Complex ball quotients and moduli spaces of some irreducible holomorphic symplectic fourfolds

Alessandra Sarti

The aim of the talk was to show a relation between the moduli space of some IHS fourfolds carrying a non-symplectic automorphism of order three and the moduli space of smooth cubic 3-folds, that was described by Allcock, Carlson and Toledo in a famous paper of 2011, [1].

1. Non-symplectic automorphisms on IHS manifolds

We start by recalling the following:

Definition 1.1. An irreducible holomorphic symplectic (IHS) manifold X is a compact, complex, Kähler manifold which is simply connected and admits a unique (up to scalar multiplication) everywhere non-degenerate holomorphic 2-form.

Assume that X is equivalent by deformation to the Hilbert scheme of n points $\operatorname{Hilb}^{[n]}(S)$, where S is a K3 surface (we will say for simplicity that X is of type $K3^{[n]}$), let $\sigma \in \operatorname{Aut}(X)$ be an automorphism, and assume that σ has prime order p. This induces an action on $H^{2,0}(X) = \mathbb{C}\omega_X$. If $\sigma^*\omega_X = \zeta\omega_X$, ζ a primitive p-root of unity, we say that σ acts non-symplectically on X.

Recall that by using the Beauville-Bogomolov-Fujiki (BBF) quadratic form on the second cohomology with integer coefficients we have an isometry $H^2(X,\mathbb{Z}) = U^{\oplus 3} \oplus E_8(-1)^{\oplus 2} \oplus \langle -2(n-1) \rangle$, where U is the hyperbolic plane and $E_8(-1)$ is the even negative definite lattice associated to the root system E_8 . So $H^2(X,\mathbb{Z})$ is a lattice of signature (3, 20) and an automorphism $\sigma \in \operatorname{Aut}(X)$ induces an isometry of $H^2(X,\mathbb{Z})$. We can consider two important sublattices

 $T=H^2(X,\mathbb{Z})=\{x\in H^2(X,\mathbb{Z})\,|\,\sigma^*(x)=x\},\qquad S=T^\perp\cap H^2(X,\mathbb{Z}),$

we call T the *invariant sublattice* and one can easily show that

 $T \subset \mathrm{NS}(X), \quad \mathrm{Trans}_X \subset S$

where NS(X) is the *Néron-Severi group* of X and $Trans_X$ the *transcendental lattice* of X. We recall that since X is projective (see [2]) then $sgn(T) = (1, \rho - 1)$ and $sgn(S) = (2, 21 - \rho)$, where $\rho = \operatorname{rank} T$. These two lattices play an important role if one wants to classify automorphisms, in fact one starts by classifying S and T. This was done in the case of n = 2 by Boissière, Camere, Sarti and Tari (see [4], [10]) and for n > 2 it is a work in progress by Camere and Cattaneo (see [6]).

Properties of S. Let X be of type $K3^{[2]}$ (i.e. X is an IHS fourfold) carrying a non–symplectic automorphism σ of prime order p, then

(1)
$$\operatorname{rank} S = m(p-1), \ m \in \mathbb{Z}_{>0}$$

in fact the action of σ^* on $S \otimes \mathbb{C}$ is by primitive roots of unity, and the discriminant group satisfies

(2)
$$S^{\vee}/S \cong (\mathbb{Z}/p\mathbb{Z})^{\oplus a}, \quad a \in \mathbb{Z}_{\geq 0}$$

where $S^{\vee} = \{ v \in S \otimes \mathbb{Q} \mid (v, z) \in \mathbb{Z}, \forall z \in S \}.$

2. A KEY EXAMPLE

Let $V \subset \mathbb{P}^5$ be a smooth cubic 4-fold, and assume that V has equation

$$x_5^3 + f_3(x_0, \dots, x_4) = 0$$

so that V is the triple cover of \mathbb{P}^4 ramified on a smooth cubic threefold C: $\{f_3(x_0, \ldots, x_4) = 0\}$. The covering automorphism is

$$\sigma: \mathbb{P}^5 \longrightarrow \mathbb{P}^5, (x_0: \ldots: x_4: x_5) \mapsto (x_0: \ldots: x_4: \zeta x_5)$$

with $\zeta = e^{\frac{2\pi i}{3}}$ so that σ has order 3. We consider now the Fano variety of lines

$$F(V) = \{ l \in Gr(1,5) \, | \, l \subset V \}$$

where Gr(1,5) is the Grassmannian variety of lines of \mathbb{P}^5 . It was shown by Beauville and Donagi (see [3]) that F(V) is of $K3^{[2]}$ type and it is $\langle 6 \rangle$ -polarized ample (i.e. there is a primitive embedding of the rank one lattice $\langle 6 \rangle$ in NS(F(V))so that the image contains an ample class). The automorphism σ on V induces an automorphism $\bar{\sigma}$ on F(V) of the same order and one can show that $\bar{\sigma}$ acts nonsymplectically. Moreover the fixed locus $F(V)^{\bar{\sigma}}$ is the Fano surface of lines F(C)of the smooth cubic threefold C, this is a surface of general type with Hodge numbers: $h^{1,0} = h^{0,1} = 5$, $h^{2,0} = h^{0,2} = 10$, $h^{1,1} = 25$. By using the topology of the fixed locus one computes in the formulas (1), (2) that m = 11 and a = 1, so that combining with results on lattices by Nikulin (see [8]) and by Rudakov-Shafarevich (see [9]) one computes that

(3)
$$S = U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \oplus A_2(-1), \qquad T = \langle 6 \rangle$$

where $A_2(-1)$ is the negative definite lattice associated to the root system A_2 .

3. A relation between V, S and $C = F(V)^{\bar{\sigma}}$

For $V \subset \mathbb{P}^5$ a smooth cubic 4-fold, recall that $H^4(V,\mathbb{Z})$ is a lattice of signature (21, 2) which is odd, unimodular (see [7]), i.e. with the usual intersection pairing it is isometric to $\langle 1 \rangle^{\oplus 21} \oplus \langle -1 \rangle^{\oplus 2}$. Let $h \in H^2(\mathbb{P}^5,\mathbb{Z})$ be the class of a hyperplane and define $\theta(V) := h_{|V|}^2 \in H^4(V,\mathbb{Z})$ then one computes $\theta(V)^2 = 3$. Take now the primitive cohomology

$$H_0^4(V,\mathbb{Z}) := \theta(V)^{\perp} \cap H^4(V,\mathbb{Z}) \cong S(-1)$$

where the last isometry is shown by Hassett in [7] and S is the lattice we defined in (3). Recall that $H^{3,1}(V)$ is one-dimensional generated by a (3, 1)-form, that we denote by v. In the case of a cubic 4-fold V as in the example above, one checks that $\sigma(v) = \zeta v$, with $\zeta = e^{\frac{2\pi i}{3}}$, so that

$$H^{3,1}(V) \subset H^4_0(V,\mathbb{Z})_{\zeta} \cong S(-1)_{\zeta}$$

where the last two spaces denote the eigenspaces for the eigenvalue ζ of the action of σ on $H_0^4(V, \mathbb{Z}) \otimes \mathbb{C}$ respectively $S(-1) \otimes \mathbb{C}$. Recall that by [1] the one-dimensional space $H^{3,1}(V)$ is called the *period point* of the smooth cubic threefold C. Let us now go back to IHS fourfolds with non-symplectic automorphism. Consider $H^{2,0}(F(V)) = \mathbb{C}\omega_{F(V)}$, since $\bar{\sigma}^*\omega_{F(V)} = \zeta\omega_{F(V)}$ then $\omega_{F(V)} \in H^2(F(V), \mathbb{Z})_{\zeta} = S_{\zeta} \subset S \otimes \mathbb{C}$ where again $H^2(F(V), \mathbb{Z})_{\zeta}$ and S_{ζ} denotes the eigenspaces with respect to ζ for the action of $\bar{\sigma}$. More precisely the period point belongs to

$$\omega_{F(V)} \in \{ [\omega] \in \mathbb{P}(S_{\zeta}) \, | \, (\omega, \bar{\omega}) > 0 \}$$

which is an open analytic subset in a 10-dimensional complex projective space. The BBF-quadratic form restricts to an hermitian form on S_{ζ} of signature (1, 10) so that by an easy computation one can see that in fact $\omega_{F(V)}$ belongs to a 10dimensional complex ball, that we denote by \mathbb{B}_{10} . On the other hand not any point in \mathbb{B}_{10} gives an IHS manifolds X of type $K3^{[2]}$ with a non-symplectic automorphism of order three. So

$$\omega_{F(V)} \in \frac{\mathbb{B}_{10} \backslash \mathcal{H}}{\Gamma} =: \Omega_{10}$$

where \mathcal{H} is a hyperplanes arrangement and Γ is an arithmetic subgroup of the group of the isometries of the lattice S. In fact Ω_{10} can be identified with the moduli space $\mathcal{M}_{\langle 6 \rangle}^{\rho,\zeta}$ of IHS of $K3^{[2]}$ type where:

- we fix the representation $\rho : \mathbb{Z}/3\mathbb{Z} \longrightarrow O(\Lambda)$, that fixes the action of the automorphism on the $K3^{[2]}$ -lattice $\Lambda := U^{\oplus 3} \oplus E_8(-1)^{\oplus 2} \oplus \langle -2 \rangle$,
- we fix the embedding of the lattice $\langle 6 \rangle$ in Λ so that the orthogonal complement is S,
- we fix the action on the holomorphic two form of the IHS manifold of K3^[2] type as the multiplication by ζ.

Observe that a priori not all X in this moduli space are of the type F(V) with the non-symplectic automorphism $\bar{\sigma}$.

We denote now by C_3^{sm} the moduli space of smooth cubic threefolds as described in [1] and we have the following result obtained in a work in progress in collaboration with S. Boissière and C. Camere, [5]:

Theorem 3.1. (1) We have an isomorphism of moduli spaces: $\mathcal{C}_3^{sm} \cong \mathcal{M}_{(6)}^{\rho,\zeta}$.

(2) Let X be of type $K3^{[2]}$ and let $\langle 6 \rangle \hookrightarrow NS(X)$ be an ample polarization. Then X admits a non-symplectic automorphism of order three with invariant lattice $\langle 6 \rangle$ if and only if $X \cong F(V)$, and V is the triple cover of \mathbb{P}^4 ramified on a smooth cubic threefold and the automorphism is induced by the covering automorphism.

The proof uses the results of [1] and in particular the description of the period point of a smooth cubic threefold that we recalled above, the study of the hyperplane arrangement \mathcal{H} and the study of the group Γ .

References

 D. Allcock, J. A. Carlson, and D. Toledo, The moduli space of cubic threefolds as a ball quotient, Mem. Amer. Math. Soc. 209, no. 985, xii + 70, (2011).

- [2] A. Beauville, Some remarks on Kähler manifolds with c₁ = 0, Classification of algebraic and analytic manifolds (Katata, 1982), 126, Progr. Math., **39**, Birkhäuser Boston, Boston, MA, 1983. 1983, pp. 1–26.
- [3] A. Beauville, and R. Donagi, La variété des droites d'une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703–706.
- [4] S. Boissière, C. Camere, and A. Sarti, Non-symplectic automorphisms of prime order on irreducible holomorphic symplectic manifolds, Kyoto J. Math. 56 (2016), no. 3, 465-499.
- [5] S. Boissière, C. Camere, and A. Sarti, Cubic threefolds and hyperkähler manifolds uniformized by the 10-dimensional complex ball, preprint 2017.
- [6] C. Camere, and A. Cattaneo, Non-symplectic automorphisms of prime order on manifolds of K3^[n] type, preprint 2017.
- [7] B. Hassett, Special cubic fourfolds, Compositio Math. 120, (2000), 1-23.
- [8] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izvestija 14 (1980), 103–167.
- [9] A. N. Rudakov, and I. R. Shafarevich, Surfaces of type K3 over fields of finite characteristic, (Russian) Current problems in mathematics, 18, 115-207, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981.
- [10] K. Tari, Automorphismes des variétés de Kummer généralisées, Thèse de doctorat, Université de Poitiers, France (2015).