# Non-symplectic automorphisms of prime order on K3 surfaces 

## Alessandra Sarti

Laboratoire de Mathématiques et Applications Université de Poitiers (France)

LXXIX Encuentro anual Sociedad de Matemática de Chile Olmué, V Region, 5-7 Noviembre de 2009

Work in collaboration with
Michela Artebani (UdC, Chile) and Shingo Taki (Nagoya, Japan)

## K3 surfaces

A K3 surface $X$ is a smooth, compact, complex, simply connected surface such that

$$
K_{X} \sim 0
$$

In particular

$$
H^{0}\left(X, \mathcal{O}_{X}\left(K_{X}\right)\right)=\mathbb{C} \cdot \omega_{X}
$$

where $\omega_{X}$ is a nowhere vanishing holomorphic 2-form.

We study automorphisms of $X$, i.e. biholomorphic maps

$$
\sigma: X \longrightarrow X
$$

## An easy example

Consider the K3 surface

$$
X: \underbrace{x_{0}^{4}+x_{1}^{4}+x_{0} x_{2}^{3}+x_{1} x_{3}^{3}}_{:=f}=0
$$

in $\mathbb{P}_{3}$ and the automorphism

where $\zeta_{3}=e^{\frac{2 i \pi}{3}}$. In the chart $x_{0} \neq 0, \frac{\partial f}{\partial x_{3}} \neq 0$ the holomorphic 2-form on $X$ can be written as

$$
\omega:=\frac{d x_{1} \wedge d x_{2}}{\frac{\partial f}{\partial x_{3}}}=\frac{d x_{1} \wedge d x_{2}}{3 x_{3}^{2} x_{1}}
$$

the action is

$$
\sigma(\omega)=\zeta_{3} \omega
$$

## The fixed locus

$$
X: x_{0}^{4}+x_{1}^{4}+x_{0} x_{2}^{3}+x_{1} x_{3}^{3}=0
$$

$\sigma:$

$$
\begin{array}{ccc}
\mathbb{P}_{3} & \longrightarrow & \mathbb{P}_{3} \\
\left(x_{0}: x_{1}: x_{2}: x_{3}\right) & \mapsto & \left(x_{0}: x_{1}: \zeta_{3} x_{2}: x_{3}\right)
\end{array}
$$

The fixed locus is the intersection of $X$ with the plane $\left\{x_{2}=0\right\}$ and the point $(0: 0: 1: 0)$ hence

$$
X^{\sigma}=\{\text { Plane curve of genus } 3\} \cup\{\mathrm{pt}\}
$$

Automorphisms operating non trivially on the holomorphic 2-form, like $\sigma$, are called non-symplectic

## Non-symplectic automorphisms

An automorphism $\sigma$ of $X$ is called purely non-symplectic if

$$
\sigma^{*}\left(\omega_{X}\right)=\zeta_{I} \omega_{X}, \quad \zeta_{I}=e^{\frac{2 i \pi}{I}}
$$

In this case the order of $\sigma$ is finite equal to $I$.

- Nikulin '80: list of possibilities for non symplectic automorphisms on K3 surfaces.
- Possible prime orders are: $I=2,3,5,7,11,13,17,19$
- A first problem: determine the fixed locus.


## Involutions

Let

$$
i: X \longrightarrow X, \quad i^{2}=i d, \quad i^{*}\left(\omega_{X}\right)=-\omega_{X}
$$

Nikulin ('80) computed the fixed locus of $i$ :

- $X^{i}$ can be empty. In this case the quotients are well known and are exactly the Enriques surfaces.
- $X^{i}$ is the disjoint union of smooth curves (Nikulin gives the complete list of possibilities)


## The orders 11, 13, 17, 19

If the order is $I=13,17,19$ there is only one couple $\left(X_{I}, \sigma_{I}\right)$. The examples are produced by using elliptic fibrations $(t \in \mathbb{C})$.

| $I$ | $X_{I}$ | $\sigma_{I}$ | fixed points | fixed curves |
| :---: | :---: | :---: | :---: | :---: |
| 13 | $y^{2}=x^{3}+t^{5} x+t$ | $\left(\zeta_{13}^{5} x, \zeta_{13} y, \zeta_{13}^{2} t\right)$ | 9 | 1 rational |
| 17 | $y^{2}=x^{3}+t^{7} x+t^{2}$ | $\left(\zeta_{17}^{7} x, \zeta_{17}^{2} y, \zeta_{17}^{2} t\right)$ | 7 | - |
| 19 | $y^{2}=x^{3}+t^{7} x+t$ | $\left(\zeta_{19}^{7} x, \zeta_{19}^{2} y, \zeta_{19}^{2} t\right)$ | 4 | - |

If $I=11$ there are 3 possibilities for the fixed locus.
(Kondo 1989, Oguiso and Zhang 1999/ Artebani, S., Taki 2009)

## The orders $3,5,7$

At a fixed point $x \in X^{\sigma}$ the action can be linearized as follows

$$
\left(\begin{array}{cc}
\zeta_{I}^{t+1} & 0 \\
0 & \zeta_{I}^{I-t}
\end{array}\right), \quad t=0, \ldots, I-2
$$

- the fixed locus is non empty and contains smooth disjoint curves $(t=0)$ or isolated fixed points
- if the fixed locus contains a fixed curve of genus $g \geq 1$, then this is the only fixed curve of genus $g \geq 1$, the other are rational.
- we can write

$$
X^{\sigma}=C_{g} \cup R_{1} \cup \ldots \cup R_{k} \cup\left\{p_{1}, \ldots, p_{n}\right\}
$$

where $C_{g}$ is a smooth curve of genus $g \geq 0, R_{i}$ is a smooth rational curve and $p_{j}$ is an isolated fixed point.

## Two important sublattices

Recall that for K3 surfaces

$$
H^{2}(X, \mathbb{Z}) \cong U^{\oplus 3} \oplus E_{8}^{\oplus 2}, \quad U=\left\{\mathbb{Z}^{2},\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\}
$$

The action of $\sigma$ on $X$ induces an action on cohomology

$$
\sigma^{*}: H^{2}(X, \mathbb{Z}) \longrightarrow H^{2}(X, \mathbb{Z})
$$

We have two important primitive sublattices

$$
S(\sigma)=\left\{x \in H^{2}(X, \mathbb{Z}) \mid \sigma^{*}(x)=x\right\}, \quad T(\sigma)=S(\sigma)^{\perp}
$$

## Properties of the sublattices

- $S(\sigma) \subset S_{X}$ (the Picard group of $X$ ) and (the transcendental lattice of $X) T_{X}=S_{X}^{\perp} \subset T(\sigma)$
- $T_{X}$ and $T(\sigma)$ are free modules over $\mathbb{Z}\left[\zeta_{I}\right]$ via the action of $\sigma^{*}$
- $\operatorname{rank}(T(\sigma))$ is even equal to $(I-1) m$
- $|\operatorname{det} S(\sigma)|=|\operatorname{det} T(\sigma)|=I^{a}$ for some $a \neq 0$
- (Rudakov-Shafarevich '89) the lattice $S(\sigma)$ is uniquely determined by its rank and $a$.


## The classification

Main tools:

- Lefschetz formulas, topological and holomorphic
- properties of the lattices $S(\sigma)$ and $T(\sigma)$
- Smith exact sequences

One obtain relations

$$
g=\frac{m-a}{2}, \quad n=22-m(I-2)-\frac{24}{I-1}, \quad k=\frac{12}{I-1}-\frac{m+a}{2}
$$

and a complete description of the fixed locus and a list of the lattices $T(\sigma)$ and $S(\sigma)$.

Recall that:
$X^{\sigma}=C_{g} \cup R_{1} \cup \ldots \cup R_{k} \cup\left\{p_{1}, \ldots, p_{n}\right\}, \quad \operatorname{rank}(T(\sigma))=(I-1) m$, $|\operatorname{det} T(\sigma)|=I^{a}$.

## The order five

The local actions at a fixed point are

$$
A_{5,0}=\left(\begin{array}{cc}
\zeta_{5} & 0 \\
0 & 1
\end{array}\right), \quad A_{5,2}=\left(\begin{array}{cc}
\zeta_{5}^{3} & 0 \\
0 & \zeta_{5}^{3}
\end{array}\right), \quad A_{5,1}=\left(\begin{array}{cc}
\zeta_{5}^{2} & 0 \\
0 & \zeta_{5}^{4}
\end{array}\right) .
$$

and we obtain a table

| $n_{1}$ | $n_{2}$ | $k_{0}$ | $k_{1}$ | $k_{2}$ | $T(\sigma)$ | $S(\sigma)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 1 | $H_{5} \oplus U \oplus E_{8} \oplus E_{8}$ | $H_{5}$ |
| 3 | 1 | 0 | 1 | 0 | $H_{5} \oplus U \oplus E_{8} \oplus A_{4}$ | $H_{5} \oplus A_{4}$ |
| 3 | 1 | 0 | 0 | 0 | $H_{5} \oplus U(5) \oplus E_{8} \oplus A_{4}$ | $H_{5} \oplus A_{4}^{*}(5)$ |
| 5 | 2 | 1 | 1 | 0 | $U \oplus H_{5} \oplus E_{8}$ | $H_{5} \oplus E_{8}$ |
| 5 | 2 | 1 | 0 | 0 | $U \oplus H_{5} \oplus A_{4}^{2}$ | $H_{5} \oplus A_{4}^{2}$ |
| 7 | 3 | 2 | 0 | 0 | $U \oplus H_{5} \oplus A_{4}$ | $H_{5} \oplus A_{4} \oplus E_{8}$ |
| 9 | 4 | 3 | 0 | 0 | $U \oplus H_{5}$ | $H_{5} \oplus E_{8} \oplus E_{8}$ |

where

$$
H_{5}=\left(\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right), \quad A_{4}^{*}(5)=\left(\begin{array}{rrrr}
-4 & 1 & 1 & 1 \\
1 & -4 & 1 & 1 \\
1 & 1 & -4 & 1 \\
1 & 1 & 1 & -4
\end{array}\right)
$$

## The families of K3 surfaces

The generic K3 surface in each family has Picard group $S_{X}=S(\sigma)$.

One can describe projective models of each family.

Example: $o(\sigma)=5, S_{X}=S(\sigma)=H_{5}$,

$$
t^{2}=x_{0}\left(x_{0}-x_{1}\right) \prod_{i=1}^{4}\left(x_{0}-\lambda_{i} x_{1}\right)+x_{2}^{5} x_{1} \subset \mathbb{P}(3,1,1,1), \quad \lambda_{i} \in \mathbb{C}
$$

The transformation

$$
\sigma\left(t, x_{0}, x_{1}, x_{2}\right)=\left(t, x_{0}, x_{1}, \zeta_{5} x_{2}\right), \quad \zeta_{5}=e^{\frac{2 i \pi}{5}}
$$

is a non-symplectic automorphism of order 5,

$$
X^{\sigma}=\{\mathrm{pt}\} \cup\{\text { curve of genus } 2\}
$$

