
TRANSCENDENTAL LATTICES OF SOME K3-SURFACES

ALESSANDRA SARTI

Abstract. In a previous paper, [S2], we described six families of K3-surfaces (over C) with
Picard-number 19, and we identified surfaces with Picard-number 20. In these notes we
classify some of the surfaces by computing their transcendental lattices. Moreover we show
that the surfaces with Picard-number 19 are birational to a Kummer surface which is the
quotient of a non-product type abelian surface by an involution.

0. Introduction

Given a K3-surface an important step toward its classification in view of the Torelli theo-
rem is to compute the Picard lattice and the transcendental lattice. When the rank of the
Picard lattice (i.e. the Picard-number, which we denote by ρ) of the K3-surface is 20, the
maximal possible, the transcendental lattice has rank two. These K3-surfaces are called by
Shioda and Inose singular. In [SI], Shioda and Inose classified such surfaces in terms of their
transcendental lattice, more precisely they show the following:

Theorem 0.1. [SI, Theorem 4, §4] There is a natural one-to-one correspondence from the
set of singular K3-surfaces to the set of equivalence classes of positive-definite even integral
binary quadratic forms with respect to SL2(Z).

When the Picard-number is 19 the transcendental lattice has rank three and by results of
Morrison, [M], and Nikulin, [N1], the embedding in the K3-lattice Λ := −E8⊕−E8⊕U⊕U⊕U
is unique, hence it identifies the moduli curve classifying the K3-surfaces. In general however
it seems to be difficult to compute explicitly the transcendental lattice. In [S2] we describe
six families of K3-surfaces with Picard-number 19 and we identify in each family four surfaces
with Picard-number 20. The aim of these notes is to compute their transcendental lattice
and to classify them. In [S2] we describe completely the Picard lattice of the general surface
and of the special surfaces in two of the families and of six surfaces with Picard-number 20 in
the other families. Here by using lattice-theory and results on quadratic forms we compute
the transcendental lattices of these surfaces. The methods are similar to the methods used
by Barth in [B] for describing the K3-surfaces of [BS].
By a result of Morrison, [M, Cor. 6.4], K3-surfaces with ρ = 19 and 20 have a Shioda-Inose
structure, in particular this means that there is a birational map from the K3-surface to a
Kummer surface. It is well known (cf. [SI]) that if ρ = 20, then the Kummer surface is the
quotient of a product-type abelian variety by an involution. When ρ = 19 this is not always
the case. In fact we use the transcendental lattices to show that in our cases the abelian
variety is not a product of two elliptic curves. In this case we call the Shioda-Inose structure
simple.
The paper is organized as follows: in section 1 we recall some basic facts about lattices
and quadratic forms and the families of K3-surfaces from [BS] and [S2]. Then section 2
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is entirely devoted to the computations of the transcendental lattices of the K3-surfaces of
[S2]. In section 3 we show that the Shioda-Inose structure of the surfaces with ρ = 19 is
simple. In section 4 we compare our singular K3-surfaces with already known surfaces, more
precisely with the Hessian surfaces which are described in [DvG]: we see that all our singular
K3-surfaces are Hessian surfaces of some cubic surfaces and we see that some of them are
extremal elliptic K3-surfaces in the meaning of [MP] and of [SZ]. Finally in section 5 we
recall the rational curves generating the Neron-Severi group of the K3-surfaces.
I would like to thank Wolf Barth for letting me know about his paper [B] and for many
discussions, Slawomir Rams and Bert van Geemen for many useful comments and the referee
for many suggestions improving the exposition of the paper.

1. Notations and preliminaries

1.1. Lattices and quadratic forms. A lattice L is a free Z-module of finite rank with a
Z-valued symmetric bilinear form:

b : L × L −→ Z.

An isomorphism of lattices preserving the bilinear form is called an isometry, L is said to be
even if the quadratic form associated to b takes only even values, otherwise it is called odd.
The discriminant d(L) of L is the determinant of the matrix of b, L is said to be unimodular
if d(L) = ±1. If L is non-degenerate, i.e. d(L) 6= 0, then the signature of L is a pair (s+, s−)
where s± denotes the multiplicity of the eigenvalue ±1 for the quadratic form on L ⊗ R, L
is called positive-definite (negative-definite) if the quadratic form associated to b takes just
positive (negative) values. We will denote by U the hyperbolic plane i.e. a free Z-module of
rank 2 with bilinear form with matrix:(

0 1
1 0

)
,

moreover we denote by E8 the unique even unimodular positive definite lattice of rank 8,
with bilinear form with matrix:



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2




.

Let L∨ = HomZ(L, Z) = {v ∈ L ⊗Z Q | b(v, x) ∈ Z for all x ∈ L} denote the dual of the
lattice L, then there is a natural embedding of L in L∨ via c 7→ b(c,−), and we have:

Lemma 1.1. (cf. [BPV, Lemma 2.1, p. 12]) If L is a non-degenerate lattice with bilinear
form b. Then
1. [L∨ : L] = |d(L)|.
2. If M is a submodule of L with rank M=rank L, then

[L : M ]2 = d(M)d(L)−1.

Let A be a finite abelian group. A quadratic form on A is a map:

q : A −→ Q/2Z
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together with a symmetric bilinear form:

b : A × A −→ Q/Z

such that:
1. q(na) = n2q(a) for all n ∈ Z and a ∈ A
2. q(a + a′) − q(a) − q(a′) ≡ 2b(a, a′) (mod 2Z)
Let L be a non-degenerate even lattice, the bilinear form b induces a Q-valued bilinear form
on L∨ and so a quadratic form

qL : L∨/L −→ Q/2Z

called discriminant-form of L. By a result of Nikulin [N1, Cor. 1.9.4], the signature and the
discriminant form of an even lattice determines its genus (for the precise definition of genus
see [Bu, p. 378]).
An embedding of lattices M →֒ L is primitive if L/M is free.

Lemma 1.2. (cf. [N1, Prop. 1.6.1]) Let M →֒ L be a primitive embedding of non-degenerate
even lattices and suppose L unimodular then:
1. There is an isomorphism M∨/M ∼= (M⊥)∨/M⊥.
2. qM⊥ = −qM .
(Here M⊥ denotes the orthogonal complement of M in L).

Let now X be an algebraic K3-surface, the group H2(X, Z) with the intersection pairing has
the structure of a lattice and by Poincaré duality it is unimodular. This is isometric to the
K3-lattice:

Λ := −E8 ⊕−E8 ⊕ U ⊕ U ⊕ U

(cf. [BPV, Prop.3.2, p. 241]). The Neron-Severi group NS(X) = H2(X, Z) ∩ H1,1(X) and
its orthogonal complement T (X) in H2(X, Z) (the transcendental lattice) are primitive sub-
lattice of H2(X, Z) and have signature (1, ρ − 1) and (2, 20 − ρ), ρ =rank(NS(X)). By the
Lemma 1.2 we have

NS(X)∨/NS(X) ∼= T (X)∨/T (X)

and the discriminat-forms differ just by their sign. Moreover by the Lemma 1.1 we have
|NS(X)∨/NS(X)| = |(T (X))∨/T (X)| = d(NS(X)).

We recall some more facts about K3-surfaces X with ρ = 20 (singular K3-surfaces, cf. [SI,
p. 128]). Denote by Q the set of 2 × 2 positive-definite even integral matrices:

Q :=

(
2a b
b 2c

)
, a, b, c ∈ Z(1)

with determinant d := 4ac − b2 > 0 and a, c > 0. We define an equivalent relation “∼” by:
Q1 ∼ Q2 if and only if Q1 = tγQ2γ for some γ ∈ SL2(Z). Denote by [Q] the equivalence
class of Q and by Q/SL2(Z) the set of equivalence classes. Then:

Theorem 1.1. (cf. [SI, Thm. 4]). The map X 7→ [T (X)] establishes a bijective correspon-
dence from the set of singular K3-surfaces onto Q/SL2(Z).

In particular K3-surfaces with ρ = 20 are classified in terms of their transcendental lattice.
By [Bu, Thm. 2.3, p. 14], we choose a representative Q in reduced form, i.e. −a ≤ b ≤ a ≤ c,
and so b2 ≤ ac ≤ d/3. Recall the following:
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Theorem 1.2. ([Bu, Theorem 2.4, p. 15]) With the exception of

1.

(
2a a
a 2c

)
∼

(
2a −a
−a 2c

)
; 2.

(
2a b
b 2a

)
∼

(
2a −b
−b 2a

)

no distinct reduced quadratic forms are equivalent.

It is well known that the number of equivalence classes of forms of a given discriminant d, i.e.
the class number of d, is finite. If there is only one class we say that d has class number one.
In some other cases, even if we have more equivalence classes, we have however one class per
genus. In [Bu, pp.81–82] with the assumption g.c.d(a, c, b) = 1, i.e. we assume that the form
is primitive, all the discriminants of class number one and of one class per genus are listed.
If g.c.d(a, c, b) 6= 1 then the form is a multiple of a primitive form.

1.2. Families of K3-surfaces. Let G ⊂ SO(3) denote the polyhedral group T , O or I, and

let G̃ ⊂ SU(2) be the corresponding binary groups. Let

σ : SU(2) × SU(2) → SO(4, R)

denote the classical 2 : 1 covering. The images σ(T̃ × T̃ ) := G6, σ(Õ × Õ) := G8 and

σ(Ĩ × Ĩ) := G12 in SO(4, R) are studied in [S1], where we show that there are 1-dimensional
families in P3(C) of Gn-invariant surfaces of degree n, which we denote by Xn

λ , λ a parameter
in P1. In [BS] it is shown that the quotients Yλ,Gn

= Xn
λ/Gn, n = 6, 8, 12 are families of

K3-surfaces where the general surface has Picard-number 19 and there are four surfaces with
Picard-number 20. Then in [S2] by taking special normal subgroups of Gn (n = 6, 8) and
considering the quotient of X6

λ resp. X8
λ by these subgroups we find six more pencils of

K3-surfaces. Using the notations there the subgroups are

G : T × V (TT )′ V × V O × T (OO)′′ T × T

and the families of K3-surfaces are denoted by Yλ,G . Here V denotes the Klein four group
in SO(3, R) and the groups (TT )′, (OO)′′ are described in [S2], the others are the images in
SO(4, R) of the direct product of binary subgroups of SU(2). Moreover T × V , (TT )′ are
subgroups of index 3 of G6 and V × V has index 3 in T × V and in (TT )′; O × T , (OO)′′

are subgroups of index 2 of G8 and T × T has index 2 in O × T and in (OO)′′. In the
families Yλ,T×V and Yλ,O×T the general surface has Picard-number 19 and we could identify

four surfaces with Picard-number 20. We denote them by Y
(n,j)
G

, where n = 6, G = T × V
and j = 1, 2, 3, 4 or n = 8, G = O × T and j = 1, 2, 3, 4. The general surface in the other
families has Picard-Number 19 too and there are four special surfaces with Picard-number
20, but in [S2] we could not identify enough curves generating the Neron-Severi group. Only
in some special case with ρ = 20 we could describe explicitly the Picard lattice. Following
the notations of [S2] the surfaces are

Y
(6,1)
(TT )′ , T

(6,2)
(TT )′ , Y

(8,1)
(OO)′′ , Y

(8,4)
(OO)′′ , Y

(8,1)
T×T , Y

(8,4)
T×T .

2. Transcendental Lattices

In this section we identify first the transcendental lattice of the singular K3-surfaces, then of
the surfaces with ρ = 19. In each case we proceed as follows:
1. We determine generators for NS∨/NS with the help of the intersection pairing (−,−),
which is defined on NS (recall that NS∨ = {v ∈ NS ⊗Z Q | (v, x) ∈ Z for all x ∈ NS}).
2. We determine the discriminant-form of NS.
3. We use Lemma 1.2 to determine the discriminant-form of T .
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4. We list all the reduced quadratic forms which have the discriminant d(T ) = d(NS) (we
will see that in each case the matrices have form 1 or 2 as in the Theorem 1.2).
5. We use the discriminant form to determine T , in fact we see that when the rank is two
the discriminants have class number one or one class per genus. When the rank is three in
our cases the discriminants are small, Def. 2.1, and these have one class per genus.
We denote the curves generating the Neron-Severi group by Li, Mi, Ni, Ci, Ri, we recall
their configuration in section 5. Moreover before discussing each case we recall from [S2] the
divisible classes of NS, which together with the previous curves generate the Picard lattice.
Finally, we denote by Zm(α) the cyclic group Zm with the quadratic form taking the value
α ∈ Q/2Z on the group’s generator which we choose.

2.1. The singular cases. The family Yλ,T×V . We recall the following 3-divisible class of NS

L̄′ = L1 − L2 + L4 − L5 + L′
1 − L′

2 + L′
4 − L′

5 + L′′
1 − L′′

2 + L′′
4 − L′′

5

and the following 2-divisible classes of NS

h1 = L1 + L3 + L5 + L′
1 + L′

3 + L′
5 + M1 + M2,

h2 = L1 + L3 + L5 + L′′
1 + L′′

3 + L′′
5 + M1 + M3.

The general K3-surface in the family has ρ = 19 and the family contains four singular K3-
surfaces. The discriminant of the general K3-surface in the pencil, i.e. the determinant of
the lattice NS, is 2 · 3 · 5 which is the order of NS∨/NS by the Lemma 1.1. We specify the
following generators:

M := M1 + M2 + M3/2,
N := L1 − L2 + L4 − L5 − L′

1 + L′
2 − L′

4 + L′
5/3,

L := (3L0 − L1 − L′
1 − L′′

1 − 2L2 − 2L′
2 − 2L′′

2 − 3L3 − 3L′
3 − 3L′′

3

−2L4 − 2L′
4 − 2L′′

4 − L5 − L′
5 − L′′

5)/5

where

M2 = −3/2 = 1/2 mod 2Z,
N2 = −8/3 = 4/3 mod 2Z,
L2 = −18/5 = 2/5 mod 2Z.

Hence the discriminant form of the Picard lattice is

Z2(1/2) ⊕ Z3(4/3) ⊕ Z5(2/5) ∼= Z30(7/30)

• The singular case 6, 1(6, 4). Here the discriminant is −3 · 5 = −15 and the generators
of NS∨/NS are N and L. The discriminant form is

Z3(4/3) ⊕ Z5(2/5) = Z15(26/15)

• The singular case 6, 2(6, 3). Here the discriminant is −22 · 3 · 5 = −60, and the
generators are M, N, L and another class M ′ = M4/2 with M ′2 = −1/2 = 3/2
mod 2Z. The discriminant form is

Z2(1/2) ⊕ Z2(3/2) ⊕ Z3(4/3) ⊕ Z5(2/5) ∼= Z2(1/2) ⊕ Z30(97/30).

The discriminant form of the transcendental lattice differs from the discriminant form of the
Picard lattice just by the sign, as computed above, hence in the general case is

Z30(53/30)

and in the special cases is

6, 1 (6, 4) : Z15(4/15),
6, 2 (6, 3) : Z2(3/2) ⊕ Z30(23/30).
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Here we identify the transcendental lattices of these four singular K3-surfaces, and in the
next section of the general K3-surface.

• The singular case 6, 1 (6, 4). We classify all the reduced matrices with discriminant 15
(i.e. one class per genus, cf. [Bu, pp.19–20]). We have just the following possibilities

(
2 1
1 8

)
, A :=

(
4 1
1 4

)
.

By taking the generator (4/15,−1/15) and the bilinear form defined by A, we find a
lattice Z15(4/15) which is exactly the lattice T∨/T , as recalled on page 3 the signature
and the discriminant form determine the genus so T = A.

• The singular case 6, 2 (6, 3). We classify all the reduced matrices with discriminant
60 (cf. [Bu, pp.19–20]). We have just the following possibilities

(
2 0
0 30

)
, B :=

(
6 0
0 10

)
,

(
4 2
2 16

)
,

(
8 2
2 8

)
.

By taking the generators (1/2, 0) and (1/3, 1/10) and the quadratic form B we find
a lattice Z2(3/2) ⊕ Z30(23/30) which is exactly the lattice T∨/T , hence T = B.

The family Yλ,(TT )′ . We recall the following 3-divisible class in NS:

L̄ = N1 − N2 + N3 − N4 + N5 − N6 + N7 − N8 + N9 − N10 + N11 − N12.

Now we identify the transcendental lattice of Y
(6,1)
(TT )′ and of Y

(6,2)
(TT )′ .

• The singular case 6, 1. In this case the discriminant is −3 · 5 = −15 and we have the
following generators of NS∨/NS:

N := (N1 − N2 + N3 − N4 − N5 + N6 − N7 + N8)/3,
L := (3L3 − 3L′

3)/5,

where

N2 = −8/3 = 4/3 mod 2Z,
L2 = −18/5 = 2/5 mod 2Z.

Hence the transcendental lattice is the same as in the case of Y
(6,1)
T×V .

• The singular case 6, 2. Recall the following 2-divisible classes in NS:

N1 + C1 + N4 + N5 + C2 + N8 + M1 + M2,
N1 + C1 + N4 + N9 + C3 + N12 + M1 + M3.

The discriminant is −22 · 3 · 5 = −60 and the classes

N, M = M1 + M2 + M3/2, M ′ = N5 + C2 + N8 + M1 + M3/2, L

are generators for NS∨/NS. Where

N2 = −8/3 = 4/3 mod 2Z,
M2 = 1/2 mod 2Z,
M ′2 = 3/2 mod 2Z,
L2 = −18/5 = 2/5 mod 2Z.



TRANSCENDENTAL LATTICES OF SOME K3-SURFACES 7

Hence the transcendental lattice is the same as in the case of Y
(6,2)
T×V .

The family Yλ,O×T . Recall the following 2-divisible class of NS:

L̄′ = L1 + L3 + L5 + L′
1 + L′

3 + L′
5 + M1 + M2,

and the following 3-divisible class of NS:

k1 = L1 − L2 + L4 − L5 − L′
1 + L′

2 − L′
4 + L′

5 + N1 − N2 + N3 − N4.

The general surface in the pencil has ρ = 19 and we have four surfaces with ρ = 20. The
discriminant of the general K3-surface in the pencil is 23 ·3 ·7 = 168. We specify the following
generators of NS∨/NS:

M := L1 + L3 + L5 + M1/2,
M ′ := L1 + L3 + L5 + M2/2,
R := R2/2,
N := N1 − N2 − N3 + N4/3,
L := (2L′′

2 + 4L0 − 2L1 − 2L′
1 + 3L2 + 3L′

2 − 3L3 − 3L′
3 − 2L4 − 2L′

4 − L5 − L′
5)/7

where

M2 = −2 = 0 mod 2Z,
M ′2 = −2 = 0 mod 2Z,
R2 = −1/2 = 3/2 mod 2Z,
N2 = −4/3 = 2/3 mod 2Z,
L2 = −16/7 = 12/7 mod 2Z.

Observe that the classes M , M ′ and L are not orthogonal to each other; in fact M ·M ′ = 1/2
mod 2Z and M ·L = M ′ ·L = 1 mod 2Z. Hence the discriminant form of the Picard lattice
is:

Z2(0) ⊕ Z2(0) ⊕ Z2(3/2) ⊕ Z3(2/3) ⊕ Z7(12/7)) ∼= Z2(0) ⊕ Z2(0) ⊕ Z42(79/42).

• The singular case 8, 1. Here the discriminant is −22 · 7 = −28 and the generators for
NS∨/NS are M , M ′ and L. The discriminant form is

Z2(0) ⊕ Z2(0) ⊕ Z7(12/7)) ∼= Z2(0) ⊕ Z14(12/7).

• The singular case 8, 2. The discriminant is −22 · 3 · 7 = −84 and the generators for
NS∨/NS are M + R, M ′ + R, N and L. The discriminant form is

Z2(3/2) ⊕ Z2(3/2) ⊕ Z3(2/3)) ⊕ Z7(12/7) ∼= Z2(3/2) ⊕ Z42(163/42) = Z2(3/2) ⊕ Z42(79/42).

• The singular case 8, 3. Here the discriminant is −23 · 3 · 7 = −168 and the generators
for NS∨/NS are R,

R′ = M1 + 2C + 3M2/4,

N and L, where R′2 = 1/4 mod 2Z. The discriminant form is

Z2(3/2) ⊕ Z4(1/4) ⊕ Z3(2/3) ⊕ Z7(12/7)) ∼= Z2(3/2) ⊕ Z84(221/84) = Z2(3/2) ⊕ Z84(53/84).

• The singular case 8, 4. Recall the 2-divisible class in NS

L1 + L3 + L5 + N1 + C + N4 + R2 + M1

The discriminant is −22 · 7 = −28 and the generators for NS∨/NS are L′ + R,

M ′′ = M1 + M2 + R2/2,
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and L, where M ′′2 = 1/2 mod 2Z.
The discriminant form is

Z2(3/2) ⊕ Z2(1/2) ⊕ Z7(12/7)) ∼= Z2(3/2) ⊕ Z14(31/14) ∼= Z2(3/2) ⊕ Z14(3/14) mod 2Z.

The discriminant of the transcendental lattice differs from the discriminant form of the Picard
lattice just by the sign, hence in the general case is

Z2(0) ⊕ Z2(0) ⊕ Z42(5/42)

and in the special cases is

8, 1 : Z2(0) ⊕ Z14(2/7),
8, 2 : Z2(1/2) ⊕ Z42(5/42),
8, 3 : Z2(1/2) ⊕ Z84(115/84),
8, 4 : Z2(1/2) ⊕ Z14(25/14).

Here we identify the transcendental lattice for this four singular cases, and in the next section
for the general K3-surface.

• The singular case 8, 1. We classify all the reduced matrices with discriminant 28 ([Bu,
pp.19–20]). We have just the following possibilities:

A :=

(
2 0
0 14

)
, B :=

(
4 2
2 8

)
.

Now take the form B and the generators (0, 1/2) and (3/14, 1/14). These span ex-
actly the lattice we were looking for.

• The singular case 8, 2. We classify all the reduced matrices with discriminant 84 ([Bu,
pp.19–20]). We have the following four cases:

(
2 0
0 42

)
,

(
6 0
0 14

)
,

(
4 2
2 22

)
, C :=

(
10 4
4 10

)
.

Now we take the form C and the generators (1/2, 0) and (8/21,−19/42) and we are
done.

• The singular case 8, 3. We classify all the reduced matrices with discriminant 168
([Bu, pp.19–20]). We have the following four cases

(
2 0
0 84

)
,

(
6 0
0 28

)
, E :=

(
12 0
0 14

)
,

(
4 0
0 42

)
.

Now we take the form E and the generators (1/2, 1/2) and (1/12, 1/7). These span
exactly the lattice we were looking for.

• The singular case 8, 4. The discriminant is 28 like in the case of 8, 1. Now by taking
the form A and the generators (1/2, 0) and (0, 5/14) we are done.

The family Yλ,(OO)′′ . Recall the following 2-divisible class of NS

L̄ = M1 + M2 + M3 + M4 + R1 + R3 + R′
1 + R′

3

We identify the transcendental lattices of the surfaces Y
(8,1)
(OO)′′ and Y

(8,4)
(OO)′′ .



TRANSCENDENTAL LATTICES OF SOME K3-SURFACES 9

• The singular case 8, 1. In this case the the discriminant is −22 · 7 = −28 and we have
the following generators in NS∨/NS

L := 2L2 + 4L4 − 2L′
2 − 4L′

4/7,
M := R1 + R3 + M1 + M3/2,
M ′ := R1 + R3 + M1 + M4/2,

where

L2 = 12/7 mod 2Z,
M2 = M ′2 = 0 mod 2Z.

Hence the transcendental lattice is the same as in the case Y
(8,1)
O×T .

• The singular case 8, 4. Recall the following 4-divisible class in NS

W := R1 + 2R2 + 3R3 + R′
1 + 2R′

2 + 3R′
3 + 2N1 + 2C1 + 3M1 + M2 + 2N3 + 2C2 + 3M3 + M4.

Moreover specify the classes:

v1 := R1 + 2R2 + 3R3/4,
v2 := R′

1 + 2R′
2 + 3R′

3/4,
v3 := 2N1 + 2C1 + 3M1 + M2/4,
v4 := 2N3 + 2C2 + 3M3 + M4/4, .

The discriminant is −24 · 7 = −112 and the generators of NS∨/NS are

v1 + v3/4, v2 + v4/4, L

with

(v1 + v3/4)2 = (v2 + v4/4)2 = 0 mod 2Z.

The discriminant form of the Picard lattice is

Z4(0) ⊕ Z4(0) ⊕ Z7(12/7) = Z4(0) ⊕ Z28(12/7).

Hence the discriminant form of the transcendental lattice is

Z4(0) ⊕ Z28(2/7).

We classify all the reduced matrices with discriminant 112, these are
(

2 0
0 56

)
,

(
4 0
0 28

)
, F :=

(
8 0
0 14

)
,

(
8 4
4 16

)
.

We take the matrix F and the generators (1/4, 1/2) and (1/4, 9/14), so we are done.

The family Yλ,T×T . A similar computation as before shows that in the singular case 8, 1, resp.
8, 4 the transcendental lattice has bilinear form with intersection matrix:

(
2 1
1 4

)
, resp.

(
4 2
2 8

)
.

Remark 2.1. Observe that if the reduced matrices had not been as in case 1 or 2 of Theorem
1.2, we would find two different isomorphism classes of K3-surfaces with the same discrimi-
nant and the same discriminant form (cf. [SZ, p. 3]).
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2.2. The general cases. Here we identify the transcendental lattice of the general surfaces,
ρ = 19, in the families Yλ,T×V and Yλ,O×T . In the last section, we have identified the dis-
criminant form of the transcendental lattice, we use it to determine T . We need the following:

Definition 2.1. (cf.[B, Def. 1.1]) The discriminant d = dNS = −dT is small if 4 · d is not
divisible by k3 for any non square natural number k congruent to 0 or 1 modulo 4.

Then if dT is small , the lattice T is uniquely determined by its genus (cf. [CS, Thm. 21, p.
395] and [CS, p. 378] for the definition of genus when the rank is three), hence by signature
and discriminant form ([N1, Cor. 1.9.4])

• The family Yλ,T×V . The candidate lattice is

T0 :=




4 1 0
1 4 0
0 0 −2


 ,

this has discriminant -30, and taking the generator

f1 :=




4/15
−1/15

1/2




one computes qT0(f1) = −7/30 = 53/30 mod 2Z, hence the discriminant form is
Z30(53/30). Since dT = −30 is small, the transcendental lattice of the general K3-
surface is T0.

• The family Yλ,O×T . The candidate lattice is

T1 :=




10 4 0
4 10 0
0 0 −2


 ,

this has discriminant -168, and taking the generators

f1 :=




0
3/2
1/2


 , f2 :=




1/2
0

−1/2


 , f3 :=




37/42
−19/42
−1/2




we find qT1(fi) = 0 mod 2Z, i = 1, 2 and qT1(f3) = 5/42 mod 2Z, hence the discrim-
inant form is Z2(0) ⊕ Z2(0) ⊕ Z42(5/42). Since dT = −168 is small, we have T = T1.

We collect the results in the table 1. In [S2] we are able to describe the Picard lattice only of
some singular surfaces in the families Yλ,(TT )′ , Yλ,(OO)′′ , Yλ,T×T (none in the family Yλ,V ×V ),
hence we compute here only the transcendental lattice of these surfaces. This explains the
gaps in the table 1. We include also the results of [B] about the general surfaces of the families
Yλ,G6 , Yλ,G8 , Yλ,G12 and also about the singular surfaces in these pencils, Barth computed
the transcendental lattices of the singular surfaces too, but he did not published his result.
In the table we give also the discriminants of the lattices.
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2.3. Moduli curve. Let

Ω = {[ω] ∈ P(Λ ⊗ C)|(ω, ω) = 0; (ω, ω̄) > 0},

where Λ is the K3-lattice, this is an open subset in a quadric in P21. If X is a K3-surface and
ωX ∈ H2,0(X), then it is well known that ωX ∈ Ω and it is called a period point. Moreover
also the converse is true: each point of Ω occurs as period point of some K3-surface, this is
the so called surjectivity of the period map (cf. [BPV, Thm. 14.2]). Now let M ⊂ Λ be a
sublattice of signature (1, ρ − 1) and define:

ΩM = {[ω] ∈ Ω|(ω, µ) = 0 for all µ ∈ M}.

This has dimension 20 − ρ = 20−rank M . If rank M=19 then this space is a curve. Let X
be a K3-surface with ρ = 19. Since in this case the embedding of T (X) in Λ is unique up to
isometry of Λ (cf. [M, Cor. 2.10]), T (X) determines ΩM , with M = T (X)⊥ = NS(X) and
so the moduli curve, which classify the K3-surfaces. Hence in our cases the transcendental
lattices given in the table 1 identify the moduli curve of the K3-surfaces in the families Yλ,T×V

and Yλ,O×T (in the case ρ = 19).

Table 1. Transcendental lattices

Family general surface singular surfaces

Yλ,G6

0

@

2 1 0
1 8 0
0 0 −6

1

A

„

2 1
1 8

« „

2 0
0 30

« „

2 0
0 30

« „

2 1
1 8

«

d −90 15 60 60 15

Yλ,G8

0

@

6 0 0
0 28 0
0 0 −2

1

A

„

2 0
0 14

« „

6 0
0 14

« „

6 0
0 28

« „

4 0
0 28

«

d −336 28 84 168 112

Yλ,G12

0

@

4 2 0
2 34 0
0 0 −30

1

A

„

12 6
6 58

« „

6 0
0 220

« „

6 0
0 132

« „

4 2
2 34

«

d −3960 660 1320 792 132

Yλ,T×V

0

@

4 1 0
1 4 0
0 0 −2

1

A

„

4 1
1 4

« „

6 0
0 10

« „

6 0
0 10

« „

4 1
1 4

«

d −30 15 60 60 15

Yλ,O×T

0

@

10 4 0
4 10 0
0 0 −2

1

A

„

4 2
2 8

« „

10 4
4 10

« „

12 0
0 14

« „

2 0
0 14

«

d −168 28 84 168 28

Yλ,(TT )′ -

„

4 1
1 4

« „

6 0
0 10

«

- -

d - 15 60 - -

Yλ,(OO)′′ -

„

2 0
0 14

«

- -

„

8 0
0 14

«

d - 28 - - 112

Yλ,T×T -

„

2 1
1 4

«

- -

„

4 2
2 8

«

d - 7 - - 28
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3. Shioda-Inose structure

By a result of Morrison K3-surfaces with ρ = 19 or ρ = 20 admit a Shioda-Inose structure.
Before discussing our cases we recall some definitions and facts.

Definition 3.1. (cf. [M, Def. 5.1]) An involution ι on a K3-surface Y is a Nikulin involution
if ι∗ω = ω for every ω ∈ H2,0(Y ).

It is possible to show that every Nikulin involution has eight isolated fixed points and the
minimal resolution of the quotient Y/ι is again a K3-surface ([N2, 11; Sect. 5]).

Definition 3.2. (cf. [M, Def. 6.1]) A K3-surface Y admits a Shioda-Inose structure if there
is a Nikulin Involution ι on Y with rational quotient map π : Y − − → X such that X is a
Kummer surface, and π∗ induces an Hodge isometry T (Y )(2) ∼= T (X) (where we denote by
T (Y )(2) the lattice T (Y ) with the bilinear form multiplied by 2).

Hence we have the following diagram:

A

~~||
||

||
||

ÂÂ
?

?
?

? Y

ÃÃ
BB

BB
BB

BB

ÄÄÄ
Ä

Ä
Ä

A/i Xoo // Y/ι

where A is the complex torus whose Kummer-surface is X, i is an involution on A with 16
fix-points and the rational maps from A to X and from Y to X are 2:1. By definition we
have T (Y )(2) ∼= T (X) and by [M, Prop. 4.3], we have T (A)(2) ∼= T (X) hence the diagram
induces an Hodge isometry T (Y ) ∼= T (A).
In our cases the K3-surface which we consider are algebraic hence A is an abelian variety (cf.
[M, Thm. 6.3, (ii)]). Moreover whenever Y is an algebraic K3-surface and ρ(Y ) = 19 or 20
then Y admits always a Shioda-Inose structure (cf. [M, Cor. 6.4]). Whenever ρ = 20 Shioda
and Inose show that A = C1 × C2 where C1 and C2 are elliptic curves

Ci = C/Z + Z · τi, i = 1, 2

with

τ1 = (−c +
√
−d)/2a, τ2 = (c +

√
−d)/2, (d = 4ab − c2)

We show that in the case of the general K3-surfaces of the families Yλ,T×V and of Yλ,O×T

the abelian surface A(λ) is simple, i.e. it is not a product of elliptic curves, in this case we
say that the Shioda-Inose structure is simple.
The transcendental lattice T (A(λ)) has rank 3 hence its orthogonal complement NS(A(λ))
in U3 has rank 3 too and we have NS(A(λ)) ∼= T (Y (λ))(−1) because by [CS, Thm. 21, p.
395], the lattices are uniquely determined. We use this fact to show:

Theorem 3.1. For general λ, A = A(λ) is not a product of elliptic curves.

Proof. (cf. [B, Thm. 5.1]) We show that A does not contain any elliptic curve C, i.e. a curve
with C2 = 0, by using Fermat’s infinite descent applied to some Diophantine equation.
The general surface in Yλ,T×V : We have intersection form on the transcendental lattice with
matrix

T0 :=




4 1 0
1 4 0
0 0 −2






TRANSCENDENTAL LATTICES OF SOME K3-SURFACES 13

hence the form on NS(A) is



−4 −1 0
−1 −4 0

0 0 2


 .

The associated quadratic form is

−4x2 − 2xy − 4y2 + 2z2, x, y, z ∈ Z.

If A contains an elliptic curve, then there are x, y, z ∈ Z with

2z2 = 4x2 + 2xy + 4y2

hence

8z2 = 16x2 + 8xy + 16y2.

Put u = 4x + y, then

8z2 = u2 + 15y2.(2)

Hence we have u2 = 3z2 mod 5Z, since 3 is not a square modulo 5 we have u = z = 0
mod 5Z, hence u = 5u1, z = 5z1, so

3y2 = 5(8z2
1 − u2

1)(3)

hence y = 5y1 and substituting in (3) and dividing by 5 we find

15y2
1 = 8z2

1 − u2
1,

which is the same as (2).
The general surface in Yλ,O×T : We have intersection form on the transcendental lattice with
matrix:

T1 :=




10 4 0
4 10 0
0 0 −2


 .

Hence the form on NS(A) is



−10 −4 0
−4 −10 0

0 0 2


 .

The quadratic form is

−10x2 − 8xy − 10y2 = 2z2, x, y, z ∈ Z.

If A contains an elliptic curve, then there are x, y, z ∈ Z with

2z2 = 10x2 + 8xy + 10y2

hence dividing by 2 and multiplying by 5 we find

5z2 = 25x2 + 20xy + 25y2 = (5x + 2y)2 + 21y2.

Put u = 5x + 2y, then

5z2 = u2 + 21y2.(4)

Hence we have u2 = 5z2 mod 7Z. Since 5 is not a square modulo 7 we have u = 7u1,
z = 7z1, so we obtain

3y2 = 7(5z2
1 − u2

1)(5)
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hence 3y2 = 0 mod 7Z and so y = 7y1. Substituting in (5) and dividing by 7 we find

21y2
1 = 5z2

1 − u2
1,

which is again (4). ¤

4. Hessians and extremal elliptic K3-surfaces

Many of the singular K3-surfaces of this article appear already in other realizations.
In [DvG] Dardanelli and van Geemen give a criteria to establish if a singular K3-surface is
the desingularization of the Hessian of a cubic surface:

Proposition 4.1. (cf. [DvG, Prop. 2.4.1]) Let T be an even lattice of rank 2,

T =

(
2n a
a 2m

)
.

There is a primitive embedding T →֒ THess if and only if at least one among a, n and m is
even. In this case T embeds in U ⊕ U(2).

Here THess = U⊕U(2)⊕A2(−2). If we look in table 1 we see that all our singular K3-surfaces
are desingularizations of Hessian surfaces of cubic surfaces. In particular Dardanelli and van
Geemen study explicitly the singular K3-surfaces with

T =

(
4 1
1 4

)
.

They call the surface X10 and show that it is the desingularization of the Hessian surface of
the cubic surface with 10 Eckardt points. The latter has e.g. the following equation in P4

(this is the Clebsch diagonal surface):

4∑

i=0

x3
i = 0,

4∑

i=0

xi = 0.

Finally observe that the singular surfaces of the families Yλ,G6 , Yλ,T×V and Yλ,(TT )′ have an
extremal elliptic fibration, in the sense of Miranda and Persson (cf. [MP]) and of Shimada
and Zhang (cf. [SZ]), in fact these are the numbers: 322, 173, 102, 148, 276 in the list [SZ,
Table 2, pp. 15-24].

5. Figures: Configurations of rational curves

In this section we recall from [S2] the configurations of (−2)-rational curves generating the
Neron-Severi group. In the case of the families Yλ,T×V and YO×T the curves Li, L′

i and L′′
i

on the general K3-surface are also contained in the Neron-Severi group of the singular K3-
surfaces, but we do not draw their configuration again. Moreover since the singular surfaces

Y
(6,1)
T×V and Y

(6,4)
T×V , as well as the surfaces Y

(6,2)
T×V and Y

(6,3)
T×V have the same graph, we draw just

one picture.
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Yλ,G6 Yλ,G8

L1L1 L2L2 L3L3 L4L4 L5L5

L′
1L′

1 L′
2L′

2 L′
3L′

3 L′
4L′

4 L′
5L′

5

M1

M1

M2

M3 M4

N1N1 N2N2 N3 N4

N5 N6 N7 N8 R1 R2 R3

Yλ,T×V Yλ,O×T

L1

L1

L2

L2

L3

L3

L4

L4

L5

L5

L′
1

L′
1

L′
2

L′
2

L′
3L′
3

L′
3

L′
4

L′
4

L′
5

L′
5

L′′
1

L′′
2

L′′
2 L′′

3 L′′
4 L′′

5

M1M1

M2M2

M3

L0L0

N1 N2 N3 N4

R2
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