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Abstract. Using the ♯-minimal model program of uniruled varieties we show that for
any pair (X,H) consisting of a reduced and irreducible variety X of dimension k ≥ 3 and
a globally generated big line bundle H on X with d := Hk and n := h0(X,H) − 1 such
that d < 2(n − k) − 4, then X is uniruled of H-degree one, except if (k, d, n) = (3, 27, 19)
and a ♯-minimal model of (X,H) is (P3,OP3(3)). We also show that the bound is optimal
for threefolds.

0. Introduction

It is well-known that an irreducible nondegenerate complex variety X ⊆ Pn of degree d
satisfies d ≥ n − dimX + 1. Varieties for which equality is obtained are the well-known
varieties of minimal degree, which are completely classified.

Varieties for which d is “small” compared to n have been the objects of intensive study
throughout the years, see e.g. [Ha, Ba, F1, F2, F3, Is, Io, Ho, Re, M2]. One of the common
features is that such varieties are covered by rational curves.

More generally one can study pairs (X,H) where X is an irreducible k-dimensional
variety (possibly with some additional assumptions on its singularities) and H a line bundle
on X which is sufficiently “positive” (e.g. ample or (birationally) very ample or big and
nef). Naturally we set d := Hk and n := dim |H|. The difference between d and n is
measured by the ∆-genus: ∆(X,H) := d + k − n − 1, introduced by Fujita (cf. [F1]
and [F2]), who in fact shows that ∆(X,H) ≥ 0 for X smooth and H ample and that H
is very ample if equality holds, so that the cases with ∆(X,H) = 0 are the varieties of
minimal degree. The cases with ∆(X,H) = 1 have been classified by Fujita [F3, F4, F5]
and Iskovskih [Is].

If H is globally generated we can consider the morphism ϕH : X −→ X ′ ⊆ Pn defined
by |H|. One has d = (deg ϕH)(deg X ′) and deg X ′ ≥ n − k + 1. If d < 2(n − k) + 2 the
morphism ϕH is forced to be birational and deg X ′ = d. Hence in the range d < 2(n−k)+2
studying nondegenerate degree d varieties in Pn, or pairs (X,H) with H globally generated
and big, is equivalent. Moreover, as the property of being globally generated and big is
preserved from H to f∗H under a resolution of singularities f , this approach is suitable
also to study singular varieties.

The notion of being covered by rational curves is incorporated in the concept of a variety
being uniruled: A variety is uniruled if through any point there passes a rational curve.
With the notation above, d < k(n − k) + 2 is an optimal bound for uniruledness by [M2,
Thm. A.3 and Exmpl. A.4].

In many ways uniruled varieties are the natural generalizations to higher dimensions of
ruled surfaces. In the Mori program they play an important role, because - like in the case
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of ruled surfaces - these are the varieties for which the program does not yield a minimal
model, but a Mori fiber space. Uniruled varieties can also be considered to be the natural
generalizations to higher dimensions of surfaces of negative Kodaira dimension: in fact it
is conjectured that a (smooth) variety is uniruled if and only if its Kodaira dimension is
negative. The conjecture has been established for threefolds by Miyaoka [Mi].

With the evolution of a structure theory for higher dimensional varieties in the past
decades, namely the Mori program, the geometry of rational curves on varieties has gained
new importance. The main idea is to obtain information about varieties by studying the
rational curves on them (cf. e.g. [Ko]).

To measure the “degree” of the rational curves which cover X we say in addition that X
is uniruled of H-degree at most m if the covering curves all satisfy Γ ·H ≤ m. Returning to
the case where H is globally generated and the morphism ϕH : X −→ X ′ ⊆ Pn is birational
as above, we see that X is uniruled of H-degree at most m if and only if X ′ is covered by
rational curves of degrees ≤ m.

For surfaces Xiao [Xi] and Reid [Re] independently found bounds on the uniruledness
degree of (X,H) depending on d and n. For instance they showed that an irreducible,
nondegenerate surface X ⊆ Pn is uniruled by lines if d < 4

3(n − 2), except when n = 9

and (X,OX(1)) = (P2,OP2(3)). The same result was obtained by Horowitz [Ho] using a
different approach. In particular, it immediately follows (by taking surface sections and
using that (P2,OP2(3)) cannot be a hyperplane section of any threefold other than a cone)
that an irreducible, nondegenerate k-dimensional variety X ⊆ Pn is uniruled by lines for
k ≥ 3 if d < 4

3(n − k). (Note that if one assumes X smooth, one gets the better bound

d < 3
2(n−k− 1), since X is ruled by planes or quadrics in this range by [Ho, Cor. p. 668].)

However it is to be expected that this “naive” inductive procedure does not yield an optimal
bound.

The purpose of this article is to obtain a bound for uniruledness degree one which is
optimal for threefolds and independent of singularities. In fact we show:

Theorem 0.1. Let (X,H) be a pair consisting of a reduced and irreducible three-dimensional
variety X and a globally generated big line bundle H on X. Set d := H3 and n :=
h0(X,H) − 1.

If d < 2n − 10 then X is uniruled of H-degree one, except when (d, n) = (27, 19) and a
♯-minimal model of (X,H) is (P3,OP3(3)).

(For the definition of a ♯-minimal model we refer to Definition 1.4 below.)
The bound in Theorem 0.1 is sharp since there are pairs satisfying d = 2n − 10 for

infinitely many d and n, namely (P2 × P1,OP2(2) ⊠ OP1(a)) for a ≥ 2 (cf. Example 2.5
below), which are not uniruled of H-degree one.

Observe that in Remark 2.3 below we obtain a better bound than in Theorem 0.1 for
8 ≤ n ≤ 12.

As a consequence of Theorem 0.1 we get the following result for higher dimensional
varieties, which is probably far from being sharp:

Corollary 0.2. Let (X,H) be a pair consisting of a reduced and irreducible k-dimensional
variety X, k ≥ 4, and a globally generated big line bundle H on X. Set d := Hk and
n := h0(X,H) − 1. If d < 2(n − k) − 4 then X is uniruled of H-degree one.

For those preferring the notion of ∆-genus, the condition d < 2(n − k) − 4 is equivalent
to ∆(X,H) < n − k − 5 = h0(X,H) − dimX − 6.

The above results have the following corollary for embedded varieties:
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Corollary 0.3. Let X ⊂ Pn be a nondegenerate reduced and irreducible variety of dimen-
sion k ≥ 3 and degree d. If d < 2(n − k) − 4 then X is uniruled by lines, except when
(k, d, n) = (3, 27, 19) and a ♯-minimal model of (X,OX(1)) is (P3,OP3(3)).

Note that the condition d < 2(n−k)−4 implicitly requires n ≥ k+6 in the three results
above.

To prove these results we use the ♯-minimal model program of uniruled varieties intro-
duced for surfaces by Reid in [Re] and developed for threefolds by Mella in [M2]. The main
advantage of the ♯-minimal model program is that one does not only work with birational
modifications along the minimal model program but also uses a polarizing divisor. Under
certain assumptions one manages to follow every step of the program on an effective divisor,
i.e. a (smooth) surface in the case of threefolds.

Our method of proof uses the classification results in [M2] and borrows ideas from [Re].
The crucial point is a careful investigation of pairs (X,H) such that the output of the
♯-minimal model program is a particular type of Mori fiber space which we call a terminal
Veronese fibration (see Definition 3.1 below): this is roughly speaking a terminal threefold
marked by a line bundle with at most base points fibered over a smooth curve with general
fibers being smooth Veronese surfaces (with respect to the marking line bundle) and having
at most finitely many fibers being cones over a smooth quartic curve. We find a lower
bound on the degree of such a threefold (in fact on every marked terminal threefold having
a terminal Veronese fibration as a ♯-minimal model) and on the number of degenerate fibers
of the members of the marking linear system.

The precise statement, which we hope might be of independent interest, is the following:

Proposition 0.4. Let (X,H) be a three-dimensional terminal Veronese fibration (see Def-
inition 3.1) over a smooth curve B and set n := h0(H)− 1 and d := H3. Then d ≥ 2n− 10
and the general member of |H| is a smooth surface fibered over B with ≥ n−5

2 fibers which
are unions of two conics (with respect to H) intersecting in one point (the other fibers are
smooth quartics).

Observe that both equalities are obtained by (P2 × P1,OP2(2) ⊠ OP1(a)), cf. Examples
2.5 and 3.4.

In Section 1 we set notation and give all central definitions. Moreover we introduce, after
[M2], the ♯-minimal models of pairs (X,H) where X is a terminal, Q-factorial threefold and
H ∈ Pic X such that the general element in |H| is a smooth surface of negative Kodaira
dimension (Theorem 1.2) and obtain results that are essential for the rest of the paper in
Lemmas 1.1 and 1.5.

In Section 2 we first obtain an “easy bound” on d such that a threefold is uniruled in
degree one (Proposition 2.1) and then we show how to reduce the proofs of our main results
Theorem 0.1 and its two corollaries to a result about uniruled threefolds having a terminal
Veronese fibration as a ♯-minimal model, namely Proposition 2.4.

The proofs of Proposition 2.4 and of Proposition 0.4 are then settled in Section 3.
Finally, in Section 4 we give some final remarks, including a slight improvement of a

result in [M2] and of Theorem 0.1 and Corollary 0.2.
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1. ♯-minimal models of uniruled threefolds

We work over the field of complex numbers.
A reduced and irreducible three-dimensional variety will be called a threefold, for short.
A k-dimensional projective variety X is called uniruled if there is a variety Y of dimension

k − 1 and a generically finite dominant rational map p : Y × P1 − − → X. In particular,
such a variety is covered by rational curves (cf. [Ko, IV 1.4.4]).

If H is a nef line bundle on X and m ∈ Q we say that X is uniruled of H-degree at most
m if deg (p∗H)|P1×{y} ≤ m for every y ∈ Y , or equivalently if there is a dense open subset
U ⊆ X such that every point in U is contained in a rational curve C with C · H ≤ m (cf.
[Ko, IV 1.4.]). A consequence is that in fact every point in X is contained in a rational
curve C with C · H ≤ m (cf. [Ko, IV 1.4.4]). In particular, if X ⊆ Pn we say that X is
uniruled by lines if m = 1 with respect to H := OX(1).

For a pair (X,H) where X is terminal Q-factorial and H is a line bundle on X with
|H| 6= ∅, the threshold of the pair is defined as

ρ(X,H) := sup {m ∈ Q : rmKX is Cartier and |r(H+mKX)| 6= ∅ for some r ∈ Z>0} ≥ 0

(cf. [Re, (2.1)] and [M2, Def. 3.1]).
Moreover we set

(1) d(X,H) := Hdim X and n(X,H) := h0(X,H) − 1 = dim |H|.

In these terms the ∆-genus, introduced by Fujita (cf. [F1] and [F2]), is

(2) ∆(X,H) := d(X,H) + dimX − n(X,H) − 1

and all the results in the paper can be equivalently formulated with the ∆-genus.
Recall that a surjective morphism f : X −→ Y with connected fibers between normal

varieties is called a Mori fiber space if −KX is f -ample, rk Pic (X/Y ) = 1 and dimX >
dimY .

The following easy consequence of Clifford’s theorem will be useful for our purposes:

Lemma 1.1. Let (X,H) be a pair with X a terminal Q-factorial threefold and H a globally
generated and big line bundle on X. Set d := d(X,H) and n := n(X,H).

If d < 2n − 4, then:

(i) the general surface S ∈ |H| is smooth with negative Kodaira dimension. In partic-
ular X is uniruled and ρ(X,H) < 1.

(ii) for any smooth irreducible S ∈ |H| and for any irreducible curve D ∈ |H|S | we have

(3) D · KS ≤ d − 2n + 2.

Proof. The general element S ∈ |H| is a smooth irreducible surface by Bertini’s theorem,
as X has isolated singularities (cf. [M2, 2.3]).

Pick any irreducible curve D ∈ |OS(H)|. Then deg OD(H) = H3 = d and from

(4) 0 −→ OX −→ H −→ OS(H) −→ 0

and

(5) 0 −→ OS −→ OS(H) −→ OD(H) −→ 0

we get

(6) h0(OD(H)) ≥ h0(OS(H)) − 1 ≥ h0(H) − 2 = n − 1.
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Hence

(7) deg OD(H) − 2(h0(OD(H)) − 1) ≤ d − 2(n − 2) < 0,

whence by Clifford’s theorem on irreducible singular curves (see the appendix of [EKS]) we
must have h1(OD(H)) = 0, so that χ(OD(H)) = h0(OD(H)) ≥ n − 1. From (5) we get

χ(OS(D)) − χ(OS) = χ(OD(H)) = h0(OD(H)) ≥ n − 1.

Combining with Riemann-Roch we get

D · KS = D2 − 2(χ(OS(D)) − χ(OS))

≤ d − 2n + 2 < −2,

proving (ii) and showing that κ(S) < 0. (The latter fact also follows from [M2, Theorem
A.3].) Now the fact that X is uniruled with ρ(X,H) < 1 follows from [M2, Def. 5.1 and
Lemma 5.2]. �

In the following theorem we collect all the results of Mella [M2] that will be useful to us.

Theorem 1.2. Let (X,H) be a pair with X a terminal Q-factorial threefold and H a
globally generated and big line bundle on X, such that the general element in |H| is a
smooth surface of negative Kodaira dimension.

Then there exist a pair (X♯,H♯) and a birational map φ : X −− → X♯ such that:

(i) X♯ is terminal and Q-factorial, H♯ ∈ Pic X♯, |H♯| has at most base points, and
ρ(X♯,H♯) = ρ(X,H) =: ρ.

(ii) φ is a finite composition of Mori extremal contractions and flips, and ρKX♯ + H♯

is Q-nef;
(iii) for any smooth irreducible S ∈ |H|, f := φ|S is a birational morphism, and S♯ :=

f(S) is a smooth surface in |H♯|;
(iv) if X♯ is uniruled of H♯-degree at most m, then X is uniruled of H-degree at most

m;
(v) (X♯,H♯) belongs to the following list:

(I) a Q-Fano threefold with KT ♯ ∼ −(1/ρ)H♯, belonging to Table 1 below.

(II) a bundle over a smooth curve with generic fiber (F,H♯
|F ) ∼= (P2,OP2(2)) and

with at most finitely many fibers (G,H♯
|G) ∼= (S4,OS4

(1)), where S4⊂ P5 is the

cone over the normal quartic curve. (ρ = 2/3)

(III) a quadric bundle with at most cA1 singularities and H♯
|F ∼ OF (1) for every

fiber F . (ρ = 1/2)
(IV) (P(E),O(1)) where E is a rank 3 vector bundle over a smooth curve. (ρ = 1/3)
(V) (P(E),O(1)) where E is a rank 2 vector bundle over a surface of negative Ko-

daira dimension. (ρ = 1/2)

Proof. By [M2, Def. 5.1 and Lemma 5.2] we have ρ(X,H) < 1. Now the existence of a pair
(X♯,H♯) and a map satisfying conditions (i)-(iii) follows combining [M2, Thm. 3.2, Prop.
3.6 and Cor. 3.10] observing that it is implicitly shown in the proof of [M2, Thm 3.2] that
ρ(X♯,H♯) = ρ(X,H).

Property (v) follows from [M2, Thm. 5.3 and Def. 5.1], noting that the values of ρ are
explicitly given in each of the cases in the course of the proof of [M2, Thm. 5.3].

We have left to prove (iv). By assumption X♯ is covered by a family of rational curves

{Γ} such that Γ · H♯ ≤ m. The strict transform Γ̃ on X of each such Γ then satisfies

Γ̃ · S ≤ m by [M2, Lemma 3.15]. �
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Table 1. Q-Fano threefolds

Type X♯ general S♯ ∈ |H♯| ρ − ρ

ρ−1
K2

S♯ d(X♯,H♯) n(X♯,H♯)

(a) P(1, 1, 2, 3) H6 ⊂ P(1, 1, 2, 3) 6/7 6 1 36 22

(b) T6 ⊂ P(1, 1, 2, 3, 3) T6 ∩ {x4 = 0}) 3/4 3 1 9 7

(c) T6 ⊂ P(1, 1, 2, 3, 4) T6 ∩ {x4 = 0} 4/5 4 1 16 11

(d) T6 ⊂ P(1, 1, 2, 3, 5) T6 ∩ {x4 = 0} 5/6 5 1 25 16

(e) T6 ⊂ P(1, 1, 2, 2, 3) T6 ∩ {x3 = 0} 2/3 2 1 4 4

(f) T6 ⊂ P(1, 1, 1, 2, 3) T6 ∩ {x0 = 0} 1/2 1 1 1 2

(g) P(1, 1, 1, 2) H4 ⊂ P(1, 1, 1, 2) 4/5 4 2 32 21

(h) T4 ⊂ P(1, 1, 1, 2, 2) T4 ∩ {x4 = 0} 2/3 2 2 8 7

(i) T4 ⊂ P(1, 1, 1, 2, 3) T4 ∩ {x4 = 0} 3/4 3 2 18 13

(j) T4 ⊂ P(1, 1, 1, 1, 2) T4 ∩ {x0 = 0} 1/2 1 2 2 3

(k) P3 H3 ⊂ P3 3/4 3 3 27 19

(l) T3 ⊂ P(1, 1, 1, 1, 2) T3 ∩ {x4 = 0} 2/3 2 3 12 10

(m) T3 ⊂ P4 T3 ∩ {x0 = 0} 1/2 1 3 3 4

(n) T2 ⊂ P4 H2,2 ⊂ T2 2/3 2 4 16 13

(o) T2,2 ⊂ P5 T2,2 ∩ {x0 = 0} 1/2 1 4 4 5

(p) P6 ∩ G(1, 4) P6 ∩ G(1, 4) ∩ {x0 = 0} 1/2 1 5 5 6

(q) T2 ⊂ P4 T2 ∩ {x0 = 0} ≃ P1 × P1 1/3 1/2 8 2 4

(r) P3 P1 × P1 ≃ H2 ⊂ P3 1/2 1 8 8 9

(s) P3 {x0 = 0} ≃ P2 ⊂ P3 1/4 1/3 9 1 3

(t) P(1, 1, 1, 2) {x3 = 0} ≃ P2 ⊂ P(1, 1, 1, 2) 2/5 2/3 9 4 6

In the cases (I) the general S♯ ∈ |H♯| is a smooth del Pezzo surface and OS♯(H♯) ≃
ρ

ρ−1KS♯ . A list of such threefolds (with corresponding values for ρ) is given in [CF]. More-

over one can easily calculate d(T ♯,H♯) and n(T ♯,H♯). Indeed

(8) d(X♯,H♯) := (H♯)3 = (OS♯(H♯))2 =
ρ2

(ρ − 1)2
K2

S♯ ,

and by Riemann-Roch

(9) n(X♯,H♯) := h0(H♯) − 1 = h0(OS♯(H♯)) =
ρ

2(ρ − 1)2
K2

S♯ + 1.

In Table 1 we list all the cases (see [CF, p. 81]). In the table P(w1, . . . , wn) denotes the
weighted projective space with weight wi at the coordinate xi. The hyperplane given by
xi is denoted {xi = 0}. Moreover Ta (resp. Ta,b) denotes a hypersurface of degree a (resp.
a complete intersection of two hypersurfaces of degrees a and b) and similarly for Ha and
Ha,b. The variety G(1, 4) is the Grassmannian parameterizing lines in P4, embedded in P9

by the Plücker embedding.

Definition 1.3. Following [M2, Def. 3.3] we will call (X♯,H♯) a ♯-minimal model of the
pair (X,H). In particular, by Lemma 1.1, it exists when d(X,H) < 2n(X,H) − 4.

Note that a ♯-minimal model exists for any (X,H) with X a terminal Q-factorial uniruled
threefold and H nef with h0(nH) > 1 for some n > 0 by [M2, Thm. 3.2], but it will in
general not have all the nice properties (i)-(v) in Theorem 1.2 above. We will not need
the ♯-minimal model in complete generality, but only in the version stated in Theorem 1.2
above.

The following explains the terminology used in Theorem 0.1 and Corollary 0.3:

Definition 1.4. For any pair (X,H) consisting of a threefold X and a big and globally
generated line bundle H on X, with d(X,H) < 2n(X,H) − 4, we will by a ♯-minimal



ON VARIETIES WHICH ARE UNIRULED BY LINES 7

model of (X,H) mean a ♯-minimal model of (X̃, f∗H), where f : X̃ −→ X is a minimal

resolution of singularities. (Observe that d(X̃, f∗H) = d(X,H) and n(X̃, f∗H) ≥ n(X,H),
so a ♯-minimal model exists and satisfies the properties (i)-(v) of Theorem 1.2.)

Lemma 1.5. With the same notation and assumptions as in Theorem 1.2, let S, S♯ and
f be as in (iii) and set D := OS(H).

(a) We have n(X♯,H♯) ≥ n(X,H) and d(X♯,H♯) ≥ d(X,H). In particular H♯ is big
and nef.

(b) Let l be the total number of irreducible curves contracted by f . If ρ ≥ 1/3, then

(10) (D +
ρ

1 − ρ
KS)2 ≥ −l(

ρ

1 − ρ
)2.

(c) If (X♯,H♯) is of type (I) in Theorem 1.2(v), then

(11) d(X,H) − n(X,H) + 1 =
ρ(2ρ − 1)

2(ρ − 1)2
K2

S♯ .

Proof. We first observe that n(X♯,H♯) ≥ n(X,H) as S♯ = φ∗S.
We have a commutative diagram

X
φ //___ X♯

S
f //?�

OO

S♯
?�

OO

where f := φ|S is well defined and birational by Theorem 1.2(iii). As observed in [M2,
Prop. 3.6] one can describe each step in the ♯-minimal model program in a neighborhood
of S. More precisely, set X0 := X, S0 := S, Xm := X♯ and Sm = S♯ := φ∗S. Denote by
φi : Xi−1 − − → Xi for i = 1, . . . , m each birational modification in the ♯-minimal model
program relative to (X,H) and define inductively Si := φ∗Si−1. Then each Si is smooth,
and setting fi := φi|Si

we can factorize f as:

S
f1 // S1

f2 // · · ·
fm−1// Sm−1

fm // Sm = S♯,

where each fi contracts li disjoint (−1)-curves Ei
1, . . . , E

i
li

with li ≥ 0 by [M2, Prop. 3.6].

The total number of contracted curves is l =
∑m

i=1 li. We set Di := OSi
(Si) and D♯ :=

OS♯(S♯).
If φi is a flip then Si is disjoint from the flipping curves by [M2, Claim 3.7], so that fi is

an isomorphism.
If φi contracts a divisor onto a curve then it is shown in [M2, Case 3.8] that the fiber Fi

of φi satisfies Si · Fi = 0, whence Di · Fi = 0, which means that all Ei
j satisfy Ei

j · Di = 0.

If φi contracts a divisor onto a point then it is shown in [M2, Case 3.9] that fi is a
contraction of a single (−1)-curve Ei = Ei

1 which satisfies Ei · Di = 1.
In other words, for every i we have three possibilities:

li = 0; or

li > 0 and Ei
j · Di = 0 for all j ∈ {1, . . . , li}; or(12)

li = 1 and Ei
1 · Di = 1.
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Now denote by Li
j the total transform of Ei

j on S. Then (Li
j)

2 = −1 and Li
j ·L

i′

j′ = 0 for

(i, j) 6= (i′, j′). We have

(13) KS = f∗KS♯ +
∑

Li
j

and by (12),

(14) D = f∗D♯ −
∑

µi
jL

i
j with µi

j ∈ {0, 1}.

In particular

(15) d(X,H) = D2 = (D♯)2 −
∑

(µi
j)

2 = d(X♯,H♯) −
∑

µi
j ≤ d(X♯,H♯),

finishing the proof of (a).
From (13) and (14) we get

D +
ρ

1 − ρ
KS = f∗(D♯ +

ρ

1 − ρ
KS♯) +

∑

(
ρ

1 − ρ
− µi

j)L
i
j ,

and since there are l terms in the sum we get

(16) (D +
ρ

1 − ρ
KS)2 = (D♯ +

ρ

1 − ρ
KS♯)2 − l(

ρ

1 − ρ
)2 +

∑

µi
j(

2ρ

1 − ρ
− µi

j).

By definition and invariance of ρ (cf. Theorem 1.2(i)) we have that ρKT ♯ + H♯ is Q-
effective. From Theorem 1.2(ii) we have that it is also Q-nef, whence its restriction to S♯ is
also Q-effective and Q-nef. Since S♯ is Cartier we get by adjunction that (ρKT ♯ +H♯)|S♯ ≃

(1 − ρ)( ρ
1−ρKS♯ + D♯), whence by Q-nefness

(17) (D♯ +
ρ

1 − ρ
KS♯)2 ≥ 0.

Moreover the assumption ρ ≥ 1
3 is equivalent to ρ

1−ρ ≥ 1
2 , whence

(18)
∑

µi
j(

2ρ

1 − ρ
− µi

j) ≥ µi
j(1 − µi

j) ≥ 0.

Now (10) in (b) follows combining (16)-(18)
We have left to prove (c). Since S♯ is a smooth del Pezzo surface, we have h1(OS) =

h1(OS♯) = 0. It is then easily seen by the proof of Lemma 1.1 that equality holds in
(3) (note that we have h1(OX) ≤ h1(OX(−H)) + h1(OS) = 0 by Kawamata-Viehweg
vanishing). Using (13), (14) and (15) we therefore get, for D ∈ |OS(H)|:

d(X,H) − 2n(X,H) + 2 = D · KS = (f∗D♯ −
∑

µi
jL

i
j) · (f

∗KS♯ +
∑

Li
j)

= D♯ · KS♯ +
∑

µi
j =

ρ

ρ − 1
K2

S♯ +
∑

µi
j

=
ρ

ρ − 1
K2

S♯ + d(X♯,H♯) − d(X,H).

Now using (8) we obtain

2d(X,H) − 2n(X,H) + 2 =
ρ(2ρ − 1)

(ρ − 1)2
K2

S♯ ,

proving (c). �
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2. Bounds for uniruledness degree one

As a “warming up” before proceeding with the proofs of the main results we give the
proof of the following bound.

Proposition 2.1. Let (X,H) be a pair consisting of a terminal Q-factorial threefold X
and a globally generated and big line bundle H on X. Set d := d(X,H) and n := n(X,H).

If n ≥ 4, d < 4
3n − 4

3 and d 6= n − 1 for n ≤ 9, then X is uniruled of H-degree one.

Proof. Since n ≥ 4 we have 2n − 4 ≥ 4
3n − 4

3 , whence d < 2n − 4, so by Lemma 1.1(i) the
general S ∈ |H| is smooth of negative Kodaira dimension.

Moreover for any irreducible D ∈ |H|S | we have, by Lemma 1.1(ii),

D ·
(3

2
H + KX

)

= D · (H + KX) +
1

2
D · H = D · KS +

1

2
d

≤ d − 2n + 2 +
1

2
d =

3

2
d − 2n + 2

<
3

2

(4

3
n −

4

3

)

− 2n + 2 = 0,

whence ρ(X,H) < 2/3.
It follows that the ♯-minimal model (X♯,H♯) is in the list of Theorem 1.2(v) and more-

over it cannot be as in (II) since ρ(X,H) = 2/3 in this case. In the cases (III)-(V) one
immediately sees that (X♯,H♯) is uniruled of H♯-degree one, whence (X,H) is also uniruled
of H-degree one by Theorem 1.2(iv).

We have n(T ♯,H♯) ≥ n ≥ 4 by Lemma 1.5(a), and by using Table 1 we see that the cases
in (I) where n(X♯,H♯) ≥ 4 and ρ < 2/3 are the cases (m), (o), (p), (q), (r) and (t). Among
these all but (r) are clearly uniruled of H♯-degree one.

By (11) and Table 1 we have d − n + 1 = 0 in case (r) and by Lemma 1.5(a) we have
n ≤ n(X♯,H♯) = 9. �

Corollary 2.2. Let (X,H) be a pair consisting of a threefold X and a globally generated
and big line bundle H on X. Set d := d(X,H) and n := n(X,H).

If d < 4
3n − 4

3 , d 6= n when 5 ≤ n ≤ 8 and d 6= n − 1 for n ≤ 9, then X is uniruled of
H-degree one.

Proof. Let π : X̃ −→ X be a resolution of the singularities of X. Then π∗H is globally
generated and big with d(X̃, π∗H) = H3 = d and n(X̃, π∗H) = dim |π∗H| ≥ n and we can
apply Proposition 2.1. The additional cases d = n for 5 ≤ n ≤ 8 occur since equality does
not need to occur in n(X̃, π∗H) ≥ n. �

Remark 2.3. We note that the last corollary improves Theorem 0.1 for n ≤ 12. Moreover,
the cases n = 3, 4 are trivial, as are the cases n = 5, 6, 7, since then ϕH(X) ⊆ Pn has
minimal degree. Hence the relevant statement, combining Theorem 0.1 and Corollary 2.2
is: X is uniruled of H-degree one in the following cases:

• n = 8 and d = 6 or 9;
• n = 9 and d = 7, 9 or 10;
• n = 10 and d ≤ 11;
• n = 11 or 12 and d ≤ n + 2;
• n ≥ 13 and d ≤ 2n − 11, (d, n) 6= (27, 19).

Now we give the main ideas and the strategy of the proof of Theorem 0.1. The main
result we will need to prove is the following:
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Proposition 2.4. Let (X,H) be a pair consisting of a terminal Q-factorial threefold X
and a globally generated, big line bundle H on X. Set d := d(X,H) and n := n(X,H).

If a ♯-minimal model of (X,H) is of type (II) in Theorem 1.2(v), then d ≥ 2n − 10.

The proof of this result will be given in Section 3 below, after a careful study of the
threefolds of type (II) in Theorem 1.2(v). We will now give the proofs of Theorem 0.1 and
Corollaries 0.2 and 0.3 assuming Proposition 2.4.

Proof of Theorem 0.1. Let X be a reduced and irreducible 3-dimensional variety and H
a globally generated big line bundle on X. Set d := H3 and n := h0(X,H)− 1 and assume
d < 2n − 10.

Let π : X̃ −→ X be a resolution of the singularities of X. Then π∗H is globally generated
and big with d(X̃, π∗H) = H3 = d and n(X̃, π∗H) = dim |π∗H| ≥ n. Since (d, n) = (27, 19)
satisfies d = 2n − 11 we can reduce to the case where X is smooth. Therefore we assume
X is smooth.

By Lemma 1.1(i), any ♯-minimal model (X♯,H♯) of (X,H) is in the list of Theorem
1.2(v). Moreover, by Proposition 2.4, it cannot be of type (II).

We easily see that the cases (III)-(V) are uniruled of H♯-degree one. In the cases (I) we
have, by Lemma 1.5,

(19)
ρ(2ρ − 1)

2(ρ − 1)2
K2

S♯ = d − n + 1 ≤ n − 10 ≤ n(X♯,H♯) − 10.

By checking Table 1 one finds that we can only be in case (k), with equalities all the way
in (19). Hence n = n(X♯,H♯) = 19 and d = 2n − 11 = 27. Now the result follows from
Theorem 1.2(iv). �

Proof of Corollary 0.2. Let X be a reduced and irreducible variety of dimension k ≥ 4
and H a globally generated big line bundle on X with d := Hk and n := h0(X,H) − 1.

As just mentioned in the proof of Theorem 0.1 we can assume X is smooth.
Setting Xk := X and Hk := H, we recursively choose general smooth “hyperplane

sections” Xi−1 ∈ |Hi| and define Hi−1 := Hi ⊗OXi−1
, for 2 ≤ i ≤ k. (Note that dimXi = i

and Hi is a line bundle on Xi.)
Let n3 := h0(H3) − 1. Then from the exact sequence

(20) 0 −→ OXi
−→ Hi −→ Hi−1 −→ 0

we have

(21) n3 ≥ n − (k − 3) = n − k + 3.

Together with the condition d < 2(n − k) − 4 this implies d < 2n3 − 10 and it follows
from Theorem 0.1 that either (X3,H3) is uniruled of degree one or (d, n3) = (27, 19) and

(X♯
3,H

♯
3) is (P3,O(3)).

In the second case we have equality in (21), i.e.

(22) 19 = n3 = h0(H3) − 1 = h0(H) − (k − 3) − 1 = n − k + 3.

Denote by φ : X3 − − → X♯
3 = P3 the birational map of the ♯-minimal model program.

By Theorem 1.2(iii) its restriction f to S := X2 is a birational morphism onto a smooth
surface S♯ ∈ |OP3(3)|.

We have

19 = h0(OS♯(3)) ≥ h0(H2) ≥ h0(H3) − 1 = 19
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by Lemma 1.5(a) and (22), whence |OS♯(3)| = f∗|H2| and this can only be base point free
if every curve E contracted by f satisfies E · H2 = 0. Denoting by ϕH2

and ϕO
S♯ (3) the

morphisms defined by |H2| and |OS♯(3)| respectively, this implies that ϕO
S♯ (3) ◦ f = ϕH2

,

in other words S′ := ϕH2
(S) = ϕO

S♯ (3)(S
♯) ≃ S♯ ⊆ P18. Moreover, by (22), the natural

map H0(H) → H0(H2) is surjective, so S′ = ϕH(S), where ϕH : X −→ Pn is the morphism
defined by |H|. Note that ϕH is birational for reasons of degree. Setting X ′ := ϕH(X) ⊆ Pn

we therefore have that S′ ⊆ X ′ is a smooth, linear, transversal surface section (recall that
S ⊆ X is a complete intersection of (k − 2) general elements of |H|).

We now apply the theorem of Zak (unpublished, cf. [Za]) and L’vovski (cf. [L1] and [L2])
which says the following (cf. [L2, Thm. 0.1]): if V ( PN is a smooth, nondegenerate variety
which is not a quadric and satisfies h0(NV/PN (−1)) < 2N+1; Y ⊆ PN+m is a nondegenerate,

irreducible (m + dimV )-dimensional variety with m > h0(NV/PN (−1)) − N − 1; and L =

PN ⊆ PN+m is a linear subspace such that V = L ∩ Y (scheme-theoretically), then Y is a
cone.

Since a cone is uniruled by lines, the corollary will follow if we show that h0(NS′/P18(−1)) ≤

20, with S′ being the 3-uple embedding of a smooth cubic surface S0 in P3.
We argue as in [GLM, p. 160-161] to compute h0(NS′/P18(−1)). We give the argument

for the sake of the reader.
From the Euler sequence and tangent bundle sequence

0 −→ OS′(−1) −→ C19 ⊗OS′ −→ TP18(−1) ⊗OS′ −→ 0

0 −→ TS′(−1) −→ TP18(−1) ⊗OS′ −→ NS′/P18(−1) −→ 0

we find

(23) h0(NS′/P18(−1)) ≤ h0(TP18(−1) ⊗OS′) + h1(TS′(−1)) = 19 + h1(TS0
(−3)).

From the tangent bundle sequence of S0 ⊆ P3

(24) 0 −→ TS0
(−3) −→ TP3(−3) ⊗OS0

−→ NS0/P3(−3) −→ 0

and the fact that NS0/P3(−3) ≃ OS0
, we find

h1(TS0
(−3)) ≤ 1 + h1(TP3(−3) ⊗OS0

).

In view of (23) it will suffice to show that h1(TP3(−3) ⊗OS0
) = 0.

Now observe that TP3(−3) ≃ (Ω1
P3)

∨ ⊗ KP3 ⊗ OP3(1) ≃ Ω2
P3(1) so using Bott vanishing

on P3 and Serre duality one gets h1(TP3(−3)) = 0 and

h2(TP3(−6)) = h2((Ω1
P3)

∨ ⊗ KP3 ⊗OP3(−2)) = h1(Ω2
P3(2)) = 0.

This yields h1(TP3(−3) ⊗OS0
) = 0.

This concludes the proof of the corollary. �

It is immediate that Corollary 0.3 follows from Theorem 0.1 and Corollary 0.2.
As we already noted in the introduction, Theorem 0.1 is sharp by the following example:

Example 2.5. The bound of Theorem 0.1 is sharp. In fact consider X = P2 × P1 with
projections p and q respectively and let H := p∗OP2(2) ⊗ q∗OP1(a) for an integer a > 0.
We have n := h0(H) − 1 = h0(OP2(2)) · h0(OP1(a)) − 1 = 6(a + 1) − 1 and d := H3 =
(p∗O(2) ⊗ q∗O(a))3 = 3(p∗O(2))2 · q∗O(a) = 12a, whence d = 2n − 10.

If a ≥ 2, then clearly any curve C on X satisfies C ·H = C ·p∗OP2(2)+C · q∗OP1(a) ≥ 2,
with equality obtained for the lines in the P2-fibers, so that X is uniruled of H-degree two
and not uniruled of H-degree one.
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If a = 1, then X is clearly uniruled of H-degree one, and since d = 12 and n = 11, this
also follows from Remark 2.3.

3. Terminal Veronese fibrations

In this section we will prove Propositions 0.4 and 2.4.
Since we will have to study the threefolds as in (II) of Theorem 1.2(v) we find it conve-

nient to make the following definition:

Definition 3.1. Let (T,L) be a pair satisfying the following:

(i) T is a terminal Q-factorial threefold with a Mori fiber space structure p : T −→ B,
where B is a smooth curve.

(ii) L is a line bundle on T such that the system |L| contains a smooth surface and has
at most base points and L3 > 0.

(iii) The general fiber of p is (V,L|V ) ≃ (P2,OP2(2)) and the rest are at most finitely

many fibers (G,L|G) ≃ (S4,OS4
(1)), where S4 ⊂ P5 is the cone over a normal

quartic curve.

Such a Mori fiber space will be called a (three-dimensional) terminal Veronese fibration.

The threefolds of type (II) in Theorem 1.2(v) are terminal Veronese fibrations.
The easiest examples of terminal Veronese fibrations are the smooth ones in Example

2.5. But there are also singular such varieties and these were erroneously left out in both
[M1, Prop. 3.7] and [CF, Prop. 3.4], as remarked by Mella in [M2, Rem. 5.4]: Take P2×P1

and blow up a conic C in a fiber and contract the strict transform of C, thus producing a
Veronese cone singularity.

Although our main aim is to prove Proposition 2.4 we believe that terminal Veronese
fibrations are interesting in their own rights. In order to prove Proposition 2.4 we will study
“hyperplane sections” of T , i.e. surfaces in |L|, and show that the desired bound on the
degree follows since the general such surface has to have a certain number of degenerate
fibers, i.e. unions of two conics (with respect to L). What we first prove in this section is
the following, which is part of the statement in Proposition 0.4:

Proposition 3.2. Let (T,L) be a three-dimensional terminal Veronese fibration and set
n := h0(L) − 1 and d := L3.

Then any smooth member of |L| is a surface fibered over B with k ≥ n−5
2 fibers which are

unions of two smooth rational curves intersecting in one point (the other fibers are smooth
rational curves).

Proof. Denote by V the numerical equivalence class of a fiber. Let S ∈ |L| be a smooth
surface. Then, since T is terminal, we have S ∩ Sing T = ∅ (cf. [M2, (2.3)]).

By property (iii) any fiber of S over B is either a smooth quartic, a union of two conics
intersecting in one point, or a double conic, all with respect to L. Denote by F the numerical
equivalence class in S of a fiber over B. Then F 2 = 0.

If a fiber were a double conic, we could write F ≡ 2F0 in Num S. However, in this case
we would get the contradiction F0 · (F0 + KS) = −1, so this case does not occur.

In the case of a fiber which is a union of two conics intersecting in one point, we have
F ≡ F1 + F2 in Num S, whence by adjunction both Fi are (−1)-curves. Since S is smooth
its general fiber over B is a smooth quartic (with F · KS = −2 by adjunction), whence S
has a finite number k of degenerate fibers which are unions of two conics and since these
are all (−1)-curves we can blow down one of these curves in every fiber and reach a minimal
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model R for S which is a ruled surface over B. Let g be the genus of B. Then

k = K2
R − K2

S = 8(1 − g) − K2
S = 8(1 − g) − (KT + L)2 · L,

which only depends on the numerical equivalence class of S. Therefore, any smooth surface
in |L| has the same number of degenerate fibers.

Now note that the fibers of S over the finitely many points of B over which T has singular
fibers are all smooth quartics, since S ∩ Sing T = ∅.

We now consider the birational map of T to a smooth projective bundle T̃ , as described
in [M2, p. 699].

Around one singular fiber S4 of T over a point p ∈ B this map is given by a succession
of blow ups νi and contractions µi:

(25) Y1

µ1

��@
@@

@@
@@

@
ν1

{{xxxxxxx
xx

· · ·
ν2

~~~~
~~

~~
~~ µs−1

!!DD
DD

DD
DD

D Ys

νs

}}{{
{{

{{
{{ µs

##FF
FF

FF
FF

F

T = T0 T1 Ts−1 Ts = T̃

where the procedure ends as soon as some Ts has a fiber over p ∈ B which is a smooth
Veronese surface.

For every νi the exceptional divisor Ei is either a smooth Veronese surface or a cone over
a rational normal quartic curve, and the strict transform of the singular fiber S4 of Ti−1

over p is Gi ≃ F4, the desingularization of S4. These two intersect along a smooth quartic
Ci. Then µi contracts Gi onto a smooth quartic curve C ′

i = µi(Ci) and Ti is smooth along
the exceptional locus of the contraction.

Following S throughout the procedure, we see that S stays out of the exceptional locus
of every νi and in the contraction it is mapped to a surface having C ′

i as fiber over p.
In other words the procedure of desingularizing one singular fiber of T maps every smooth

surface in |L| to a smooth surface passing through a unique smooth quartic over p.
Doing the same procedure for all the other singular fibers of T we therefore reach a

smooth projective bundle P(E) over B and under this process |L| is “mapped” to a (not
necessarily complete) linear system on P(E) having smooth quartics over the corresponding
points of B as base curves. Denote the corresponding line bundle on P(E) by L′. Since
we have not changed the number of degenerate fibers of any smooth surface in |L| over
B, we see that every smooth surface in |L′| still has k degenerate fibers over B. Since
clearly dim |L′| ≥ dim |L| it is now sufficient to show that any smooth surface in |L′| has

k ≥ h0(L′)−6
2 fibers which are unions of two conics (with respect to L′) intersecting in one

point. This is the content of the following proposition. �

Proposition 3.3. Let f : T ≃ P(E) −→ B be a three-dimensional projective bundle over a
smooth curve of genus g. Assume L is a line bundle on T satisfying:

(i) L|V ≃ OP2(2) for every fiber V ≃ P2,
(ii) |L| is nonempty with general element a smooth irreducible surface,
(iii) the only curves in the base locus of |L|, if any, are smooth quartics (with respect to

L) in the fibers.

Then any smooth surface in |L| is fibered over B with k fibers which are unions of two
conics (with respect to L) intersecting in one point, where

(26) k =
1

4
L3 ≥

h0(L) − 6

2
.
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Proof. We only have to prove (26).
Denote by V the numerical equivalence class of a fiber. Since every fiber of T over B is a

P2 we have (KT )|P2 ≃ KP2 ≃ OP2(−3) so we can choose a very ample line bundle G ∈ Pic T
such that

(27) Num T ≃ ZG ⊕ ZV, G2 · V = 1, G · V2 = V3 = 0,

(28) KT ≡ bV − 3G, b ∈ Z

and

(29) L ≡ aV + 2G, a ∈ Z.

The general element G ∈ |G| is a smooth ruled surface over B; in particular

8(1 − g) = K2
G = (KT + G)2 · G = (bV − 2G)2 · G = 4G3 − 4b,

that is

(30) G3 = 2(1 − g) + b.

Let now S ∈ |L| be any smooth surface. Clearly (as discussed in the proof of the previous
proposition) K2

S = 8(1 − g) − k. We compute, using (27) and (30),

K2
S = (KT + L)2 · L = ((a + b)V − G)2 · (aV + 2G)

= 2G3 − 3a − 4b = 2(2(1 − g) + b) − 3a − 4b

= 4(1 − g) − 3a − 2b,

so that

(31) k = 4(1 − g) + 3a + 2b.

At the same time we have

L3 = (aV + 2G)3 = 12a + 8G3(32)

= 12a + 8b + 16(1 − g) = 4k,

proving the equality in (26).
The inequality in (26) we have left to prove is L3 ≥ 2h0(L) − 12. We therefore assume,

to get a contradiction, that

(33) L3 ≤ 2h0(L) − 13.

Since the 1-dimensional part of the base locus of |L| can only consist of smooth quartics
(with respect to L) in the fibers of f , we can write, on S,

L|S ∼ H0 + (f|S)∗v ≡ H0 + cF,

for some nonnegative integer c, where v is an effective divisor of degree c on B; F denotes
the numerical equivalence class of a fiber of f|S : S −→ B; and |H0| is the moving part of
|L|S |. If the general element C0 ∈ |H0| were not reduced and irreducible, then by Bertini’s
theorem |H0| would be composed with a pencil, whence H0 ≡ mH ′

0, for some H ′
0 ∈ Pic S

with H ′
0
2 = 0 and m ≥ 2. Now 4 = F · L = F · H0 = mF · H ′

0 implies m ≤ 4. By (33) and
the short exact sequence

(34) 0 −→ OT −→ OT (L) −→ OS(L) −→ 0

(using the fact that L3 ≥ 0 by (32)) we get the contradiction

5 ≥ m + 1 ≥ h0(H0) = h0(OS(L)) ≥ h0(L) − 1 ≥ 6.

Therefore C0 is a reduced and irreducible curve (possibly singular).
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From

(35) 0 −→ OS(f∗
v) −→ OS(L) −→ OC0

(L) −→ 0.

and (34) we get, using (33):

h0(OC0
(L)) ≥ h0(OS(L)) − h0(OS(f∗

v))

≥ h0(OT (L)) − h0(B, v) − 1(36)

≥
1

2
(L3 + 13) − c − 2 =

1

2
L3 − c +

9

2
.

Moreover deg OC0
(L) = L2 · (L − cV) = L3 − cL2 · V = L3 − 4c, so that

deg OC0
(L) − 2(h0(OC0

(L)) − 1) ≤ L3 − 4c − (L3 − 2c + 7) = −2c − 7 < 0.

By Clifford’s theorem on singular curves (see the appendix of [EKS]) we must therefore
have

(37) h1(OC0
(L)) = 0.

Also note that since T is a projective bundle over a smooth curve of genus g, we have

(38) h0(OT ) = 1, h1(OT ) = g, h2(OT ) = h3(OT ) = 0.

From Riemann-Roch on S and the fact that h2(OS(f∗
v)) = h0(KS − f∗

|Sv) = 0 (since F

is nef with F.(KS − f∗
v) = F.(KS − cF ) = −2) we find

h1(OS(f∗
v)) = −χ(OS(f∗

v)) + h0(OS(f∗
v)) + h2(OS(f∗

v))(39)

= −
1

2
cF · (cF − KS) + g − 1 + h0(OS(f∗

v))

≤ −c + g − 1 + c + 1 = g.

Combining all (34)-(39) we find

h1(L) ≤ h1(OT ) + h1(OS(L))(40)

≤ h1(OT ) + h1(OS(f∗
v)) + h1(OC0

(L))

≤ g + g + 0 = 2g,

together with

(41) h2(L) = h3(L) = 0.

From (28)-(30), (34), (38) and Riemann-Roch on S, we get

χ(L) = χ(OS(L)) + χ(OT ) =
1

2
OS(L) ·

(

OS(L) − KS

)

+ χ(OS) + χ(OT )

=
1

2

(

L3 − L2 · (KT + L)
)

+ χ(OS) + χ(OT ) = −
1

2
L2 · KT + 2(1 − g)

= −
1

2
(aV + 2G)2 · (bV − 3G) + 2(1 − g) = 14(1 − g) + 6a + 4b.

Comparing with (32) we see that

L3 = 2χ(L) − 12(1 − g),

whence, using (40) and (41),

L3 = 2
(

h0(L) − h1(L) + h2(L) − h3(L)
)

− 12(1 − g)

≥ 2
(

h0(L) − 2g
)

− 12(1 − g) = 2h0(L) − 12 + 8g ≥ 2h0(L) − 12,
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contradicting (33).
This shows that (33) cannot hold, proving (26). �

Example 3.4. As in Example 2.5 take X = P2 ×P1 and H := p∗OP2(2)⊗ q∗OP1(a). Then
we have an embedding given by |H|:

P2 × P1 −→ P6(a+1)−1

A hyperplane section of X in P6(a+1)−1 has equation
∑

i,j=0,1,2,0≤k≤a

lijkxixjy
k
0ya−k

1 = 0,

where (x0 : x1 : x2) are the coordinates on P2 and (y0 : y1) are the coordinates on P1

and lijk are coefficients. The section is degenerate on some Veronese surface (P2,OP2(2))
if the determinant of the matrix of the coefficients of the xixj is zero. This determinant
is a polynomial of degree 3a in y0, y1, hence in general we find 3a distinct zeros. This

means that a general hyperplane section has 3a = 6(a+1)−1−5
2 degenerate fibers, which is

the smallest possible number of degenerate fibers for a terminal Veronese fibration as stated
in Proposition 3.2.

Proofs of Propositions 0.4 and 2.4. We note that by Proposition 3.2 the only statement
left to prove in Proposition 0.4 is a special case of Proposition 2.4.

As in Proposition 2.4 let (X,H) be a pair consisting of a terminal Q-factorial threefold
X and a globally generated, big line bundle H on X, with d := d(X,H) and n := n(X,H).

Assume that a ♯-minimal model (X♯,H♯) is of type (II) in Theorem 1.2(v), i.e. a terminal
Veronese fibration over a smooth curve B of genus g.

Let f : S −→ S♯ be as in Theorem 1.2(iii). We have n♯ := dim |H♯| ≥ dim |H| = n by
Lemma 1.5(a). By Proposition 3.2, S♯ is fibered over B with general fiber a smooth quartic

and k ≥ n♯−5
2 fibers being a union of two rational curves intersecting in one point, which

are both (−1)-curves. Therefore

(42) K2
S♯ = 8(1 − g) − k ≤ 8(1 − g) −

n♯ − 5

2
≤ 8(1 − g) −

n − 5

2
.

We want to show that d ≥ 2n − 10. Assume, to get a contradiction, that

(43) d ≤ 2n − 11.

Note that ρ := ρ(X,H) = 2
3 , so we can apply Lemma 1.5(b). Let l be the total number

of irreducible curves contracted by f . Then K2
S = K2

S♯ − l. Pick any smooth irreducible
curve D ∈ |OS(H)|. Then by (3), (10) and (42) we have

0 ≤ 4l + (D + 2KS)2 = 4l + 4K2
S + 4KS · D + D2

≤ 4l + 4
(

8(1 − g) −
n − 5

2
− l

)

+ 4
(

d − 2n + 2
)

+ d

= 32(1 − g) − 2(n − 5) + 4d − 8n + 8 + d

= 32(1 − g) + 5d − 10n + 18 ≤ 5d − 10n + 50 = 5(d − 2n + 10),

contradicting (43).
We have therefore proved that d ≥ 2n − 10 and this finishes the proofs of Propositions

0.4 and 2.4. �
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4. Final Remarks

To conclude, we remark that a closer look at the proofs of of Propositions 0.4 and 2.4
shows that if we assume only d < 2n−4 instead of (43), we get g = 0 as the only possibility.
This shows that:

A three-dimensional terminal Veronese fibration over a smooth curve of genus g > 0
must satisfy d ≥ 2n − 4.

Consequently:
If a pair (X,H) consisting of a terminal Q-factorial threefold X and a globally generated,

big line bundle H on X has a ♯-minimal model being of type (II) in Theorem 1.2(v) over a
smooth curve of genus g > 0, then d ≥ 2n − 4.

If now (X♯,H♯) is a ♯-minimal model of a pair (X,H) consisting of a terminal Q-factorial
threefold X and a globally generated big line bundle H, then H♯ is still big and nef by
Lemma 1.5(a), so that h1(OX) = h1(OS) = h1(OS♯) = h1(OX♯). We have seen that this is
zero if X♯ is of type (I) in Theorem 1.2(v) and equal to g, the genus of B, if X♯ is of type
(II) in Theorem 1.2(v).

We have therefore obtained an improvement of [M2, Thm. 5.8] (cf. Theorem 1.2(v)):

Proposition 4.1. Let (X,H) be a pair consisting of a terminal Q-factorial threefold X
and a globally generated big line bundle H on X. Set d := H3 and n := h0(X,H) − 1.

If d < 2n − 10 (resp. d < 2n − 4 and h1(OX) > 0), then (X♯,H♯) is of one of the types
(i)-(iv) (resp. (ii)-(iv)) below:

(i) (P3,OP3(3)) (with (d, n) = (27, 19)),
(ii) a quadric bundle with at most cA1 singularities of type f = x2 + y2 + z2 + tk, for

k ≥ 2, and H♯
|F ∼ OF (1) for every fiber F ,

(iii) (P(E),O(1)) where E is a rank 3 vector bundle over a smooth curve,
(iv) (P(E),O(1)) where E is a rank 2 vector bundle over a surface of negative Kodaira

dimension.

Consequently we have the following slight improvement of Theorem 0.1 and Corollary
0.2:

Corollary 4.2. Let (X,H) be a pair consisting of a reduced and irreducible k-dimensional
variety X, k ≥ 3, and a globally generated line bundle H on X. Set d := Hk and n =
h0(X,H) − 1.

If h1(OX̃) > 0 for a resolution of singularities X̃ of X and d < 2(n − k) + 2, then X is
uniruled of H-degree one.

Proof. In the proof of Theorem 0.1, use Proposition 4.1 in place of Theorem 1.2(v). Then,
in the proof of Corollary 0.2, note that h1(OXi

) = h1(OXi−1
) as Hi is big and nef. �
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