
Two-dimensional integrable systems

1. Introduction

One of the oldest problems of Hamiltonian mechanics is to find the quadratures for
integrable Hamiltonian systems. Kowalevski’s calculations to find the quadratures for her
top, as well as Kötter’s enormous computations to get the quadratures for a rigid body
in a fluid both required a lot of ingenuity and yet the geometry behind their calculations
is totally obscure. Also their calculations seem special in each case and they do not
provide insight in solving other examples by quadratures. In the last decades the use of
algebraic geometry — especially the beautiful theory of Abelian varieties — in studying
mechanical systems has revealed some of the mysteries and led to a better understanding
of integrability and the role of geometry. In this article we discuss some of the aspects of
the theory and we look at the following four questions:

1. Given two integrable systems, can one effectively find the birational transformation
mapping one into the other (if any)?

2. Is there a systematic way to linearise an integrable system?
3. How can one calculate action-angle variables from the linearising variables?
4. How can one write the differential equations defining the integrable system in Lax-

form?

These questions will be discussed in the context of two-dimensional algebraic com-
pletely integrable systems (a.c.i. systems). These are integrable systems for which the
invariant (real) tori can be extended to complex algebraic tori (Abelian surfaces). This
implies that algebraic geometry can be used to study these systems. For an extensive
discussion of these systems we refer to [AvM1], a book which should be taken as a general
reference on the subject and on the matter discussed below. In the second part of the text,
we will give a list of examples to illustrate the techniques explained below to investigate
the three questions. We shortly describe these examples now.

We will consider two problems of the standard form “kinetic energy T + potential
energy V ”, where V3 (Hénon-Heiles potential) and V4 (the quartic potential) are poly-
nomials of total degree 3 and 4 respectively. The Newton equations have the following
form

V3 :

{

q̈1 = 2q1q2,

q̈2 = 2(2q21 + 3q22),
V4 :







q̈1 =
q1
4
(2q21 + 3q22),

q̈2 = q2(3q
2
1 + 2q22).

In appropriate coordinates the three body Toda lattice is governed by the equations

ṫ1 = t1(t5 − t4),
ṫ2 = t2(t6 − t5),
ṫ3 = t3(t4 − t6),

ṫ4 = t3 − t1,
ṫ5 = t1 − t2,
ṫ6 = t2 − t3.
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In [BvM] the authors introduced the seven-dimensional system

ṡ1 = −8s7, ṡ4 = −4s2s5 − s7,
ṡ2 = 4s5, ṡ5 = s6 − 4s2s4,

ṡ3 = 2(s4s7 + s5s6), ṡ6 = −s1s5 + 2s2s7,

ṡ7 = s1s4 + 2s2s6 − 4s3,

to understand the geometry of an integrable top, the Goryachev-Chaplygin top. In appro-
priate variables Kowalevski’s top is given by

k̇1 = k2k3,

k̇2 = 2l3 − k1k3,
k̇3 = −2l2,

l̇1 = 2k3l2 − k2l3,
l̇2 = k1l3 − 2k3l1,

l̇3 = k2l1 − k1l2.

Finally g commuting vector fields on an arbitrary hyperelliptic Jacobian of genus g can be
expressed as a Lax pair

Ȧ =
1

2
[A, PkA+Bk], A =

(

v(x) u(x)
w(x) −v(x)

)

where k = 1, . . . , g give the different flows. The entries of A are polynomials u(x), v(x) and
w(x) of degrees g, g − 1 and g + 2, and u(x) and w(x) are monic. Pk is a linear operator
on polynomials

Pk(

g+2
∑

n=0

Aix
i) =

k+1
∑

i=0

Ag−i+2x
1+k−i

and the matrix Bk is a lower triangular matrix whose only non-zero entry is given by
−ukx+ 2u1uk − uk+1, where uk is the coefficient of xg−k in u(x).

This Lax pair gives rise to another integrable system by taking the degrees of u, v, w as
g, g− 1, g+1 respectively and taking u and w monic; in this case, bk = −uk. We call these
two integrable systems the even master system and the odd master system respectively. We
called them master systems because indeed many two-dimensional systems can be reduced
to them, as will be discussed later. The odd master system has been studied by Mumford
when studying the KdV-equation (see [M]). The examples will be discussed in Section 6.

After a brief review of the fundamental tools in Section 2 we investigate the search for
quadratures in a systematic way and the role of algebraic geometry in Section 3. For fixed
generic values of the contants of motion one searches for Laurent solutions to the differential
equations depending on a sufficient number of free parameters since these correspond to
the points where the variables blow up. They thus correspond to the points on the divisor
D which has to be adjoined to the affine invariant surface A defined by the constants of
motion to get a complete (Abelian) variety T 2, which in this paper we suppose to contain
no elliptic curves. This divisorD can effectively be calculated by substituting these Laurent
solutions in the invariants — in the two-dimensional case the irreducible components Γi
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of this divisor are just curves. Again using the Laurent solutions one finds meromorphic
functions on T 2 having a certain pole at each of these curves Γi. A sufficient number of
these functions will provide an embedding of the variety in projective space. From this the
basic characteristics of the Abelian surface, like the polarisation induced by each of the
curves on the surface, can be found.

(1) If one of the curves, say Γ, defines a principal polarisation on the surface, the po-
larised surface (T 2,Γ) is isomorphic to (Jac(Γ), t∗xΘ) for some translate t∗xΘ of the theta
divisor Θ (the zero locus of the classical Riemann theta function) on Jac(Γ). Using a non-
trivial involution on the affine invariant surface A which fixes at least one point on Γ, one
constructs an affine equation for the Kummer surface of T 2. We show that by choosing
coordinates in IP3 such that (0 : 0 : 0 : 1) ∈ IP3 corresponds to this fixed point, it is possible
to construct explicitely the isomorphism from (T 2,Γ) to (Jac(Γ), t∗xΘ), where we use for
Jac(Γ) the affine coordinates coming from natural coordinates on the symmetric product of
Γ with itself. This map is called a linearising map. Finding this map is what is classically
known as solving the system by quadratures, because in these symmetric coordinates, the
differential equations reduce to

µ̇1
√

f(µ1)
+

µ̇2
√

f(µ2)
= a,

µ1µ̇1
√

f(µ1)
+

µ2µ̇2
√

f(µ2)
= b,

(1)

for some constants a, b ∈ [C and some equation y2 = f(x), deg(f) = 5 or 6, for the curve.
We call this representation the Jacobi form of the differential equations. As was shown in
[M], from this representation the symmetric functions of µ1 and µ2, hence also the original
variables defining the system, can be written down explicitely in terms of theta functions,
themselves containing the roots of the polynomial defining the curve.

(2) Using the fact that every polarisation is induced by a principal polarisation via an
isogeny (a homomorphism of Abelian surfaces with finite kernel), we are able to reduce the
case of a general polarisation to the case of a principal polarisation, and we can proceed
as in (1) to find the quadratures for the system.

The upshot is that we have a systematic way to linearise all two-dimensional a.c.i.
systems. The method will be applied to the examples introduced above and we will show
that the methods are also effective. For example, using these methods, we are able to
linearsie Kowalevski’s top in a very natural and systematic way. We also show in an
example that for a system which is a.c.i. in the generalised sense, we can proceed in
the same way. It is not clear however how the method generalises to higher-dimensional
systems.

A second question (answered in Section 4) is the construction of action-angle variables
for the real system underlying a two-dimensional a.c.i. system. This question is important,
since action-angle variables lie at the base of the construction of the quantizised version of
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the system. Fixing one symplectic leaf, we are able to deduce from the Jacobi form of the
differential equations conjugate variables ν1 and ν2 on the image of a torus neighborhood
(in the real invariant manifold) of a given real torus in this leaf under the linearising
map, such that the symplectic structure is the pull-back under the linearising map of the
two-form

ω = dµ1 ∧ dν1 + dµ2 ∧ dν2.
In the construction we make the natural assumption that the two functions which define
the vector field of the system and a commuting vector field enter polynomially in some
equation of the curve. Coordinates in which the symplectic structure takes the above
canonical form are classically called Darboux coordinates. The functions νi are found by a
simple integration and can be written down in terms of elementary functions in all examples
we studied; the appearance of trancendental functions (such as logarithms) in the functions
νi will also be clear from the discussion. Starting from these variables and using a standard
method due to Arnold (see [A]), we can construct new Darboux coordinates p1, p2, φ1, φ2,
having the property that the differential equations now take the extremely simple form

φ̇i = ai,

ṗi = 0,

where the ai ∈ [C are constants. These variables are called action-angle variables since the
φi are linear coordinates on the torus and the pi have the dimension of action. Hence, we
can construct explicit action-angle variables for these systems, involving (definite) integrals
of the functions νi over intervals between Weierstrass points.

One of the observations, interesting from the point of view of differential geometry,
is that often integrable systems have compatible Poisson brackets and moreover the basic
vector field defining the system is Hamiltonian for these different brackets. Chapter 5will
be devoted to give a necessary condition (which is easy to check) for the compatibility of
Poisson brackets of a certain type, which we will find throughout the examples. Also we
give a construction of compatible structures of this type, which applies for a large class of
examples.

Finally, how can one find out how two systems are related? These mappings cannnot
be found by mere inspection of the differential equations, but we will show how the lineari-
sation leads to maps from a given system going with principally polarised Abelian surfaces,
to either the even or the odd master system (thereby explaining the origin of the name),
giving as a by-product an effective way to construct Lax equations for any two-dimensional
integrable system (for which the generic invariant manifolds do not contain elliptic curves).
More precisely we will find a map for every choice of two independent commuting Hamil-
tonians for the system. We also show how to relate the even and odd master system. The
mappings are birational and quite complicated as will appear in the examples; also deli-
cate covers may come into play and sometimes one only gets an isomorphism for restricted
constants of motion (the moduli space of the invariant Abelian varieties may be smaller in
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one system than in the other). A Lax pair for the three body Toda lattice, different from
the classical one, is given in this way. We obtain the following string of integrable systems:

Ma
ր l տ

Toda → 7-dim ← V4

A second string, which is worked out in [AvM2] by totally different means contains
integrable systems whose invariant Abelian surfaces carry a polarisation of type (1,2)

V3 → Kow
ց ւ

SO(4)

(SO(4) stands for the geodesic flow on SO(4) for the Manakov metric, see [H]). It would
be worthwhile to compare their methods with the one discussed above. Also it would be
interesting to look at polarisations of a different type, but for these only single examples
are known for each polarisation type.

I would like to thank P. van Moerbeke for his constant assistance in this project
and M. Adler for several interesting discussions on the subject. I am also grateful to
Ch. Birkenhake for her remarks on some unprecise statements about Abelian varieties.
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2. Preliminaries

Let Γ be a smooth curve of genus g. We define two divisors D and D′ in Div(Γ),
the divisor group of Γ, to be linearly equivalent, D ∼l D

′, if and only if there exists a
meromorphic function f on Γ for which D −D′ = (f). Here (f) stands for the divisor of
zeroes minus the divisor of poles of f. It is well known that the degree of (f), deg(f), is
zero, where deg: Div(Γ)→ Z is the homomorphism defined by deg(

∑m
i=1 niPi) =

∑m
i=1 ni.

Therefore

Pic(Γ)
def
=

Div(Γ)

∼l

∼= Ker deg

∼l

⊕ Z
def
= Jac(Γ)⊕ Z.

The groups Pic(Γ) and Jac(Γ) are called respectively the Picard group and the Jacobian
of Γ. For any divisor D on Γ we denote by {D} the equivalence class of all divisors on Γ
which are linearly equivalent to D. For an effective divisor D we denote by |D| the linear
system of all effective divisors in {D}; we will also use this notation for effective divisors
on surfaces, the notion of linear equivalence being defined in exactly the same way.

One of the most fundamental results in the theory of algebraic curves tells us that
every Jacobi variety is a principally polarised Abelian variety, which we now explain. By
an Abelian variety we mean a complex torus which can be embedded in projective space.
To show that Jac(Γ) is an Abelian variety, we define a map A:⊗g

sΓ → [C
g
/Λ, the Abel

map with respect to g independent holomorphic differentials ~ω = t(ω1, . . . , ωg) on Γ, and
arbitrary fixed points Q1, . . . , Qg on Γ by

A(〈P1, . . . , Pg〉) =
g
∑

i=1

∫ Pi

Qi

~ωmodΛ, (2)

where Λ is the lattice in [C
g
consisting of all vectors in [C

g
of the form

∮

γ
~ω, where γ runs

over H1(Γ,Z). Since {ω1, . . . , ωg, ω̄1, . . . , ω̄g} generate H1,0⊕H0,1 = H1
DR(Γ) (the first the

Rham group of Γ), Λ is actually a lattice of maximal rank (called the lattice of periods of
Jac(Γ)) showing that [C

g
/Λ is a complex torus. By Abel’s theorem, A is surjective and

KerA consists of those 〈P1, . . . , Pg〉 for which P1+ · · ·+Pg ∼l Q1+ · · ·+Qg. It follows that
Jac(Γ) is a complex torus as well. To show that this torus can be embedded in projective
space, one uses the Kodaira embedding theorem, which states that a compact complex
manifold can be embedded in projective space if and only if it has a Hodge form, i.e., a
closed, positive (1, 1)-form whose cohomology class is rational. Applying this to a complex
torus one obtains the famous Riemann conditions :

Theorem 1 A complex torus [C
g
/Λ is an Abelian variety if and only if there exists

an integral base {λ1, . . . , λ2g} for Λ and a complex base {e1, . . . , eg} for [C
g
such that

Λ = (∆δ Z ) , with ∆δ = diag(δ1, . . . , δg) a diagonal matrix whose diagonal elements are
positive integers satisfying δi | δi+1 and Z a symmetric matrix whose imaginary part ℑ(Z)
is positive definite. In terms of coordinates x1, . . . , x2g dual to the base for Λ the Hodge
form ω is given by

ω =

g
∑

i=1

δidxi ∧ dxi+g.
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Then choosing a unimodular base for H1(Γ) it follows from the classical reciprocity
law for differentials of the first and third kinds that a base {ω1, . . . , ωg} for H0(Γ,Ω1} can
be chosen such that Λ takes the form Λ = (1Z) (1 = diag(1, . . . , 1)). The first Riemann
bilinear relation implies that Z is symmetric, and the second Riemann bilinear relation
implies that ℑ(Z) is positive definite. By the Riemann conditions above, this shows that
Jac(Γ) is an Abelian variety.

Secondly we explain what it means for Jac(Γ) to carry a principal polarisation. The
cohomology class of a Hodge form ω on an Abelian variety is called a polarisation. The
integers δi in ω =

∑

δidxi ∧ dxi+g are invariants of the cohomology class of ω and are
called the elementary divisors of the polarisation (different Hodge forms may give rise to
different elementary divisors). By a slight abuse of language we sometimes say that the
variety has type (δ1, . . . , δg) meaning that the variety has a Hodge form with elementary
divisors (δ1, . . . , δg). With this convention, an Abelian variety is said to carry a principal
polarisation when it has type (1, . . . , 1) and we see that Jac(Γ) carries a principal polar-
isation. It can be shown that every principally polarised Abelian surface which does not
contain elliptic curves is isomorphic to the Jacobian of a curve of genus two (see [GH]).

The embedding of an Abelian variety T g can be made concrete by using line bundles.
Given any Hodge form on T g, there exists a (positive) line bundle L on T g whose first Chern
class c1(L) is exactly the cohomology class of ω and conversely the first Chern class of any
positive line bundle gives a polarisation on T g. As an application it is easy to check that
the elementary divisors (δ′1, . . . , δ

′
g) corresponding to the k-fold power L⊗k of a line bundle

L with elementary divisors (δ1, . . . , δg) of L are related by (δ′1, . . . , δ
′
g) = (kδ1, . . . , kδg).

If L is a positive line bundle on T g and (δ1, . . . , δg) are the elementary divisors of the
polarisation c1(L) then

dimH0(T g,O(L)) = det∆δ = δ1δ2 · · · δgdef= δ (3)

Associated to L is a map from T g to IPδ−1 ∼= IPH0(T g,O(L)) defined as follows. Fixing
a base {s1, . . . , sδ} for H0(T g,O(L)), the point (φ∗(s1)(P ) : · · · : φ∗(sδ)(P )) is indepen-
dent from the chosen trivialisation φ for L around a point P ∈ T g, thereby defining a
holomorphic mapping as long as in each of the points at least one of the sections si does
not vanish, i.e., the complete linear system H0(T g,O(L)) has no base points. By a result
due to Lefschetz, L⊗3 embeds for any positive line bundle L over T g. Under the basic
correspondence between line bundles and divisors, the space H0(T g,O(L)) is identified
with the space L(D) = {f ∈M(Γ)|(f) ≥ −D}. Since for our purposes it is most natural to
work with L(D), we will always embed our Abelian varieties in IPL(D). When we take for
example the polarisation induced by the line bundle which corresponds to an embedding of
a genus two curve Γ into its Jacobian, then we can embed Jac(Γ) in IP8 by the 9 functions
with a 3-fold pole along the embedded curve at worst. The image of the holomorphic map
defined by the functions in L(2Γ) is for a generic Jacobian a quartic surface isomorphic to
the Kummer surface of Jac(Γ), which is defined for a general Abelian variety T g as the
quotient surface T g/, where  is the (-1)-involution given by (z1, . . . , zg) 7→ (−z1, . . . ,−zg)
in the natural coordinates coming from the universal covering space [C

g
of T g. Clearly the

Kummer surface has sixteen singular points which correspond to the two-torsion points
of T 2.
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The main interest in this paper is in the two-dimensional case. The situation here is
very special since every Abelian surface is an unramified cover of a hyperelliptic Jacobian:
at the one hand every Abelian variety is obviously an unramified cover of a principally
polarised Abelian variety, which is the Jacobian of a curve (of genus two) in case the
dimension of the Abelian variety is two, and at the other hand every curve of genus two
is hyperelliptic; in suitable coordinates an equation for a hyperelliptic curve of genus two
is given by y2 = f(x), where deg f = 5 or 6. In these coordinates a base for the space of
holomorphic differentials is given by {dx

y
, xdx

y
} and the hyperelliptic involution is given by

(x, y) 7→ (x,−y) and we see that the curve has six fixed points the Weierstrass points of
Γ, one of which is the point at infinity when deg f = 5. The following two lemmas give a
precise and explicit description of Jac(Γ) in terms of simple divisors on Γ. For a proof we
refer to [M].

Lemma 2. Let Γ be a smooth curve of genus two and denote by σ the hyperelliptic
involution on Γ. Then for any two different divisors P1+P2 and Q1+Q2 on Γ, P1+P2 ∼l

Q1 +Q2 if and only if P1 = σP2 and Q1 = σQ2.

Lemma 3. Fixing any two points Q1 and Q2 on Γ, every point on Jac(Γ) is of the form
{P1 + P2 −Q1 −Q2} for some points P1 and P2 on Γ. This representation is unique if
and only if P1 6= σP2, i.e., all divisors of the form P + σP −Q1 −Q2 (P ∈ Γ) are linearly
equivalent. Therefore Jac(Γ) is obtained from Γ ⊗s Γ by blowing down the fundamental
pencil {〈P, ıP 〉 | P ∈ Γ} using the Abel map A.

To study general Abelian surfaces using curves on these surfaces and sections of their
line bundles we recall (for example from [GH]) that if D is an effective divisor on an Abelian
surface T 2, and if L = [D] then

δ1δ2 = dimH0(T 2,O(L)) = dimL(D) = D.D
2

= g(D)− 1, (4)

where g(D) denotes the virtual genus of D (which equals the topological genus of D if D
is non-singular). A final remark which will be useful later is that any genus two curve on
Jac(Γ) is a translate of the Riemann theta divisor, in particular the embedded curve is
isomorphic to Γ.
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3. The linearisation procedure

In this section we present our systematic method to linearise a two-dimensional a.c.i.
system. Since this amounts to the construction of special coordinates, we will first construct
a set of coordinates on some affine part A of a two-dimensional Jacobian Jac(Γ), obtained
by removing two touching translates of the theta divisor, thereby generalising Mumford’s
construction which concerns the case in which both translates coincide (Proposition 6).
We show moreover that all sets of coordinates on this affine space are in fact constructed
in that way (whether or not the two translates are coincident or not) and we prove a
geometrical result (Proposition 7) which leads to a construction of these coordinates in
terms of the variables in which there are given equations defining the affine part A. These
coordinates are closely related to symmetric function on (some affine part of) the curve Γ
and we prove (Theorem 9) that any holomorphic vector field linearises in these variables.
This is applied to linearise a two-dimensional a.c.i. system as follows.

For fixed generic constants of the motion, the structure of the divisor to be adjoined
at infinity to complete the affine invariant torus defined by the invariant polynomials of
the dynamical system can easily be deduced from the Laurent solutions to the differen-
tial equations, as will be illustrated in the examples. This divisor at infinity consists of
different curves, among which one finds in most (two-dimensional) systems one single or
two touching curves of genus two or unramified covers of these; in any case† the divisor
at infinity is always linearly equivalent to such a divisor so that by changing the divisor
at infinity we are in the former situation again (see the Kowalevski top). If one curve or
two curves of genus two are found, A is the affine part of a Jacobian and we may by the
above method relate the variables defining the system to linearising variables, since the
invariants of the system give equations for an affine part A as above, thereby linearising
the system. The case in which covers of curves of genus two are found relates to more
general Abelian surfaces and is discussed at the end of this section.

We start with a proposition which controls the position of the curve in its Jacobian.
We need the following lemma:

Lemma 4. Fixing any point R on Γ, define two embeddings ı1 and ı2 of Γ into Jac(Γ)
by ı1(P ) = {P − R} and ı2(P ) = {P − σR}. Then ı1(Γ) and ı2(Γ) either coincide or are
tangent at their only intersection point O = {0}. If τv is any translation (by v ∈ Jac(Γ))
then the same holds for τvı1(Γ) and τvı2(Γ), the point O being replaced by v.

Proof

Using Lemma 2 it is easy to show that ı1 and ı2 define embeddings of the curve in
its Jacobian. If R = σR, i.e., R is a Weierstrass point, then trivially both curves coincide.
Otherwise the curves intersect in the points {P −R} for which there is a Q ∈ Γ such
that {P −R} = {Q− σR}, i.e., P + σR ∼l Q + R. Then it follows from Lemma 2 that

† Recall that throughout this paper we suppose that a generic member of the family of
Abelian surfaces we consider does not contain elliptic curves, i.e., is not isogeneous to a
product of elliptic curves.
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P = σ2R = R and Q = σR giving the origin O as the unique intersection point. Note
however that the curves ı1(Γ) and ı2(Γ) intersect in two points since

ı1(Γ).ı2(Γ)

2
= g(ı1(Γ))− 1 = 1,

showing that the curves are actually tangent at O.

Proposition 5 Let R be any fixed point on Γ and let ı1 be the corresponding embedding
of Γ in its Jacobian as in the above lemma, then the translation which sends the curve
ı1(Γ) to Γ maps the origin to R.

Proof

Let τv denote the unique translation which maps O to R ∈ Γ and let τ−v denote the
inverse translation. Let w ∈ Jac(Γ) be such that w + τ−vΓ = ı1(Γ), then it follows from
O ∈ τ−vΓ that w = {S−R} for some S ∈ Γ. Therefore τ−vΓ = ı1(Γ)−{S−R} consists of
the points {P − R} − {S −R} = {P − S} where P runs through Γ. Since in the equality
Γ = τv{{P − S} | P ∈ Γ} the point R corresponds to τv{0} it follows that {R − S} = 0,
i.e., R = S.

In the sequel we fix the curve Γ and the point R on it. The unique curve tangent
to Γ at v (which is Γ itself when R is a Weierstrass point) will be denoted by Γ2 and for
symmetry in the notation, Γ will often be denoted by Γ1, the notation Γ being reserved
for the cases in which the particular embedding is irrelevant. Also we fix any holomorphic
cover π : Γ→ IP1 of order two which maps R (hence also σR) to ∞ ∈ IP1, and denote the
points R and σR by the more convenient notations ∞1 and ∞2. Remark that in the new
notations ∞1 is a Weierstrass point iff ∞1 =∞2 iff Γ1 = Γ2.

We first define the bijection between an affine part A of Jac(Γ) and a smooth space
of pairs of polynomials, thereby constructing coordinates on A. It generalises Mumford’s
construction, which consists in the case ∞1 =∞2, v = 0.

Proposition 6 Let Q1 and Q2 be points on the curve Γ for which v = {∞1 +∞2 −
Q1 −Q2}. Then the map

A = Jac(Γ) \ (Γ1 + Γ2)

= {P1 + P2 −Q1 −Q2 |
Pi, Qi ∈ Γ,

i 6= j ⇒ Pi 6= σPj,

Pi 6=∞1,∞2}

−→

{(u, v) |u(x) = x2 + u1x+ u2,

v(x) = v1x+ v2,

u(x) | f(x)− v2(x)},
u(x) = (x− x(P1))(x− x(P2)),

v(x) =
(x(P1)− x)y(P2)− (x(P2)− x)y(P1)

x(P1)− x(P2)
,

(5)

is an isomorphism (if x(P1) = x(P2) the above definition for v(x) is to be interpreted as
v(x) = dy

dx
(P )(x− x(P )) + y(P )). The above space of polynomials defines a smooth affine
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variety of dimension two, whose coordinate ring is generated by u1, u2, v1 and v2. Therefore
these can be seen as generators on the coordinate ring of A and they define meromorphic
functions on Jac(Γ); in particular the functions u1 and u2 have a simple pole along Γ1 and
Γ2, i.e., u1, u2 ∈ L(Γ1 +Γ2). When Γ1 = Γ2 this should be understood as u1, u2 ∈ L(2Γ1),
i.e., u1 and u2 have a double pole along Γ1(= Γ2).

Proof

By the previous proposition,

Γi = τv{P −∞i},
= {P −∞i}+∞1 +∞2 −Q1 −Q2,

= P + σ∞i −Q1 −Q2,

and by definition the polynomials u(x) and v(x) associated to any point in Jac(Γ)\(Γ1+Γ2)
satisfy u(x) | f(x) − v(x)2 and have the right degree. Therefore the map defined by (5)
is well-defined. Conversely given two such polynomials u(x) and v(x) we can reconstruct
x(P1) and x(P2) as the roots of u(x). Then evaluating v(x) in x(P1) and x(P2) we find
y(P1) and y(P2), thereby determining the point {P1 + P2 −Q1 −Q2} completely. Since
x(P1) and x(P2) are both finite, this point lies in Jac(Γ) \ (Γ1 + Γ2). The variety of
polynomials u(x), v(x), with u(x) monic of degree two and v(x) linear, which satisfy u(x) |
f(x) − v(x)2, is a smooth affine variety whose affine ring is generated by {u1, u2, v1, v2}.
This was proved by [M] when deg f = 5, the proof when deg f = 6 goes exactly along
the same lines. It follows that these functions are holomorphic on Jac(Γ) outside Γ1 +Γ2.
Let {P2 +∞1 −Q1 −Q2} be any point on Γ1 and t a local parameter around ∞1 ∈ Γ. If
Γ1 6= Γ2 then x(P ) = 1

t(P )
for P close to ∞1 since f(x) has degree 6. Therefore u1 and

u2 have a simple pole along Γ1 and by symmetry also along Γ2. If Γ1 = Γ2 then f(x) has
degree 5 and x(P ) = 1

t2(P )
for P close to ∞1 =∞2 in terms of a local parameter t around

infinity. It follows that u1 and u2 have a double pole along Γ1 = Γ2. Therefore, in any
case, u1, u2 ∈ L(Γ1 + Γ2).

It is now our aim to calculate the functions u1 and u2 in terms of the original variables
defining the integrable system, since then we can write down the original variables in terms
of symmetric funtions on the curve. Our main tool to calculate these is based upon the
existence and uniqueness of a certain singular curve in Jac(Γ), which we now establish.

Proposition 7 Jac(Γ) contains a unique divisor ∆, birationally equivalent to Γ, with a
six-fold point in v and smooth elsewhere. ∆ is linearly equivalent to 2Γ1+2Γ2 and is given
on A = Jac(Γ) \ (Γ1 + Γ2) by u

2
1 − 4u2 = 0, in terms of the functions u1, u2 ∈ L(Γ1 + Γ2)

defined in Proposition 6.

Proof

Consider the curve ∆ defined by the composition

Γ
φ→֒Γ⊗s Γ

A→ [C
2
/Λ ∼= Jac(Γ)

11
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where φ is the diagonal map φ(P ) = 〈P, P 〉 and A is the Abel map (2), with respect to
Q1 and Q2. Since Φ = ℑ(φ) intersects the fundamental pencil in the points 〈P, P 〉 for
which P = σP, i.e., in the six Weierstrass points, the curve A(φ(Γ)) has a six-fold point
at {P + σP −Q1 −Q2} = {∞1 +∞2 −Q1 −Q2} = v and is smooth elsewhere.

To find an equation for ∆ remark that for a point {P1 + P2 −Q1 −Q2} in A, P1 = P2

iff x(P1) = x(P2). Therefore ∆ consists of the points {P1 + P2 −Q1 −Q2} for which
(x(P1)−x(P2))

2 = 0, i.e., u21−4u2 = 0. Since u1, u2 ∈ L(Γ1+Γ2) it follows that u
2
1−4u2 ∈

L(2Γ1 + 2Γ2), so ∆ is linearly equivalent to 2Γ1 + 2Γ2 and the (virtual) genus of ∆ is
calculated from (4) as dimL(2Γ1 + 2Γ2) + 1 = 17. After desingularisation of ∆ its genus
equals 2 since ∆ and Γ are birationally equivalent. Since in the normalisation any six-fold
point acounts for a genus drop ≥

(

6
2

)

= 15, with equality for ordinary points only, this
shows that v is an ordinary six-fold point. If there were another singular divisor ∆′ of this
form then ∆ and ∆′ would intersect in at least 6.6 = 36 points, which is in contradiction
with†

∆.∆′ = 2(g(∆)− 1) = 2.16 = 32.

This shows that ∆ is unique.

If we project this curve into the Kummer surface we get a rational curve with a six-fold
point. Clearly, this must be reflected in the equation of the Kummer surface. We show
how the equation of the Kummer surface takes a special form and how we can find u1 and
u2 from it — the precise choice of u1 and u2 will fix an affine equation of the curve (up to
now only two points ∞1 and ∞2 = σ∞1 were fixed on the curve).

Proposition 8 Let  be the (unique) non-trivial involution on Jac(Γ) which fixes v. Then
Γ1 = Γ2, hence the divisor Γ1+Γ2 is invariant under . When Γ1 = Γ2 the restriction of 
to Γ1 is precisely the hyperelliptic involution on Γ1. The involution  fixes sixteen points on
Jac(Γ), six of which lie on Γ1 when Γ1 = Γ2 (namely the six Weierstrass points on Γ1). If
u3 is any function in L(Γ1 +Γ2) such that {1, u1, u2, u3} forms a base for L(Γ1+Γ2) then
the equation for an affine part K0 of the Kummer surface K = Jac(Γ)/ (the projection of
Γ1 + Γ2 being removed) is given by

(u21 − 4u2)u
2
3 + f3(u1, u2)u3 + f4(u1, u2) = 0,

where f3 and f4 are polynomials of degree 3 and 4 respectively. Conversely, if {1, θ1, θ2, θ3}
forms a base for L(Γ1 + Γ2) for which the embedding of K in IP3 defined by

φ:K0 →֒ IP3

P 7→ (1 : θ1(P ) : θ2(P ) : θ3(P ))

† Formula (4) for the self-intersection of a divisor may be used for the intersection of
two divisors on a generic Abelian surface since the Néron-Severi group of such a surface is
isomorphic to Z.

12
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sends v to (0 : 0 : 0 : 1) and for which the equation of K0 takes the form

(θ21 − 4θ2)θ
2
3 + f ′

3(θ1, θ2)θ3 + f ′
4(θ1, θ2) = 0,

then θ1 and θ2 are related to u1 and u2 by

θ1 = α(u1 + 2β),

θ2 = α2(u2 + βu1 + β2),

for some α ∈ [C
∗
, β ∈ [C (and conversely). This means that θ1 and θ2 are the functions u1

and u2 constructed with respect to some cover π′: Γ→ IP1, the two covers being related by
the transformation x→ α(x− β) of IP1. The choice of θ1 and θ2 fixes a cover π: Γ→ IP1

and hence the associated equation y2 = f(x) of the curve.

Proof

Define 0: Jac(Γ)→ Jac(Γ) by 0({P1 + P2 −∞1 −∞2}) = {σP1 + σP2 −∞1 −∞2},
then 0 is a non-trivial involution which fixes O = {0} since σ∞1 = ∞2. It is also an
automorphism of Jac(Γ) when O is taken to be the origin; for a generic Abelian surface
there is only one non-trivial automorphism of order two, hence 0 must lift to the reflec-

tion of the universal covering space [C
2
of the surface with respect the origin and it has

sixteen fixed points, the half-periods of Jac(Γ), which are given by {Bi +Bj −∞1 −∞2}
for all the Weierstrass points Bi on Γ (fifteen of them are given by Bi 6= Bj ; the origin
is given by {2Bi −∞1 −∞2} for any i = 1, . . . , 6). It is easily seen that ı1(Γ), which
consists of the points {P −∞1} is mapped to ı2(Γ) since the latter curve consists of the
points {Q−∞2}, hence ı1(Γ) + ı2(Γ) is invariant under 0. Mumford calls such a divi-
sor a symmetric divisor, see [LB]. If ı1(Γ) = ı2(Γ) then ∞1 = ∞2 and {P −∞1} is
mapped to {σP −∞2} = {σP −∞1} so that 0 is exactly the hyperelliptic involution on
ı1(Γ). Then ∞1 is a Weierstrass point of Γ, say ∞1 = ∞2 = B1 so the six half-periods
{Bi −∞1} (i = 1, . . . , 6) of Jac(Γ) lie on ı1(Γ). If we define now  = τv0τ−v and look at
v as the origin for the group structure on Jac(Γ), we get the unique non-trivial involutive
automorphism on Jac(Γ) (which fixes v) and everything which we just proved for ı1(Γ)
and ı2(Γ) gives by translation exactly the first (three) statements in the proposition.

The main flavor of Kummer surfaces is that they can be embedded in IP3 using the
functions of L(Γ1 + Γ2) and they can be described by a quartic equation. To obtain an
equation for our Kummer surface Jac(Γ)/ in terms of L(Γ1 + Γ2) we must enlarge our set
of 3 functions {1, u1, u2} to a base {1, u1, u2, u3} for L(Γ1 + Γ2) to find an embedding

φ:K0 →֒ IP3

P 7→ (1 : u1(P ) : u2(P ) : u3(P )),

which extends to an embedding of K. By choosing local parameters at ∞1 and ∞2 it can
be shown as in the proof of Proposition 6 that v, viewed as a point of K, is mapped to
(0, 0, 0, 1). Since v is a double point of K, the quartic equation of K reduces to

f2(u1, u2)u
2
3 + f3(u1, u2)u3 + f4(u1, u2) = 0, (6)

13
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where the polynomials fi have degree i.
Remark however that the singular divisor ∆ which is birationally equivalent to Γ is

invariant under  so that its projection ∆/ in the Kummer surface is a rational curve. Since
the projection has a six-fold point for u3 → ∞, (6) reduces to P6(u1)u3 + P (u1) = 0 for
some polynomial P6 of degree 6, when setting u21−4u2 = 0. Therefore f2(u1, u2) = u21−4u2
(up to some non-zero constant) and the equation (6) of the Kummer surface reads

(u21 − 4u2)u
2
3 + f3(u1, u2)u3 + f4(u1, u2) = 0.

If, on the other hand, any base {1, θ1, θ2, θ3} for L(Γ1 + Γ2) is given, for which v is mapped
to (0 : 0 : 0 : 1) and for which the embedded Kummer surface is given by an equation

(θ21 − 4θ2)θ
2
3 + f ′

3(θ1, θ2)θ3 + f ′
4(θ1, θ2) = 0,

then the functions ui and θi are related by a linear transformation, in particular

θ1 = a1u1 + a2u2 + a3,

θ2 = b1u1 + b2u2 + b3,

for some constants a1, . . . , b3. Since ∆ is unique, θ21−4θ2 = α2(u21−4u2) for some α ∈ [C
∗
,

leading to
θ1 = α(u1 + 2β),

θ2 = α2(u2 + βu1 + β2),

for some α ∈ [C
∗
, β ∈ [C. Using the definitions of u1 and u2 it is easy to see that

θ1({P1 + P2 −Q1 −Q2}) = −(αx(P1)− αβ)− (αx(P2)− αβ)
θ2({P1 + P2 −Q1 −Q2}) = (αx(P1)− αβ)(αx(P2)− αβ),

so that passing to the cover π′ for which x′ = αx− αβ, the functions θ1 and θ2 are given
by

θ1({P1 + P2 −Q1 −Q2}) = −x′(P1)− x′(P2)

θ2({P1 + P2 −Q1 −Q2}) = x′(P1)x
′(P2).

We now show that the diferential equations describing a holomorphic vector field on a
principally polarised Abelian surface takes a simple form in terms of the above constructed
variables µ1, µ2.

Theorem 9 Suppose we are given an affine part A of a generic Abelian surface T 2,
which is equipped with a holomorphic which vector field ẋ = XF (x), and suppose A is
principally polarised by one of the irreducible components of the divisor at infinity, C.
Denote this component of C by Γ1, let v be a point on Γ1 and let Γ2 be the image of Γ1

by the reflection  (on T 2) which fixes v. Then for any base {1, u′1, u′2, u3} for L(Γ1 + Γ2)

14
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whose associated map T 2 → IP3 maps v to (0 : 0 : 0 : 1), the equation of the Kummer
surface T 2/ıv takes the form

f2(u
′
1, u

′
2)u

2
3 + f3(u

′
1, u

′
2)u3 + f4(u

′
1, u

′
2) = 0,

for some polynomials fi of degree i; moreover a base {1, u1, u2, u3} can be chosen such that
the equation of this Kummer surface takes the form

(u21 − 4u2)u
2
3 + f ′

3(u1, u2)u3 + f ′
4(u1, u2) = 0,

for some polynomials f ′
i of degree i. Taking such a base {1, u1, u2, u3} and letting

u1 = −µ1 − µ2, XFu1 = −µ̇1 − µ̇2

u2 = µ1µ2, XFu2 = µ1µ̇1 + µ̇1µ2

(7)

the differential equations ẋ = XF (x) can be written (explicitely) in the Jacobi form

µ̇1
√

f(µ1)
+

µ̇2
√

f(µ2)
= α1,

µ1µ̇1
√

f(µ1)
+

µ2µ̇2
√

f(µ2)
= α2,

for some constants α1 and α2 (which depend on λ) and some equation y2 = f(x) for the
curve Cλ. Said differently, the roots of the polynomial u(x) = x2 + u1x+ u2 are variables
under which the vector field linearises. The functions u1 and u2 (and their derivatives)
can be written down in terms of theta functions, thereby giving explicit solutions to the
differential equations describing the vector field.

Proof

The only thing which remains to be shown is that the transformation (7) reduces the
differential equations to the Jacobi form.

As we saw in Proposition 6 the affine ring of A = Jac(Γ) \ (Γ1 + Γ2) is generated by
the functions u1, u2, v1 and v2, hence A is given by a set of equations in these variables.
Unfortunately we cannot calculate the functions v1 and v2 in terms of the original phase
variables, but we claim that the invariants are given by two polynomials in u1, u2, u̇1 and
u̇2 as well. To see this we use our explicit construction of all commuting vector fields on
the space of pairs of polynomials (u(x), v(x)) with u(x) monic of degree 2 and v(x) linear,
satisfying u(x) | f(x) − v(x)2 (see Section 6). We show there that for any vector field
on this space which comes from a holomorphic vector field on Jac(Γ) there are constants
k, l ∈ [C such that

u̇1 = kv1 + lv2,

u̇2 = kv2 + l(u1v2 − u2v1).
Solving for v1 and v2 shows that the invariants are given by polynomials Gj(ui, u̇i) = 0 as
well, hence using the vector field defining the integrable system we can extend u1 and u2
to the above space of pairs of polynomials.
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Now take any point on Jac(Γ1 + Γ2) and let γ(t) be the integral curve starting at
this point. Since the vector field is holomorphic on Jac(Γ), the curve γ(t) is given in the
complex coordinates ~z = (z1, z2) coming from the natural coordinates on the universal

covering space [C
2
of Jac(Γ) by ~z(t) = ~αt + ~β for some constants ~α, ~β ∈ [C

2
. Also let

〈P1(t), P2(t)〉 be the corresponding curve in Γ⊗s Γ under the Abel map (2), i.e.,

P1(t)+P2(t)
∫

Q1+Q2

~ω modΛ = ~αt+ ~β modΛ, (8)

where ~ω =
(

ω1

ω2

)

consists of two independent holomorphic differentials on Γ, which we take
here as

ωi =
xi−1dx

y
=
xi−1dx
√

f(x)
,

and Λ is the lattice of periods corresponding to ω. Taking the derivative of (8) with respect
to t and writing µi(t) as a shorthand for x(Pi(t)) respectively, we get

µ̇1(t)
√

f(µ1(t))
+

µ̇2(t)
√

f(µ2(t))
= α1,

µ1(t)µ̇1(t)
√

f(µ1(t))
+
µ2(t)µ̇2(t)
√

f(µ2(t))
= α2,

(9)

so µ̇2
1(t) and µ̇

2
2(t) are polynomial in µ1 and µ2. On the other hand the integral curve can

also be written down in terms of the coordinates u1, u2, u̇1 and u̇2 as

t 7→ (u1(t), u2(t), u̇1(t), u̇2(t))

and since
u1(t) = −x(P1(t))− x(P2(t)),

= −µ1(t)− µ2(t),

u2(t) = x(P1(t))x(P2(t)),

= µ1(t)µ2(t),

(10)

also u̇1(t) = −µ̇1(t) − µ̇2(t) and u̇2(t) = µ̇1(t)µ2(t) + µ1(t)µ̇2(t) so these polynomials can
also be found by expressing Gj in terms of µ1, µ2, µ̇1 and µ̇2 using (10). The Jacobi form
(9) of the differential equations as well as the equation of the curve which has (implicitely)
been fixed by the choice of the functions u1 and u2, are deduced immediately from it.
From this representation the functions u1(t) and u2(t) (and hence also the solution to the
differential equations) can be written down in terms of theta functions as was shown by
Mumford in [M].
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The above theorem gives a systematic way to linearise general two-dimensional a.c.i.
systems (whose generic invariant manifolds do not contain elliptic curves†) as given by the
following theorem.

Theorem 10 Let ẋ = {H, x} be a two-dimensional a.c.i. system, as defined in [AvM1],
for which the generic invariant Abelian surfaces do not contain elliptic curves. Then the
vector field describing the system as well as any other vector field which commutes with
this vector field can be explicitely linearised on the Jacobians of a family of hyperelliptic
curves of genus two. The generic invariant Abelian surfaces are either isomorphic to this
family of Jacobians or are unramified covers of these.

Proof

If the generic affine invariant surface Aλ, defined by the constants of motion of the
system, is completed into an Abelian surface T 2

λ by adjoining a divisor which contains a
curve Γλ of genus two as one of its irreducible components then the above theorem can be
applied to the pair (Jac(Γ),Γ1) = (T 2

λ ,Γλ) for any (generic) λ. The point at infinity can
either be taken as a Weierstrass point on Γλ in case there is only one curve of genus two
at infinity, but if at least two tangent curves of genus two are found, it is more natural to
pick v to be the intersection point of two of the curves.

If the (generic) Abelian surface T 2
λ is the Jacobian of a curve of genus two, but is not

principally polarised by one of the irreducible components (so that all of these components
have at least virtual genus 5) then the divisor at infinity is always linear equivalent to a
divisor which does contain a curve of genus two, since the Néron-Sevieri group of a generic
Abelian surface is isomorphic to Z. Therefore the above theorem can also in this case be
applied after changing the divisor at infinity (i.e., taking another affine chart), a technique
which will be illustrated in the Kowalevski example.

Finally, if the (generic) Abelian surface T 2
λ is not the Jacobian of a curve of genus

two, then it is an n-fold cover of such a Jacobian. We stress however that neither the cover
nor its order is unique (see [HvM]). Let π: T 2

λ → Jac(Γλ) any unramified cover of order
n. Then the inverse image Cλ = π−1(Θλ) of the Riemann theta divisor is a smooth curve
in T 2

λ which is an n-fold unramified cover of Γλ hence it has (by the Riemann-Hurwitz
formula) genus

g(Cλ) = n(g(Γλ)− 1) + 1 = n+ 1.

For simplcity we suppose here that the point vλ is chosen such that Θλ is invariant under
the involution with respect to vλ.

To apply the previous theorem we look now for functions in L(2Cλ). There will be
4n independent functions in L(2Cλ), 4 of them can be taken to be the functions θi ◦ π
where {θ0 = 1, θ1, θ2, θ3} is any base for L(2Θλ). Moreover, the functions of the form θ ◦ π
where θ ∈ L(2Θλ) are the only functions in L(2C1) which are invariant under the covering
transformations of the cover π. It follows that once we know these covering transformations,
we can construct a base {1, θ1, θ2, θ3} for L(2Θλ) starting from a base for L(2Cλ) which can

† When the generic invariant manifolds contain elliptic curves then solutions can be
written down immediately in terms of elliptic functions.
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be calculated using the Laurent solutions to the differential equations. Then we can write
down an equation for the Kummer surface of Jac(Γλ) in terms of this base for L(2Θλ) and
hence, use the previous theorem (with Γ1 = Γ2 = Θλ) to linearise the system and write
the functions θi in terms of theta functions. Using the cover π, explicit solutions to the
differential equations are again written down in terms of theta functions. A key example
to illustrate this in the polarisation (1, 2) case is the Kowalevski top (see below). Also the
Hénon-Heiles system is included to give an easy example in the polarisation (1, 2) case.
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4. The construction of Darboux coordinates and action-angle vari-
ables

In this section we show that starting from the Jacobi form (9) of the differential equa-
tions of a two-dimensional a.c.i. system we can determine (under some mild assumption)
four new variables (p1, p2, φ1, φ2) on a torus neighborhood of each (generic) invariant sur-
face of the underlying (real) Liouville integrable system such that, in these coordinates, the
symplectic form ω is given by ω = dp1∧dφ1+dp2∧dφ2 and the Hamiltonians defining the
two flows on each invariant torus depend on p1 and p2 only. For an alternative approach
we refer to [VN].

Since by definition the Hamiltonian vector field XFi
corresponding to Fi is given by

ıXFi
ω = dFi, it follows that XFi

(pj) = dpj(XFi
) = 0 (j = 1, 2). Therefore p1 and p2 are

constant along any integral curve of XFi
. Secondly XFi

(φj) = dφj(XFi
) = −∂Fi

∂pj
depends

only on p1 and p2 hence φ1 and φ2 move linearly in time and describe exactly linear
(quasi-periodic) motion on the (real) torus. Because of this property the variables φ1 and
φ2 are classically called angle variables, while the conjugate variables p1 and p2 which are
constant on each torus are called action variables (they have the dimension of action). We
remark that the angle variables are multivalued functions, i.e., they are defined on the
universal covering space of a torus neighborhood of the (real) invariant surface in exactly
the same way as the usual angle variable on the circle which is in fact defined on the real
line.

The construction goes in two parts; first we construct variables ν1 and ν2 such that,
in terms of µ1, µ2, ν1 and ν2, the symplectic structure takes the canonical form ω = µ1 ∧
ν1 + µ2 ∧ ν2 (such coordinates are classically called Darboux coordinates) and then we
apply Arnold’s general method to calculate the action-angle variables starting from a set of
Darboux coordinates. Since these variables as well as the Darboux coordinates we construct
will depend on the choice of symplectic structure and since most integrable systems have
a lot of symplectic structures (as we will see in the next section and in the examples) we
fix one particular symplectic structure ω and two Hamiltonian functions F1 and F2 which
define independent vector fields on the tori (using ω). Fixing a maximal independent set

of constants of motion {F1, F2, . . . , Fk} we denote for generic λ = (λ1, . . . , λk) ∈ [C
k
by

Aλ the affine invariant surface defined by Fi = λi. Applying the methods described in the
preceeding section we are able to write the differential equations corresponding to F1 and
F2 in the Jacobi form

XF2
ρ1

√

g(ρ1)
+

XF2
ρ2

√

g(ρ2)
= a,

XF1
ρ1

√

g(ρ1)
+

XF1
ρ2

√

g(ρ2)
= c,

ρ1XF2
ρ1

√

g(ρ1)
+
ρ2XF2

ρ2
√

g(ρ2)
= b,

ρ1XF1
ρ1

√

g(ρ1)
+
ρ2XF1

ρ2
√

g(ρ2)
= d,

(11)

where g is a monic polynomial of degree 5 or 6 defining a curve Γλ. The constants a, b, c, d
are constant on each invariant torus, but may depend on the torus itself, i.e., they may

depend on λ. Since F1 and F2 are independent, the matrix

(

a c
b d

)

is non-singular. By a
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simple homographic transformation on the equation of the curve Γλ, this matrix becomes
the identity matrix, as is shown in the following lemma.

Lemma 11. Under the homographic transformation

µ = −aρ− b
cρ − d

on Γλ, the Jacobi form (11) for the differential equations corresponding to F1 and F2 is
transformed into

XF2
µ1

√

f(µ1)
+

XF2
µ2

√

f(µ2)
= 1,

XF1
µ1

√

f(µ1)
+

XF1
µ2

√

f(µ2)
= 0,

µ1XF2
µ1

√

f(µ1)
+
µ2XF2

µ2
√

f(µ2)
= 0,

µ1XF1
µ1

√

f(µ1)
+
µ2XF1

µ2
√

f(µ2)
= 1,

f(µ) is the polynomial defined by f(µ) = (ad− bc)4g(ρ)(−cρ+ d)−6.

Proof

Substitute µi = −aρi−b
cρi−d

in (11) and let f(µ) = (ad− bc)4g(ρ)(−cρ+ d)−6, then

2
∑

j=1

XFi
µj

√

f(µj)
= (ad− bc)

2
∑

j=1

XFi
ρj

(cρj − d)2
√

f(µj)
,

= (ad− bc)−1
2
∑

j=1

XFi
ρj(−cρj + d)
√

g(ρj)
,

=

{

0 i = 1,
1 i = 2.

In the same way

2
∑

j=1

µjXFi
µj

√

f(µj)
= (ad− bc)−1

2
∑

j=1

XFi
ρj(aρj − b)
√

g(ρj)
,

=

{

1 i = 1,
0 i = 2.

In the sequel we suppose that y2 = f(µ) is the (unique) equation of the curve given by
the previous lemma. Also we will assume that the coefficients of ρ in f, which depend on
the constants of motion λi, depend polynomially on λ1 and λ2, the constants corresponding
to the independent Hamiltonians F1 and F2. This is true in all examples we have checked
— it might be a theorem. We show that under this assumption the symplectic structure
takes a simple form in the coordinates µ1, µ2, F1 and F2.
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Proposition 12 The symplectic structure ω is given by

ω =
2
∑

i=1

µidµi ∧ dF1 + dµi ∧ dF2 + dG(F1) ∧ dF2
√

f(µi)
(12)

for some function G depending on F1 only.

Proof

Since ω vanishes when applied to any pair of vectors tangent to the tori F1, F2 =
constant, it takes the form ω = ω1 ∧ dF1 + ω2 ∧ dF2 + χdF1 ∧ dF2, for some one-forms ω1

and ω2 and some function χ. Since in an a.c.i. system the Hamiltonian vector fields are
holomorphic when restricted to the invariant Abelian surfaces (tori) and since ıXF1

ω = dF1,
and ıXF2

ω = dF2, imply ωi(XFj
) = δij , the restriction of the one-forms ω1 and ω2 to the

invariant tori are holomorphic as well. Now a base for the holomorphic one forms on the
Jacobian of the curve y2 = f(µ) is given by {Ω1,Ω2}, where

Ωi =
2
∑

j=1

µi−1
j dµj
√

f(µj)
, (i = 1, 2),

so that ωi = AiΩ1 +BiΩ2 (i = 1, 2), where A1, A2, B1 and B2 may a priori depend on F1

and F2. Since Ωi(XFj
) = δij , it follows that ω1 = Ω2 and ω2 = Ω1, giving

ω = Ω2 ∧ dF1 +Ω1 ∧ dF2 + χdF1 ∧ dF2.

We conclude the proof by showing that the function χ takes a special form. Since ω is
closed,

1

f(µi)
√

f(µi)

(

µi

∂f

∂F2
(µi)−

∂f

∂F2
(µi)

)

− 2
∂χ

∂µi

= 0,

for i = 1, 2. Since µ1 and µ2 are symmetric coordinates, χ is symmetric in µ1 and µ2 it
follows from this equation that χ = ψ(µ1) + ψ(µ2) (the dependence of ψ on F1 and F2

is ommitted in the notation). It follows that ψ(µ) has a derivative P (µ)

f(µ)
√

f(µ)
for some

polynomial P (µ) where degP < deg f. Together with the fact that ψ(µ) is algebraic it

follows that ψ(µ) is of the form ψ(µ) = Q(µ)√
f(µ)

for some polynomial Q; differentiating this

function and using degP < deg f one finds that degQ < 1, i.e., Q depends only on F1 and
F2, and

χ =

(

1
√

f(µ1)
+

1
√

f(µ2)

)

φ(F1, F2)

for some function φ of F1 and F2.
Next we show that φ is independent of F2 in case the degree of f equals 5, the case

deg(f) = 6 being very similar. Note that in terms of φ the closedness of ω simply reads

µ
∂f

∂F2
(µ)− ∂f

∂F1
(µ) + φ

∂f

∂µ
(µ) = 0. (13)
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Writing f as f(µ) = µ5 + A1µ
4 + A2µ

3 + A3µ
2 + A4µ + A5, where A1, . . . , A5 are by

assumption polynomials in F1 and F2, this condition reduces to

∂A1

∂F2
= 0,

∂A2

∂F2
− ∂A1

∂F1
+ 5φ = 0,

∂A3

∂F2
− ∂A2

∂F1
+ 4φA1 = 0,

∂A4

∂F2
− ∂A3

∂F1
+ 3φA2 = 0,

∂A5

∂F2
− ∂A4

∂F1
+ 2φA3 = 0,

−∂A5

∂F1
+ φA4 = 0.

From the second equation it follows that φ is a polynomial in F1 and F2. Suppose that
φ depends on F2, degF2

(f) = j ≥ 1. The coefficient of F j
2 in f is a polynomial in F1,

say of degree i ≥ 0. Thus φ contains a term F i
1F

j
2 . We call this the top term of φ. By

the first equation A1 is independent of F2. Then the second equation implies that A2

and A2φ have as top term F i
1F

j+1
2 and F 2i

1 F
2j+1
2 respectively. Then it follows from the

fourth equation that A4 has as top term F 2i
1 F

2j+2
2 , since if ∂A3

∂F1
contains F 2i

1 F
2j+2
2 then

∂A3

∂F2
contains F 2i+1

1 F 2j+1
2 , which is incompatible with the third equation. It follows from

the last equation that A5 has as top term F 3i+1
1 F 3j+2

2 . Finally, using the fifth equation,

this would force A3 to contain a term in F 2i+1
1 F 2j+1

2 which is incompatible with the third
equation. This shows that j ≥ 1 is impossible, so that φ does not depend on F2.

In concrete examples the above form for the symplectic structure can be found by
expressing the original symplectic structure in terms of µ1, µ2, F1 and F2 by using the
linearising map. It is well known that such a calculation is very tedious. The preceeding
proposition however gives an extremely simple and useful method to write the symplectic
structure in this form; the only thing to be determined in (12) is the function G(F1), and
this function is just a primitive of φ(F1) which is found immediately from the equation of
the curve by using (13); moreover in all examples except one (the Kowalevski top) it will
turn out that

µ
∂f

∂F2
(µ)− ∂f

∂F1
(µ) = 0.

so that G(F1) = 0 and the symplectic structure is found immediately to have a very pretty
form in these coordinates. We show in the following proposition that Darboux coordinates
can be obtained easily from Proposition 12.

Proposition 13 Letting H(F1) be a primitive of G(F1), ρi = µi + G(F1) and ∆i =
F2 + ρiF1 −H(F1), the symplectic structure ω can be written as

ω =
2
∑

i=1

dρi ∧ d∆i
√

g(ρi)
,

where g(ρi) is the monic polynomial f(ρi −G(F1)). Also g(ρi) depends on ρi and ∆i only
(instead of depending on ρi, F1 and F2), which we sometimes stress by writing g(ρi) as
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g(ρi,∆i). Therefore ρ1, ρ2, σ1 and σ2 are Darboux coordinates, ω = dρ1 ∧ dσ1 + dρ2 ∧ σ2,
where σi is a primitive for d∆i√

g(ρi,∆i)
(keeping ρi fixed when integrating).

Proof

By Proposition 12,

ω =

2
∑

i=1

µidµi ∧ dF1 + d(µi +G(F1)) ∧ dF2
√

f(µi)
,

=
2
∑

i=1

µid(µi +G(F1)) ∧ dF1 + d(µi +G(F1)) ∧ dF2
√

f(µi)
.

This suggests setting ρi = µi + G(F1); also let g(ρi) = f(ρi − G(F1)) and let H(F1)
be a primitive of G(F1). Then

ω =

2
∑

i=1

(ρi −G(F1))dρi ∧ dF1 + dρi ∧ dF2
√

g(ρi)
,

=
2
∑

i=1

dρi ∧ d(ρiF1 + F2 −H)
√

g(ρi)
,

=
2
∑

i=1

dρi ∧ d∆i
√

g(ρi)
,

(14)

where ∆i is a shorthand for ρiF1 + F2 −H(F1).
The coefficients of µ in g(µ) depend on F1 and F2, or equivalently, since F2 appears

linearly in ∆i, on F1 and ∆i. Since ω is closed it follows from the last expression in (14)
that g(ρi,∆i, F1) does not depend explicitely on F1. Therefore we may integrate to obtain

σi =

∫

d∆i
√

g(ρi,∆i)

which puts ω in the canonical form ω =
∑

dρi ∧ dσi.

Remark

In most cases (in all cases we have seen) the equation y2 = g(ρi,∆i) depends at worst
quadratically on ∆i. It follows that σi can be expressed in terms of elementary functions
(which are always trancendental).

23



Two-dimensional integrable systems

It was shown by Arnold how to find explicitely the action-angle variables starting
from Darboux coordinates. We recall his construction here, adapted to the case of two-
dimensional a.c.i. systems. As was shown in [F], it turns out that we can even be more
explicit in this case: the one-forms and the cycles on the Abelian surface can be translated
into one-forms and cycles on the (real) curve. We refer to [A] and [AM] for a proof of
Arnold’s construction which we recall now.

Arnold constructs action-angle variables in the neighborhood of a (generic) invariant
manifold of a (real) Liouville integrable system; there is an obstruction to construct them
globally as was first shown in a beautiful paper by Duistermaat [D]. In our case the
(real) invariant manifolds are two-dimensional tori, diffeomorphic to S1 × S1, and the
neighborhood is taken to be a torus neighborhood, i.e., diffeomorphic to a product of
such a torus with a disc. We will for c ∈ IR2 denote by Ic the (real) invariant manifold
F−1(c) = (F1, F2)

−1(c). Fixing a generic c0, let U be a neighborhood of c0 such that
F−1(U) is a torus neighborhood. By (local) exactness of the (closed) symplectic form,
ω = −dθ on F−1(U) with θ =

∑

σidρi. Next we need to choose a base {γ1(c), γ2(c)}
for H1(Ic,Z) ∼= Z2 varying continuously with c ∈ U. Since the homology of the curve
generates the homology of its Jacobian (by the Lefschetz hyperplane theorem) we may
choose a consistent base for the homology of the family of curves corresponding to the
tori. Since we are dealing with real Jacobians here, at least four of the Weierstrass points
of the curve are real, and two cycles can be taken to be intervals on the real axis, say
[e1(c), e2(c)] and [e3(c), e4(c)], and we take γ1(c) and γ2(c) to be the corresponding cycles
on the surface. Then the integrals

Pj(c) =

∮

γj(c)

θ

are well-defined (j = 1, 2) and using Proposition 13 they are given by integrating some
trancendental differential form on the curve:

Pi(c) = 2

∫ e2i

e2i−1

[

∫

d∆
√

g(ρ,∆)

]

dρ

(we could drop the index j). The functions p1 = P1 ◦ F and p2 = P2 ◦ F are by definition
constant on each torus and have the dimension of action. By shrinking U if necessary, we
may assume that the image im(p1, p2) ⊂ IR2 is a disc D2. Extending the variables p1 and
p2 to a set of Darboux coordinates {p1, p2, φ1, φ2} (in the classical way, namely using a
canonical transformation (ρi, σi)→ (φi, pi)) the variation of φi on the cycle γj is exactly δij
and the invariants depend on p1 and p2 only. Therefore these canonical variables, defined
on a torus neighborhood are action-angle variables. We will calculate these variables in
some examples in the next section.
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5. Compatible Poisson brackets for integrable systems

It was first observed by Lenard and Magri and later by others that a lot of integrable
systems possess different symplectic structures, or more generally, different Poisson brack-
ets (see [Ma]). The basic vector field defining the system appears to be Hamiltonian for
both structures, of course corresponding to different Hamiltonians. Moreover, these struc-
tures turned out to be compatible in a sense to be defined below, which leads to a lot of
nice geometrical ideas and constructions, especially when one of the Poisson brackets is
invertible. In the examples we found a lot of compatible Poisson brackets, which are of a
simple but rather unusual form. The aim of this section is to show that for such pairs of
Poisson brackets, compatibility follows at once from the form of the brackets.

Let (P, {·, ·}1) be a Poisson manifold and let {·, ·}2 be another Poisson structure on P.
Suppose that XF = {·, F}1 defines an integrable system on P and that every vector field
XH = {·, H} which commutes with XF , including XF itself, is Hamiltonian for {·, ·}2 as
well. Then we call this integrable system a completely bi-Hamiltonian (integrable) system.
The Poisson brackets {·, ·}1 and {·, ·}2 are called compatible if {·, ·}1 + {·, ·}2 is also a
Poisson bracket on P, or equivalently if any linear combination of {·, ·}1 and {·, ·}2 is a
Poisson structure on P, or equivalently if the Jacobi identity is satisfied for {·, ·}1 + {·, ·}2
(or for any linear combination).

We show now that the Poisson brackets of a two-dimensional completely bi-Hamilton-
ian system are always compatible. We conjecture that the same is true in higher dimen-
sions.

Theorem 14 Let (P, {·, ·}1, {·, ·}2, H), be a completely bi-Hamiltonian integrable system
of dimension two. Then {·, ·}1 and {·, ·}2 are compatible.

Proof

For any f ∈ C∞(P ), denote Xf = {·, f}1 and by Yf = {·, f}2. Letting {·, ·} =
{·, ·}1 + {·, ·}2 it suffices to check the Jacobi identity of {·, ·} for functions f, g, h ∈
{H1, . . . , Hk, Hk+1, Hk+2}, where H1, . . . , Hk generates the algebra of invariant functions
of the system and Hk+1 and Hk+2 are any two (locally defined) functions such that
{H1, . . . , Hk, Hk+1, Hk+2} are independent (or, equivalently, the differentials of these func-
tions are independent). In terms of {·, ·}1 and {·, ·}2 the Jacobi identity reduces to

{{f, g}1, h}2+{{g, h}1, f}2 + {{h, f}1, g}2+
{{f, g}2, h}1 + {{g, h}2, f}1 + {{h, f}2, g}1 = 0,

by using the Jacobi identity for {·, ·}1 and {·, ·}2. This can also be written as

[Xf , Yg]− [Xg, Yf ] +X{f,g}2
+ Y{f,g}1

= 0.

Using the fact that any two invariant functions of the system also Poisson commute for
the second bracket, {·, ·}2, we see that the Jacobi identity is valid for f, g ∈ {H1, . . . , Hk},
h ∈ {H1, . . . , Hk+2}. Since the Jacobi identity for f, g, h ∈ {Hk+1, Hk+2} follows from
antisymmetry, it suffices to check it for f ∈ {H1, . . . , Hk}, g = Hk+1, h = Hk+2. By
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assumption {·, h}1 = {·, h̄}2 and {·, h}2 = {·, h̃}1 for some functions h̄ and h̃. Therefore
the Jacobi identity reduces to

{{f, g}1, h̃}1 + {{g, h̄}2, f}2 + {{h̄, f}2, g}2+
{{f, g}2, h̄}2 + {{g, h̃}1, f}1 + {{h̃, f}1, g}1 = 0,

which reduces to the Jacobi identity for {·, ·}1 and {·, ·}2.

The completely bi-Hamiltonian structures which we found, were in fact discovered in a
very systematic way, which we now describe. The idea comes from the preceeding section:
we have seen that the functions F1 and F2 which can appear as Hamiltonians defining
respectively the highest and lowest flow for some equation of the curve, must appear in
this equation in the form F2 + µF1 (possibly after some translation in µ which can be
calculated from the equation of the curve). Therefore it is natural to look for a Poisson
structure which generates the two vector fields upon using the gradients of F1 and F2,
and has a complementary set F3, . . . , Fk of invariants as Casimirs, when the equation of
the curve depends on F2 + µ1F1 only, for constant values of F3, . . . , Fk. This information
suffices to determine the Poisson brackets since we look for polynomial Poisson brackets.

As an example to illustrate this, suppose the equation of the curve is given by y2 =
x6 + ax4 + bx3 + cx2 + dx + e, where a, . . . , e generate the invariant polynomials, then
one can take a as Hamiltonian for the first vector field, b for the second one, and take
c, . . . , e as Casimirs. However, a and b can be replaced by b, c or c, d or d, e, the other
basic invariants always being taken as Casimirs. To find the Poisson structure (for the
first choice, for example) one constructs the matrix J which satisfies

ẋ = J∇a(x),
x′ = J∇b(x),
0 = J∇c(x),
0 = J∇d(x),
0 = J∇e(x),

where ẋ and x′ denote the two vector fields defining the system. The matrix J contains
the Poisson brackets as its entries and the inverse of any non-singular 4× 4 minor gives an
expression for the symplectic structure on the (generic) symplectic leaves. By the above
theorem all Poisson structures which are constructed in this way are compatible.
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6. Examples

This section is entirely devoted to the study of (seven) examples of two-dimensional
a.c.i. systems (one is a.c.i. in the generalised sense). There are several reasons for an ex-
tensive study of these examples. First, and most importantly, the interest of systematic
procedures to linearise a.c.i. systems and to find action-angle variables lies not only in
the beautiful geometry involved in it, but also in their applicability. Secondly, studying
concrete examples has always been the major source of new ideas for understanding me-
chanical systems; in our case the master systems and the Kowalevski top were among the
most inspirational and stimulating ones. Finally we want to show that our methods fit
naturally in the systematic study of a.c.i. systems initiated by Adler and van Moerbeke
(see [AvM1]), which is best done on concrete examples. Also it gives us the possibility to
show on an example how the methods naturally generalise to systems which are a.c.i. in
the generalised sense (see the quartic potential), to present a new a.c.i. system (the even
master system) and to show how curves in an Abelian surface can be studied using an
embedding of the surface in projective space, for example we show how to determine the
nature of the curves corresponding to ∆ in the case where the tori do not carry a principal
polarisation (see the Kowalevski and Hénon-Heiles examples). These divisors, as well as
the divisors to be adjoined to the affine invariant manifolds to obtain a complete variety,
will be represented by schematic drawings which suggest the singularities of the divisors.

a. The three body Toda lattice

The three body Toda lattice consists of three particles interconnected by means of expo-
nential springs and constrained to move on a circle. The motion is determined by the
Hamiltonian

H =
1

2

3
∑

k=1

p2k +

3
∑

k=1

eqk−qk+1 , q4 = q1,

with the standard symplectic structure. Using Flaschka’s change of variables tk = eqk−qk+1 ,
tk+3 = −pk, (k = 1, . . . , 3), the equations of motion have the following nice form

ṫ1 = t1(t5 − t4),
ṫ2 = t2(t6 − t5),
ṫ3 = t3(t4 − t6),

ṫ4 = t1 − t3,
ṫ5 = t2 − t1,
ṫ6 = t3 − t2.

(15)

The Toda flow has the following 4 constants of motion,

T1 = t1t2t3 = 1,

T2 = t4 + t5 + t6 = 0,

T3 =
1

2
(t24 + t25 + t26) + t1 + t2 + t3 = a1,

T4 = t4t5t6 − t1t6 − t2t4 − t3t5 = b1,

(16)

where we shifted t4, t5 and t6 by a constant, so as to obtain T2 = 0. If we assign t1, t2 and t3
weight 2 and t4, t5 and t6 weight 1, then the invariants are all weight homogeneous with
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weights 6, 1, 2 and 3 respectively. If we give time weight −1 then the first vector field
also becomes weight homogeneous. Such a vector field is called weight homogeneous; it is
shown in [AvM1] that for such a vector field it is easy to find the Laurent solutions to the
differential equations.

Remark also that the invariant manifold defined by (16) has an automorphism of
order 3 given by

(t1, t2, t3, t4, t5, t6) 7→ (t2, t3, t1, t5, t6, t4). (17)

This automorphism simplifies the Painlevé analysis, which applied to this system, gives
three families of Laurent solutions depending on the maximal number of free parameters (5
in this case). Such families are called principal balances. We display one principal balance,
the other two are found using the order three automorphism (a, b, . . . will always denote
the free parameters entering in the balances):

t1 = − 1

t2
(1 + ct2 + dt3 + · · ·),

t2 = −t(e+ (b− a)et+ · · ·),

t3 = −t(−(4d+ e) + (4d+ e)(b− a)t+ · · ·),

t4 =
1

t
(1 + at− ct2 − 1

2
(5d+ e)t3 + · · ·),

t5 =
1

t
(−1 + at+ ct2 +

1

2
(d− e)t3 + · · ·),

t6 = b+ (e+ 2d)t2 +
4

3
d(a− b)t3 + · · · .

The Laurent solutions make it easy to find an embedding of the affine invariant surfaces
into projective space; in our case the functions which behave like 1

t
at worst when any of

the Laurent solutions are substituted in them define a projective embedding of the affine
invariant surface, whose closure is a principally polarised Abelian surface. A basis for these
functions is given by {1, t5, t6, t4t5 − t1, t5t6 − t2, t2t4 + t5(t4t5 − t1), t1t2, t2t3, t3t1}. Three
hyperelliptic curves of genus two, which can be calculated by substituting the Laurent
solutions in the invariants, need to be adjoined to the affine surface to get the complete
variety. They are all seen to be isomorphic to the curve

e2 + e(8a3 − 2aa1 + b1) + 1 = 0, (18)

and using the embedding it is checked that any two of these curves touch in one point;
also the curves are permuted by the order three involution (17). The three intersection
points are also the points of tangency of the Toda flow. Representing each of the curves
by a circle, this divisor at infinity can be depicted as follows.

Figure 1
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We proceed to the linearisation of the Toda lattice. Three involutions leaving the
divisor at infinity invariant are found by composing the involution (t1, t2, t3, t4, t5, t6) =
(t1, t3, t2, t5, t4, t6) with the order three automorphism (17).  itself fixes one of the tangency
points which we call v and interchanges the two curves (which we call Γ1 and Γ2) of the
divisor at infinity v belongs to, while it maps the other curve of this divisor to itself.
Clearly the point v and the curves are taken as the basic ingredients to apply the methods
explained in Section 3. Remark that although one of the divisors is mapped to itself under
 we cannot take this curve as Γ1 = Γ2 (in the terminology of Section 3) since we need to
know the coordinates in projective space of some fixed point of  on the curve, and this
reduces to the calculation of one of the Weierstrass points on the curve (infinity is not a
Weierstrass point). Since the Laurent solutions above correspond to the curve which is
fixed under , a base for L(Γ1 +Γ2) is found by looking for the functions generated by the
embedding, whose Laurent expansions for this balance do not blow up. Such a base is found
immediately to be given by the four basic functions {1, θ1 = −t6, θ2 = t4t5− t1, θ3 = t2t3}.
The invariants can be expressed in terms of these functions, giving a quartic equation
which we identified as the equation defining the Kummer surface of the invariant manifold
as a surface in IP3. The equation reads

θ23(θ
2
1 − 4θ2) + θ3(θ

3
2 − a1θ2) + P4(θ1, θ2) = 0,

for some polynomial P4 of degree 4. Remark that we have choosen {1, θ1, θ2, θ3} such that
v is mapped to (0 : 0 : 0 : 1) ∈ IP3, as in Theorem 9. By this theorem the vector field
defining the Toda lattice linearises upon setting

t6 = µ1 + µ2 t4t5 − t1 = µ1µ2,

t3 − t2 = µ̇1 + µ̇2 t2t4 − t3t5 = µ̇1µ2 + µ1µ̇2.
(19)

Substituting (19) in the invariants (16) and eliminating the other variables, two poly-
nomials in µ̇2

1 and µ̇2
2 are found, one is linear, the other is quadratic. Solving them for µ̇2

i

yields

µ̇2
i =

µ6
i − 2µ4

i a1 + 2µ3
i b1 + µ2

i a
2
1 − 2µia1b1 − 4 + b21

(µ1 − µ2)2
,

which leads immediately to
dµ1

√

f(µ1)
+

dµ2
√

f(µ2)
= 0,

µ1dµ1
√

f(µ1)
+

µ2dµ2
√

f(µ2)
= 1,

where f is the polynomial f(µ) = (µ3 − a1µ+ b1)
2 − 4. Clearly the curve y2 = f(x) is iso-

morphic to the curve (18). In the same way it is shown that the vector field corresponding
to −T4 gives the highest flow with respect to the same equation y2 = f(x) for the curve.
This completes the linearisation of the Toda lattice.

Finally we look at the symplectic structure for the Toda lattice and deduce Darboux
coordinates as well as action-angle variables on a torus neighborhood of a generic invariant
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torus of the real system (see [FM]). Using Flaschka’s change of variables and our normali-
sation t4+t5+t6 = 0 the original (standard) symplectic structure is expressed immediately
in terms of the variables ti as ω = dt3∧dt4

t3
− dt2∧dt5

t2
. Since we know that T3 and −T4 give

the lowest and the highest flow respectively we write f(µ) as f(µ) = (µ3− T3µ+ T4)
2− 4,

and we remark that
∂f

∂T3
(µ) = −µ ∂f

∂T4
(µ).

Letting ∆i = T3µi − T4, it follows from Proposition 12 that ω = dµ1 ∧ dν1 + dµ2 ∧ dν2,
where

νi =

∫

d∆i
√

(µ3
i −∆)2 − 4

= log |∆i − µ3
i +

√

(µ3
i −∆i)2 − 4|. (i = 1, 2)

Applying Arnold’s method, action variables are given by

pi = 2

∫ e2i

e2i−1

log |∆− µ3 +
√

(µ3 −∆)2 − 4|dµ (20)

the points e1, . . . , e4 being four (real) branch points on the curve y2 = (µ3 − ∆)2 − 4;
the fact that they depend on the constants of motion is dropped in the notation. Let
S(µ1, µ2, T3, T4) be the function defined by

S =

∫ µ1

e1

log |∆− µ3 +
√

(µ3 −∆)2 − 4|dµ+

∫ µ2

e3

log |∆− µ3 +
√

(µ3 −∆)2 − 4|dµ;

S is the generating function of a canonical transformation (µ1, µ2, ν1, ν2)→ (φ1, φ2, p1, p2),
so that angle variables are found by

φi =
∂S

∂pi
=

∂S

∂T3

∂T3
∂pi

+
∂S

∂T4

∂T4
∂pi

,

where ∂S
∂T3

and ∂S
∂T4

are found by direct differentiation under the integral sign. ∂T3

∂pi
and ∂T4

∂pi

are found by calculating ∂pi

∂Tj
from (20) for i = 1, 2 and j = 3, 4.

b. A seven-dimensional system

Next, we consider a seven-dimensional system constructed by Bechlivanidis and van Moer-
beke when studying a top, known as the Goryachev-Chaplygin top. We refer to [BvM] for
the description of this top and the precise relation with this seven-dimensional system. We
use coordinates which differ only slightly from the ones in [BvM], (this makes the Laurent
solutions a bit easier):

ṡ1 = −8s7, ṡ4 = −4s2s5 − s7,
ṡ2 = 4s5, ṡ5 = s6 − 4s2s4,

ṡ3 = 2(s4s7 + s5s6), ṡ6 = −s1s5 + 2s2s7,

(21)

ṡ7 = s1s4 + 2s2s6 − 4s3.
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There are five constants of motion, namely

S1 = s1 − 4s22 − 8s4 = a2,

S2 = s1s2 + 4s6 = b2,

S3 = s24 − s25 + s3 = c2,

S4 = s4s6 + s5s7 + s2s3 = d2,

S5 = −s26 + s27 − s1s3 = e2.

(22)

This system is again weight homogeneous with weight 1 for s2, 2 for s1, s4 and s5, 3 for
s6, s7 and 4 for s3; the invariants Si have weighted degree i + 1. There are two principal
balances depending on six free parameters, distinguished by ǫ = ±1. The first terms of the
Laurent solutions for s1, s2 and s3 are given by

s1 =
1

t
(a− a2t

2
+ ct2 − a

2
(c+ 4d+ 2ab)t3 + · · ·),

s2 =
ǫ

t
(−1

2
− at

4
+ bt2 + dt3 + et4 + · · ·),

s3 = − 1

32t
(2ab+ c+ 8d) +

3

64
(ac+ 8ad+ 2a2b) + · · · .

(23)

The affine surface defined by the five quadrics (22) can be embedded in projective space
by means of the sixteen functions

{1, s1, . . . , s7, s21, s1s3, s2s3, s23, ṡ3, {s1, s2}, {s1, s3}, {s2, s3}}, (24)

which behave like t−2 at worst when the series (23) are substituted into them ({si, sj}
denotes the Wronskian ṡisj − siṡj of sj and si). Using the embedding (24) and the series
(23), it can be shown that the closure of the image of this affine surface is (for generic values
of the constants of motion) an Abelian variety. This is done by adjoining two isomorphic
hyperelliptic curves Γǫ of genus 2. An equation for these curves is found by putting the
Laurent solutions for the principal balances displayed above in the invariants (22), giving

c′2 = (a3 + a2a+ 2b2ǫ)
2 − 64(c2a

2 − 2aǫd2 − e2), (25)

when setting c′ = 2c+ a
6 (3a

2 + 4a2). These two curves touch in one point and each curve
has two points where the vector field (21) is tangent, one of which is this tangency point.
We draw the divisor at infinity, together with the three points where the flow is tangent
to the divisor, in the following figure.

Figure 2
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The two curves are interchanged by the time-involution given by flipping the signs of
s5 and s7. Since the functions s1, s2 and s3 have a simple pole along each of the hyperelliptic
curves at infinity and since the point of tangency of these curves is mapped to (0 : 0 :
0 : 1) by the embedding of the Kummer surface in IP3 by means of the four functions
{1, s1, s2, s3}, we calculate an equation of the Kummer surface in terms of these functions.
The result is a quartic equation of the form

(s1 − s22)s23 + P3(s1, s2)s3 + P4(s1, s2) = 0,

for some polynomials f3, f4 of degree 3 and 4. Using Theorem 9 we set

s2 = −1

2
(µ1 + µ2), s1 = µ1µ2

s5 = −1

8
(µ̇1 + µ̇2) s7 = −1

8
(µ̇1µ2 + µ1µ̇2),

Solving the invariants S1, S2 and S5 for s4, s6 and s3 respectively, we are able to express
all functions si in terms of µi and µ̇i; the two linear equations in µ̇2

1 and µ̇2
2 are found by

substituting these in the remaining invariants S3 and S4. These equations are easily solved
as

µ̇2
i =

f(µi)

(µ1 − µ2)2
,

where
f(µ) = (µ3 + a2µ− 2b2)

2 − 64(c2µ
2 + 2d2µ− e2).

The equation y2 = f(µ) is seen to be an equation for the curves Γǫ and the Jacobi form
for the differential equations corresponding to the vector field (21) follows immediately
from it, showing the flow of this vector field is the highest flow with respect to the curve
y2 = f(µ).

Since there is no physical interpretation for the seven-dimensional system, there is also
no natural Poisson structure for this system; there are (at least) three different Poisson
structures for the seven-dimensional system. As explained in the previous section, we read
off from the equation (25)of the curve that there are three possibilities for J by taking
H = S1, H = S3 and H = S4. Taking for example H = S3, the matrix J is given by



















0 0 −8s7 0 0 0 −4s1
0 0 0 0 −2 0 0
8s7 0 0 s7 −s6 −2s2s7 4s3 − 2s2s6
0 0 −s7 0 2s2 0 −s1/2
0 2 s6 −2s2 0 −s1/2 0
0 0 2s2s7 0 s1/2 0 s1s2
4s1 0 2s2s6 − 4s3 s1/2 0 −s1s2 0



















.

The vector field Ẋ = J∇H4(X) gives a vector field commuting with the vector field (21)
and S1, S2 and S5 are Casimir functions. An expression for the symplectic structure can
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be found by inverting the non-singular minor taken from rows and columns 1, 2, 3 and 5,
giving

ω =
ds1 ∧ ds3

8s7
+
ds2 ∧ ds5

2
− s6ds1 ∧ ds2

16s7
.

We showed that the vector field corresponding to S3 for this symplectic structure (i.e. the
vector field (21)) gave rise to the lowest flow. It is shown in exactly the same way that the
vector field corresponding to 2S4 gives rise to the highest flow (with respect to the same
equation of the curve). An expression for the other two Poisson structures is found easily
in the same way and since any pair of brackets are completely bi-Hamiltonian, they are all
compatible.

Writing the equation of the curve as y2 = f(x) = P 2(µ)−64(S3µ
2+2S4µ−e2), it is seen

that 2 ∂f
∂S3

= µ ∂f
∂S4

. Applying Proposition 12, ω can be written as ω = dµ1∧dν1+dµ2∧dν2
where

σi =

∫

d∆i
√

P (µi) + 64e2 + µi∆i

=
2

µi

√

P (µi) + 64e2 + µi∆i, (i = 1, 2),

and ∆i = −64(S3µi + 2S4). Denoting again by e1, . . . , e4 four real Weierstrass points on
the curve y2 = f(µ) the action variable p1 is given by

pi = 4

∫ e2i

e2i−1

√

P (µ) + 64e2 + µ∆
dµ

µ
.

and angle variables follow from differentiation of the generating function with respect to
p1 and p2 respectively (as in the previous example).

c. A quartic potential

This potential was constructed by Ramani et al. (see [RDG]), as an example of an integrable
system which admits only fractional Laurent solutions. It is a system which is a.c.i. in the
generalised sense as defined in [AvM1]; see also [Pi2] for an explanation of the nature of
the Laurent solutions for such systems. Slightly altered, the Hamiltonian and the extra
constant of motion read

Q4 = −4(p21 + 4p22 −
1

256
(q41 + 3q21q

2
2 + q42)) = a3,

Q′
4 = 4q1p1p2 − q2p21 −

q21q2
256

(2q21 + q22) = b3,

(26)

with the standard symplectic structure. It follows that the vector field corresponding to
Q4 is given by

q̇1 = −8p1, ṗ1 = − q1
32

(2q21 + 3q22),

q̇2 = −32p2, ṗ2 = − q2
32

(3q21 + 2q22),
(27)

The system is weight homogeneous with q1, q2 having weight 1 and p1, p2 weight 2, so
that Q4 and Q′

4 have weight 4 and 5 respectively. There are two principal balances, which
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depend on 3 free parameters. They are special in the sense that they are fractional, i.e.,
Laurent series in

√
t. The first few terms of qi for the principal balances are

q1 =

√

a

t
(1 +

at

4
+
a2bt2

32
+ · · ·), q2 =

ǫ

t
(1− at

2
− a2t2

4
+ · · ·). (28)

Here the two balances are distinguished by ǫ = ±1. Substituting the series (28) for qi and
pi into (26) yields two isomorphic curves

Γǫ: a
5(b2 + 10b− 39) + 642(aa3 + 4b3ǫ) = 0, (ǫ = ±1), (29)

which are smooth hyperelliptic curves of genus two for generic values of a3 and b3.
We investigate the affine variety A given by (26) for generic values of a3 and b3. It has

a fixed-point free involution τ which maps (q1, q2, p1, p2) to (−q1, q2,−p1, p2), hence A is a
double unramified cover ofA/τ.We search for functions in the coordinate ring ofA/τ which
have the property that they behave like 1

t
or 1

t2
at worst when the series (28) are substituted

into them. We denote these vector spaces by L(Γ1+Γ−1) and L(2Γ1+2Γ−1) respectively.
For L(Γ1 + Γ−1) we find four independent functions {1, q2, q = q21 , q̃ = q21q

2
2 − (16p1)

2},
while L(2Γ1 + 2Γ−1) contains the additional twelve independent functions

{q22 , p2, q1p1, qq2, q2, {q, q2}, {q, q2}q2 + 16p1q1q, q̃q2, q̃q, {q2, q̃}, {q, q̃}, q̃2}.

The sixteen functions z0, . . . , z15 above induce a map ϕ:A/τ → IP15 determined by
ϕ(q1, q2, p1, p2) = (z0 : . . . : z15). Substituting the series (28) in this embedding and
letting t→ 0 one finds (up to scalar factors) an embedding of the curves Γǫ, in which (a, b)
is mapped to

(0 : 0 : 0 : 0 : 1 : ǫ : a : aǫ : a2 : a2ǫ : a3b′ : a3ǫb′ : a4b′ : a4b′ǫ : a5b′ : a6b′2),

upon setting b′ = b − 3. The curves ϕ(Γǫ) are disjoint for finite values of a and b, but
intersect in (0 : · · · : 0 : 1), where these blow up, as in Figure 2.

Applying the methods explained in [AvM1] one shows using the Laurent series and the
embedding above that the images ϕ(A/τ), ϕ(Γ1) and ϕ(Γ−1) in fact build up a complete
Abelian variety — more precise the Jacobian of Γǫ — lying in projective space. It follows
that the system (27) is a.c.i. in the generalised sense. The spaces L(Γ1+Γ−1) and L(2Γ1+
2Γ−1) introduced above can now be understood as meromorphic functions on the Jacobian
of Γǫ which have a simple respectively double pole along each of the curves Γǫ only.

Now we want to calculate an affine equation for the Kummer surface of A/τ. Remark
that the intersection point of Γ1 and Γ−1 is mapped to (0 : 0 : 0 : 1) by the map from
Jac(Γǫ) into projective space IP3 by means of {1, q2, q, q̃}. Therefore we use the functions
of this base to find the standard equation of the Kummer surface; eliminating p2 from
Q4 and Q′

4 and expressing p21 in terms of q and q2 (no square roots are needed) a quartic
equation

(4q2 + q22)q̃
2 + P3(q, q2)q̃ + P 2

2 (q, q2) = 0,
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is found (P2 and P3 are polynomials of degree 2 and 3 respectively). We are again in
position to apply Theorem 9: we put

q2 = µ1 = µ2, q = q21 = −µ1µ2,

−32p2 = µ̇1 + µ̇2, 16p1q1 = µ̇1µ2 + µ1µ̇2.
(30)

Since the equations of the invariant manifold depend on q1p1 and q21 rather than on p1
and q1, these equations can immediately be written as

(µ1µ̇
2
2 − µ2µ̇

2
1)(µ1 − µ2)

2 + µ1µ2(µ
5
1 − µ5

2)− 64a3µ1µ2(µ1 − µ2) = 0,

(µ2
1µ̇

2
2 − µ2

2µ̇
2
1)(µ1 − µ2)

2 + µ2
1µ

2
2(µ

4
1 − µ4

2)− 256b3µ1µ2(µ1 − µ2) = 0.

Solving these equations linearly for µ̇2
1 and µ̇2

2 one finds

µ̇2
i =

µ6
i + 64a3µ

2
i + 256b3µ1

(µ1 − µ2)2
,

leading to the Jacobi form. One proceeds in the same way to find the Jacobi form for the
vector field corresponding to Q′

4; the constants appearing in the Jacobi form are (1/4, 0)
in this case (and (0, 1) for the first vector field). Since the original coordinates qi and
pi which define the system are Darboux coordinates (the symplectic structure being the
standard one), there is no need to construct (other) Darboux coordinates.

d. The master systems

In [M], Mumford constructs a natural vector field on the Jacobian of any hyperelliptic curve
of genus g, given by an equation y2 = f(x), deg f = 2g+1.We adapt his construction here
for the case the hyperelliptic curve is given by an equation y2 = f(x), deg f = 2g+ 2, and
find a new integrable sytem (the even master system), whose geometry is totally different
from the one constructed by Mumford (the odd master system).

We denote by Γ the hyperelliptic curve of genus g defined by y2 = f(x), deg f =
2g+2, f monic. By a simple translation we may suppose that the coefficient of f in x2g+1

vanishes. We denote the two points at infinity by ∞1 and ∞2 and remark that they are
interchanged by the hyperelliptic involution σ. To each divisor of the form D =

∑g
i=1 Pi,

with Pi ∈ Γ \ {∞1,∞2} and i 6= j ⇒ Pi 6= σPj , we associate three polynomials

u(x) =

g
∑

i=0

uix
g−i, v(x) =

g
∑

i=1

vix
g−i, w(x) = xg+2 +

g
∑

i=−1

wix
g−i,

as follows: u(x) =
∏g

i=1(x− x(Pi)) and v(x) is the unique polynomial of degree less than
g approximating y to order multPi

(D) at Pi, which makes f(x)− v2(x) divisible by u(x),
the quotient being denoted by w(x). Actually, since the coefficient of f in x2g+1 was taken
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to be zero, it follows that w−1 = −u1. In order to construct a vector field on Jac(Γ), we
consider for a divisor D =

∑g
i=1 Pi as above, the function

h(x, y) =
u(x)

y + v(x) + xu(x)
,

which is (up to a constant) the unique function with zero divisor D+∞1. Then h
−1{0} is

∑

Pi +∞1, and for |ǫ| small, h−1{− ǫ
2
} will be a divisor

∑

P ǫ
i + Qǫ, with P ǫ

i close to Pi

and Qǫ close to ∞1. Now the relation h(x, y) = − ǫ
2 implies 2u(x)+ ǫv(x) + ǫxu(x) = −ǫy,

so

u(x)

[

u(x) + ǫ(xu(x) + v(x)) +
ǫ2

4
(x2u(x) + 2xv(x)− w(x)

]

= 0.

The second factor is a polynomial (in x) of degree g + 1 and determines the divisor
∑

P ǫ
i + Qǫ. To separate the P ǫ

i from Qǫ for |ǫ| small, it is only necessary to factorize
this polynomial in a factor of degree g and another of degree 1. Looking at the degrees of
u(x), v(x) and w(x) the only possible factorisation (u(x)+ ǫv(x)+ ǫ2 · · ·)(1+ ǫx+ ǫ2 · · ·) is
found. Therefore u̇(x) = v(x) and the time-derivatives of v(x) and w(x) follow immediately
from differentiation of f = u(x)w(x) + v(x)2. This gives

u̇(x) = v(x),

v̇(x) = −1

2
(w(x)− u(x)(x2 − 2u1x+ w0 + 2u21 − u2)),

ẇ(x) = −v(x)(x2 − 2u1x+ w0 + 2u21 − u2).

Moreover g commuting flows can be written down in a compact form as Lax pairs in sl(2) :

Ȧ =
1

2
[A, PkA+Bk], A =

(

v(x) u(x)
w(x) −v(x)

)

, (31)

where k = 1, . . . , g gives the different flows, Pk is an operator on polynomials

Pk(

g+2
∑

i=0

Aix
i) =

k+1
∑

i=0

Ag−i+2x
1+k−i, (32)

and Bk is a strictly lower triangular matrix whose only non-zero entry equals bk = −ukx+
2u1uk − uk+1. The case of interest in this paper is the genus two case. Five invariants are
found from the relation f = u(x)w(x) + v(x)2,

V1 = w0 − u21 + u2 = a4,

V2 = w1 + w0u1 − u1u2 = b4,

V3 = w2 + w1u1 + u2w0 + v21 = c4,

V4 = w1u2 + w2u1 + 2v1v2 = d4,

V5 = u2w2 + v22 = e4,

(33)
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when f(x) is written as f(x) = x6 + a2x
4 + b2x

3 + c2x
2 + d2x + e2. Before searching the

Laurent solutions we note the system is weight homogeneous with weight i for ui, i+1 for
vi and i+2 for wi. Then Vi has weight i+1. There are two principal balances, depending
on six free parameters. We only display the principal balances for the u variables since they
determine the solutions for the v and w variables upon using the differential equations:

u1 = ±1

t
(1 + at+bt2 + ct3 + et4 + ft5 + · · ·),

u2 =
1

t
(2a− 2a2t+ dt2 + (2ac− ad+ 2a2b)t3 + · · · .

(34)

Substituting the series (34) into the invariants (33) gives two copies of Γ, say Γ1 and Γ2,
to be adjoined to the invariant affine surface yielding an Abelian variety. To show this,
one searches for functions which behave like t−1 and those which behave like t−2. Using
the series (33), a base for L(Γ1 + Γ2) is found, {1, u1, u2, u = w2 + u1w1 + u21w0}, and
L(2Γ1 + 2Γ2) contains 12 additional independent functions,

{v1, v2, u21, u1u2, u1u, u22, u2u, u2, u̇, {u1, u2}, {u1, u}, {u2, u}},

which embeds the invariant affine surface in projective space. Using the series (34), the im-
age is compactified by adding two translates of Γ which touch at one point, as in Figure 2.
Expressing the invariants (33) in terms of the base {1, u1, u2, u}, a quartic equation

(u21 − 4u2)u
2 + f3(u1, u2)u+ f4(u1, u2) = 0,

for the Kummer surface is obtained (f3 and f4 have degree 3 and 4 respectively). By
Proposition 9 we can linearise both vector fields by setting u1 = −µ1−µ2, and u2 = µ1µ2.

Finally we take a look at the symplectic structures of the even master system. For
i = 0, . . . , 3, any of the three pairs (Vi+1, Vi+2) of constants of motion can be taken as
Hamiltonians defining the two commuting vector fields described by the Lax pair (for
k = 1, 2) with respect to some symplectic structure. For example, take

J =
1

2







0 −U 0 2V
U 0 X −W
0 −tX 0 −tY
−2V W Y 0






,

with

U =

(

u1 u2
u2 0

)

, X =

(

2u21 − u2
2u1u2

)

, Y = 2

(

v2 − 2u1v1
−2u1v2

)

,

V andW being constructed in exactly the same way as U. Then Ẋ = J∇V2 and Ẋ = J∇V3
are exactly the two commuting vector fields (31) for k = 1, 2. The left upper 4× 4 minor
of J is non-singular and its inverse gives an expression

ω1 = 2(
du1 ∧ dv2

u2
+
du2 ∧ dv1

u2
− u1du2 ∧ dv2

u22
)
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for the symplectic two-form corresponding to this choice of Hamiltonians. In the same way
the other three symplectic structures ω0, ω2 and ω3 are found to be

ω0 = 2(
du1 ∧ dv1

u2
− u1du1 ∧ dv2

u22
− u1du2 ∧ dv1

u32
− u2 − u21

u32
du2 ∧ dv2),

ω2 = 2(−du1 ∧ dv1) +
du2 ∧ dv2

u2
,

ω3 = 2(u1du1 ∧ dv1)− du1 ∧ dv2 − du2 ∧ dv1.

Let (F1, F2) = (Vi+1, Vi+2) for i = 0, 1, 2 or 3. Then the polynomial f(µ) defining Γ
satisfies ∂f

∂F1
(µ) = µ ∂f

∂F2
(µ), hence setting ∆j = µjF1 + F2, any of these ωi can be written

as ωi = dµ1 ∧ dν1 + dµ2 ∧ dν2 where

νj =

∫

d∆j
√

f(µj)
= 2

√

f(µj)

µ3−i
j

, (j = 1, 2).

As before action-angle coordinates derive immediately from it.
We shortly describe now the odd master system (see [M]). In the same way as before

one associates three polynomials u, v and w to divisors on an algebraic curve, the degree of
w being g+1 in this case (instead of g+2). Its Lax pair takes the same form as in (31) with
bk = −uk, and the invariants are again found from the relation f(x) = u(x)w(x) + v2(x).
In the genus two case, the complete variety is the union of the affine piece in which we
have the coordinates ui, vi, wi and one copy of the curve Γ. We draw the divisor at infinity
as follows.

Figure 3

The roots of u(x) are linearising variables, exactly as in the even master system.
It is easy to check that this system has 4 independent symplectic structures, like the

even master system. All computations concerning the construction of Darboux coordinates
for each of this symplectic structures as well as the calculation of the corresponding action-
angle variables give exactly the same formulas as for this system, so we do repeat these
formulas here.

e. Integrable Hénon-Heiles

The Hénon-Heiles system is another example of a potential problem, but this well known
potential is of the third degree. The Hamiltonian and an extra invariant are given by

Q3 = 2(p21 + 4p22)−
q2
8
(2q21 + q22) = a6,

Q′
3 = q2p

2
1 − 4q1p1p2 +

q21
16

(q21 + q22) = b6,

(35)
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and the symplectic structure is again the standard one, so that two commuting vector
fields are given by

q̇1 = 4p1,

q̇2 = 16p2,

ṗ1 =
q1q2
2
,

ṗ2 =
2q21 + 3q22

8
.

The system is weight homogeneous, with weight 2 for qi and weight 3 for pi. Then
Q3 and Q′

3 have weight 6 and 8 respectively. There is one principal balance depending
on three free parameters; the first few terms for qi are given by

q1 =
1

t
(a+

a3t2

3
+bt3− 2

9
a5t4− 1

3
a2bt5+· · ·), q2 =

1

t2
(1− a

2t2

3
− a

4t4

3
− 4

3
abt5+ct6+· · ·),

the series for pi are found by differentiation. The eight functions with at worst a double
pole at infinity {1, q1, q2, p1, q21 , q2p1 − 2q1p2, q

2
1q2 − 16p21, q1q

2
2 − 32p1p2}, give (for generic

values of a6 and b6) an embedding of the affine variety defined by the invariants (35) in
IP7. Using this embedding one sees that the affine variety is compactified by adjoining a
genus three curve C, which induces a polarisation of type (1, 2) on the surface. An equation
for C is found by substituting these series into the invariants Q3 and Q′

3,

C: b2 = b6 +
1

2
a6a

2 − 1

16
a8.

We draw this hyperelliptic curve of genus three as follows.

Figure 4

As an example of the linearisation procedure for Abelian surfaces which do not carry
a principal polarisation, we now show how to linearise the Hénon-Heiles system. We want
to stress that although the linearisation is done formally in a very similar way as for the
quartic potential, the geometry of both systems is totally different: for the Hénon-Heiles
potential the affine invariant surfaces complete into Abelian surfaces, while for the quartic
potential they don’t. Letting Γ be the genus two curve

y2 = b6 +
1

2
a6x−

1

16
x5,

the curve C is easily seen to be a two-fold unramified cover of Γ, the map being given
by x = a2, y = ab. The involution (a, b) → (−a,−b) flipping the sheets of the cover
can be extended to an involution τ on the invariant manifold T 2 by (q1, q2, p1, p2) →
(−q1, q2,−p1, p2). Since this involution preserves the vector field, it amounts to translation
by a half period and the quotient T 2/τ is an Abelian surface containing the smooth genus
two curve Γ, hence T 2/τ = Jac(Γ). Using the base in (35) it is easy to see that the functions
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{1, θ1 = q2, θ2 = −q21 , θ3 = q21q2 − 16p21} are invariant under τ, hence go down to Jac(Γ).
Using the invariants (35) the Kummer surface of Jac(Γ) is found to be

(θ21 − 4θ2)θ
2
3 + f3(θ1, θ2) + f4(θ1, θ2) = 0.

By Theorem 9, adapted to the case where the invariant tori do not carry a principal
polarisation, we let

θ1 = q2 = −µ1 − µ2, θ̇1 = q̇2 = 16p2 = −µ̇1 − µ̇2,

θ2 = −q21 = µ1µ2, θ̇2 = −2q1q̇1 = −8q1p1 = µ̇1µ2 + µ1µ̇2,

and write the invariants (35) in terms of µ1, µ2 and their derivatives (no square roots are
needed). The resulting two polynomials are solved linearly for µ2

i as

µ̇2
i =

µ5
i + 8a6µ

2
i − 16b6µi

(µ1 − µ2)2
,

leading immediately to the Jacobi form. For the vector field corresponding to Q′
3 the

computation is very similar.
Let π denote the natural projection π: T 2 → T 2/τ. We calculate the divisor π∗∆ on

T 2. Setting q2 = 2ǫi (ǫ = ±1) two curves ∆+ and ∆− are found on the invariant surface.
They are given by an equation

64p21q1(8a6q1 − ǫiq41 + 16b6iǫ)− (16b6 + 3q41)
2 = 0, (36)

and they are both isomorphic to Γ. Since the generic curve in the pencil has virtual genus
dimL(2Γ) + 1 = 9, the embedded curves ∆+ and ∆− must have singular points. To find
them we substitute q2 = 2iǫq1 in the embedding (35) in which p2 is eliminated using the
invariant Q′

3. Then it is clear that there can only be singular points at infinity, i.e. where
q1 or q2 blow up. We get three cases
1) q1 = qδ+u

2, p1 = 1
u
(c+du2), where qδ is any of the four roots of −ǫiq4+8a6q+16b6iǫ.

Then u 7→ (0 : · · · : 1 : ǫi) + u
c
(0 : 0 : 0 : 1 : 0 : ǫiqδ : 0 : 0), which means that each of

the curves has a four-fold point (at least).
2) q1 = 4i

u2 , p1 = 3
u3 (1 + cu6) or 3i

u3 (1 + cu6) according to ǫ = 1, −1. Then u 7→ (0 : · · · :
1 : −ǫi) + u

4 (0 : · · · : 0 : 1 : 0 : 0), which means that each curve goes through the
four-fold singularity of the other curve.

3) q1 = u2, p1 = c
u
(1 + du2) where b6 = 4iǫc2. Then u 7→ (0 : · · · : 1 : −ǫi) − u

16c
(0 : 0 :

0 : 1 : 0 : · · · : 0), which means that each curve has a double point where the other
one has his four-fold point.

Now an ordinary four-fold point accounts for a drop in genus of at least
(

4
2

)

= 6

while a double point accounts for at least
(

2
2

)

= 1, with equality for ordinary points only.
Therefore 2 = g(Γ) ≤ 9−6−1 = 2, and it follows that all inequalities are in fact equalities.
Consequently each curve has an ordinary four-fold point and an ordinary double point and
no other singularities. Also both curves intersect at least in their singular points, giving
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2.(2.4) = 16 intersection points at least, with equality for normal intersection only. By

(4) it follows that ∆+.∆
−

2
= g(∆+) − 1 = 8, so that ∆+ and ∆− have their singular

points as their only intersection points and have distinct tangents at these points. The two
singular points are half periods and are the intersection points of the two curves with the
curve at infinity. Remark that the divisor has two (ordinary) six-fold points (and no other
singularities) as was to be expected since the divisor is an unramified cover of a curve with
one (ordinary) six-fold point (only). Also it is easy to see that these two points belong to
the curve C, since the six-fold point of ∆ belongs to π(C) = Γ.

The singularities of the curves can be seen from the following picture.

Figure 5

For simplicity only one curve is drawn, the other curve can be drawn by a reflection of the
first curve which exchanges the two singular points.

As for the construction of Darboux coordinates for the Hénon-Heiles system, the same
remark we made in the case of the quartic potential applies since again the original variables
defining the system are Darboux coordinates.

f. Kowalevski’s top

The best known system in the list is undoubtly Kowalevski’s top. We refer to [AvM2],
[BRS], [HH] and [HvM] for an extensive discussion of the geometry of this top and the
construction of a Lax pairs for this top.

Recall that the equations describing the motion of this top are

k̇1 = k2k3,

k̇2 = 2l3 − k1k3,
k̇3 = −2l2,

l̇1 = 2k3l2 − k2l3,
l̇2 = k1l3 − 2k3l1,

l̇3 = k2l1 − k1l2,

with constants of motion

K1 =
1

2
(k21 + k22) + k23 + 2l1 = a7,

K2 = k1l1 + k2l2 + k3l3 = b7,

K3 = l21 + l22 + l23 = c7,

K4 = [
1

4
(k1 + ik2)

2 − (l1 + il2)][
1

4
(k1 − ik2)2 − (l1 − il2)] = d7.

(37)

The vector field is weight homogeneous if we give ki weight 1 and li weight 2; the invariants
have weight 2, 3, 4, 4 respectively. There are two principal balances with five free param-
eters. Using the functions x1,2 = k1±ik2

2 , y1,2 = (k1±ik2

2 )2 − (l1 ± il2), x3 = k3, y3 = l3 as
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new coordinates, one principal balance is given by

x1 =
a

t
+ b(1 + a2) +

a

2
(c+ a2b2)t+ · · · ,

x2 = b− ab2t+ · · · ,

x3 = −1

t
+ ab+ ct+ · · · ,

y1 =
1

t2
(1 + a2) +

2ab

t
(1 + a2) + · · · ,

y2 =
t2

a2
((a2 + 1)b4 − a7b2 + 2b7b+ · · · ,

y3 = −b
t
+ ab2 + · · · ,

the other one is given by interchanging x1 with x2, y1 with y2 and changing the signs of x3
and y3. The 8 independent functions {1, x1, x2, x3, y3, x1x2, y3(x1+x2)−x1x2x3, {x3, y3}}
behave like 1

t
at worst when any of the principal balances is substituted in them. It is proved

in [AvM1] that the closure of the image of the corresponding map of the affine invariant
surface into projective space IP7 is an Abelian surface, which receives a polarisation of type
(2, 4) by the two genus three curves E1 and E2 which have to be adjoined to the image to
get the complete variety. An equation for these curves is given by

(a2 + 1)2b4 − (a2 + 1)(a7b
2 − 2b7b+ c7) + d7 = 0.

Using the embedding (37) it is easy to check that the two genus three curves intersect
(transversally) in four points. These points are half periods and each curve passes through
four extra half periods, as in the following figure (the half periods are represented by dots).

Figure 6

These two curves of genus 3 are uninteresting for finding the linearisation since they aren’t
unramified covers of genus 2 curves. One way to proceed would be to search in the linear
system |E1| (or |E2|) for genus 3 curves which cover a hyperelliptic curve (there are actually
six of them; see [HvM]). Alternatively we will search in the linear system |E1 + E2| for a
suitable curve. Since each smooth curve in |E1 + E2| has genus 9, we look for a curve
of genus 9 which is an eight-fold cover of a genus 2 curve. By a theorem of Barth (see
[Ba]), any affine part of T 2 obtained by removing the zero locus of an odd theta function
in H0(T 2, θ[E1 + E2]) can be defined by four quadratic equations involving the six odd
Abelian functions with a simple pole along this zero locus. Since the (−1)-eigenspace for
the involution σ0: (x1, x2, x3, y1, y2, y3) → (x2, x1, x3, y2, y1, y3), has {x1 − x2, {x3, y3}} as
a base, we look in the pencil of curves λ(x1 − x2) + µ(x3ẏ3 − ẋ3y3) = 0 and find one
particularly simple curve by taking µ = 0, i.e., x1 − x2 = 0, or, equivalently, k2 = 0. This
curve C is an eight-fold cover of the hyperelliptic genus two curve (Kowalevski’s curve)

Γ: y2 = (16x3 + 4a7x
2 + 4(c7 − d7)x+ a7c7 − b27 − a7d7)(x2 −

d7
4
),
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and by the theorem of Barth above, the affine surface T 2 \ C can be described by four
quadratic equations in terms of the 6 odd functions (under σ0) in

L(C) = {1, z1 =
i

x1 − x2
, z2 = i

x1 + x2
x1 − x2

, z3 = i
x1x2
x1 − x2

, z4 = i
x3

x1 − x2
, z5 = i

y3
x1 − x2

,

z6 = i
x1x2x3 − (x1 + x2)y3

x1 − x2
, z7 =

x3ẏ3 − ẋ3y3
x1 − x2

},

i.e., in terms of z1, . . . , z6. Using the definitions of these functions above and the original
invariants (37), these quadratic equations are found to be (see [HH])

4z1z3 − z22 = 1,

z3z4 − z1z6 − z2z5 = 0,

(c7 − d7)z21 − z23 − b7z1z2 + a7z1z3 − z25 − z4z6 = 0,

b27z
2
1 + a7(z

2
3 + z25)− z26 + (c7 − d7)(z22 + z24 − z21)− 2b7(z2z3 + z4z5) = d7.

The next step is to find the covering transformations of the cover T 2 → Jac(Γ). Since
it was shown by [HvM] that the monodromy group of the cover is Z2 ⊕ Z2 ⊕ Z2 we
search for three independent involutions on T 2. Since involutions are given in well-chosen
coordinates by flipping some of the signs of the variables, we will put the invariants in
normal form. It is easy to reduce the first equation to a sum of squares, 〈p, p〉 = 1, where
p = (p1, p2, p3) by setting p1 = z1 + z3, p2 = −iz2, p3 = i(z3 − z1). Then the second
quadratic equation reduces to p1 (z4 − z6) − ip3 (z4 + z6) − 2ip2z5 = 0. Therefore we set
l1 = z4−z6

2 , l2 = −iz5, l3 = z4+z6
2i . Then the other invariants are given by

〈l, l〉+ 〈Qp, p〉 = −a7
4
,

4〈Ql, l〉 − 4 detQ〈Q−1p, p〉 = d7,

with l = (l1, l2, l3) and

Q =
1

4





c7 − d7 − 1 −ib7 i(1 + c7 − d7)
−ib7 −a7 b7

i(1 + c7 − d7) b7 1− c7 + d7



 .

If Q would have diagonal form, 3 involutions would be given immediately by changing the
sign of any pair pi, qi and leaving the other variables fixed. Therefore we diagonalise the
matrix Q, Q̃ = diag(λ1, λ2, λ3) = RQR−1 and set q = Rp, m = Rl. Now the affine surface
is given by

q21 + q22 + q23 = 1,

q1m1 + q2m2 + q3m3 = 0,

m2
1 +m2

2 +m2
3 + λ1q

2
1 + λ2q

2
2 + λ3q

2
3 = −a7

4
,

λ1m
2
1 + λ2m

2
2 + λ3m

2
3 − (λ2λ3q

2
1 + λ1λ3q

2
2 + λ1λ2q

2
3) =

d7
4
,

(38)
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and the three involutions are given by changing the sign of qi and mi (i = 1, 2 or 3). The
functions 1, q21 , q

2
2 , m

2
1 are independent functions which go down to Jac(Γ) (the functions

1, q21 , q
2
2 and q23 are not independent since q21 + q22 + q23 = 1). We get an equation for the

Kummer surface of Jac(Γ) of the form

[{(λ2 + λ3)r1 + (λ3 + λ1)r2 + (λ1 + λ2)r3}2 − 4(λ2λ3r1 + λ3λ1r2 + λ1λ2r3)]m
2

+ f3(r1, r2, r3)m+ f4(r1, r2, r3) = 0,

where we used r3 as an abbreviation for 1− r1 − r2 and r1 = q21 , r2 = q22 , m = m2
1. Using

Theorem 9 we get the transformation

(λ2 + λ3)r1 + (λ3 + λ1)r2 + (λ1 + λ2)r3 = −µ1 − µ2,

λ2λ3r1 + λ3λ1r2 + λ1λ2r3 = µ1µ2.

Taking the derivative of these equations, the invariants are written in terms of µi, µ̇i as

(µ1 − µ2)
µ̇2
1

F (µ1)
− (µ1 − µ2)

µ̇2
2

F (µ2)
= −µ1 − µ2

(µ1 − µ2)µ2
µ̇2
1

F (µ1)
− (µ1 − µ2)µ1

µ̇2
2

F (µ2)
= µ1µ2 +

d7
4
,

the polynomial F being defined by F (µ) = (µ + λ1)(µ + λ2)(µ + λ3). Solving for µ̇2
i one

gets
µ̇2
i

F (µi)
=
−µ2

i + d7/4

(µ1 − µ2)2
,

which puts the differential equations in the Jacobi form. We want to remark that

F (µ) = µ3 +
∑

λiµ
2 + (λ1λ2 + λ2λ3 + λ3λ1)µ+ λ1λ2λ3

= µ3 − TrQµ2 +
(TrQ)2 − TrQ2

2
µ+ detQ,

= µ3 +
a7
4
µ2 +

c7 − d7
4

µ+
b27 − a7c7 + a7d7

16
,

since
∑

λi = TrQ = −a7
4
,

λ1λ2 + λ2λ3 + λ3λ1 =
(TrQ)2 − TrQ2

2
=
c7 − d7

4
,

λ1λ2λ3 = detQ =
b27 − a7c7 + a7d7

16
.

From this expression for F (µ) one sees that our curve is isomorphic to the one used by
Kowalevski.
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We now turn our attention to the symplectic structure and show how to find Darboux
coordinates for the Kowalevski top — then action-angle variables can be deduced from it
as in the previous examples (see [VN]). Taking the gradient of K1, it is easy to find the
matrix which defines the symplectic structure; it can be written in a compact form as

(

K L
L 0

)

, where K =





0 −k3 k2
k3 0 −k1
−k2 k1 0



 and L =





0 −l3 l2
l3 0 −l1
−l2 l1 0



 .

This shows that K2 and K3 are Casimir functions, whereas using K4 it is only a matter of
calculation to find a flow commuting with the above one and to check that the constants
appearing in the Jacobi form for these differential equations (using the same equation for
the curve) are exactly (−2, 0) (for a short argument, see [F]) so that we are in position
to apply Proposition 12 again. Letting F1 and F2 denote the invariants 2K1 and −K4

respectively the equation of Kowalevski’s curve, as it appears in the linearisation, is given
by

y2 = f(µ) = (−µ3 +
F1

8
µ2 − c7 + F2

4
µ+

F1c7 − 2b27 + F1F2

32
)(µ2 +

F2

4
).

By differentiation it is checked immediately that

µ
∂f

∂F2
(µ)− ∂f

∂F1
(µ) + φ

∂f

∂µ
(µ) = 0.

for φ = −1/8. By Proposition 12 it follows that the symplectic structure is given by

ω =
2
∑

i=1

[

µidµi ∧ dF1
√

f(µi)
+
dµi ∧ dF2
√

f(µi)
− dF1 ∧ dF2

8
√

f(µi)

]

.

By Proposition 13 we find Darboux coordinates ρ1, ρ2, σ1 and σ2 for the Kowalevski top;

letting ∆i = F1ρi +F2 +
F 2

1

16
, Ei = ρ2i +

∆i

4
and Fi = −ρic7

4
− b27

32
, Darboux coordinates are

given by

ρi = µi −
F1

8
σi =

∫

dEi
√

Ei(Fi − ρiEi)

the latter integral being easily expressed in terms of trigoniometric functions (or equiva-
lently logarithms) by the rules of calculus.

To finish this more elaborate example we remark that the inverse image of the very
singular curve ∆ on the invariant surface consists of eight singular divisors of virtual genus
three; they come in two groups of four divisors, one group is linearly equivalent to E1 while
the other is linearly equivalent to E2. Each group passes simply through four fixed half
periods and has a ordinary double point in one of the half periods through which each
curve of the other group passes (simply), hence the divisor has eight (ordinary) six-fold
points and no other singularities since the divisor is an eight-fold unramified cover of a
curve with a six-fold point. Therefore the curves which desingularise these diviors all have
genus two. These curves were first found by Horozov and van Moerbeke (see [HvM]) when
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searching for singular curves linearly equivalent to E1 and E2. For simplicity, we only draw
one curve of each group; the six other curves are found by succesive rotation of the picture
over 90 degrees.

Figure 7
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7. Transformations between a.c.i. systems

We have studied five examples of a.c.i. systems whose invariant tori carry a principal
polarisation (strictly speaking, the quartic potential is only a.c.i. in the generalised sense).
We want to show how these are related. To do this we show that we can define a (rational)
map from every two-dimensional system whose invariant tori are principally polarised
to either the even or the odd master system. Actually, fixing any two vector fields on
both systems, there is a unique map which preserves these vector fields and which we can
construct explicitely. Since both master systems are defined by Lax pairs in sl(2), we get as
a by-product a (family of) Lax pair(s) in sl(2) for all principally polarised two-dimensional
systems. The map is given by the following proposition:

Proposition 15 Let F1 and F2 be any two independent Hamiltonians for an a.c.i. sys-
tem whose generic invariant tori carry a principal polarisation. Then there is a unique
map from this system to either the even or the odd master system which maps the Hamil-
ton vector fields induced by F1 and F2 to (multiples of) the weight homogeneous vector
fields (31) defining the master systems. The master systems themselves are related by a
homographic transformation on the curve Γ underlying the system.

Proof

Since F1 and F2 are independent, we know from Lemma 11 that for some unique
equation y2 = f(µ) of the curve, the Jacobi form for the differential equations is given by

XF1
µ1

√

f(µ1)
+

XF1
µ2

√

f(µ2)
= 0,

XF2
µ1

√

f(µ1)
+

XF2
µ2

√

f(µ2)
= 1,

µ1XF1
µ1

√

f(µ1)
+
µ2XF1

µ2
√

f(µ2)
= 1,

µ1XF2
µ1

√

f(µ1)
+
µ2XF2

µ2
√

f(µ2)
= 0.

By scaling F1 and F2 by a common factor (if necessary) we may suppose f to be monic.
It follows immediately that

√

f(µi) = (−1)i−1(µ1 − µ2)XF1
µi.

Let u(x) = (x− µ1)(x− µ2) and v(x) = XF1
u(x) then

v(µi) = XF1
[(x− µ1)(x− µ2)]x=µi

,

= (−1)i(µ1 − µ2)XF1
µi,

= −
√

f(µi),

which shows that f(x) − v2(x) is divisible by u(x) and we can define w(x) to be the
quotient. Depending on the degree of f(x) this defines the unique mapping to either the
even or the odd master system. To show that the mapping is rational, recall that the
coefficients u1 and u2 of u(x) are meromorphic functions when restricted to the (generic)
invariant tori, therefore they are rational functions in the original phase variables. Since
the differential equations are rational (or polynomial) in the original variables, v(x) is also
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rational and the rationality of w(x) follows immediately. Remark that by construction the
vector fields generated by F1 and F2 are mapped to the natural vector fields on the even
(or odd) master system indeed.

In order to relate the odd and even master system, recall that in both cases u(x) =
x2+u1x+u2 is defined as u(x) = (x−x(P1))(x−x(P2)) with respect to some equation of the
curve and v(x) = u̇(x). If two equations y2 = f(x), deg f = 5 and y′2 = f ′(x′), deg f = 6
are given then x and x′ are related by a homographic transformation, x′ = αx+β

γx+δ
which

sends a Weierstrass point to infinity. Letting u(x) = x2 + u1x + u2 and u′(x′) = x′2 +
u′1x

′ + u′2 one finds by direct calculation

u′1 = −x′(P1)− x′(P2),

=
(αδ + βγ)u1 − 2αγu2 + 2βδ

γ2u2 − γδu1 + δ2
,

u′2 = x′(P1)x
′(P2),

=
α2u2 − αβu1 + β2

γ2u2 − γδu1 + δ2
,

and the corresponding polynomial v(x′) is expressed in terms of u(x), v(x) by differentia-
tion. Also w′(x′) follows from the curve relation u′(x′)w′(x′) + v′2(x′) = f ′(x′).

It follows from the proof of the theorem that the map is easy to construct once the
linearising variables are found (which can be done by the methods explained in Section 3).
This is illustrated in the following examples. At first since the Toda lattice linearises by
setting

t6 = µ1 + µ2, t4t5 − t1 = µ1µ2,

t3 − t2 = µ̇1 + µ̇2, t2t4 − t3t5 = µ̇1µ2 + µ1µ̇2,

the map is given by

u = x2 − t6x+ t4t5 − t1,
v = (t2 − t3)x+ (t2t4 − t3t5).
w = x4 + t6x

3 − (t1 + 2t2 + 2t3 + t25 + t5t6 + t26)x
2 + (2(t2t5 + t3t4 − t1t6 + t4t5t6)− t36)x

+ 4t2t3 + t6(t4t5t6 − t1t6 − 2t2t4 − 2t3t5).

where w(x) is found from the relation u(x)w(x) + v(x)2 = (x3 − a1x+ b1)
2 − 4 (the right

hand side is the Toda curve, as it appears in the linearisation). Therefore we can look at
the three body Toda lattice as a subsystem of the even master system. As a by-product
we get a Lax pair for the Toda lattice in sl(2).

Secondly recall that the seven-dimensional system linearises by the transformation

s1 = µ1µ2, s2 = −µ1 + µ2

2
,

s7 = −1

8
(µ̇1µ2 + µ1µ̇2), s5 = −1

8
(µ̇1 + µ̇2).
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It follows as for the Toda lattice that

u = x2 + 2s2x+ s1,

v = 8s5x− 8s7,

w = x4 − 2s2x
3 + (s1 − 16s4 − 4s22)x

2 − 4(s2(s1 − 8s4 − 2s22) + 4s6)x

+ 4(s1s
2
2 + 8s2s6 − 16s3),

where w is calculated from the relation u(x)w(x) + v(x)2 = (x3 + a2x− 2b2)
2 − 64(c2x

2 +
2d2x− e2). This leads again to a Lax pair in sl(2).

The quartic potential can also easily be related to the even master system; the trans-
formation exhibits the invariant surfaces of the quartic potential as covers of the Abelian
tori in the even master system. From the transformation

q21 = −µ1µ2, q2 = µ1 + µ2,

16p1q1 = µ̇1µ2 + µ1µ̇2, −32p2 = µ̇1 + µ̇2,

it follows that

u = x2 − q2x− q21
v = 32p2x+ 16q1p1.

w = x4 + q2x
3 + (q21 + q22)x

2 + q2(2q
2
1 + q22)x+ 256p21.

As before, w is calulated from u(x)w(x)+ v(x)2 = x6 − 64a3x
2 +256b3x, leading to a Lax

pair for the quartic potential.
Finally, combining the transformations, it follows that

x2 − t6x+ t4t5 − t1 = x2 + 2s2x+ s1 = x2 − q2x− q21 ,
(t2 − t3)x+ t2t4 − t3t5 = 8s5x− 8s7 = 32p2x+ 16q1p1,

(the two identities coming from the polynomial w are immaterial here). From these identi-
ties we find a transformation from the three body Toda lattice as well as from the quartic
potential to the seven-dimensional system (to find the expressions for s3, s4 and s6 the
invariants (16), (26) and (22) are used) (see [BvM]):

s1 = t4t5 − t1,

s2 = − t6
2
,

s3 = − t2t3
16

,

s4 =
t2 + t3

8
,

s5 =
t2 − t3

8
,

s6 =
t3t5 + t2t4

8
,

s7 =
t3t5 − t2t4

8
,

s1 = −q21 ,
s2 = −q2

2
,

s3 =
(q21q

2
2 − 256p21)

64
,

s4 = −q
2
1 + q22
8

,

s5 = 4p2,

s6 = −1

8
q21q2,

s7 = −2p1q1.
The Toda lattice and the quartic potential can in no way be related. The reason for this
is that the curves (and hence the Jacobians) corresponding to both systems are unrelated.
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Abstract

In this paper we show how an important class of two-dimensional integrable systems
(the so-called algebraic completely integrable systems) can be explicitely linearised in a
systematic way and how the calculation of action-angle variables derives from it. The
methods will be shown to be very effective by applying them to some classical and some
more recent examples. The methods will also lead in a natural way to birational maps
between some of these examples, giving as a by-product a Lax pair for these systems.
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