(L) = ;. If some positive power of L (multiple of D) provides an

embedding then we 
all L (or D) ample. Expli
itly, if (s

0

; : : : ; s

N

) denotes a basis

of H

0

(X;L) then �

L

is given for P 2 X nB(L) by

�

L

(P ) = (s

0

(P ) : s

1

(P ) : � � � : s

N

(P )):

Let us assume that B(L) = ; and that the image of �

L

is a surfa
e. Then, by

Bertini's �rst theorem (see [26, p. 21℄), the general member of jLj is irredu
ible and

smooth. If �

L


ontra
ts a 
urve C (�

L

(C) is a point p), then L�C = 0 sin
e we 
an


hoose a 
urve D

0

2 jLj = jDj su
h that �

L

(D

0

) avoids the point p. By Bertini's

se
ond theorem ([26, p. 24℄) su
h a 
urve is smooth and it is 
lear that D

0

does not

interse
t C. However, if C is not 
ontra
ted then D � C is the degree of �

L

(C) in

PH

0

(X;L)

�

, multiplied by the degree of �

L

.

The adjun
tion formula for nonsingular 
urves on a surfa
e implies that the

(virtual) genus of a 
urve C on an Abelian or K-3 surfa
e is given by g(C) =

C

2

=2 + 1: On the other hand, the Riemann-Ro
h formula

�(D) =

1

2

D � (D �K

X

) + 1 + p

a

(X)

simpli�es for a 
urve C on an Abelian or K-3 surfa
e to

h

0

(C) =

1

2

C

2

+ 1 + p

a

(X) + h

1

(C)

be
ause K

X

= 0 and the Euler 
hara
teristi
 of [C℄ is given by �(C) = h

0

(C) �

h

1

(C) + h

0

(K

X

� C) = h

0

(C) � h

1

(C). In 
lassi
al terminology h

1

(C) is 
alled
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the superabundan
e of C and is 
omputed by using a theorem by Kodaira (see [15,

Theorems 2.2 and 2.3℄).

Theorem 2.1. Let m be the number of 
onne
ted 
omponents of a 
urve C on a

surfa
e X. Then h

1

(K+C) = m�1+k, where the integer k denotes the dimension

of the kernel of the homomorphism

H

1

(X;O

X

)! H

1

(C;O

C

):

In the 
ase in whi
h X is K-3 we have from Table 2 that q(X) = h

1

(O

X

) = 0

so that k = 0 and h

1

(C) = m� 1, leading to the �nal formula

h

0

(C) =

1

2

C

2

+m+ 1 = g(C) + 1:(1)

In this 
ase 
onditions for an ample line bundle to lead to a birational map were

given by Saint-Donat (see [25, Theorem 5.2℄).

Theorem 2.2. Let L be a line bundle on a K-3 surfa
e X su
h that L

2

� 4. If

the linear system jLj = PH

0

(X;L) has no �xed 
omponents then L = [C℄ for an

irredu
ible 
urve C of genus g(C) = L

2

=2 + 1 and the map

�

L

: X ! PH

0

(X;L)

�

= P

g(C)

;

is regular. Moreover, � is birational unless X 
ontains an irredu
ible 
urve C

0

su
h

that g(C

0

) = 1 and C

0

� C = 2 or su
h that g(C

0

) = 2 and C � 2C

0

:

The following result, whi
h is also due to Saint-Donat (see [25, Theorems 6.1

and 7.2℄), gives some information about the equations whi
h de�ne the image.

Theorem 2.3. Let L = [C℄ be a line bundle on a K-3 surfa
e whi
h satis�es the


onditions of Theorem 2.2, ex
luding the ex
eptional 
ases, i.e., � is birational.

Then the natural map

 : S

�

H

0

(X;L) �!

M

n�0

H

0

(X;L

n

)

is surje
tive. If L

2

= 4 then the kernel of  is generated by an element of degree

four while if L

2

= 6 it is generated by a pair of elements of degrees two and three.

If L

2

� 8 then the kernel of  is generated by its elements of degree two unless X


ontains an irredu
ible 
urve C

0

su
h that g(C

0

) = 1 and C

0

�C = 3 or X 
ontains

a pair of irredu
ible 
urves C

0

; C

00

su
h that g(C

0

) = 2; g(C

00

) = 0; C

0

�C

00

= 1 and

C � 2C

0

+ C

00

.

3. Proje
tive images of Kummer surfa
es

A natural 
lass of K-3 surfa
es appears as follows. Let A be an Abelian surfa
e.

The (�1)-involution on A (re
e
tion with respe
t to the origin), whi
h will be

denoted by (�1)

A

, leads to a singular quotient K

A

= A=(�1)

A

whi
h is 
alled the

(singular) Kummer surfa
e of A. It has sixteen singular points whi
h 
orrespond

to the half periods e

1

; : : : ; e

16

of A. The desingularization of K

A


an be des
ribed

as follows. Let p :

~

A! A be the blow-up of A at all its half periods and denote the


orresponding ex
eptional divisors by E

i

. (�1)

A

extends to an involution (�1)

~

A

on

~

A and the quotient

~

K

A

=

~

A=(�1)

~

A

is a K-3 surfa
e (see [8, Proposition VIII.11℄).
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~

K

A

is the desingularisation (minimal resolution) of K

A

and we have the following


ommutative diagram.

~

A

A

~

K

A

K

A

-

p

?

�

?

-

Asso
iated to A there are also several intermediate Kummer surfa
es whi
h are

desingularizations of K

A

at some but not all singular points.

We will be interested in proje
tive embeddings of smooth, singular and interme-

diate Kummer surfa
es. Therefore we need to know how to 
onstru
t ample line

bundles on

~

K

A

. Let L be a symmetri
 line bundle on A, (�1)

�

A

L

�

=

L. Then (�1)

A

lifts uniquely to an involution (�1)

L

on the total spa
e of L whi
h is C -linear on

the �bers of L and whi
h is identity on the �ber over the origin of A (see [16,

Lemma 4.6.3℄). Sin
e the involution whi
h (�1)

L

indu
es on the �ber over ea
h

half period is linear it is either identity or multipli
ation by �1. If it is identity

the 
orresponding half period is 
alled even, otherwise it is 
alled odd ; in parti
ular

the origin is always an even half period. The indu
ed involution s! (�1)

L

s(�1)

A

on H

0

(A;L) leads to a splitting of H

0

(A;L) into (+1) and (�1) spa
es, whose

elements are 
alled even se
tions and odd se
tions,

H

0

(A;L) = H

0

(A;L)

+

�H

0

(A;L)

�

:

Everything 
an be pulled ba
k using p: we have a line bundle

~

L = p

�

L on

~

A

with an indu
ed involution (�1)

~

L

and an indu
ed splitting of H

0

(

~

A;

~

L); 
learly p

�

realizes isomorphisms between the even resp. odd se
tions of

~

L and those of L. Most

importantly, these even and odd se
tions of

~

L 
orrespond to the se
tions of two line

bundles on

~

K

A

: the rank two sheaf �

�

~

L splits under the a
tion s ! (�1)

~

L

s(�1)

~

A

into (+1) and (�1) spa
es

�

�

~

L =M

+

�M

�

;

and there are isomorphisms [6, Proposition 1.1℄

H

0

(

~

A;

~

L)

�

�

=

H

0

(

~

K

A

;M

�

):

So, we 
an realize odd (even) se
tions of L on the Abelian variety A as se
tions of

M

�

(M

+

) on the smooth Kummer surfa
e

~

K

A

. The above 
onstru
tion 
an be

generalized by de�ning for any ve
tor � = (�

1

; : : : ; �

16

) 2 N

16

the line bundle

~

L

�

by

~

L

�

= p

�

L 


h

X

(��

i

)E

i

i

:(2)

We think of se
tions of

~

L

�

as se
tions of L with pres
ribed vanishing at the half

periods e

i

. The involution (�1)

~

L

�

on the total spa
e of

~

L

�

is de�ned as the tensor

of (�1)

~

L

with the identity on ea
h [E

i

℄. Thus, �

�

~

L

�

splits under the a
tion '(s) =

(�1)

~

L

�

s(�1)

~

A

into (+1) and (�1) line bundles on

~

K

A

, whi
h we denote by M

+

�

and M

�

�

.

When working out 
on
rete examples it is useful to know in advan
e the dimen-

sion of H

0

(

~

K

A

;M

�

�

), to know whether the map to proje
tive spa
e, given by the

se
tions, is birational and whether some divisors (ex
eptional or not) are 
ontra
ted
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by this map. Sin
e the symmetri
 line bundles L whi
h we will 
onsider 
ome from

expli
itly given divisors, we will state the result in the language of divisors. A

divisor (or 
urve) D on A is 
alled symmetri
 if (�1)

�

A

D = D. The line bundle

of a symmetri
 divisor is symmetri
 and the even and odd se
tions of a symmetri


line bundle are symmetri
 divisors ([16, Lemma 4.7.1℄); therefore, working with

symmetri
 divisors is just as general as working with symmetri
 line bundles. We

will 
all a symmetri
 divisor even or odd a

ording to whether it is de�ned by an

even or odd se
tion. It is easy to see that an even (resp. odd) divisor D has even

(resp. odd) multipli
ity pre
isely at the even half periods (in parti
ular at the ori-

gin). We denote the multipli
ity of D at the half period e

i

by �

i

(D). Let us �x a

symmetri
 
urve D on A for whi
h [D℄ = L. By passing to a linearly equivalent

divisor (if ne
essary) we may assume that D is su
h that the 
hosen numbers �

i

satisfy �

i

� �

i

(D) for any i, be
ause if a divisor with the required vanishing at the

half periods does not exist, then

~

L

�

has no se
tions and is not of interest for our

purposes. As we will show in the next proposition the divisor p

�

D �

P

16

i=1

�

i

E

i

is

symmetri
 if and only if the multipli
ities �

i

are either all even or all odd; we will

say in these 
ases that � is even or odd. If we denote the proper transform of D by

^

D then p

�

D =

^

D +

P

�

i

(D)E

i

so that

~

L

�

=

h

^

D +

X

(�

i

(D)� �

i

)E

i

i

:

Let

1

C =

1

2

�

�

^

D +

1

2

16

X

i=1

(�

i

(D)� �

i

)B

i

;(3)

where B

i

= �

�

E

i

and �

i

is de�ned by �

i

= �

i

if �

i

(D)� �

i

is even, and �

i

= �

i

+ 1

if �

i

(D)� �

i

is odd (i = 1; : : : ; 16). The 
urves B

i

are 
alled (�2)-
urves be
ause

B

2

i

=

1

2

(�

�

B

i

)

2

= 2E

2

i

= �2:

Proposition 3.1. Suppose that D 2 jLj be symmetri
, let � 2 N

16

be even or odd

and let the 
urve C on

~

K

A

be de�ned by (3). Then [C℄ =M

+

�

if D and � have the

same parity, otherwise [C℄ =M

�

�

.

Proof. Let s resp. s

�

be se
tions that vanish at D

0

=

^

D +

P

16

i=1

(�

i

(D) � �

i

)E

i

resp. at p

�

D =

^

D +

P

16

i=1

�

i

(D)E

i

. We 
hoose a lo
al de�ning equation x

i

for E

i

.

Using the fa
t that x

i

(�1)

~

A

= �x

i

and that lo
ally the two se
tions are related by

s = s

�

=x

�

i

i

we �nd

'(s) = (�1)

~

L

�

s(�1)

~

A

= (�1)

~

L

�

s

�

(�1)

~

A

=(�1)

�

i

x

�

i

i

= �s=(�1)

�

i

;

where +=� 
orresponds to s

�

even/odd. This implies that s is symmetri
 if and

only if � is even or odd, and it shows how the parity of s is related to the parity

of s

�

(i.e., of D) and of �. We want to see how s des
ends to the Kummer surfa
e

~

K

A

. Let us assume that s is an even se
tion, s 2 H

0

(

~

A;

~

L

�

)

+

, so that 1=s lo
ally

generates the O

~

K

A

-moduleM

+

�

; a proof for an odd se
tion goes along similar lines.

1

Noti
e that sin
e

^

D is symmetri
 ea
h irredu
ible 
omponent of its dire
t image �

�

^

D appears

an even number of times.
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The 
anoni
al map O

~

K

A

! �

�

O

~

A

leads, by taking a dire
t limit over neighbour-

hoods of q 2

~

A, to a map

�

q

: O

~

K

A

;�(q)

! �

�

O

~

A;q

! O

~

A;q

:

and indu
es an isomorphism O

~

K

A

�

=

(�

�

O

~

A

)

G

, where G is the group generated by

(�1)

�

~

A

([19, page 66℄). Away from the rami�
ation lo
us of �, whi
h 
onsists of the

set of ex
eptional 
urves E

i

, the map �

q

is an isomorphism. Therefore, if q 2

~

A

does not belong to an ex
eptional 
urve then �

q

sends the lo
al equation of C to the

equation s = 0 of D

0

. It remains to be shown that this is also true when q belongs to

an ex
eptional 
urve. Let q be a point in E

i

; we may assume that q does not belong

to any other E

j

. If we denote a lo
al de�ning equation for E

i

by x

i

, as before, and

we 
onsider a 
oordinate system (x

i

; t), then (u = x

2

i

; t) is a 
oordinate system

around �(q) and the map �

q

is the immersion C [[u; t℄℄ = C [[x

2

; t℄℄ ! C [[x; t℄℄. An

equation for D

0

about the point q is given by s = f(x; t) = x

m

i

g(x; t), where g is a

lo
al equation for the proper transform

^

D and m

i

= �

i

(D) � �

i

. The lo
al se
tion

g is even ([6, Proposition 1.2℄), so that g(x; t) = ~g(x

2

; t), and

'(s) = '(x

m

i

~g) = (�1)

m

i

x

m

i

~g = (�1)

m

i

s:

Sin
e s is an even se
tion the above equation shows that e

i

is an even half period

pre
isely if m

i

is even. Now, 1=f is a generator of the O

~

A;q

-module

~

L

q

and the

linear map � splits the rank two O

~

K

A

-module

~

L

q

into (�1) spa
es M

�

�(q)

. Then,

for this generator

'(1=f) = (�1)

m

i

=f; '(x=f) = �(�1)

m

i

x=f:

It follows that if e

i

is an even half period then 1=f is a generator of M

+

�

around

q; otherwise M

+

�

is generated by x

i

=f around q. In the �rst 
ase an equation

for a divisor on

~

K

�


orresponding to the line bundle M

+

�

is given by f(x

i

; t) =

x

2k

i

~g(x

2

i

; t) = u

k

~g(u; t) = 0. In the se
ond 
ase su
h an equation is given by

f(x

i

; t)=x

i

= x

2k+1

i

~g(x

2

i

; t)=x

i

= u

k

~g(u; t) = 0. In both 
ases this gives a lo
al

equation (around q 2 E

i

) for the divisor C, given by (3).

In the following proposition we use Kodaira's Theorem to 
ompute h

0

(C). We also


ompute the interse
tion of C with other 
urves (in parti
ular the (�2)-
urves)

be
ause this allows us to determine whi
h 
urves are 
ontra
ted by the map � :

~

K

A

! PH

0

(

~

K

A

; [C℄) and to 
ompute the degree of the image 
urve.

Proposition 3.2. Let D a symmetri
 
urve on an Abelian surfa
e A whi
h indu
es

a polarization of type (Æ

1

; Æ

2

). Suppose that � 2 N

16

is symmetri
 and satis�es

�

i

� �

i

(D) for i = 1; : : : ; 16. Let C be the 
urve on

~

K

A

de�ned by (3) and assume

that jCj has no �xed 
omponents. Then

C

2

= Æ

1

Æ

2

�

1

2

16

X

i=1

�

2

i

;(4)

h

0

(C) =

Æ

1

Æ

2

2

�

1

4

16

X

i=1

�

2

i

+m+ 1;(5)

where �

i

= �

i

if �

i

(D)� �

i

is even and �

i

= �

i

+ 1 otherwise; the integer m is the

number of 
onne
ted 
omponents of C. If C

0

is any 
urve in

~

K

A

whi
h does not
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ontain any of the 
urves B

i

as one of its irredu
ible 
omponents, then

C � C

0

=

D �D

0

2

�

1

2

16

X

i=1

�

i

�

i

(D

0

);(6)

where D

0

is the symmetri
 divisor on A su
h that �

�

C

0

= p

�

D

0

�

P

16

i=1

�

i

(D

0

)E

i

.

Also C � B

i

= �

i

for any i.

Proof. We know from Formula (1) that

h

0

(C) =

C

2

2

+m+ 1;(7)

where m is the number of 
onne
ted 
omponents of C. Sin
e � is of degree two we

get from (3) that

2C

2

=

 

^

D +

16

X

i=1

(�

i

(D)� �

i

)E

i

!

2

=

 

p

�

D �

16

X

i=1

�

i

E

i

!

2

:

Using the fa
t that (p

�

D)

2

= D

2

= 2Æ

1

Æ

2

we �nd the announ
ed formula (4).

Combined with (7) this gives the right number for h

0

(C). The veri�
ation of (6) is

similar:

C � C

0

=

1

2

 

^

D +

16

X

i=1

(�

i

(D) � �

i

)E

i

!

�

 

p

�

D

0

�

16

X

i=1

�

i

(D

0

)E

i

!

=

1

2

 

p

�

D �

16

X

i=1

�

i

E

i

!

�

 

p

�

D

0

�

16

X

i=1

�

i

(D

0

)E

i

!

=

D �D

0

2

�

1

2

16

X

i=1

�

i

�

i

(D

0

):

Finally,

C � B

i

=

1

2

 

^

D +

16

X

i=1

(�

i

(D)� �

i

)E

i

!

� 2E

i

= �

i

:

Our formula for h

0

(C) generalizes the formula given in [6, Theorem 3.1℄. In the

latter formula all �

i

are zero whi
h implies m = 1 be
ause at any half period whi
h

belongs to two irredu
ible 
omponents of D we have �

i

(D) � 2. If D is even (resp.

odd) then �

i

= 1 for the odd (resp. even) half periods and �

i

= 0 for the even (resp.

odd) half periods. Thus our formula spe
ializes to Bauer's formula,

h

0

(C) =

Æ

1

Æ

2

2

�

n

4

+ 2(8)

where n is the number of even half periods if D is odd and n is the number of odd

half periods if D is even.
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4. The Mumford system

In this se
tion we introdu
e an integrable system and we use it to 
ompute

expli
it bases for the se
tions of di�erent natural line bundles on the Ja
obian as

well as parametrizations of the divisors that are 
ut out by these se
tions. In the

next se
tion we will use these se
tions to 
ompute several proje
tive images of its

Kummer surfa
e.

Consider a hyperellipti
 
urve of genus two, given by the equation

�

2

= f(�) where f(�) =

5

Y

i=1

(� � �

i

) =

5

X

i=0

�

i

�

5�i

(9)

and assume that it is smooth, i.e., all �

i

are di�erent. This 
urve 
an be 
ompleted

into a non-singular 
omplete 
urve (
ompa
t Riemann surfa
e) � by adding a single

point whi
h we will denote by 1. The map � ! P whi
h is given on the aÆne

part � n f1g by (�; �) 7! � expresses � as a two-sheeted 
over of P. It has six

rami�
ation points !

i

(i = 0; : : : ; 5) whi
h are 
alled Weierstrass points. They

are the �xed points of the hyperellipti
 involution { whi
h is given on � n f1g by

(�; �) 7! (�;��). At1 the Riemann surfa
e is des
ribed in terms of a uniformizing

parameter t by

�(t) = t

�2

; �(t) = t

�5

�

1 +

�

1

2

t

2

+

4�

2

� �

2

1

8

t

4

+O(t

6

)

�

;(10)

showing that 1 is one of the Weierstrass points; we will always label these points

su
h that 1 = !

0

and su
h that �(!

i

) = �

i

for 1 � i � 5. At !

i

the 
urve is

parametrized by

�(t) = �

i

+ t

2

; �(t) =

s

Y

j 6=i

(�

i

� �

j

)

�

t+O(t

3

)

�

:(11)

(the parti
ular 
hoi
e of square root is irrelevant be
ause we 
an repla
e t by �t).

We denote the Ja
obian of � (its group of divisors of degree zero modulo linear

equivalen
e; equivalently its group of line bundels of degree zero) by J

�

and we

denote the element of J

�

that 
orresponds to a divisor D of degree zero on � by

[D℄. It is a fundamental fa
t that J

�

is an Abelian surfa
e and that the map

P 7! [P �1℄ is an embedding of the 
urve in its Ja
obian. We denote the image

of this map by � and 
all it the theta divisor; � is indeed a divisor and �

2

= 2.

The hyperellipti
 involution { on � extends linearly to an involution on the group

of divisors on � whi
h in turn des
ends to the (�1)-involution on J

�

. It follows

that the sixteen half periods on J

�

are given by e

ij

= [!

i

� !

j

℄ and their group

stru
ture is governed by the formulas

e

ij

+ e

jk

+ e

ki

= 0; for any i; j; k;

e

ij

+ e

kl

+ e

mn

= 0; for i; j; k; l;m; n all di�erent;

(for the proof of the se
ond formula, use the meromorphi
 fun
tion (� � �

i

)(� �

�

k

)(�� �

m

)=� to realize the linear equivalen
e !

i

+ !

k

+ !

m

� !

j

+ !

l

+ !

n

). We

also introdu
e the sixteen translates �

ij

= � + e

ij

of the theta divisor whi
h we

will 
all theta 
urves. The theta 
urves �

ij

are symmetri
, the odd ones are the

six 
urves �

0i

whi
h pass through the origin and the remaining ones are even.
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To every point of J

�

we 
an uniquely asso
iate a matrix of polynomials (in �)

0

�

v(�) u(�)

w(�) �v(�)

1

A

=

0

�

v

1

�+ v

2

�

2

+ u

1

�+ u

2

�

3

+ w

0

�

2

+ w

1

�+ w

2

�v

1

�� v

2

1

A

(12)

whose 
hara
teristi
 polynomial equals �

2

�f(�) as follows (see [18℄). Every element

of J

�

is of the form [P +Q� 21℄ for some P; Q 2 � and the unorderd pair (P;Q)

is unique if and only if P 6= {(Q). In this 
ase, if both P and Q are di�erent form

1 we take the entries of the matrix (12) to be given by (note that w(�) is indeed

a polynomial be
ause v(�(P )) = �(P ) and v(�(Q)) = �(Q))

u(�) = (�� �(P ))(� � �(Q));

v(�) =

�(P )� �(Q)

�(P )� �(Q)

�+

�(P )�(Q)� �(Q)�(P )

�(P )� �(Q)

;(13)

w(�) =

f(�)� v

2

(�)

u(�)

:

For example, for the ten half periods e

ij

= [!

i

� !

j

℄ (1 � i < j � 5); we get

0

�

0 (�� �

i

)(� � �

j

)

Q

k 6=i;j

(�� �

k

) 0

1

A

:(14)

The above formula for v(�) is to be interpreted in the right way when P = Q:

taking the limit Q! P in the above formula for v(�) we �nd the following formula

for v(�) when P = Q,

v(�) =

f

0

(�(P ))(� � �(P )) + 2f(�(P ))

2�(P )

:(15)

Note that the denominator does not vanish be
ause P 6= {P , i.e., P is not a Weier-

strass point. Still assuming that P 6= {(Q), if Q = 1 then the matrix is given

by

0

B

�

�(P ) �� �(P )

Q

5

i=1

(�� �

i

)�

Q

5

i=1

(�(P ) � �

i

)

�� �(P )

��(P )

1

C

A

:(16)

For example, for the �ve half periods e

i0

= [!

i

�1℄ ; i = 1; : : : ; 5 we have

0

�

0 �� �

i

Q

j 6=i

(�� �

j

) 0

1

A

:

The divisors P + {(P )� 21 form a linear system that 
orresponds to the origin of

the Ja
obian; its matrix is given by

0

�

0 1

Q

5

i=1

(�� �

i

) 0

1

A

:(17)

For future use we will now 
ompute the set of matri
es whi
h 
orrespond to the

divisors �

ij

; more pre
isely we will give a parametrization of all of the divisor minus

one point. In order to make our formulas more 
ompa
t we introdu
e the following
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expressions in the �

i

whi
h generalize the elementary symmetri
 polynomials �

i

(introdu
ed in (9)),

��

k;i

1

:::i

n

= �

kj�

i

1

=���=�

i

n

=0

; (1 � n+ k � 5);

�

k;i

1

:::i

n

= ��

k;j

1

:::j

5�n

; (fj

1

; : : : ; j

5�n

g = f1; : : : ; 5g n fi

1

; : : : ; i

n

g):

For example �

1;12

= ��

1

� �

2

and ��

3;12

= ��

3

�

4

�

5

.

Clearly, a parametrization for the theta divisor � = �

00

is given by all matri
es

(16) where P runs over �. For the other divisors �

0i

we get

0

B

�

�(P )

�� �

i

�(P )� �

i

(�� �(P ))(� � �

i

)

?

i

��(P )

�� �

i

�(P )� �

i

1

C

A

;(18)

where ?

i

is found by expressing that the 
hara
teristi
 polynomial of the matrix is

equal to �

2

� f(�),

?

i

= �

3

+ �

2

(��

1;i

+ �(P )) + �(��

2;i

+ �(P )��

1;i

+ �(P )

2

)

�

1

�(P ) � �

i

�

��

4;i

+ �

i

��

3;i

+ �

i

�(P )��

2;i

+ �

i

�(P )

2

��

1;i

+ �

i

�(P )

3

�

:

The formulas for 
omputing the other �

ij

(with 0 < i < j � 5) require some more

work. The points on �

ij

are of the form [P + !

i

+ !

j

� 31℄, whi
h we �rst need to

rewrite in the standard form [Q+R� 21℄ (Q and R will depend on P ). Consider

for �xed P the following meromorphi
 fun
tion on �,

'

P

(�; �) =

�+ �(P )

(�� �

i

)(� � �

j

)

(�(P ) � �

i

)(�(P ) � �

j

)

(�� �(P ))(� � �

i

)(�� �

j

)

:

It realises the linear equivalen
e P + !

i

+ !

j

� Q + R +1, the points Q and R

being given as the non-trivial zeros of the numerator. To �nd these zeros, multiply

this numerator by

�� �(P )

(�� �

i

)(�� �

j

)

(�(P ) � �

i

)(�(P )� �

j

)

to �nd the following equation in � whose solutions are �(Q) and �(R),

5

Y

k=1

(�� �

k

)(�(P )� �

i

)

2

(�(P ) � �

j

)

2

=

5

Y

k=1

(�(P ) � �

k

)(�� �

i

)

2

(�� �

j

)

2

:

Note that we are not required to solve this for �(Q) and �(R) individually: we 
an

solve it linearly for �(Q) + �(R) and �(Q)�(R) and this is enough to determine

the polynomial u(�) whi
h is asso
iated to an arbitrary point on �

ij

, in fa
t these

are pre
isely the 
oeÆ
ients of u(�) sin
e u(�) = (� � �(Q))(� � �(R)). Solving

linearly we get

u

1

=

�

2

(P )�

1;ij

+ �(P )(�

2

� 2��

2;ij

) + �

2;ij

��

1;ij

� ��

3;ij

(�(P )� �

i

)(�(P ) � �

j

)

;

u

2

=

�

2

(P )�

2;ij

+ �(P )(�

2;ij

��

1;ij

� ��

3;ij

) + �

2;ij

��

2;ij

� �

1;ij

��

3;ij

(�(P )� �

i

)(�(P ) � �

j

)

:(19)
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In order to �nd the polynomial v(�) whi
h is asso
iated to an arbitrary point on

�

ij

we use the vanishing of the numerator of '

P

to �nd

�(Q)� �(R)

�(Q)� �(R)

= ��(P )

�(Q) + �(R)� �

i

� �

j

(�(P )� �

i

)(�(P )� �

j

)

;

�(Q)�(R)� �(R)�(Q)

�(Q)� �(R)

= �(P )

�(Q)�(R) � �

i

�

j

(�(P ) � �

i

)(�(P ) � �

j

)

:

The right hand side only involves �(P ) + �(Q) and �(P )�(Q) hen
e it suÆ
es to

plug in the expressions (19) for these to �nd the polynomial v(�) asso
iated to

[P + !

i

+ !

j

� 31℄,

v

1

= �(P )

u

1

+ �

i

+ �

j

(�(P )� �

i

)(�(P ) � �

j

)

;

v

2

= �(P )

u

2

� �

i

�

j

(�(P )� �

i

)(�(P ) � �

j

)

:(20)

The 
orresponding polynomial w(�) is found from w(�) = (f(�) � v

2

(�))=u(�).

The above formulas for the divisors give a parametrization but do not des
ribe

the se
tions whi
h 
ut them out. Nor do we have, at this point, a way to 
om-

pute a basis for the odd or even se
tions of [n�℄ whi
h lead to proje
tive images

of the Kummer surfa
e. To get these we 
onsider the (two-dimensional) Mum-

ford system (see [18℄), whi
h 
onsists of a pair of 
ommuting ve
tor �elds on the

seven dimensional aÆne spa
e M of matri
es (12). Coordinates on M are given by

u

1

; u

2

; v

1

; v

2

; w

0

; w

1

and w

2

.

Let H denote the map

H :M ! C [�; �℄ : A(�) 7! jA(�) � �I j;

whi
h asso
iates to su
h a matrix A(�) its 
hara
teristi
 polynomial. Then the

�ber of H over a polynomial �

2

� f(�) (f moni
 of degree �ve and square-free) is

isomorphi
 to the aÆne variety J

�

n� where � is the 
urve de�ned by �

2

= f(�);

expli
itly the isomorphism is given by (13). Equations for this aÆne variety thus

follow from the equations of the �ber,

u

1

+ w

0

= �

1

;

u

2

+ u

1

w

0

+ w

1

= �

2

;

u

2

w

0

+ u

1

w

1

+ w

2

+ v

2

1

= �

3

;(21)

u

2

w

1

+ u

1

w

2

+ 2v

1

v

2

= �

4

;

u

2

w

2

+ v

2

2

= �

5

;

where we denoted the 
oeÆ
ients of the 
urve �

2

= f(�) by �

i

, as in (9). Two

independent 
ommuting ve
tor �elds on M are given by
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_u

1

= v

1

; u

0

1

= v

2

;

_u

2

= v

2

; u

0

2

= u

1

v

2

� u

2

v

1

;

_v

1

= �

1

2

(w

1

+ u

2

1

� u

1

w

0

� u

2

); v

0

1

= �

1

2

(w

2

+ u

1

u

2

� u

2

w

0

);

_v

2

= �

1

2

(w

2

+ u

1

u

2

� u

2

w

0

); v

0

2

= �

1

2

(u

1

w

2

+ u

2

2

� u

2

w

1

);

_w

0

= �v

1

; w

0

0

= �v

2

;

_w

1

= u

1

v

1

� v

1

w

0

� v

2

; w

0

1

= u

2

v

1

� v

2

w

0

;

_w

2

= u

1

v

2

� v

2

w

0

; w

0

2

= u

2

v

2

+ v

1

w

2

� v

2

w

1

:

Mumford shows that these ve
tor �elds restri
t to linear ve
tor �elds on the Ja
o-

bians whi
h appear as �bers of the map H (it is easy to 
he
k that these ve
tor

�elds are indeed tangent to the �bers of H). Fixing the se
tion whi
h 
uts out n�,

the se
tions of [n�℄ 
an be des
ribed by the meromorphi
 fun
tions with a pole of

order at most n at in�nity, i.e., at �. To �nd these meromorphi
 fun
tions one

looks for Laurent solutions to the di�erential equations whi
h des
ribe one of the

linear ve
tor �elds (see [28, Chapter 5.3℄), more pre
isely one looks for all fami-

lies of Laurent solutions of the maximal dimension (i.e., 
ontaining the maximal

number of free parameters). In the 
ase at hand we pi
k the �rst ve
tor �eld (the

Laurent solutions for this ve
tor �elds are easier to �nd be
ause that ve
tor �eld is

weight homogeneous, see [28, lo
. 
it.℄) We �nd that there is only one su
h family of

Laurent solutions and that its dimension is six. We display here pre
isely as many

terms of the Laurent solutions as we need for our 
omputations below; moreover

we only display them for u

1

and u

2

be
ause the Laurent solutions for the other

aÆne variables follow at on
e from them by using the di�erential equations (e.g.,

v

1

= _u

1

, et
.).

u

1

= �

4

t

2

+ a+ 2
t

2

+ 40dt

3

+ et

4

+ 3d(a+ 2b)t

5

+ ft

6

+ � � � ;

u

2

=

4b

t

2

� b(a+ b)� 240dt� 2b
t

2

+ 8d(3a+ b)t

3

+ (18f + 6


2

� be)t

4

+ � � � :

A basis for the fun
tions with a pole of order two at most at � is given by

z

0

= 1; z

1

= u

1

; z

2

= u

2

; z

3

= u

1

u

2

� w

2

:

To see that the restri
tion of z

3

to J

�

is linearly independent of the other fun
tions

it suÆ
es to 
ompute the leading term of z

3

, whi
h is given by 4b(3a+2b)=t

2

. The


orresponding se
tions embed the singular Kummer surfa
e into P

3

(see the next

se
tion). A basis for the fun
tions with a triple pole along � is given by adding the

following �ve fun
tions

z

4

= v

1

; z

5

= v

2

; z

6

= u

1

v

2

� u

2

v

1

; z

7

= v

2

w

1

� v

1

w

2

+ u

1

(u

1

v

2

� u

2

v

1

);

z

8

= u

1

w

2

+ u

2

w

1

+ 2u

1

u

2

w

0

:

Their leading terms are given by

(z

4

; z

5

; z

6

; z

7

; z

8

) =

8

t

3

�

1;�b; b

2

; b

2

(3a+ 2b); 1440d

�

;

showing their independen
e. These nine fun
tions allow to embed the Ja
obian into

proje
tive spa
e P

8

. Finally, to get a basis for the spa
e of fun
tions with a pole of
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order at most four along �, one also adds the following fun
tions:

z

9

= u

2

1

; z

10

= u

1

u

2

; z

11

= u

2

2

; z

12

= v

1

w

2

+ u

1

w

0

v

2

;

z

13

= u

1

u

2

v

2

� v

2

w

2

� u

2

2

v

1

� u

2

v

2

w

0

; z

14

= u

2

(u

1

u

2

� w

2

);

z

15

= (u

1

u

2

� w

2

)

2

:

Their leading terms are given by

(z

9

; z

10

; : : : ; z

15

) =

16

t

4

�

1;�b; b

2

;�720d;�720bd; b

2

(3a+ 2b); b

2

(3a+ 2b)

2

�

;

hen
e these se
tions are also independent (on the Ja
obian of any smooth 
urve

�). Sin
e the hyperellipti
 involution on � is given by (�; �) 7! (�;��) the (�1)-

involution on J

�

is given by

(u

1

; u

2

; v

1

; v

2

; w

0

; w

1

; w

2

) 7! (u

1

; u

2

;�v

1

;�v

2

; w

0

; w

1

; w

2

);

and we easily see that ea
h of the fun
tions z

i

; i = 0; : : : ; 15 is either even or odd

with respe
t to this involution. In order to 
onsider su
h a fun
tion z

i

as a se
tion

of [n�℄ we need to multiply z

i

by the se
tion that 
uts out n�, whi
h is even for

n even and whi
h is odd for n odd. Therefore we �nd the following table for the

fun
tions z

i

whi
h represent the even and odd se
tions of [2�℄; [3�℄ and [4�℄. An

expli
it basis for the even and odd se
tions for [n�℄ with n � 5 are obtained in a


ompletely analogous way but will not be used here.

Table 3

line bundle even se
tions odd se
tions

[2�℄ 1; z

1

; z

2

; z

3

no

[3�℄ z

4

; z

5

; z

6

; z

7

1; z

1

; z

2

; z

3

; z

8

[4�℄ 1; z

1

; z

2

; z

3

; z

8

; z

9

; z

10

; z

11

; z

14

; z

15

z

4

; z

5

; z

6

; z

7

; z

12

; z

13

5. Kummer surfa
es of Ja
obians

In this se
tion we will use the results of the previous se
tion to 
ompute di�erent

proje
tive images of the Kummer surfa
e K

�

of J

�

. The linear systems whi
h we

will use 
onsist of the even or odd se
tions of [n�℄ (with n = 2; 3; 4) with pres
ribed

vanishing at the half periods. Re
all from Se
tion 3 that we denote the line bundle

p

�

L 
 [

P

(��

i

)E

i

℄ on

~

J

�

by

~

L

�

and that we denote the line bundles on

~

K

�

whi
h


orrespond to the even and odd se
tions of

~

L

�

by M

�

�

. In order to 
ompute these

indu
ed linear systems on

~

K

�

we will use divisors in jn�j whi
h 
onsist entirely

of translates �

ij

of �. We will 
all su
h divisors totally redu
ible divisors. These

divisors have the 
onvenient property of having large multipli
ity at several half

periods and it is for these divisors easy to �gure out its multipli
ity at any half

period. The following lemma will tell us whi
h divisors in jn�j are totally redu
ible.

Lemma 5.1. The divisor �

i

1

j

1

+ � � �+�

i

n

j

n

is in jn�j if and only if e

i

1

j

1

+ � � �+

e

i

n

j

n

= 0.

Proof. The proof of the only if part follows easily from [16, Lemma 4.1.5℄. The

if part then follows from the fa
t that two di�erent translates of � are never be

linearly equivalent.
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We will in every 
ase 
onsidered below show that the linear systems M

�

�

have no

base points, so that the 
orresponding map �

M

�

�

is regular, we will 
ompute an

equation of its image and we will determine whi
h 
urves are 
ontra
ted (leading

to a singular point of the image). We will denote the image of the (�2)-
urve B

ij

by E

ij

and the image of �

�

(

^

�

ij

) by T

ij

. These images 
an be points, straight lines

or 
urves of higher degree. The in
iden
e relations between the thirty-two obje
ts

E

ij

and T

ij

will follow easily from the in
iden
e relations on

~

J

�

(see [12, Chapter

1℄) whi
h were 
lassi
ally represented in the following 
ompa
t form.

Table 4

00 01 12 02

34 25 05 15

35 24 04 14

45 23 03 13

The way in whi
h the in
iden
e is en
oded in this table is this: the divisors E

ij

are

pairwise disjoint as well as the divisors

^

�

kl

. Every divisor E

ij

meets pre
isely six

divisors

^

�

kl

and vi
e versa. E

ij

and

^

�

kl

will meet pre
isely when the indi
es ij

and kl appear in Table 4 either in the same row or in the same 
olumn (but not

both!).

5.1. The linear system j2�j. The �rst 
ase is that of D = 2�; L = [2�℄. Some

of the results in this paragraph are 
lassi
al but the proofs that we give provide

the reader with a good illustration of our approa
h, whi
h also applies to the more


omplex situations studied in the subsequent paragraphs.

The divisor D has multipli
ity two at the six half-periods e

00

; e

01

; : : : ; e

05

and

has multipli
ity zero at the other half periods, in parti
ular D is even and all half

periods are even. We pi
ture D as follows.

00

01

02

03

04

05

By (8) every se
tion of [2�℄ is even, in agreement with Table 3, leading to a line

bundle M

+

on

~

K

�

. If s denotes the se
tion of [2�℄ that 
uts out 2� then Table 3

tells us that �

0

= s; �

1

= su

1

; �

2

= su

2

and �

3

= s(u

1

u

2

� w

2

) span the spa
e of

se
tions of [2�℄.

Proposition 5.2. The linear system j2�j is base-point-free hen
e leads to a regular

map �

M

+
:

~

K

�

! P

3

. The image of �

M

+
is a quarti
 surfa
e whose equation is
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given, in terms of the 
oordinates �

i

; i = 0; : : : ; 3, by

0 = (4�

3

�

5

� �

2

4

)�

4

0

+ 2[�2�

2

�

5

�

1

+ (�

2

�

4

� 2�

1

�

5

)�

2

+ 2�

5

�

3

℄�

3

0

+ [4�

1

�

5

�

2

1

� (2�

4

+ �

2

2

)�

2

2

+ (4�

5

� 2�

1

�

4

)�

1

�

2

� 2�

4

�

1

�

3

+ 4�

3

�

2

�

3

℄�

2

0

(22)

+ 2[�2�

5

�

3

1

+ �

2

�

3

2

+ 2�

4

�

2

1

�

2

+ (�

1

�

2

� 2�

3

)�

1

�

2

2

+ 2�

2

�

2

3

� �

2

�

1

�

2

�

3

� 2�

1

�

2

2

�

3

℄�

0

� (�

2

2

� �

1

�

1

�

2

+ �

1

�

3

)

2

:

The map �

M

+

ontra
ts the sixteen (�2)-
urves B

ij

and maps the sixteen theta


urves to sixteen 
oni
s, leading to the 
lassi
al 16

6

-
on�guration on the Kummer

surfa
e K

�

. No other irredu
ible divisor is 
ontra
ted by �

M

+
.

Proof. Let us show that there are no points on J

�

where all se
tions of [2�℄ vanish.

First, if su
h a point X exists then s(X) = 0 hen
e X 2 �. We know that the

points on the theta divisor are of the form [P �1℄ where P 2 �. Let us suppose

�rst that P 6= 1 and 
onsider the 
urve X(t) = P +Q(t) � 21 where Q(0) = 1

and Q(t) = (�(t); �(t)) is given by (10) for t small and di�erent from zero. The

polynomials u(�); v(�) and w(�) whi
h 
orrespond toX(t) are (for t 6= 0) 
omputed

from (13). The image of X = X(0) in proje
tive spa
e is then given by

lim

t!0

(1 : u

1

(t) : u

2

(t) : u

1

(t)u

2

(t)� w

2

(t)) = (0 : �1 : �(P ) : �(P )(�

1

+ �(P )));

in parti
ular not all se
tions vanish at X . If X is the origin then we 
onsider a


urve X(t) = [P (t) +Q(t)� 21℄ where P (t) and Q(t) are given as Q(t) above and

we �nd in a similar way that the origin gets mapped to (0 : 0 : 0 : 1). This shows

that j2�j is base-point-free, hen
e jM

+

j is also base-point-free.

We now indi
ate how the equation (22) was found. Sin
e �

0

= 0 
annot be a


omponent of the image it suÆ
es to �nd a relation between the fun
tions z

0

; : : : ; z

3

(see Table 3). This is easily done from the equations (21) whi
h de�ne the aÆne part

of the Ja
obian: use the �rst two equations of (21) to eliminate w

0

and w

1

linearly

from the other equations and eliminate v

1

and v

2

from these by expressing that the

obvious identity (v

1

v

2

)

2

= v

2

1

v

2

2

holds. The resulting equation for between u

1

; u

2

and w

2

is rewritten at on
e in terms of z

0

; : : : ; z

3

. If we let �

i

= sz

i

; i = 0; : : : ; 3 then

we �nd (22). In order to 
on
lude from this 
omputation that the image is always

(i.e., for all values of the parameters �

i

whi
h de�ne a smooth 
urve) a quarti


surfa
e we only need to show that the quarti
 polynomial in equation (22) is not

a 
omplete square, be
ause the image is 
ertainly irredu
ible and has degree four.

Let us suppose that the right hand side Q of (22) is a 
omplete square, Q = P

2

.

Sin
e the 
oeÆ
ient of �

4

1

in Q vanishes there is no term �

2

1

in P and hen
e no term

�

0

�

3

1

in Q, i.e., �

5

= 0. But then also the 
oeÆ
ient of �

2

0

�

2

1

in Q vanishes, hen
e

the 
oeÆ
ient of �

0

�

1

in P vanishes. This implies in turn that the 
oeÆ
ient 2�

4

of �

0

�

2

1

�

2

in Q vanishes. The two 
onditions �

4

= �

5

= 0 are however impossible

when � is smooth.

Sin
e �

ij

= 0 for 0 � i; j � 5 we have from Proposition 3.2 that C � B

ij

= 0 for

any i; j, i.e., all (�2)-
urves B

ij

are 
ontra
ted, so that every E

ij

is a point. On

the other hand, if we denote by C

ij

the proje
tion of the proper transform of any

of the theta 
urves �

ij

then C � C

ij

= � ��

ij

= 2 so the sixteen theta 
urves map

to sixteen 
oni
s T

ij

and we get Kummer's 16

6


on�guration of lines and 
oni
s on

K

�

� P

3

. Expli
it 
oordinates of the points E

ij

and the 
oni
s T

ij

will be 
omputed

below.
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Finally, we use the expli
it se
tions to show that no other irredu
ible divisor in

J

�

is 
ontra
ted by �

[2�℄

. Sin
e su
h a divisor lies in the aÆne part J

�

n� we 
an

write it as [P (t)+Q(t)�21℄ where P (t) = (�

1

(t); �

1

(t)) and Q(t) = (�

2

(t); �

2

(t)).

If we assume that this 
urve is 
ontra
ted by � then u

0

1

= u

0

2

= (u

1

u

2

� w

2

)

0

= 0

where the prime denotes derivative with respe
t to t. Then

�

0

1

(t) + �

0

2

(t) = 0;

�

2

(t)�

0

1

(t) + �

1

(t)�

0

2

(t) = 0;

so that �

0

1

(t) = �

0

2

(t) = 0 or �

1

(t) = �

2

(t). The �rst 
ase does not 
orrespond

to a divisor. In the se
ond 
ase we have that �

1

(t) = �

2

(t) be
ause the pair of

points (P;Q) whi
h 
orresponds to any point of J

�

, di�erent from the origin, has

the property that P 6= {Q; from the expli
it equations for � it follows that � does

not map su
h a 
urve to a single point.

It should be remarked that the 
oeÆ
ients of the quarti
 (22) are expressed in terms

of the 
oeÆ
ients �

i

of the equation �

2

= f(�) for � and not in terms of the roots

�

i

of f(�). As far as we know su
h an equation does not appear in the 
lassi
al

literature.

In 
omputing an equation for the quarti
 surfa
e we 
ould have used another

basis for the se
tions of [2�℄; note that ea
h su
h 
hoi
e 
orresponds to the 
hoi
e

of a basis for P

3

. We will �nd a more symmetri
 equation by using the singular

points E

ij

, whi
h are the images of the sixteen (�2)-
urves B

ij

. For 0 < i < j � 5

we �nd from (14) that the polynomials whi
h 
orrespond to e

ij

are given by

u(�) = �

2

+ u

1

�+ u

2

= (�� �

i

)(�� �

j

);

v(�) = 0;

w(�) = �

3

+ w

0

�

2

+ w

1

�+ w

2

=

Y

k 6=i;j

(�� �

k

)

so that for 0 < i < j � 5 the image E

ij

of B

ij

is given by the point

E

ij

= (1 : �

1;ij

: �

2;ij

: �

1;ij

�

2;ij

� ��

3;ij

):

The 
oordinates of the other six points E

0i

; (0 � i � 5) are found as follows.

The sixteen translations over half periods des
end to sixteen automorphisms of

the Kummer surfa
e and of its image. Any su
h automorphism is indu
ed by an

automorphism of the ambient spa
e P

3

. With the ten half periods at hand we 
an


ompute the matri
es of these automorphisms: in order to 
ompute the matrix

�

0k

whi
h goes with translation over e

0k

, it suÆ
es to express the fa
t that the

translation inter
hanges the following three pairs of points: E

ij

$ E

mn

; E

im

$ E

jn

and E

in

$ E

jm

(here fi; j; k;m; ng = f1; 2; 3; 4; 5g). It leads to the following formula

for �

0k

�

0k

=

0

B

B

B

B

B

�

�

2

k

�

k

1 0

�

k

��

2;k

+ �

2

k

��

1;k

��

2

k

�

1

�1

��

4;k

+ �

k

��

3;k

0 ��

k

��

1;k

�

k

�

1

(��

4;k

+ �

k

��

3;k

) ���

4;k

� �

k

��

3;k

2�

3

k

+ (�

2

� �

2

1

)�

k

�

k

��

1;k

1

C

C

C

C

C

A

:

The matri
es for the other translations �

kl

are found from �

kl

= �

0k

�

0l

. From

�

0k

(E

ik

) = E

0i

we �nd that E

0i

= (0 : 1 : ��

i

: ��

i

��

1;i

) from whi
h we also get
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that the origin in J

�

is mapped to E

00

= (0 : 0 : 0 : 1). This provides us with the

expli
it 
oordinates of all singular points. Expli
it equations for the hyperplanes

whi
h 
ut out the 
oni
s T

0i

and T

ij

are found from the expli
it parametrization of

these 
urves: using (18) we �nd at on
e that the se
tion

f

i

= �

2

i

�

0

+ �

i

�

1

+ �

2

(23)

vanishes on
e (hen
e twi
e) on �

0i

giving the following equation for the 
oni
 T

0k

(as sitting in the hyperplane f

i

= 0).

(�

1

+ �

k

�

0

)(�

3

+ �

k

��

1;k

�

1

� �

k

(�

2

k

� �

k

��

1;k

+ ��

2;k

)�

0

)

+ �

0

(�

k

�

3

+ (��

4;k

+ �

k

��

3;k

)�

0

) = 0:

Using (19) and (20) we �nd that

f

ij

= (�

2;ij

��

1;ij

+ ��

3;ij

)�

0

� �

2;ij

�

1

� ��

1;ij

�

2

+ �

3

(24)

vanishes twi
e on �

ij

giving the following equations for the quadri
s T

ij

; (0 < i; j �

5) (as sitting in the hyperplane f

ij

= 0).

(�

2;ij

�

1

� �

1;ij

�

2

)(�

1

� ��

1;ij

�

0

) + (�

2

� �

2;ij

�

0

)(�

2

� ��

2;ij

�

0

)

+ ��

3;ij

�

0

(�

1

� �

1;ij

�

0

) = 0:

A natural way to pi
k 
oordinates whi
h make the equation of the quarti
 more

symmetri
 is it take them su
h that four of the translations �

ij


orrespond to

inter
hanging the base points of P

3

in pairs. Clearly these four translations must

form a subgroup of the group of all translations over half periods. These subgroups


ome in two types: either one pi
ks as generators two half periods on a single

theta 
urve or one pi
ks two generators on two distin
t theta 
urves. If four half

periods are linked by a subgroup of the �rst type they are 
lassi
ally said to form

a Rosenhain tetrad; 
learly there are eighty su
h tetrads. Otherwise they are said

to form a G�opel tetrad; there are sixty su
h tetrads. There is a signi�
ant di�eren
e

between these two types: if the verti
es of a Rosenhain tetrad are taken as base

points then ea
h of the four 
oordinate planes 
ontains one of the 
oni
s T

ij

, whi
h

is not true in the 
ase of a G�opel tetrad. Indeed, sin
e ea
h 
oordinate plane of a

Rosenhain tetrad 
ontains three points of one of the 
oni
s T

ij

it must 
ontain the

whole 
oni
.

For example, the images of the half periods e

00

; e

0i

; e

0j

and e

ij

form a Rosenhain

tetrad. If we take these as base points for P

3

and we 
all t

0

; t

1

; t

2

; t

3

the new


oordinates and we write �

ij

= �

i

� �

j

then

0

B

B

B

B

B

�

�

0

�

1

�

2

�

3

1

C

C

C

C

C

A

=

0

B

B

B

B

B

�

1 0 0 0

�

1;ij

1 1 0

�

2;ij

��

j

��

i

0

�

1;ij

�

2;ij

� ��

3;ij

��

j

��

1;j

��

i

��

1;i

1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

a

0

t

0

a

1

t

1

a

2

t

2

a

0

a

1

a

2

t

3

1

C

C

C

C

C

A

;
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where a

2

0

= �

ij

; a

2

1

= �

ik

�

im

�

in

and a

2

2

= �

jk

�

jm

�

jn

. The other twelve singular

points have now the following 
oordinates (i; j; k;m; n are all di�erent),

E

0k

: (0 : ��

ik

a

2

: �

jk

a

1

: �

ik

�

jk

a

0

)

E

ik

: (�

ik

a

2

: 0 : �

ik

�

jk

a

0

: �

jk

a

1

)

E

jk

: (�

jk

a

1

: �

ik

�

jk

a

0

: 0 : �

ik

a

2

)

E

mn

: (�

ik

�

jk

a

0

: �

jk

a

1

: ��

ik

a

2

: 0)

and the equation of the quarti
 takes the symmetri
 form

a

2

1

(t

2

0

t

2

2

+ t

2

1

t

2

3

) + a

2

2

(t

2

0

t

2

1

+ t

2

2

t

2

3

) + a

6

0

(t

2

0

t

2

3

+ t

2

1

t

2

2

)

+ 2a

1

a

2

(t

0

t

1

� t

2

t

3

)(t

0

t

2

� t

1

t

3

) + 2a

3

0

a

2

(t

0

t

1

+ t

2

t

3

)(t

0

t

3

� t

1

t

2

)(25)

� 2a

3

0

a

1

(t

0

t

2

+ t

1

t

3

)(t

0

t

3

+ t

1

t

2

) + 2Æt

0

t

1

t

2

t

3

= 0;

where Æ = �2��

3;ij

+ (�

2

1;ij

� 6�

2;ij

)��

1;ij

+ �

1;ij

(��

2;ij

� 2�

2

1;ij

+ 9�

2;ij

). Noti
e that

this equation is pre
isely Equation (5) in [16, p. 301℄ whi
h was found by using

theta group te
hniques with an appropriate basis of se
tions of [2�℄, in whi
h the

a
tion of the theta group related to this bundle is given by permutations and sign


hanges.

The equation with respe
t to a G�opel tetrad, su
h as e

00

; e

0k

; e

ij

; e

mn

(all indi
es

di�erent) is found in the same way.

It is 
lear that in the 
ase of j2�j no birational images of the Kummer surfa
e

are obtained by looking at se
tions whi
h vanish at one or several half periods.

5.2. The linear system j3�j. In the 
ase D = 3� we will �nd several di�erent

proje
tive images of the Kummer surfa
e

~

K

�

of J

�

. Sin
e D has odd multipli
ity

at the origin it is an odd se
tion and the half periods e

00

; e

01

; : : : ; e

05

are even

while the other ten half periods are odd. If follows from Lemma 5.1 that the linear

system j3�j 
ontains besides 3� another �fty totally redu
ible divisors:

D

+

: �

0i

+�

0j

+�

ij

(0 < i < j � 5),

D

0

+

: �

ij

+�

jk

+�

ki

(0 < i < j < k � 5);

D

�

: �

ij

+�

kl

+�

mn

(i; j; : : : ; n all 6=);

D

0

�

: � + 2�

ij

(0 � i < j � 5):

The ten divisors D

+

and the ten divisors D

0

+

are even sin
e their multipli
ity at

the origin is two or zero, while the �fteen divisors D

�

and the �fteen divisors D

0

�

are odd, their multipli
ity at the origin being one or three. Here is a pi
ture of a

parti
ular D

+

and D

�

.

23

24

25

00

12

02

13

14

35

45

15

01

34

12

1445

2315

13

0005

04 01

0203
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We denote their proje
tions on

~

K

�

by C

+

and C

�

. It follows from (4) that h

0

(C

+

) =

4 and h

0

(C

�

) = 5. This leads to two maps �

M

+
:

~

K

�

! P

3

and �

M

�
:

~

K

�

! P

4

;

we will investigate later in this paragraph the subsystem de�ned by odd se
tions

that vanish at one of the odd half periods.

We �rst investigate the map �

M

+
. We �nd from Table 3 four independent even

se
tions in [3�℄ and a

ordingly we de�ne

�

0

= sv

1

;

�

1

= sv

2

;(26)

�

2

= s(u

1

v

2

� u

2

v

1

);

�

3

= s((w

1

+ u

2

1

)v

2

� (w

2

+ u

1

u

2

)v

1

);

where s denotes the se
tion that 
uts out 3�. The six half periods on � are even

and the other ten half periods are odd.

Proposition 5.3. The linear system j3�j

+

has only the ten odd half periods as

base points; however, it de�nes a regular map �

M

+
:

~

K

�

! P

3

. Its image is a

quarti
 surfa
e whose equation is given in terms of the 
oordinates �

i

; i = 0; : : : ; 3

by

0 = ��

5

(�

1

�

2

� �

3

)�

3

0

+ [(�

1

�

4

+ 3�

5

)�

1

�

2

� �

4

(�

2

2

+ �

1

�

3

)℄�

2

0

(27)

+ [�2�

5

�

3

1

� (�

1

�

3

+ �

4

)�

2

1

�

2

+ 2�

3

�

1

�

2

2

� �

2

�

3

2

+ �

3

�

2

1

�

3

+ �

1

�

2

2

�

3

� �

2

�

2

3

℄�

0

+ �

4

�

4

1

+ (�

1

�

2

�

2

� �

3

�

2

� �

2

�

3

)�

3

1

� (�

2

1

�

2

2

� �

2

3

)�

2

1

+ (2�

1

�

2

� �

3

)�

1

�

2

2

� �

4

2

:

�

M

+ 
ontra
ts the (�2)-
urves B

i

whi
h 
orrespond to the six even half periods and

maps the ten other (�2)-
urves B

i

to lines. The image of � has degree three while

the other theta 
urves map to lines. No other 
urves are 
ontra
ted by �

M

+
.

Proof. If X 2 J

�

is a half period that does not belong to � then (13) implies that

the 
orresponding polynomial v(�) is zero, so that all se
tions, given by (26) vanish

and X belongs to the base lo
us of j3�j

+

. Suppose that we have another aÆne

point X where all se
tions vanish, X = [P +Q� 21℄. If �(P ) 6= �(Q) then v

1

=

(�(P )��(Q))=(�(P )��(Q)) = 0 implies �(P ) = �(Q). Further v

2

= (�(P )�(Q)�

�(Q)�(P ))=(�(P )��(Q)) = 0 implies that �(P ) = �(Q) = 0, whi
h 
ontradi
ts the

fa
t that X is not a half period. If �(P ) = �(Q) then v

1

= f

0

(�(P ))=(2�(P )) = 0

implies f

0

(�(P )) = 0 and v

2

= �(P )��(P )f

0

(�(P ))=(2�(P )) = 0 implies �(P ) = 0,

again a 
ontradi
tion. In order to see what happens to the 
orresponding linear

systemM

+

at B

ij

we take a 
urve X(t) = [P (t) +Q(t)� 21℄, with P (0) = !

i

and

Q(0) = !

j

,

P (t) =

�

�

i

+ t

2

; 


i

t+O(t

2

)

�

;

Q(t) =

�

�

j

+ (�t)

2

; �


j

t+O(t

2

)

�

;

where 


2

i

=

Q

j 6=i

(�

i

� �

j

) 6= 0. The fa
tor � was introdu
ed here to represent the

di�erent dire
tions at e

ij

, whi
h be
ome points of the ex
eptional divisor E

ij

and

of B

ij

. Computing (13) for these 
urves and taking the limit t! 0 for their images

in P

3

we �nd

(�

0

: �

1

: �

2

: �

3

) = (


i

� �


j

: �


j

�

i

� 


i

�

j

: 


i

�

2

j

� �


j

�

2

i

: ?);
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(? is a �nite number that is easily 
omputed but whose value is not important

for us) so that for any � there is at least one se
tion whi
h is non-zero. Noti
e

that we don't need to 
onsider the value � = 1 be
ause of the symmetri
 role

of P and Q. To show that no base point of j3�j

+

lies on �, pro
eed as in the

proof of Proposition 5.2: �rst 
onsider X(t) = [P +Q(t)� 21℄ where P 2 �nf1g

and take Q(t) = (�(t); �(t)) 2 �) to be given by (10). If we evaluate the map

(v

1

: v

2

: u

1

v

2

� u

2

v

1

: (w

1

+ u

2

1

)v

2

� (w

2

+ u

1

u

2

)v

1

) at X(t) and take the limit

for t ! 0 then we �nd (1 : ��(P ) : �(P )

2

: ?) (again the (�nite) value of ? is

irrelevant). This shows that, besides possibly the origin, no point on the theta

divisor is 
ontained in the base lo
us of jM

+

j. Letting P (t) as well as Q(t) be

given by (10) one 
he
k in a similar way that the origin is also not 
ontained in the

base lo
us, i.e., the base lo
us of jM

+

j is empty and �

M

+
is regular.

An equation for the image of �

M

+
is 
omputed as follows. Use the �rst three

equations in (21) to eliminate all w

i

linearly and use the �rst three equations of

(26) to eliminate v

1

; v

2

and u

2

. From the remaining equations in (21) and (26)

eliminate �rst s to obtain two equations in u

1

one of whi
h is linear. Elimination

of u

1

gives the announ
ed equation for the quarti
. It 
an be shown as in the proof

of Proposition 5.2 that this quarti
 is not a 
omplete square; this will be however

most obvious after we have rewritten the equation in a more symmetri
 form, so

we will not do this veri�
ation at this point.

We have that �

i

= 0 at the six even half periods e

oi

and �

i

= 1 at the ten odd

half periods so, using Proposition 3.2, we �nd that the image of �

M

+
will have six

singular points and will 
ontain ten disjoint lines, 
oming from the (�2)-
urves.

Sin
e � does not 
ontain any of the odd half periods, Formula (6) implies that

the image of � under �

M

+
is a 
ubi
 
urve whi
h passes through the six singular

points; the other theta 
urves all 
ontain pre
isely four odd half periods so these


urves map to �fteen lines.

Finally, suppose that some irredu
ible 
urve, whi
h is di�erent from the (�2)-


urves, is 
ontra
ted. Sin
e it is di�erent from the theta divisor it interse
ts the

aÆne part J

�

n� and 
an be written as X(t) = [P (t) +Q(t)� 21℄ where P (t) =

(�

1

(t); �

1

(t)) and Q(t) = (�

2

(t); �

2

(t)). As in the proof of Proposition 5.2 we may

assume that �

1

(t) 6= �

2

(t) and �

1

(t) 6= �

2

(t). Let us assume that the whole 
urve

is mapped to the single point (1 : 


1

: 


2

: 


3

): Solving for �

2

and �

2

we �nd that

�

2

(t) = �




1

�

1

(t) + 


2

�

1

(t) + 


1

�

2

(t) =




2

1

� 


2

(�

1

(t) + 


1

)

2

�

1

(t):

Sin
e �

2

i

(t) = f(�

i

(t)) for i = 1; 2 we �nd that �

1

(t) satis�es an algebrai
 equation

of degree eight with leading term (


2

� 


2

1

)�

8

1

(t). Then 


2

= 


2

1

be
ause otherwise

�

1

(t) and hen
e also �

1

(t); �

2

(t) and �

2

(t) are 
onstant. However, if 


2

= 


2

1

then

�

2

(t) = 0 so that the 
urve 
orresponds to one of the theta 
urves. As we have

seen, these theta 
urves map to lines, not to points. Therefore no su
h 
urve is


ontra
ted by �

M

+
.

We will now 
onstru
t 
oordinates for P

3

with respe
t to whi
h the equation of

the quarti
 takes a 
ompletely symmetri
 form. First we show that any four of the

singular points E

00

; E

01

; : : : ; E

05


an be taken as base point for P

3

. Sin
e T

00

is a


ubi
 
urve and passes through all six singular points it will be planar as soon as

four of the singular points are 
oplanar. Then all six points singular are 
oplanar

and hen
e also the �fteen lines T

ij

; 0 � i < j � 5; whi
h join these singular points.
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Then these lines would have interse
tion points besides the singular points, whi
h is

impossible. We will take the points E

01

; : : : ; E

04

as base points for P

3

, so we need to

�nd the 
oordinates of these points. Noti
e that they are given by E

0i

= T

ij

\ T

oj

.

We do this by �rst 
omputing the se
tions whi
h 
ut out the divisors D

+

. If we

express that a se
tion

��

0

+ ��

1

+ 
�

2

+ Æ�

3

vanishes on �

0i

and �

0j

(using the parametrization (18) of �

0i

) then we �nd

� = �

i

� � �

2

i


 = �

j

� � �

2

j


; Æ = 0;

and we obtain that

f

+

ij

= �

2;ij

�

0

� �

1;ij

�

1

+ �

2

(28)

is (up to a 
onstant) the only even se
tion that vanishes on �

0i

and �

0j

. Sin
e

we know that there exists an even se
tion whi
h vanishes in addition on �

ij

this

se
tion must also vanish on �

ij

. The latter fa
t 
an of 
ourse also be veri�ed dire
tly

using (19) and (20). If we interse
t the quarti
 surfa
e (27) with the hyperplane

�

2

= �

1;ij

�

1

� �

2;ij

�

0

then we �nd the equations for the four lines T

0i

; T

0j

; T

ij

and

E

ij

. On the one hand we get from it that a parametrization for T

0i

(1 � i � 5) is

given by (t 2 P)

T

0i

: (1 : ��

i

: �

2

i

: t):

On the other hand we �nd two fa
tors whi
h give the following equations for for T

ij

and E

ij

(to see that it is the �rst one whi
h 
orresponds to T

ij

and not the se
ond

one, one 
an use e.g. (19) and (20)):

T

ij

: (1 : t� �

i

: �

2

i

+ �

1;ij

t : �

2

i

��

1;i

+ t(�

1;ij

��

1;ij

+ �

2;ij

)):

E

ij

: (1 : t+ �

1;ij

: �

1;ij

t+ �

2

1;ij

� �

2;ij

:

(�

2

1;ij

+ ��

2;ij

)t+ �

3

1;ij

+ (��

2;ij

� �

2;ij

)�

1;ij

� ��

3;ij

):

This leads to E

0i

= T

0i

\ T

ij

= (1 : ��

i

: �

2

i

: �

2

i

��

1;i

) and E

00

= T

0i

\ T

0j

= (0 : 0 :

0 : 1): Now take the points E

01

; : : : ; E

04

as base points and 
all the 
orresponding


oordinates t

1

; : : : ; t

4

then the quarti
 takes the following symmetri
 form

4

X

i=1

X

1�j<k�4

j;k 6=i

�

2

ij

�

2

jk

�

2

ki

�

im

�

in

t

2

i

t

j

t

k

= 0;(29)

where fi; j; k;m; ng = f1; 2; 3; 4; 5g: Sin
e all terms in the new equation of the

quarti
 are of the form t

2

i

t

j

t

k

this equation 
an never be an exa
t square providing

a simple proof for our earlier 
laim that the image of �

M

+ is a quarti
. With

respe
t to the new basis for P

3

the singular points E

00

and E

05

have the following


oordinates:

E

00

: (�

23

�

34

�

42

: �

31

�

14

�

43

: �

41

�

12

�

24

: �

13

�

32

�

21

);

E

05

:

�

1

�

12

�

13

�

14

�

15

:

1

�

21

�

23

�

24

�

25

:

1

�

31

�

32

�

34

�

35

:

1

�

41

�

42

�

43

�

45

�

:

Using the 
oordinates of E

00

; : : : ; E

05

the new equations of the lines T

ij

are imme-

diately 
omputed be
ause T

ij

passes through E

0i

and E

0j

.
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We now investigate the map �

�

. Table 3 gives us �ve independent se
tions of

[3�℄. Still denoting by s the se
tion that 
uts out 3�, we de�ne �

0

= s; �

1

=

su

1

; �

2

= su

2

; �

3

= s(u

1

u

2

� w

2

) and �

4

= s(u

1

w

2

+ u

2

w

1

+ 2u

1

u

2

w

0

)=2:

Proposition 5.4. The linear system j3�j

�

is base-point-free, hen
e �

M

�
:

~

K

�

!

P

4

is a regular map. The image of this map is a 
omplete interse
tion of a quadri


and a 
ubi
 hypersurfa
e whose equations are given, in terms of the 
oordinates

�

i

; i = 0; : : : ; 4 by

0 = 2�

0

�

4

+ �

1

�

3

� (�

2

�

0

+ �

1

�

1

� �

2

)�

2

;(30)

and

0 = (4�

3

�

5

� �

2

4

)�

3

0

� 4(�

2

�

5

�

1

+ �

1

�

5

�

2

� �

5

�

3

� �

4

�

4

)�

2

0

+ 4[�

1

�

5

�

2

1

+ (�

5

� �

1

�

4

)�

1

�

2

+ �

3

�

2

�

3

� �

2

4

℄�

0

(30)

� 4(�

5

�

2

1

� �

4

�

1

�

2

+ �

3

�

2

2

)�

1

+ 4�

2

(�

1

�

2

� �

3

)(�

2

�

1

� �

3

):

The theta divisor � and the ten (�2)-
urves B

ij

; 1 � i < j � 5 
orresponding

to the even half periods are the only divisors whi
h are 
ontra
ted by �

M

�
, while

the other six ex
eptional divisors B

0i

; 0 � i � 5; map to lines and the other theta


urves map to 
oni
s.

Proof. The proof that the linear system j2�j

+

is base-point-free applies verbatim

to the present 
ase be
ause the se
tions �

0

; : : : ; �

3

are de�ned in exa
tly the same

way. The de�ning equation of �

4

is easily rewritten in terms of the other �

i

giving

the above equation of the quadri
. Now obviously the quarti
 equation (22) holds

between the se
tions, but that does not mean that the homogeneous ideal of the

image is generated by the quadrati
 and the quarti
 polynomials. Indeed, if we

add the quadrati
 polynomial in (30), multiplied by ��

1

�

1

�

2

+ �

1

�

3

+ �

2

2

+2�

4

�

2

0

�

�

2

�

0

�

2

� 2�

0

�

4

, to the left hand side of the quarti
 (22) then the result is divisible

by �

0

and we are left with the 
ubi
 equation (30). Sin
e the degree of the image

is six the image is the 
omplete interse
tion of the quadri
 and 
ubi
 hypersurfa
e.

Moreover, sin
e �

[2�℄

does not 
ontra
t any 
urves besides the 
urves B

i

we 
an at

least 
on
lude that besides the B

i

no 
urve that interse
ts the aÆne part J

�

n� is


ontra
ted. In this 
ase �

ij

= 0 for 1 � i < j � 5 (
orresponding to the ten odd

half periods) and �

0i

= 1 for 0 � i � 5 (
orresponding to the other half periods).

(6) shows that � is 
ontra
ted by �

M

�
and the same is true for the ex
eptional

divisors B

ij

; 1 � i < j � 5. The remaining theta 
urves and ex
eptional divisors

map to �fteen 
oni
s and six lines respe
tively. Noti
e that these six lines pass

through a single singularity of the image.

Again a more symmetri
 equation is obtained by 
hoosing some of the singular

points as base points, namely we 
hoose E

12

; E

23

; E

34

; E

45

and E

15

as base points.

Using (14) we �nd that the old 
oordinates of E

ij

are given by

E

ij

: (1 : �

1;ij

: �

2;ij

: �

1;ij

�

2;ij

� ��

3;ij

: (�

1;ij

��

3;ij

+ �

2;ij

��

2;ij

)=2 + �

2;ij

�

1;ij

��

1;ij

):

If we de�ne t

i

to be the 
oordinates with respe
t to these �ve points then the

equation of the quadri
 be
omes

�

24

�

25

(�

2

13

t

2

+ �

14

�

15

t

4

)t

1

+ 
y
l (1; 2; 3; 4; 5) = 0;(31)
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while the equation of the 
ubi
 be
omes

�

�

13

�

14

t

2

+

�

23

�

25

t

3

+

�

15

�

13

t

4

+

�

25

�

24

t

5

�

t

2

1

+ (At

3

+Bt

4

)t

1

t

2

+ 
y
l (1; 2; 3; 4; 5) = 0:

(31)

Sin
e the 
onstants A and B are quite 
ompli
ated when expressed in terms of the

�

i

we do not re
ord their expressions here. Finally, let us 
ompute the se
tions

that 
ut out the image of the divisors D

�

. This is done as in the 
ase of D

+

: su
h

a se
tion must be of the form

�+ �u

1

+ 
u

2

+ Æ(u

1

u

2

� w

2

) + �(u

1

w

2

+ u

2

w

1

+ 2u

1

u

2

w

0

);

and it should vanish on T

ij

; T

0k

and T

mn

, where fi; j; k;m; ng = f1; 2; 3; 4; 5g. If

we normalize � = 1 then we get by using (19) and (20)

� = 2�

2

k

(�

2;ij

+ �

2;mn

)� �

k

��

3;k

� ��

4;k

;

� = 2�

k

(�

2;ij

+ �

2;mn

);


 = �2��

1;ij

��

1;mn

;

Æ = �2�

k

;

� = 1:

In the 
ase of j3�j

�

we 
an restri
t ourselves to the se
tions with pres
ribed van-

ishing at the half periods. Every se
tion of j3�j

�

vanishes an odd number of times

at the even half periods so that a pres
ribed vanishing at one of these half periods

would imply that we 
onsider M

�

�

for � = (0; : : : ; 3; : : : ; 0). Then formula (3.2)

leads to dim jM

�

�

j = 9=2 + 1 � 14=4 = 2, so the 
orresponding map 
an never

be birational. Therefore we 
onsider an odd half period e

ij

; 1 � i; j � 5 and de-

�ne � = (0; : : : ; 2; : : : ; 0) (the 2 being at position ij). Formula (3.2) now leads to

dim jM

�

�

j = 4, hen
e �

M

�

�

maps to P

3

. Using the fa
t that u

1

= ��

i

� �

j

= �

1;ij

and u

2

= �

i

�

j

= �

2;ij

at e

ij

we �nd from Table 3 that the following four indepen-

dent se
tions vanish at e

ij

.

�

0

= s(u

1

� �

1;ij

);

�

1

= s(u

2

� �

2;ij

);

�

2

= s(u

1

u

2

� w

2

� �

1;ij

�

2;ij

+ ��

3;ij

);(32)

�

3

= s(u

1

w

2

+ u

2

w

1

+ 2u

1

u

2

w

0

� �

1;ij

��

3;ij

� �

2;ij

��

2;ij

� 2�

1;ij

�

2;ij

��

1;ij

):

We des
ribe �

M

�

�

and its image in the following proposition.

Proposition 5.5. The linear system jM

�

�

j is base-point-free, hen
e �

M

�

�

:

~

K

�

!

P

3

is regular. It 
ontra
ts ten divisors, to wit the nine ex
eptional divisors B

kl


orresponding to the even half periods, but not B

ij

, and the theta divisor �. The

image is a quarti
 whi
h 
ontains six lines E

0i

(0 � i � 5) whi
h are 
ollinear at T

and it 
ontains sixteen 
oni
s, one of whi
h is the image E of B

00

.

Proof. Using (11) for the half period e

ij

it follows at on
e that the image of B

ij

is a 
oni
; alternatively this is seen from �

ij

= �

ij

= 2. Then (32) implies that

the only possible base points 
oorespond to s = 0, the theta divisor. Using (10)

we see that the theta divisor gets mapped to the single point (0 : 0 : 0 : 1); using

(11) for any of the other nine even half periods it follows that ea
h gets 
ontra
ted.

The veri�
ation that the odd half periods map to lines and that the other theta
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urves map to 
oni
s is similar. Let us assume that some other divisor D gets

mapped to the point (a : b : 
 : d) 2 P

3

and let us show how this leads to a


ontradi
tion (assuming � smooth). We 
an parametrize D as [P (t) +Q(t)� 21℄

where P (t) = (�

1

(t); �

1

(t)) and Q(t) = (�

2

(t); �

2

(t)). Then we look for solutions of

a�(t) = u

1

(t)� �

1;ij

;

b�(t) = u

2

(t)� �

2;ij

;


�(t) = u

1

(t)u

2

(t)� w

2

(t)� �

1;ij

�

2;ij

+ ��

3;ij

;(33)

d�(t) = u

1

(t)w

2

(t) + u

2

(t)w

1

(t) + 2u

1

(t)u

2

(t)w

0

(t)

� �

1;ij

��

3;ij

� �

2;ij

��

2;ij

� 2�

1;ij

�

2;ij

��

1;ij

):

with a; : : : ; d 
onstant. The 
ase a = b = 0 
an be ex
luded at on
e be
ause it does

not 
orrespond to a 
urve. Similarly when �

1

(t) = �

i

and a = 0. If �

1

(t) = �

i

,

so that �

i

(t) = 0 then we may therefore assume that a = 1. Then the �rst two

equations in (33) imply b = �

i

and �(t) = �

2

(t) � �

j

. The third equation in (33)

then leads to �

2

(t) = �

i

or �

2

(t) = �

j

, whi
h are both una

eptable, or to the

following linear equation in �

2

(t):

�

2

(�

i

��

1;i

� 
) + �

i

(�

2

i

+ �

2;ij

+ ��

2;ij

+ 
) + ��

3;ij

= 0:

If �

2

(t) is not 
onstant then it 
an only satisfy the above equation of both 
oeÆ
ients

are zero, whi
h happens for no value of 
. By symmetry we 
an also ex
lude the 
ase

�

1

(t) = l

j

. Also the 
ase b = ��

1


an be ex
luded be
ause it leads to the previous


ases b = �

i

or b = �

j

. We treated these spe
ial 
ases be
ause �

1

(t)��

i

, �

1

(t)��

j

and b+ �

1

appear frequently as fa
tors in the two 
ases 
onsidered next. The �rst

one 
orresponds to the general 
ase in whi
h a = 0. Then we 
an take b = 1 and the

�rst two equations lead to �

1

= ��

2

+ �

i

+ �

j

and � = �(�

2

� �

i

)(�

2

� �

j

). If we

substitute this in the third equation of (33), we �nd a moni
 equation in �

2

(t) with


onstant 
oeÆ
ients, whi
h leads to �

1

(t) and �

2

(t) being 
onstant, a 
ontradi
tion.

The se
ond 
ase 
orresponds to the generi
 
ase a 6= 0. Taking a = 1 we �nd

�(t) = �(�

1

(t)��

i

)(�

1

(t)��

j

)=(�

1

(t)+b) and �

2

(t) = (�

i

+b)(�

j

+b)=(�

1

+b)�b.

If we substitute this in the third equation of (33), we �nd an equation for �

2

(t)

whi
h depends on b and 
. As before one �nds that if � is non-singular there are

no values for b and 
 su
h that all 
oeÆ
ients of this polynomial are zero. A proof

that the image is a quarti
 and an expli
it equation for it will be given below.

Sin
e the roots �

i

of f will appear expli
itly in the equation of the quarti
 we

will not write down the equations in terms of the �

i

but we pass at on
e to a set

of natural 
oordinates, whi
h will give the equation of the quarti
 a symmetri


form. The 
oni
 E

ij

interse
ts the lines T

0i

; T

0j

and T

ij

in three points (whi
h are

not 
ollinear) and these points are independent of the image T of � (whi
h is a

singular point). We will take these points as basis points for P

3

. To do this we �rst

need to �nd their 
oordinates, whi
h is done in this 
ase as follows. We use (18) to


ompute the images of �

0i

and we take the limit for �! �

j

(i 6= j). This gives us

the following 
oordinates:

E

ij

\ T

0i

: (�

ij

: ��

i

�

ij

: �

i

(�

2

i

+ �

i

�

j

� �

2

j

) + �

2;ij

��

1;ij

+ �

i

��

2;ij

+ ��

3;ij

: 2�

i

[�

2

i

�

j

� (�

2

j

� �

i

�

j

� �

2

i

)��

1;ij

+ �

j

��

2;ij

+ ��

3;ij

℄):
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Using (19) and (20) we �nd the image of �

ij

and the limit for � ! 1 gives the

following interse
tion point:

E

ij

\ T

ij

: (���

2;ij

+ �

1;ij

(��

1;ij

� �

1;ij

) + �

2;ij

: ���

3;ij

+ �

2;ij

(��

1;ij

� �

1;ij

)

: ���

3;ij

��

1;ij

+ �

2;ij

(��

2

1;ij

� ��

2;ij

� �

2

1;ij

+ �

2;ij

)

: 2[���

3;ij

(��

2;ij

+ �

2

1;ij

� �

2;ij

) + ��

1;ij

�

1;ij

�

2;ij

(��

1;ij

� �

1;ij

)℄)

Also re
all that � is mapped to T = (0 : 0 : 0 : 1). If we take the following points

as base points for P

3

(in that order)

T ; E

ij

\ T

0i

; E

ij

\ T

0j

; E

ij

\ T

ij

and we denote the 
orresponding 
oordinates (properly s
aled) by t

0

; : : : ; t

3

then

we �nd the following equation for the quarti
:

(t

1

t

2

+ t

2

t

3

+ t

3

t

1

� t

2

0

)[�

j

t

2

1

� �

i

t

2

2

+ �t

2

3

+ (�

j

� �

i

+ �)(t

1

t

2

+ t

2

t

3

+ t

3

t

1

)℄

+ t

0

(t

1

t

2

+ t

2

t

3

+ t

3

t

1

+ t

2

3

)[�(t

1

� t

2

) + �(t

1

+ t

2

) + 2
t

3

℄

(34)

� 2t

0

t

3

[�

j

t

2

1

+ �

i

t

2

2

+ 
t

2

3

)℄ = 0

where

� = �

3

ij

; �

l

=

Y

k 6=i;j

�

lk

;

� = 4(��

3;ij

+ �

2;ij

��

1;ij

) + �

1;ij

(�

2

1;ij

� 2��

2;ij

� 6�

2;ij

);


 = �

1;ij

(��

2;ij

� �

2;ij

)� 2��

3;ij

+ (�

2

1;ij

� 2�

2;ij

)(�

1;ij

� ��

1;ij

):

Now we 
an easily see that �

0

�

is birational: if the equation of the quarti
 is a

square then the 
oeÆ
ient in t

0

of degree zero is a square hen
e �

j

t

2

1

��

i

t

2

2

+�t

2

3

+

(�

j

��

i

+�)(t

1

t

2

+ t

2

t

3

+ t

3

t

1

) and t

1

t

2

+ t

2

t

3

+ t

3

t

1

are proportional. In parti
ular

� = 0 so that �

i

= �

j

whi
h is impossible sin
e � is non-singular.

It was pointed out to us by the referee that a quarti
 Kummer surfa
e in P

3

with ten singular points was 
onsidered re
ently by J. E. Rosenberg (see [24℄). Our

surfa
es are however di�erent, be
ause our surfa
es 
orrespond to blowing down 9

ex
eptional divisors E

i

and the theta divisor, while the ones that appear in [24℄


orrespond to blowing down 10 ex
eptional divisors E

i

.

5.3. The linear system j4�j. In this 
ase all half periods are even and Lemma

5.1 implies that up to a translation over a half period the only totally redu
ible

divisors in j4�j are, besides 4�, the following

D

+

: � + �

ij

+�

kl

+�

mn

(i; j; : : : ; n all 6=),

D

0

+

: 2�+ 2�

ij

(0 � i < j � 5),

D

�

: � + �

0i

+�

0j

+�

ij

(0 < i < j � 5),

D

0

�

: � + �

ij

+�

jk

+�

ki

(0 < i < j < k � 5).

Below we give a pi
ture of parti
ular divisors D

+

and D

�

. One sees that the four


urves in D

+

interse
t in twelve nodes while the 
urves in D

�

interse
t in four triple

points. The divisors D

+

and D

0

+

are even while the divisors D

�

and D

0

�

are odd.
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13

14

15

01

35

02

23

24

25

0503

00

12

04

34 45

05 00

12

14

02

13

2315

04

03

01
45

We denote by C

�

the proje
tion of p

�

D

�

on

~

K

�

and we write �

�

for �

[C

�

℄

. By

(3.2) we have that h

0

(

~

X;C) = 6. We denote by s the se
tion that 
uts out [4�℄.

and we �nd from Table 3 that the following se
tions �

0

; : : : ; �

5

provide a basis for

the odd se
tions of 4�.

�

0

= sv

1

;

�

1

= sv

2

;

�

2

= s(u

1

v

2

� u

2

v

1

);

�

3

= s((w

1

+ u

2

1

)v

2

� (w

2

+ u

1

u

2

)v

1

);

�

4

= s(v

1

w

2

+ u

1

w

0

v

2

);

�

5

= s(u

1

u

2

v

2

� v

2

w

2

� u

2

2

v

1

� u

2

v

2

w

0

):

In this 
ase we easily �nd

Proposition 5.6. The map �

�

:

~

X ! P

5

is an isomorphism onto its image. The

images E

ij

and T

ij

form two groups of sixteen disjoint lines, ea
h line interse
ting

six lines of the other group.

Proof. Comparing the se
tion �

0

; : : : ; �

5

to the se
tions that were used in the 
ase

of �

+

for 3� we see that no aÆne point 
an be a base point. We will 
ompute

below an equation for the image of theta, whi
h is a line sin
e �

i

= 1 for all i. So

jCj is basepoint-free. Moreover, sin
e the only divisor whi
h was 
ontra
ted by �

+

in the 
ase of 3� was �, whi
h is not 
ontra
ted in this 
ase, �

�

is an isomorphism.

�

i

= 1 for all i, hen
e all (�2)-
urves are mapped to (disjoint) lines; their equations

will be 
omputed below. Also C ��

ij

= 4� 6=2 = 1 so all theta 
urves are mapped

to sixteen disjoint lines.

We will �nd the relations between the �

i

by expressing the fa
t that the image


ontains a whole 
on�guration of lines, 
oming from the theta 
urves �

ij

and the

(�2)-
urves B

i

. The lines T

ij

(where i and j are not both zero) 
an be 
omputed

expli
itly using the parametrizations for the divisors �

ij

. For T

0i

(i 6= 0) we �nd

by using (18) the following parametrization (t 2 P):

�

1 : ��

i

: �

2

i

: t : �t� �

i

(�

2

+ �

2

i

) : ��

i

t� �

2

i

(�

2

i

+ ��

2;i

)

�

:

For T

ij

(i; j 6= 0) use (19) and (20) to �nd

(t : 1 : �

1;ij

� �

2;ij

t : �

2;ij

+ �

1;ij

��

1;ij

� ��

1;ij

�

2;ij

t : �

1;ij

��

1;ij

+ ��

3;ij

t :

�

2;ij

�

1;ij

� �

2;ij

��

1;ij

� ��

3;ij

� �

2

2;ij

t)

Note that we 
annot 
ompute the lines E

ij

in this way be
ause all the fun
tions

v

i

vanish at the half periods. However, any quadri
 whi
h vanishes at the lines

T

ij

must also vanish at the lines E

ij

be
ause every line E

ij

has six points lying on
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the lines T

ij

. It is now easy to �nd and solve the (linear) 
onditions on �

ij

for

P

i�j

�

ij

v

i

v

j

to vanish on the lines T

ij

: we get the following set of independent

quadri
s:

�

2

2

� �

1

�

1

�

2

+ �

1

�

4

+ �

0

�

5

= 0;

�

5

�

2

0

+ �

3

�

2

1

� �

4

�

0

�

1

� �

2

�

1

�

2

+ �

1

�

5

+ �

2

�

4

= 0;(35)

�

4

(�

2

1

+ �

0

�

2

) + �

2

(�

2

2

� �

1

�

3

) + �

2

3

� 2�

5

�

0

�

1

+

(�

1

�

2

� 2�

3

)�

1

�

2

� �

1

�

2

(�

3

+ �

4

) + �

3

�

4

� �

2

�

5

= 0:

Note that again these equations do not involve the roots �

i

of f(�) expli
itly. We

will see that by using the �

i

expli
itly we 
an make the equations mu
h more

symmetri
. Before we 
an do this we need to 
ompute the equations for the other

lines (T

00

and all E

ij

) and the ninety-six interse
tion points of the 
on�guration.

The following lemma provides an e�e
tive way to do this.

Lemma 5.7. The hyperplane se
tion whi
h vanishes on the lines T

00

; T

0i

; T

0j

and

T

ij

also vanishes on the lines E

00

; E

0i

; E

0j

and E

ij

Proof. The points e

00

; e

0i

; e

0j

and e

ij

are triple points of the divisor �

00

+�

0i

+

�

0j

+ �

ij

hen
e the lines E

00

; E

0i

; E

0j

and E

ij

have three points in 
ommon with

the hyperplane that vanishes on T

00

; T

0i

; T

0j

and T

ij

.

In fa
t, sin
e the degree of �

�

(

~

K

�

) is eight the hyperplane se
tion must 
onsist

exa
tly of these eight lines. It is now easy to do the 
omputation: sin
e this

hyperplane se
tion is given as in (28) by �

2;ij

�

0

� �

1;ij

�

1

+ �

2

= 0 it suÆ
es to

interse
t the quadri
s with the hyperplane

�

2

= �

1;ij

�

1

� �

2;ij

�

0

whi
h amounts to solving the equations of the quadri
s linearly for the remaining

variables. Besides the lines T

0i

; T

0j

and T

ij

for whi
h we gave the equations above

we also �nd the following lines

T

00

: (0 : 0 : 0 : 0 : 1 : t);

E

00

: (0 : 0 : 0 : 1 : �1 : t);

E

0i

: (1 : ��

i

: �

2

i

: �

2

i

��

1;i

: t : �

i

t� �

3

i

��

1;i

);

E

0j

: (1 : ��

j

: �

2

j

: �

2

j

��

1;i

: t : �

j

t� �

3

j

��

1;i

);

E

ij

: (t : 1 : �

1;ij

� �

2;ij

t : �

2

1;ij

+ ��

2;ij

� (�

1;ij

�

2;ij

+ ��

3;ij

)t : �

1;ij

��

1;ij

+ ��

3;ij

t :

�

2;ij

(�

1;ij

� ��

1;ij

)� ��

3;ij

� �

2

2;ij

t):

We have added the right labels already: to identify whi
h is whi
h one may 
onsider

di�erent values of i and/or j, identifying the last three lines; to distinguish T

00

from

E

00

it suÆ
es to 
he
k that T

00

does not interse
t any of the lines T

ij

.

Our next task is to �nd the 
oordinates of the ninety-six interse
tion points of

the 
on�guration. We will need them to simplify the equations of our quadri
s. If

we denote

p

mn

ij

= E

ij

\ T

mn
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then we �nd for any indi
es su
h that fi; j; k;m; ng = f1; 2; 3; 4; 5g

p

00

00

= (0 : 0 : 0 : 0 : 0 : 1);

p

00

0i

= (0 : 0 : 0 : 0 : 1 : �

i

);

p

0i

00

= (0 : 0 : 0 : 1 : �1 : ��

i

);

p

0i

0i

= (1 : ��

i

: �

2

i

: �

2

i

��

1;i

: ��

i

(�

2

i

+ ��

2;i

) : ��

2

i

(��

2;i

+ �

i

��

1;i

+ �

2

i

));

p

ij

0i

= (1 : ��

i

: �

2

i

: �

2

i

��

1;i

: ��

3;ij

+ �

2;ij

��

1;ij

+ �

2

i

��

1;ij

:

�

i

(��

3;ij

+ �

2;ij

�

i

+ �

2;ij

��

1;ij

));

p

0i

ij

= (1 : ��

i

: �

2

i

: ��

3

i

� �

i

(�

2;ij

+ ��

2;ij

)� ��

3;ij

: ��

3;ij

+ �

2;ij

��

1;ij

+ �

2

i

��

1;ij

:

�

i

(��

3;ij

+ �

2;ij

�

i

+ �

2;ij

��

1;ij

));

p

ij

ij

= (�

1;ij

��

1;ij

� ��

2;ij

� �

2

1;ij

+ �

2;ij

: ���

3;ij

� �

1;ij

�

2;ij

+ ��

1;ij

�

2;ij

:

� �

2

2;ij

+ �

2;ij

��

2;ij

� �

1;ij

��

3;ij

: �

2;ij

�

1;km

�

1;kn

�

1;mn

� �

1;ij

�

2

2;ij

�

��

3;ij

�

1;ij

��

1;ij

: ��

3;ij

(�

2;ij

� ��

2;ij

� �

2

1;ij

) + �

1;ij

�

2;ij

��

1;ij

(��

1;ij

� �

1;ij

) :

��

2

3;ij

� �

2

2;ij

(��

2

1;ij

� ��

2;ij

� �

1;ij

��

1;ij

+ �

2;ij

));

p

mn

ij

= (�

1;mn

� �

1;ij

: �

2;mn

� �

2;ij

: �

1;ij

�

2;mn

� �

2;ij

�

1;mn

: �

2

2;mn

�

�

2;mn

(�

2;ij

� �

2

1;ij

)� �

1;ij

�

1;mn

�

2;ij

� �

k

(�

1;ij

�

2;mn

� �

2;ij

�

1;mn

) :

(�

1;ij

�

2;ij

� �

1;mn

�

2;mn

)�

k

+ �

1;ij

�

1;mn

(�

2;mn

� �

2;ij

) :

(�

2

2;mn

� �

2

2;ij

)�

k

+ �

2;ij

�

2;mn

(�

1;ij

� �

1;mn

)):

These points are used to 
ompute the sixteen proje
tive tranformations �

ij

whi
h


ome from the sixteen translations on J

�

over half periods; it a
tually suÆ
es to


ompute the �

0i

. The transformation �

0i

should map the following seven points

p

00

00

; p

0i

00

; p

00

0i

; p

0i

0i

; p

0j

0j

; p

0m

0m

; p

0n

0n

to

p

0i

0i

; p

00

0i

; p

0i

00

; p

00

00

; p

ij

ij

; p

im

im

; p

in

in

(in that order), and similar for the other translations. If we introdu
e the following

abbreviation

�

k

ij

=

k

X

l=0

��

j+l;i

�

k�l

i

;

then we �nd that the matrix for �

0i

is given by

�

A

i

B

i

�

; where

A

i

=

0

B

B

B

B

B

B

B

B

B

B

�

�

2

i

�

2

i0

�

i

�

1

i1

��

i

�

1

i0

�

i

�

1

i3

�

4

i

+ �

1

i3

�

2

i

�

1

i0

��

2

i

�

1

i3

�

3

i

�

1

i1

�

2

i2

���

1;i

�

2

i

�

1

i3

�

1

i;1

�

3

i

��

1;i

+ �

4

i;0

�

2

�

1

�

2

i2

� �

1

i0

�

4

i

�

i

�

1

i3

(�

2

i

+ ��

2;i

) ��

2

i

�

1

i1

(�

2

i

+ ��

2;i

) �

2

i

�

1

i0

(�

2

i

+ ��

2;i

)

�

�

�

1

i3

�

2

�

i

�

1

i3

�

1

i1

��

i

�

1

i3

�

1

i0

1

C

C

C

C

C

C

C

C

C

C

A
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B

i

=

0

B

B

B

B

B

B

B

B

B

B

�

0 �

i

�1

0 ��

2

i

�

i

0 �

3

i

��

2

i

��

4

i0

��

4

i

� �

2

i2

���

1;i

�

2

i

0 ��

1;i

�

3

i

+ �

1

i3

�

i

(�

2

i

+ ��

2;i

)

0 �

i

�

1

i3

�

2

i

�

2

i0

1

C

C

C

C

C

C

C

C

C

C

A

:

The matri
es �

ij


ommute pairwise so they 
an be simultaneously diagonalized.

The eigenvalues of �

i

are given by �'

i

where '

i

=

Q

j 6=i

�

ij

and a 
omplete set of


ommon eigenve
tors for all �

ij

is given by

W

0

= (0; 0; 0; 1; 0; 0);

W

i

= (1;��

i

; �

2

i

; ��

1;i

�

2

i

;��

i

(�

2

i

+ ��

2;i

); ��

4;i

+ �

i

��

3;i

)

where i = 1; : : : ; 5. If we let W denote the matrix whose 
olumns are the ve
tors

W

i

(properly normalized) and de�ne X =W

�1

V then then equations of the three

quadri
s V

T

Q

i

V = 0 take the following symmetri
 form.

'

�1

1

t

2

1

+ '

�1

2

t

2

2

+ '

�1

3

t

2

3

+ '

�1

4

t

2

4

+ '

�1

5

t

2

5

= 0;

'

�1

1

�

1

t

2

1

+ '

�1

2

�

2

t

2

2

+ '

�1

3

�

3

t

2

3

+ '

�1

4

�

4

t

2

4

+ '

�1

5

�

5

t

2

5

= 0;(36)

'

�1

1

�

2

1

t

2

1

+ '

�1

2

�

2

2

t

2

2

+ '

�1

3

�

2

3

t

2

3

+ '

�1

4

�

2

4

t

2

4

+ '

�1

5

�

2

5

t

2

5

= t

2

0

:

Of 
ourse one 
an get rid of all fa
tors '

i

but we will not do this be
ause it makes

the 
oordinates of the ninety-six points more 
omplex. It is easy to 
ompute that

these points have now the following 
oordinates.

(0 : �1 : �1 : �1 : �1 : �1)

(1 : �(�

1

� �

i

) : �(�

2

� �

i

) : �(�

3

� �

i

) : �(�

4

� �

i

) : �(�

5

� �

i

))

where the plus signs 
orrespond to the origin resp. the points p

0i

00

. For the other

points p

kl

ij

the i-th and j-th 
oordinates get a minus sign; noti
e that in this way

all possible signs appear! The translation over a half period !

i

+ !

j

is now just

given by 
ipping the sign of the i-th and j-th 
oordinates. This fa
t is useful in


omputing the new parametrizations of the thirty-two lines: one easily �nds that

E

00

and �

00

are given by

E

00

: (u : �

1

u+ r : �

2

u+ r : �

3

u+ r : �

4

u+ r : �

5

u+ r);

�

00

: (�u : �

1

u+ r : �

2

u+ r : �

3

u+ r : �

4

u+ r : �

5

u+ r);

and for the other lines E

ij

and �

ij

it suÆ
es to add a minus sign in the i-th and

j-th 
oordinates. In parti
ular we have the following proposition:

Proposition 5.8. The involution (t

0

; t

1

; t

2

; t

3

; t

4

; t

5

; t

6

) 7! (�t

0

; t

1

; t

2

; t

3

; t

4

; t

5

; t

6

)

restri
ts to an automorphism of the K-3 surfa
e whi
h inter
hanges the two families

of sixteen lines.

In the 
ase of the odd se
tions of [4�℄ one 
an ask for higher vanishing at one of

the half periods e

ij

and �nd a quarti
 in P

3

. It is easy to very that in this 
ase the

image has six singular points whi
h 
ome from the six theta 
urves passing through

that point. The ex
eptional divisor E

ij

maps to a 
urve of degree three and all
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the theta 
urves and ex
eptional divisors are mapped to lines. Compare this to the


ase of �

+

for 3�: it is exa
tly the \dual". Computing the image one �nds exa
tly

the same image as in the latter 
ase. The reason for this is that, as we have seen,

the K-3 surfa
e 
arries an automorphism whi
h inter
hanges the two families of

sixteen lines.

We �nally 
onsider the 
ase of even se
tions of 4�. Sin
e �

+

leads to a Kummer

surfa
e in P

9

we will restri
t us here to a 
ase in whi
h we pres
ribe the vanishing

(of order at least two sin
e all half periods are even) at the points e

00

; e

0i

; e

0j

and

e

ij

. Noti
e that these points form a group. The 
orresponding Kummer surfa
e was

extensively studied by Tomasz Szemberg (see [27℄). We will give here the expli
it


al
ulation of the proje
tive image, be
ause the equations whi
h were obtained by

algebrai
 geometri
 methods in [27℄ are less expli
it and its 
oeÆ
ients are not

expressed in terms of the underlying 
urve. We de�ne � = (2; 2; 2; 2; 0; : : : ; : : : ; 0)

(the �rst four half periods being e

00

; e

0i

; e

0j

and e

ij

). It is easy to verify that

formula (3.2) leads to dim jM

+

�

j = 6, hen
e �

M

+

�

maps to P

5

.

Proposition 5.9. The linear system jM

+

�

j is base-point-free, hen
e �

M

+

�

:

~

K

�

!

P

5

is regular. It 
ontra
ts twelve divisors, to wit all ex
eptional divisors B

kl

ex-


ept B

00

; B

0i

; B

0j

and B

ij

, whi
h are mapped to 
oni
s. The image is a 
omplete

interse
tion of three quadri
s whi
h 
an be taken as follows.

0 = '(�

i

)u

1

v

1

� '(�

j

)u

2

v

2

;

0 = �

3

ij

u

2

v

2

+ '(�

i

)u

3

v

3

;(37)

0 = (u

1

+ u

2

+ u

3

+ v

1

+ v

2

+ v

3

)

2

� 4�

�2

ij

'

0

(�

i

)u

3

v

3

� 4[(u

1

+ v

2

)u

2

+ v

2

(u

2

+ v

1

) + v

3

(u

2

+ v

2

)℄;

where '(�) = (�� �

k

)(�� �

m

)(� � �

n

).

Proof. We only indi
ate how (37) was 
omputed and refer for the other statements

to [27℄. There is a natural 
hoi
e for the six se
tions, namely for ea
h pair of the


urves �

00

;�

0i

;�

0j

and �

ij

we 
onsider the even se
tion of 4� whi
h vanishes

twi
e at this pair of 
urves. Sin
e su
h a pair passes through the points e

00

; e

0i

; e

0j

and e

ij

these se
tions have the right vanishing properties. Noti
e that these se
tions


an be 
onstru
ted from the se
tions of [2�℄ by taking the tensor produ
ts t

i


 t

j

,

0 � i < j � 3, where t

0

; t

1

; t

2

; t

3

are the se
tions that vanish twi
e at one of

the four 
urves. If we de�ne ~u

i

= t

0


 t

i

for i = 1; 2; 3 and ~v

i

= t

j


 t

k

where

fi; j; kg = f1; 2; 3g then we have two obvious quadrati
 equations ~u

1

~v

1

= ~u

2

~v

2

=

~u

3

~v

3

. It remains to �nd a third quadri
. The qui
kest way to do this is by using the

equation of the Kummer surfa
e (22), rewritten in terms of the basis ft

0

; t

1

; t

2

; t

3

g

for H

0

(J

�

; [2�℄). It follows from (23) and (24) that these leads to the following


hange of 
oordinates:

0

B

B

B

B

B

�

t

0

t

1

t

2

t

3

1

C

C

C

C

C

A

=

0

B

B

B

B

B

�

1 0 0 0

�

2

i

�

i

1 0

�

2

j

�

j

1 0

�

2;ij

��

1;ij

+ ��

3;ij

��

2;ij

���

1;ij

1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

�

0

�

1

�

2

�

3

1

C

C

C

C

C

A

:
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If we substitute this in (25) and de�ne '(�) = (� � �

k

)(� � �

m

)(� � �

n

) then we

�nd the following equation for the 
lassi
al Kummer quarti
.

�

'(�

j

)t

0

t

1

+ '(�

i

)t

0

t

2

+ �

2

ij

t

0

t

3

+ �

ij

t

1

t

2

� t

2

t

3

� t

3

t

1

�

2

� 4'(�

i

)t

0

t

1

t

2

('(�

j

)t

0

+ �

ij

t

2

� 2t

3

)

+ 4t

1

t

2

t

3

(�

ij

t

1

� t

3

)� 4�

ij

'

0

(�

i

)t

0

t

1

t

2

t

3

= 0:

By de�ning u

i

and v

i

as appropriate multiples of ~u

i

and ~v

i

we get (37).

6. Appendix

For 
omparison we give a more 
on
eptual (but longer) proof of the fa
t that

in the 
ase L = 4�, � = 0 the map �

�

is an isomorphism and that its image is

the 
omplete interse
tion of three quadri
s (see Se
tion 5.3). This proof is based

on Saint-Donat's theorem 2.2 and works only in the generi
 
ase. We will use the

notation of Se
tion 5.3.

Proposition 6.1. If A = J

�

is generi
 then the linear system jC

�

j has no base

points and leads to a regular map �

�

:

~

K

�

! P

5

.

Proof. It follows from (4) that C

2

�

= 8 so it suÆ
es to show, a

ording to Theorem

2.2, that jC

�

j has no �xed 
omponents. None of the 
urves B

i


an belong to

the base lo
us be
ause, if we in
rease one of the �

i

to three then the number of

se
tions drops. If some other divisor is a �xed 
omponent of jC

�

j then there is a

symmetri
 divisor D on A su
h that every odd se
tion of H

0

([D

�

℄) vanishes on D.

Sin
e D is a
tually totally symmetri
 it is linearly equivalent to �; 2�; 3� or 4�

and we have a basis fss

1

; : : : ; ss

6

g of H

0

([D

�

℄), D being 
ut out by s. Then the

se
tions fs

1

; s

2

; s

3

; s

4

; s

5

; s

6

g represent a linearly independent set of se
tions with

the same parity (either even or odd) in either H

0

(3�), H

0

(2�) or H

0

(�). Whi
h

is impossible.

Proposition 6.2. If A = J

�

is a generi
 Ja
obi surfa
e then the map �

�

:

~

K

�

!

P

5

is birational.

Proof. We show that we are not in one of the ex
eptional 
ases of Saint-Donat's

Theorem (Theorem 2.2). Let us �rst assume that

~

K

�


ontains an irredu
ible 
urve

C

0

for whi
h g(C

0

) = 1 and C

0

� C

�

= 2. Then there is a symmetri
 divisor D

0

on

A su
h that

p

�

D

0

= �

�

C

0

+

16

X

i=1

�

i

(D

0

)E

i

:(38)

Sin
e C

0

2

=2 + 1 = g(C

0

) = 1 we get C

0

2

= 0 and D

0

2

=

P

16

i=1

�

i

(D

0

)

2

. Then

Formula (6) implies (for D = D

�

� 4�) that the interse
tion � �D

0

is given by

� �D

0

= 1 +

1

4

16

X

i=1

�

i

(D

0

):(39)

The Hodge inequality (see [11, p. 368℄) �

2

D

0

2

� (� �D

0

)

2

and the Cau
hy-S
hwarz

inequality (

P

16

i=1

�

i

(D

0

))

2

� 16

P

16

i=1

�

i

(D

0

)

2

then lead to

2

16

X

i=1

�

i

(D

0

)

2

= �

2

D

0

2

� 1 +

1

2

16

X

i=1

�

i

(D

0

) +

16

X

i=1

�

i

(D

0

)

2

;
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an equality, whi
h is easily rewritten as

16

X

i=1

�

�

i

(D

0

)�

1

4

�

2

� 2:(40)

This means that ea
h of the �

i

(D

0

) must be either zero or one; if n of them are

equal to one and the other ones are equal to zero then (40) redu
es to n � 2. Then

� �D

0

is only an integer for n = 0 in whi
h 
ase � �D

0

= 1, an impossibility if A is

generi
. This ex
ludes the �rst 
ase of the Saint-Donat Theorem.

We now assume that

~

K

�


ontains a divisor C

0

su
h that g(C

0

) = 2 and C

�

� 2C

0

.

Then C

�

� C

0

= 2C

0

2

= 4. If we de�ne D

0

as in (38) then we �nd as before

D

0

2

= 4 +

16

X

i=1

�

i

(D

0

)

2

; � �D

0

= 2 +

1

4

16

X

i=1

�

i

(D

0

):

and pro
eed as in the �rst part of the proof: we apply the Hodge and Cau
hy-

S
hwarz inequalities to get

2

 

4 +

16

X

i=1

�

i

(D

0

)

2

!

= �

2

D

0

2

� 4 +

16

X

i=1

�

i

(D

0

) +

16

X

i=1

�

i

(D

0

)

2

:

This inequality is easily rewritten as

16

X

i=1

�

�

i

(D

0

)�

1

2

�

2

� 0;

whi
h has no solution. Thus, both ex
eptional 
ases of Theorem 2.2 are ex
luded

and �

�

is birational.

Proposition 6.3. If A = J

�

is generi
 then the birational map �

�

:

~

K

�

! P

5

is

an embedding of the smooth Kummer surfa
e

~

K

�

in P

5

.

Proof. Sin
e we know from the previous proposition that �

�

is birational it suÆ
es

to show that no 
urve is 
ontra
ted. If B

j

= �

�

(2E

j

) were 
ontra
ted then

0 = C

�

�B

j

=

1

2

 

p

�

D

�

�

16

X

i=1

E

i

!

� (2E

j

) = 1;

a 
ontradi
tion. Assume now that an irredu
ible divisor C

0

on

~

K

�

, di�erent from

the 
urves B

j

, is 
ontra
ted. There exists a symmetri
 divisor D

0

on A su
h that

�

�

(C

0

) = p

�

(D

0

)�

P

16

i=1

�

i

(D

0

)E

i

. This leads to the following 
ontradi
tion:

2

 

16

X

i=1

�

i

(D

0

)

!

2

� 32

16

X

i=1

�

i

(D

0

)

2

� 32D

0

2

� (D

�

�D

0

)

2

=

 

16

X

i=1

�

i

(D

0

)

!

2

:(41)

In the �rst inequality in (41) we used the Cau
hy-S
hwarz inequality and in the

se
ond one we used that C

0

2

� 0. The third inequality follows from Hodge's

inequality (
fr. supra) and the equality in (41) follows from

0 = C

�

�D =

1

2

 

D

�

�D

0

�

16

X

i=1

�

i

(D

0

)

!

:

This shows that no 
urve is 
ontra
ted hen
e �

�

is an isomorphism onto his image.



36 LUIS A. PIOVAN AND POL VANHAECKE

We �nally show that the image is of �

�

is de�ned by quadrati
 equations.

Proposition 6.4. If A = J

�

is generi
 then the image of �

�

in P

5

is given by an

interse
tion of quadri
s, in parti
ular it is a 
omplete interse
tion.

Proof. We ex
lude the ex
eptional 
ases of Theorem 2.3. First, assume that there

exists an irredu
ible 
urve C

0

su
h that g(C

0

) = 1 and C

0

� C

�

= 3. There exists a

symmetri
 divisor D

0

on A su
h that �

�

(C

0

) = p

�

(D

0

)�

P

16

i=1

�

i

(D

0

)E

i

and we �nd

C

0

2

= 0; H

2

=

P

16

i=1

�

2

i

and � �D

0

=

3

2

+

1

4

P

16

i=1

�

i

(D

0

), leading to the following

inequality for the �

i

(D

0

)

16

X

i=1

�

�

i

(D

0

)�

3

8

�

2

�

9

2

:(42)

Sin
e every term is at least equal to 9=64 all �

i

(D

0

) must be equal to 0 or 1. If we

assume that n of them are equal to 1 and the others are zero then (42) redu
es to

n � 9 whi
h gives only integer solution for � � H when n = 2 or n = 6. If n = 6

then � �D

0

= 3 whi
h is impossible on a generi
 Ja
obian. If n = 2 then � �D

0

= 2

so that D

0

is algebrai
ally equivalent to �, so D

0

is a translate of �. Sin
e D

0

is symmetri
 it must be a translate of � over a half period. Now the equation

p

�

H = �

�

D + E

1

+ E

2

tells us that H has even multipli
ity at all half periods

ex
ept at two half periods, whi
h is impossible, ex
luding the �rst ex
eptional 
ase.

Se
ond, let us assume that

~

K

�


ontains two 
urves C

0

and C

00

su
h that g(C

0

) =

2; g(C

00

) = 0; C

0

� C

00

= 1 and C

�

� 2C

0

+ C

00

. Then

C

�

� C

00

= (2C

0

+ C

00

) � C

00

= 2� 2 = 0

implying that C

00

is a 
ontra
ted 
urve for �

�

. We have seen however in Proposition

6.3 that no 
urve is 
ontra
ted, ex
luding the se
ond ex
eptional 
ase.

For a generalization to higher genus we refer to [7℄.
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