Stability of Halphen pencils of index two

Aline Zanardini

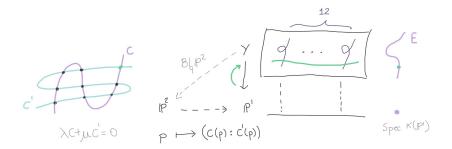
Leiden University a.zanardini@math.leidenuniv.nl

Second ECOS-ANID workshop in AG July 20, 2021

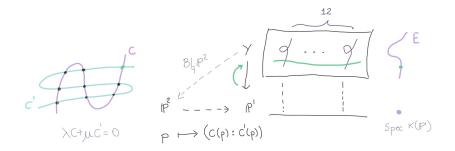
Plan for the talk:

- ▶ Motivation & overview of the problem
- ▶ The mathematical setup
- ▶ Main results
- ► Worked-out example

Motivation & overview of the problem



Motivation & overview of the problem



 $\begin{array}{rcl} \mbox{Pencils of plane cubics} &\leftrightarrow & \mbox{RES with section} \\ & & ??? &\leftrightarrow & \mbox{RES with a multiple fiber} \end{array}$

Miranda's work (1980)

(GIT) stability of pencils of plane cubics in terms of the types of singular fibers in the associated RES.

Miranda's work (1980)

(GIT) stability of pencils of plane cubics in terms of the types of singular fibers in the associated RES.

(Z.)

(GIT) Stability of Halphen pencils of index two in terms of \ldots

Some Background

Definition

A smooth rational surface Y is called a **rational elliptic surface** (RES) if it admits a genus one fibration $f : Y \to \mathbb{P}^1$ which is relatively minimal.

Some Background

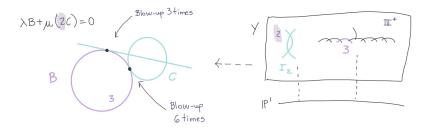
Definition

A smooth rational surface Y is called a **rational elliptic surface** (RES) if it admits a genus one fibration $f : Y \to \mathbb{P}^1$ which is relatively minimal.

Proposition (e.g. Dolgachev & Cossec)

Given any RES $f: Y \to \mathbb{P}^1$, there exists $m \ge 1$ and a birational map $\pi: Y \to \mathbb{P}^2$ so that $f \circ \pi^{-1}$ is a **Halphen pencil** (of index m) which can be written as $\lambda B + \mu(mC) = 0$, where C is a cubic.

Example (Z.)



The GIT setup

Definition

Let G be a reductive group acting on a projective variety X. Choose an ample line bundle \mathcal{L} (on X) together with a G-linearization. Then the associated GIT quotient is the projective variety:

$$X//G \doteq Proj \oplus_{n \ge 0} H^0(X, \mathcal{L}^{\otimes n})^G$$

The GIT setup

Definition

Let G be a reductive group acting on a projective variety X. Choose an ample line bundle \mathcal{L} (on X) together with a G-linearization. Then the associated GIT quotient is the projective variety:

$$X//G \doteq Proj \oplus_{n \ge 0} H^0(X, \mathcal{L}^{\otimes n})^G$$

- ▶ The natural quotient map $\pi : X \to X//G$ is only rational. It is not defined at the points where all G-invariant functions vanish. These "bad points" are called unstable, and we remove them.
- ▶ Points where π is defined are called semistable.
- ▶ Points $x \in X^{ss}$ whose orbits $G \cdot x$ are closed in X^{ss} and of maximal dimension are called stable.

Since G acts linearly on $X \subset \mathbb{P}^n$, the action lifts to the affine cone $\tilde{X} \subset \mathbb{C}^{n+1}$ and we have the following topological criterion:

- Since G acts linearly on $X \subset \mathbb{P}^n$, the action lifts to the affine cone $\tilde{X} \subset \mathbb{C}^{n+1}$ and we have the following topological criterion:
 - Given $x \in X$ choose a lift $\tilde{x} \in \tilde{X}$. Then
 - i) x is semistable if and only if $0 \notin \overline{G \cdot \tilde{x}}$
 - ii) x is stable if and only if $G \cdot \tilde{x}$ is closed and $G_{\tilde{x}}$ is finite

Since G acts linearly on $X \subset \mathbb{P}^n$, the action lifts to the affine cone $\tilde{X} \subset \mathbb{C}^{n+1}$ and we have the following topological criterion:

• Given $x \in X$ choose a lift $\tilde{x} \in \tilde{X}$. Then

- i) x is semistable if and only if $0 \notin \overline{G \cdot \tilde{x}}$
- ii) x is stable if and only if $G \cdot \tilde{x}$ is closed and $G_{\tilde{x}}$ is finite
- When $G = \mathbb{C}^{\times}$, then the action amounts to a finite dimensional representation $\lambda : \mathbb{C}^{\times} \to GL(V)$, where $V = \oplus V_i$ and on each one-dimensional space V_i we have $\lambda(t) \cdot v = t^i v$

- Since G acts linearly on $X \subset \mathbb{P}^n$, the action lifts to the affine cone $\tilde{X} \subset \mathbb{C}^{n+1}$ and we have the following topological criterion:
 - Given $x \in X$ choose a lift $\tilde{x} \in \tilde{X}$. Then
 - i) x is semistable if and only if $0 \notin \overline{G \cdot \tilde{x}}$
 - ii) x is stable if and only if $G \cdot \tilde{x}$ is closed and $G_{\tilde{x}}$ is finite
- When G = C[×], then the action amounts to a finite dimensional representation λ : C[×] → GL(V), where V = ⊕V_i and on each one-dimensional space V_i we have λ(t) ⋅ v = tⁱv
- ► It turns out this is the typical situation (<u>Hilbert-Munford</u> criterion)

GIT stability of pencils of plane sextics

• Here
$$n = \binom{6+2}{2}$$
 and $N = \binom{n}{2} - 1$

▶ A pencil $\mathcal{P} \in \mathscr{P}_6$, with generators $C_f : \sum f_{ij} x^i y^j z^{6-i-j} = 0$ and $C_g : \sum g_{ij} x^i y^j z^{6-i-j} = 0$, has Plücker coordinates given by all the 2 × 2 minors:

$$m_{ijkl} \doteq \begin{vmatrix} f_{ij} & f_{kl} \\ g_{ij} & g_{kl} \end{vmatrix}$$

A normalized one-parameter subgroup $t \mapsto \begin{pmatrix} t^{a_x} & 0 & 0 \\ 0 & t^{a_y} & 0 \\ 0 & 0 & t^{a_z} \end{pmatrix}$ acts on the Plücker coordinates m_{ijkl} of a pencil \mathcal{P} as follows:

 $m_{ijkl} \mapsto t^{r_{ijkl}} \cdot m_{ijkl}$

where $r_{ijkl} \doteq a_x(i+k) + a_y(j+l) + a_z(12 - i - k - j - l).$

A normalized one-parameter subgroup $t \mapsto \begin{pmatrix} t^{a_x} & 0 & 0 \\ 0 & t^{a_y} & 0 \\ 0 & 0 & t^{a_z} \end{pmatrix}$ acts on the Plücker coordinates m_{ijkl} of a pencil \mathcal{P} as follows:

$$m_{ijkl} \mapsto t^{r_{ijkl}} \cdot m_{ijkl}$$

where
$$r_{ijkl} \doteq a_x(i+k) + a_y(j+l) + a_z(12 - i - k - j - l).$$

Definition

$$\omega(\mathcal{P},\lambda) \doteq \min\{(a_x - a_z)(i+k) + (a_y - a_z)(j+l) : m_{ijkl} \neq 0\}$$

Hilbert-Mumford Criterion

A pencil $\mathcal{P} \in \mathscr{P}_6$ is unstable (resp. nonstable) if and only if there exists λ such that

$$\frac{\omega(\mathcal{P},\lambda)}{(a_x - a_z) + (a_y - a_z)} > 4 \quad (\text{resp.} \ge)$$

Hilbert-Mumford Criterion

A pencil $\mathcal{P} \in \mathscr{P}_6$ is unstable (resp. nonstable) if and only if there exists λ such that

$$\frac{\omega(\mathcal{P},\lambda)}{(a_x - a_z) + (a_y - a_z)} > 4 \quad (\text{resp.} \ge)$$

Similarly, we can define

$$\omega(f,\lambda) \doteq \min\{(a_x - a_z)i + (a_y - a_z)j : f_{ij} \neq 0\}$$

and we can compare $\omega(\mathcal{P}, \lambda)$ and $\omega(f, \lambda)$ for $C_f \in \mathcal{P}$

As a consequence we can prove:

Theorem 1(Z.)

Assume \mathcal{P} contains a curve C_f such that $lct(\mathbb{P}^2, C_f) = \alpha$. If \mathcal{P} is unstable (resp. not stable), then \mathcal{P} contains a curve C_g such that $lct(\mathbb{P}^2, C_g) < \frac{\alpha}{4\alpha - 1}$ (resp. \leq).

$$lct(X,\Delta) \doteq \sup \{t \in Q_{x_0}; (X, t\Delta) \text{ is } l < c \}$$

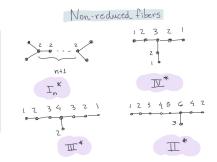
$$\in Q \land (o, l]$$

Stability criteria

If \mathcal{P} is a Halphen pencil of index two and Y denotes the corresponding RES, we can prove the following:

Theorem 2 (Z.)

If \mathcal{P} is nonstable, then Y contains a non-reduced fiber. Further, if \mathcal{P} is unstable, then Y contains a fiber of type II^*, III^* or IV^* .



Since $lct(\mathbb{P}^2, 2C) = 1/2$ we can take $\alpha = 1/2$ in Theorem 1.

Second ECOS-ANID workshop in AG July 20, 2021

Since $lct(\mathbb{P}^2, 2C) = 1/2$ we can take $\alpha = 1/2$ in Theorem 1. Therefore, if \mathcal{P} is nonstable (resp. unstable) we can find a curve B(g=0) in \mathcal{P} such that $lct(\mathbb{P}^2, B) \leq \frac{1}{2}$ (resp. <).

Since $lct(\mathbb{P}^2, 2C) = 1/2$ we can take $\alpha = 1/2$ in Theorem 1. Therefore, if \mathcal{P} is nonstable (resp. unstable) we can find a curve B(g=0) in \mathcal{P} such that $lct(\mathbb{P}^2, B) \leq \frac{1}{2}$ (resp. <). In any case the corresponding fiber (to B), say F, must be non-reduced because for reduced fibers the following bound holds: $\frac{1}{2} < lct(\mathbb{P}^2, B)$.

Since $lct(\mathbb{P}^2, 2C) = 1/2$ we can take $\alpha = 1/2$ in Theorem 1. Therefore, if \mathcal{P} is nonstable (resp. unstable) we can find a curve B(g=0) in \mathcal{P} such that $lct(\mathbb{P}^2, B) \leq \frac{1}{2}$ (resp. <). In any case the corresponding fiber (to B), say F, must be non-reduced because for reduced fibers the following bound holds: $\frac{1}{2} < lct(\mathbb{P}^2, B)$. Now, for non-reduced fibers we have the following inequality $lct(Y, F) \leq lct(\mathbb{P}^2, B)$.

Since $lct(\mathbb{P}^2, 2C) = 1/2$ we can take $\alpha = 1/2$ in Theorem 1. Therefore, if \mathcal{P} is nonstable (resp. unstable) we can find a curve B(g=0) in \mathcal{P} such that $lct(\mathbb{P}^2, B) \leq \frac{1}{2}$ (resp. <). In any case the corresponding fiber (to B), say F, must be non-reduced because for reduced fibers the following bound holds: $\frac{1}{2} < lct(\mathbb{P}^2, B)$. Now, for non-reduced fibers we have the following inequality $lct(Y, F) \leq lct(\mathbb{P}^2, B)$. Thus, whenever \mathcal{P} is unstable F cannot be of type I_n^* .

Fof type
$$J_n^* \Rightarrow let(Y,F) = \frac{1}{2}$$

What about the converse?

A sample result:

Theorem 3 (Z.)

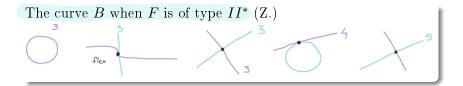
A Halphen pencil \mathcal{P} is unstable if and only if Y contains a fiber F of type II^* and $B \doteq \pi(F)$ is unstable.

What about the converse?

A sample result:

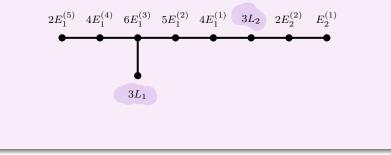
Theorem 3 (Z.)

A Halphen pencil \mathcal{P} is unstable if and only if Y contains a fiber F of type II^* and $B \doteq \pi(F)$ is unstable.



Example (two triple lines)

Let C be a smooth cubic. Let L_1 be an inflection line of C at a point P_1 and let L_2 be a line through P_1 which is tangent to C at another point P_2 . Then the pencil \mathcal{P} generated by $B = 3L_1 + 3L_2$ and 2C is a Halphen pencil of index two which yields a fiber of type II^* :



Example (Continued)

We can find coordinates in \mathbb{P}^2 so that B is given $x^3y^3 = 0$ and C is given by $z^2x - y(y - x)(y - \alpha x) = 0$, where $\alpha \in \mathbb{C} \setminus \{0, 1\}$. Thus, the only (possibly) non-zero Plücker coordinates of \mathcal{P} are

 $m_{0633}, m_{1333}, m_{1533}, m_{2033}, m_{2233}, m_{2433}, m_{3133}, m_{3342}$

which implies \mathcal{P} is unstable:

Example (Continued)

We can find coordinates in \mathbb{P}^2 so that B is given $x^3y^3 = 0$ and C is given by $z^2x - y(y - x)(y - \alpha x) = 0$, where $\alpha \in \mathbb{C} \setminus \{0, 1\}$. Thus, the only (possibly) non-zero Plücker coordinates of \mathcal{P} are

 $m_{0633}, m_{1333}, m_{1533}, m_{2033}, m_{2233}, m_{2433}, m_{3133}, m_{3342}$

which implies \mathcal{P} is unstable: Let $a_x = 1, a_y = a, a_z = -1 - a$, for some $a \in \mathbb{Q} \cap (-1/3, 1]$. Then

$$\begin{split} \omega(\mathcal{P},\lambda) &= \min\{(a_x - a_z)(i+k) + (a_y - a_z)(j+l) \; ; \; m_{ijkl} \neq 0\} \\ &= \min\{(2+a)(i+k) + (1+2a)(j+l) \; ; \; m_{ijkl} \neq 0\} \\ &= 3(5+7a) \\ &\Rightarrow \frac{\omega(\mathcal{P},\lambda)}{(a_x - a_z) + (a_y - a_z)} = \frac{3(5+7a)}{3+3a} = \frac{5+7a}{1+a} > 4 \end{split}$$

Halphen pencils of higher index

Let \mathcal{P} be a Halphen pencil of index m > 1

Theorem 4 (Z.)

If \mathcal{P} contains a curve C_f such that $m_p(C_f) = 3m$ at some base point p, then \mathcal{P} is not stable.

Theorem 5 (Z.)

If \mathcal{P} is not stable, then Y contains a non-reduced fiber (type I_n^*, II^*, III^* or IV^*).

References

- ▶ G-H Halphen. Sur les courbes planes du sixième degré à neuf points doubles (1882).
- R. Miranda. On the stability of pencils of cubic curves (1980).
- A. Zanardini. ArXiv 2008.08128, ArXiv 2101.01756, ArXiv 2101.03152.
- A. Zanardini. Birational geometry of genus one fibrations and stability of pencils of plane curves. PhD thesis, University of Pennsylvania (2021).

Thank you!