Non-symplectic automorphisms of K3 Surfaces

Nathan Priddis

Brigham Young University

19. July, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Intro
- K3 surfaces determined by non-symplectic automorphisms, esp. order 16
- Invariant lattices of purely non-symplectic automorphisms

- ∢ ∃ ▶

K3 Surfaces

Definition

A K3 surface is a compact, complex surface S such that

- The irregularity $q(S) = h^0(\Omega^1_S) = 0$,
- There exists a unique nonvanishing global 2-form ω_S, so that H⁰(Ω²_S) = Cω_S
 (so geometric genus p_g(S) = h⁰(Ω²_S) = 1).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Automorphisms

An automorphism is a biholomorphic map $\sigma:S\to S$

Definition

An automorphism $\sigma:S\to S$ is

- symplectic if $\sigma^* \omega_S = \omega_S$
- non-symplectic if $\sigma^*\omega_S = \lambda\omega_S$ for $\lambda \in \mathbb{C} \setminus \{0,1\}$
- purely nonsymplectic if σ has order n and $\sigma^*\omega_S = \zeta_n\omega_S$, where ζ_n is a primitive *n*-th root of unity.

• • = • • = •

Lattices

Definition

A lattice L is a free abelian group of finite rank, together with a non-degenerate symmetric bilinear form

 $B:L\times L\to \mathbb{Z}.$

A lattice is even if $B(x, x) \in 2\mathbb{Z}$ for each $x \in L$. The signature (t_+, t_-) of a lattice is the signature of B. An embedding $M \hookrightarrow L$ is primitive if L/M is a free group.

Definition

The discriminant group $A_L := Hom(L, \mathbb{Z})/L$ is a finite group. L is unimodular if A_L is trivial.

・ 何 ト ・ ヨ ト ・ ヨ ト

The K3 lattice

For K3 surfaces, $H^2(S,\mathbb{Z}) \cong U^3 \oplus (E_8)^2$ via the cup product (an even unimodular lattice of signature (3, 19).

$$U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 ${\it E}_8$ is the unique negative definite lattice of rank 8 associated to the root lattice:

Sublattices

There two important sublattices:

- The invariant lattice $S(\sigma) = \{x \in H^2(S, \mathbb{Z}) \mid \sigma^* x = x\}$. If σ is purely non-symplectic then $S(\sigma) \subseteq NS(S)$.
- Provide the second state of the

Here $^{\perp}$ refers to the orthogonal complement in $H^2(S, \mathbb{Z})$.

• • = • • = •

Brandhorst results

Fact: If σ is purely non-symplectic, then $\varphi(n) | \operatorname{rk} T_S$.

Theorem (Brandhorst)

Let S be a K3 surface and σ a purely nonsymplectic automorphism of order n such that $\operatorname{rk} T_S = \varphi(n)$ and ζ_n is not an eigenvalue of $\sigma|_{\operatorname{NS}\otimes\mathbb{C}}$. Set $d = |\det \operatorname{NS}|$, then S is determined up to isomorphism by the pair (n, d).

If $\varphi(n) \ge 12$, then σ can also be uniquely determined:

n	$\det T$	5			
13, 26	13	$y^2 = x^3 + t^5 x + t$	36	1	$y^2 = x^3 - t^5(t^6 - 1)$
26	13	$y^2 = x^3 + t^7 x + t^4$		3^{4}	$y^2 = x^3 + x + t^9$
21, 42	1	$y^2 = x^3 + t^5(t^7 - 1)$		$2^{6}3^{2}$	$x_0x_3^3 + x_0^3x_1 + x_1^4 + x_2^4$
21, 42	7^{2}	$y^2 = x^3 + 4t^4(t^7 - 1)$	40	2^{4}	$z^{2} = x_{0}(x_{0}^{4}x_{2} + x_{1}^{5} - x_{2}^{5})$
21, 42	7^{2}	$y^2 = x^3 + t^3(t^7 + 1)$	48	2^{2}	$y^2 = x^3 + t(t^8 - 1)$
21	7^{2}	$x_0^3 x_1 + x_1^3 x_2 + x_0 x_2^3 - x_0 x_3^3$	19,38	19	$y^2 = x^3 + t^7 x + t$
28	1	$y_{2}^{2} = x_{2}^{3} + x + t^{7}$	38	19	$y^2 = x_0^5 x_1 + x_0 x_1^4 x_2 + x_2^6$
	2^{6}_{6}	$y_{2}^{2} = x_{3}^{3} + (t_{7}^{7} + 1)x$	27, 54	3	$y^2 = x^3 + t(t^9 - 1)$
	2^{6}	$y_{2}^{2} = x_{2}^{3} + (t_{7}^{7} + 1)x_{2}$	27	3 ³	$x_0 x_3^3 + x_0^3 x_1 + x_2 (x_1^3 - x_2^3)$
17, 34	17	$y^2 = x^3 + t^7 x + t^2$		-	
34	17	$x_0 x_1^5 + x_0^5 x_2 + x_1^2 x_2^4 = y^2$	25, 50	5	$z_0^2 = (x_0^6 + x_0 x_1^5 + x_1 x_2^5)$
32	2^{2}	$y^2 = x^3 + t^2x + t^{11}$	33, 66	1	$y^2 = x^3 + t(t^{11} - 1)$
	2^{4}	$y^{2} = x_{0}(x_{1}^{5} + x_{0}^{4}x_{2} + x_{1}x_{2}^{4})$	44	1	$y^2 = x^3 + x + t^{11}$

N. Priddis (Brigham Young University)

Non-symplectic automorphisms

Brandhorst results

If $\varphi(n) \leq 10$, then σ is not necessarily determined.

n	$\det T$	X		2	
3, 6	3	$y^{2} = x^{3} - t^{5}(t-1)^{5}(t+1)^{2}$	16	$\frac{2^2}{2^4}$	$y_{2}^{2} = x_{3}^{3} + t_{2}^{2}x + t_{1}^{7}$
4	2^{2}	$y^2 = x^3 + 3t^4x + t^5(t^2 - 1)$		2*	$y_2^2 = x_3^3 + t^3(t^4 - 1)x$
5, 10	5	$y^2 = x^3 + t^3x + t^7$	20	2^4	$y^{2} = x^{3} + x + t^{8}$ $y^{2} = x^{3} + (t^{5} - 1)x$
8	2^{2}	$y^2 = x^3 + tx^2 + t^7$	20	$\frac{2}{2^45^2}$	$y^{2} = x^{3} + (t^{2} - 1)x$ $y^{2} = x^{3} + 4t^{2}(t^{5} + 1)x$
	2^{4}	$t^4 = (x_0^2 - x_1^2)(x_0^2 + x_1^2 + x_2^2)$	24	2^{2}	$y^{2} = x^{3} + t^{5}(t^{4} + 1)$
12	1	$y^2 = x^3 + t^5(t^2 - 1)$		2^{6}	$y^2 = x^3 + (t^8 + 1)$
	$2^{2}3^{2}$	$y^2 = x^3 + t^5(t^2 - 1)^2$		$2^{2}3^{4}$	$y^2 = x^3 + t^3(t^4 + 1)^2$
	2^4	$y^2 = x^3 + t^5(t^2 - 1)^3$		$2^{6}3^{4}$	$y^2 = x^3 + x + t^{12}$
7, 14	7	$y^2 = x^3 + t^3 x + t^8$	15, 30	5^{2}	$y^2 = x^3 + 4t^5(t^5 + 1)$
9, 18	3	$y^2 = x^3 + t^5(t^3 - 1)$		3^4	$y^2 = x^3 + t^5 x + 1$
	3^{3}	$y^2 = x^3 + t^5(t^3 - 1)^2$	11, 22	11	$y^2 = x^3 + t^5 x + t^2$

For $(n, d) = (16, 2^2), (24, 2^2)$ we have $\operatorname{Aut}(S) \cong \mathbb{Z}/n\mathbb{Z}$. For $(n, d) = (12, 1), (16, 2^4), (20, 2^4)$ we have $\operatorname{Aut}(S) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. All others have infinite automorphism group.

< □ > < □ > < □ > < □ > < □ > < □ >

For order 16, these were also classified by al Tabbaa and Sarti. $r = \operatorname{rk} S(\sigma)$, N_{σ} : number of isolated fixed points, k_{σ} : number of fixed rational curves.

Theorem (al Tabbaa, Sarti)

Let S be a K3 surface and σ be a purely non-symplectic automorphism of order 16 on S. Assume that $NS = S(\sigma^8)$ has rank 14 (i.e. $\operatorname{rk} T_S = \varphi(16)$). Then one of the following distinct cases holds:

- There is a curve C of genus g(C) = 2 or 3 in the fixed locus of σ^8 .
- There is an elliptic curve C in the fixed locus of σ^4 .

r	N_{σ}	k_{σ}	g(C)	NS
13	12	1	3	$U \oplus D_4 \oplus E_8$
11	10	1	2	$U(2) \oplus D_4 \oplus E_8$
7	4	0	2	$U(2) \oplus D_4 \oplus E_8$
9	8	1	1	$(U\oplus D_4^3)$
7	6	0	1	$(U\oplus D_4^3)$

An elliptic fibration

Definition

An elliptic fibration on S is a morphism $\pi : S \to \mathbb{P}^1$ such that for generic $t \in \mathbb{P}^1$, the fiber $\pi^{-1}(t)$ is a smooth elliptic curve. An elliptic fibration $\pi : S \to \mathbb{P}^1$ is Jacobian if it admits a section $s : \mathbb{P}^1 \to S$.

Proposition

If $\pi : S \to \mathbb{P}^1$ is an elliptic K3 surface, then π has a positive finite number of singular fibers.

Fact: The volume form of S is $\omega_S = \frac{dt \wedge dx}{2y}$.

There are 3 surfaces S with:

- $\bullet~S$ has a purely non-symplectic automorphism of order 16.
- $\operatorname{rk} T_S = 8$
- det $|NS| = |A_{N_S}|$ is one of $2^2, 2^4, 2^6$.

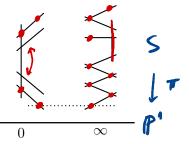
r	N_{σ}	k_{σ}	g(C)	NS
13	12	1	3	$U \oplus D_4 \oplus E_8$
11	10	1	2	$U(2)\oplus D_4\oplus E_8 \ U(2)\oplus D_4\oplus E_8$
7	4	0	2	$U(2) \oplus D_4 \oplus E_8$
9	8	1	1	$(U\oplus D_4^3)$
7	6	0	1	$(U\oplus D_4^{ar{3}})$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Equation: $y^2 = x^3 + t^2x + t^7$

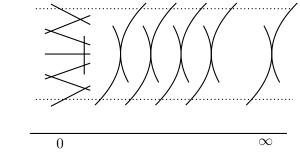
2 Singular fibers: Type I_0^* over t = 0 and type II^* fiber over $t = \infty$.



• Aut $(S) \cong \mathbb{Z}/16\mathbb{Z}$. • $\sigma : (x, y, t) \to (\xi_{16}^2 x, \xi_{16}^{11} y, \xi_{16}^{10} t)$.

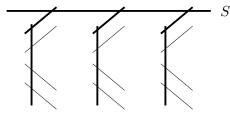
9 Equation:
$$y^2 = x^3 + t^3(t^4 - 1)x$$

Singular fibers: Type III^{*} over t = 0 and five fibers of type III, one of them over t = ∞.



• Equation:
$$y^2 = x^3 + x + t^8$$

Singular fibers: Type IV^* over $t = \infty$ and 16 fibers of type I_0 (nodal rational curve)



X

- $\textcircled{O} \operatorname{Aut}(S) \text{ is infinite}$
- $\begin{array}{l} \bullet \quad \sigma_1: (x,y,t) \to (-x,iy,\xi_{16}^{13}t) \\ \sigma_2: (x,y,t) \to (-x,-iy,\xi_{16}^{5}t). \end{array}$

What about the last surface?

Let S denote this last surface. $\sigma_1: (x, y, t) \rightarrow (-x, iy, \xi_{16}^{13}t)$

 $\sigma_2: (x, y, t) \to (-x, -iy, \xi_{16}^5 t).$

Lemma (Karayayla, Comparin, Priddis, Sarti) Aut $(S) \cong MW(S) \rtimes (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/16\mathbb{Z}).$

Definition

We say that (S, σ) is isomorphic to (X, γ) if there exists an isomorphism $f: S \longrightarrow X$ such that $\sigma = f^{-1}\gamma f$.

Theorem (Comparin, Priddis, Sarti)

If $\sigma \in Aut(S)$ is purely non-symplectic of order 16, then σ is conjugate to some power of σ_1 or σ_2 .

Why invariant lattices? Among other things, invariant lattices seem to be very important for mirror symmetry for K3 surfaces.

• • = • • =

Mirror symmetry for K3 surfaces

Definition

Let M be a lattice of signature (1,t), $t \leq 18$. If there exists a primitive embedding $j: M \hookrightarrow NS(S)$, we call S an M-polarizable K3 surface

Definition

Let M be a primitive sublattice of L_{K3} of signature (1,t) with $t \leq 18$ such that $(M)_{L_{K3}}^{\perp} \cong U \oplus M^{\vee}$. We define M^{\vee} (up to isometry) to be the *mirror lattice* to M. Given an M-polarizable K3 surface X and an M'-polarizable K3 surface X' with $M' = M^{\vee}$ (or equivalently $M = (M')^{\vee}$), we say X and X' are LPK3 mirror K3 surfaces.

(人間) トイヨト イヨト ニヨ

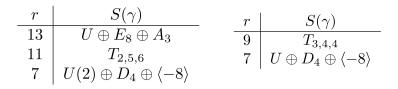
Mirror symmetry for K3 surfaces

We can construct a K3 surface $X_{W,G}$ from a pair (W,G), where W is a quasihomogeneous polynomial with respect to one of 95 K3 weight systems, and G is a group of symmetries.

Theorem

Let W be an invertible polynomial of the form $W = x_0^n + f(x_1, x_2, x_3)$ quasihomogeneous with respect to one of Reid and Yonemura's 95 weight systems, and G a group of symmetries of W satisfying $J_W \leq G \leq SL_W$. Then the K3 surface $X_{W,G}$, polarized by $S(\sigma_n)$, and its BHK mirror $X_{W^{\vee},G^{\vee}}$ polarized by $S(\sigma_n^{\vee})$, form an LPK3 mirror pair.

r	N_{σ}	k_{σ}	g(C)	NS
13	12	1	3	$U \oplus D_4 \oplus E_8$
11	10	1	2	$U(2)\oplus D_4\oplus E_8 \ U(2)\oplus D_4\oplus E_8$
7	4	0	2	$U(2)\oplus D_4\oplus E_8$
9	8	1	1	$U\oplus D_4^3$
7	6	0	1	$U\oplus D_4^{ar{3}}$

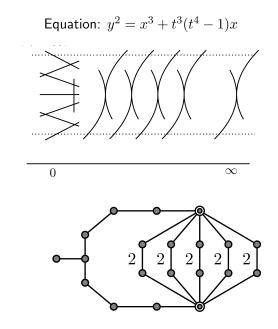


19. July, 2021 19 / 22

э

< ∃⇒

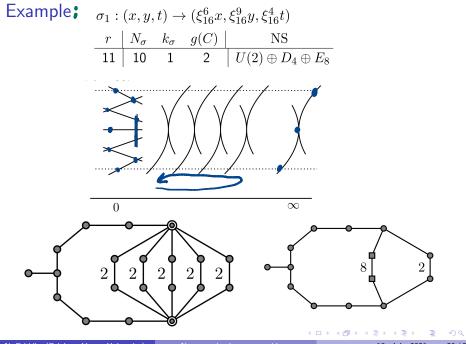
▲ 伊 ▶ ▲ 三



Example

3

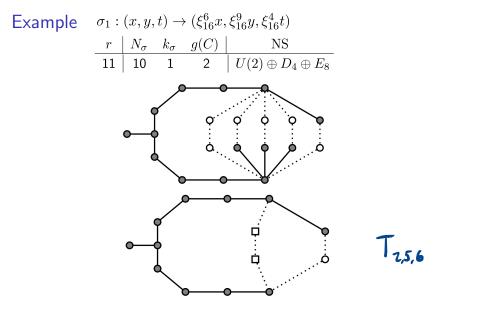
A D N A B N A B N A B N



N. Priddis (Brigham Young University)

Non-symplectic automorphisms

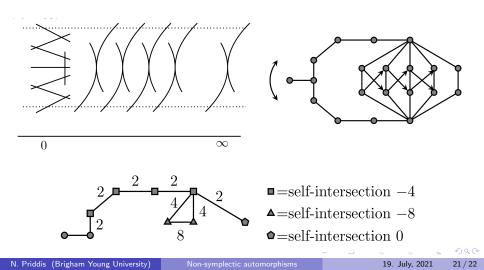
19. July, 2021 20 / 22



An embedding $M \hookrightarrow L$ is primitive if L/M is a free group.

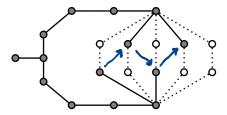
Example
$$\sigma_2 : (x, y, t) \to (\xi_{16}^6 \frac{y^2 - x^3}{x^2}, \xi_{16}^9 \frac{x^3 y - y^3}{x^3}, \xi_{16}^4 t)$$

 $- \frac{r \mid N_\sigma \mid k_\sigma \mid g(C) \mid \text{NS}}{7 \mid 4 \mid 0 \mid 2 \mid U(2) \oplus D_4 \oplus E_8}$



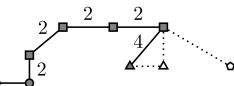
Example
$$\sigma_2 : (x, y, t) \to (\xi_{16}^6 \frac{y^2 - x^3}{x^2}, \xi_{16}^9 \frac{x^3 y - y^3}{x^3}, \xi_{16}^4 t)$$

 $- \frac{r \mid N_\sigma \quad k_\sigma \quad g(C) \mid \text{NS}}{7 \mid 4 \quad 0 \quad 2 \mid U(2) \oplus D_4 \oplus E_8}$



U(2) @ Dy @ (-8)

< 4 → < 3



N. Priddis (Brigham Young University)

19. July, 2021 21 / 22

문 🛌 🖻

Thank you for your attention!

æ