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Abstract. In this paper we classify non–symplectic automorphisms of order

eight on complex K3 surfaces in case that the fourth power of the automor-

phism has only rational curves in its fixed locus. We show that the fixed locus
is the disjoint union of a rational curve and ten isolated points or it consists

in four isolated fixed points. We give examples corresponding to the case with

a rational curve in the fixed locus and to the case with only isolated points in
the fixed locus.

Introduction

In this paper we investigate purely non–symplectic automorphisms of order
eight on a complex K3 surface under certain assumptions on the fixed locus. These
automorphisms act non–trivially on H2,0(X) ' C · ωX i.e. they multiply the non–
degenerate holomorphic 2–form by a primitive 8th root of unity. The study of
non–symplectic automorphisms of prime order was completed by several authors:
Nikulin [14], Artebani, Sarti and Taki [3], [5] and [18]. If the automorphism is not
of prime order the setting is more complicated. Indeed, in this situation the purely
non–symplectic automorphism of order eight does not admit a trivial action on the
Néron–Severi group of the generic K3 surface as it does in the case of the prime
order [7, Section 11]. In the paper [19], Taki studies the case when the order of
the automorphism is a prime power and the action is trivial on the Néron–Severi
group. If we consider non–symplectic, non–trivial automorphisms of order 2b, then
by results of Nikulin we have 1 ≤ b ≤ 5. Further results can be found in a paper by
Schütt [17] in the case of automorphisms of a two–power order and in a paper by
Artebani and Sarti [5] in the case of order four. Recently in [2] Al Tabbaa, Sarti
and Taki completed the study for purely non–symplectic automorphisms of order
16. In [1] Al Tabbaa and Sarti studied the case of order eight automorphisms under
the assumption that their fourth power σ4 acts as the identity on the Néron–Severi
group and Fix(σ4) contains an elliptic curve.
This paper deals with purely non–symplectic automorphisms of order eight on K3
surfaces under the assumption that their fourth power σ4 is the identity on the
Néron–Severi group. This corresponds to the situation for the generic K3 surface
in the moduli space of K3 surfaces with a purely non–symplectic automorphism of
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order eight and fixed action on the second cohomology group with integer coeffi-
cients, see [7, Section 10]. The fixed locus Fix(σ) of such an automorphism σ is the
disjoint union of smooth curves and points. We give a complete classification of the
fixed locus and of some lattice invariants related to σ in the case that Fix(σ4) is not
empty and contains only rational curves. Let X be a K3 surface, ωX a generator of
H2,0(X) and σ ∈ Aut(X) such that σ∗(ωX) = ζ8ωX , where ζ8 denotes a primitive
8th root of unity. We denote by kσ the number of smooth rational curves fixed by
σ and by Nσ the numbers of isolated points in Fix(σ). We denote furthermore by
S(σ4) the invariant lattice for the action of σ4 on the second cohomology group
with integer coefficients. We prove the following result:

Theorem 0.1. Let σ be a purely non–symplectic automorphism of order 8 on
a K3 surface X with Pic(X) = S(σ4). Suppose that Fix(σ4) is not empty and it is
the union of smooth rational curves. Then kσ ∈ {0, 1} moreover

• if kσ = 1 then Nσ = 10,
• if kσ = 0 then Nσ = 4.

The paper is organized as follows. In Section 1 we recall basic facts on purely
non–symplectic automorphisms acting on K3 surfaces. In Section 2 we give several
properties of the fixed locus of such automorphisms in particular in the case that
the automorphism has even order. The Section 3 is devoted to the proof of our main
theorem 0.1. In Table 2 we list in detail all the possibilities for the fixed locus and
for some invariants characterizing the action of the automorphism on the second
cohomology group with integer coefficients. We have in total four possibilities: one
for kσ = 1 and three for kσ = 0. By using elliptic fibrations we give examples for
kσ = 1 and for kσ = 0 in the case that the number of fixed curves by σ2 is three,
this is done in Section 5 after recalling in Section 4 some basic notions on elliptic K3
surfaces. We do not know if the remaining two cases in Table 2 exist. In any case by
using the invariants of the Table 2 one computes that the rank of the Néron–Severi
group is 18 or 14 so that by e.g. [10, Lemma 1.5] all these K3 surfaces admits an
elliptic fibration. This could certainly be helpful in finding the remaining examples.

Acknowledgements: The second author was supported by the Laboratoire
International LIA LYSM to visit the University of Poitiers in May 2019. We thank
Paola Comparin for useful comments and the anonymous referee for a very careful
reading of the paper and for the several useful remarks, which improved the paper.

1. Basic facts

Let X be a K3 surface and σ ∈ Aut(X) a non–symplectic automorphism
of order 8. We assume that σ∗(ωX) = ζ8ωX where ζ8 is a primitive 8th root
of unity. Such a σ is called purely non–symplectic, for simplicity we just call it
non–symplectic, always meaning that the action on the holomorphic two–form is
by a primitive 8th root of unity.
We denote by rσj , lσj ,mσj and m1 for j = 1, 2, 4 the rank of the eigenspace of
(σj)∗ in H2(X,C) relative to the eigenvalues 1, −1, i and ζ8 respectively (clearly
mσ4 = 0). We recall the invariant lattice:

S(σj) = {x ∈ H2(X,Z)|(σj)∗(x) = x},
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and its orthogonal complement

T (σj) = S(σj)⊥ ∩H2(X,Z).

Since the automorphism acts purely non–symplectically, X is projective, see [12,
Theorem 3.1], so that if we denote rkS(σj) = rσj , we have that rσj > 0 for all
j = 1, 2, 4, in fact one can always find an invariant ample class. On the other hand,
one can easily show that S(σj) ⊂ Pic(X) for j = 1, 2, 4 so that the transcendental
lattice satisfies TX ⊆ T (σj) for j = 1, 2, 4.

Remark 1.1. It is a straightforward computation that the invariants rσj , lσj ,mσj

and m1 with j = 1, 2, 4 satisfy the following relations:

rσ2 = rσ + lσ;
lσ2 = 2mσ;
mσ2 = 2m1.

rσ4 = rσ + lσ + 2mσ;
lσ4 = 4m1;

We remark that the invariants lσ2 and mσ2 are even numbers.

The moduli space for K3 surfaces carrying a non–symplectic automorphism of
even order n > 2, with a given action on the K3 lattice is known to be a complex
ball quotient of dimension q− 1 where q is the dimension of the eigenspace V of σ∗

in H2(X,C) relative to the eigenvalues ζn = e
2πi
n , see [7, §11]. The complex ball is

given by:
B = {[w] ∈ P(V ) : (w,w) > 0}.

If n is even V is the ζn eigenspace of σ∗ in T (σn/2)⊗C. This implies that the Néron–
Severi group of a K3 surface corresponding to the generic point in the moduli space
equals S(σn/2) see [7, Theorem 11.2].

2. The fixed locus

We denote by Fix(σj), j = 1, 2, 4 the fixed locus of the automorphism σj :

Fix(σj) = {x ∈ X| σj(x) = x}.
Clearly Fix(σ)⊂ Fix(σ2) ⊂ Fix(σ4). To describe the fixed locus of order 8 non–
symplectic automorphisms we start recalling the following result about non–symplectic
involutions, see [14, Theorem 4.2.2].

Theorem 2.1. Let τ be a non–symplectic involution on a K3 surface X. The
fixed locus of τ is either empty, the disjoint union of two elliptic curves or the
disjoint union of a smooth curve of genus g ≥ 0 and k smooth rational curves.
Moreover, its fixed lattice S(τ) ⊂ Pic(X) is a 2–elementary lattice with determinant
2a such that:

• S(τ) ∼= U(2)⊕ E8(2) iff the fixed locus of τ is empty;
• S(τ) ∼= U ⊕ E8(2) iff τ fixes two elliptic curves;
• 2g = 22− rkS(τ)− a and 2k = rkS(τ)− a otherwise.

Since S(τ) is 2–elementary its discriminant group AS(τ) = S(τ)∨/S(τ) '
(Z/2Z)⊕a, a ∈ Z>0. We introduce the invariant δS(τ) of S(τ) by putting δS(τ) = 0

if x2 ∈ Z for any x ∈ AS(τ) and δS(τ) = 1 otherwise. By [13, Theorem 3.6.2],
and [16, §1] S(τ) is uniquely determined by the invariant δS(τ), by the rank, the
signature and the invariant a. The situation is summarized in Figure 1 from [15, §4].
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Figure 1. Order 2

We recall a result about non–symplectic automorphisms of order four on a K3
surface. These results are discussed in [4], see also the Appendix of [2].

Theorem 2.2. Let X be a K3 surface and γ be a purely non–symplectic au-
tomorphism of order four acting on it, with Pic(X) = S(γ2). If Fix(γ) contains a
smooth rational curve and all curves fixed by γ2 are rational, then the invariants
associated to γ are as in Table 1. All cases in the table do exist. Here m denotes the
multiplicity of the eigenvalue i; r denotes the multiplicity of the eigenvalue 1; l the
multiplicity of the eigenvalue −1 and aγ the number of rational curves exchanged
by γ and fixed by γ2. Moreover N denotes the number of isolated fixed points and
k denotes the number of fixed rational curves.

m r l N k aγ
4 10 4 6 1 0
3 13 3 8 2 0

11 5 6 1 1
2 16 2 10 3 0

14 4 8 2 1
12 6 6 1 2

1 19 1 12 4 0
13 7 6 1 3

Table 1. The case g = 0

Remark 2.3. For each p ∈ Fix(σ), there exists a σ4–fixed smooth rational
curve R, such that p ∈ R.

With the notation and the assumptions of the previous remark we have

Lemma 2.4. The curve R is σ–invariant.
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Proof. First of all we notice that since R is fixed by σ4 then also σ(R) is fixed
by σ4. If R was not σ–invariant this means that R is sent to another rational curve
σ(R) which meets R in p. This is impossible since these two curves are fixed by σ4

and the fixed locus of an involution is smooth by Theorem 2.1. �

Observe now that in a neighborhood of a fixed point p of σ the action can be
linearized, see e.g. [12, Section 5]. We can assume p = (0, 0) and we can find z1 and
z2 local coordinates in a neighborhood of p such that the everywhere non–degenerate
holomorphic 2–form can be written as dz1∧dz2. Since the automorphism is of finite
order locally it can be diagonalized and we know that σ∗(dz1∧dz2) = ζ8(dz1∧dz2),
for this reason the product of the eigenvalues with respect to z1 and z2 is equal
to ζ8. We get the following possibilities up to permutation of the coordinates (but
this does not play any role in the classification):

A1,0 =

(
ζ8 0
0 1

)
, A2,7 =

(
i 0
0 ζ78

)
, A3,6 =

(
ζ38 0
0 ζ68

)
, A4,5 =

(
−1 0
0 ζ58

)
.

In the first case the point belongs to a smooth fixed curve, since we have an
eigenvalue which is equal to 1. In the other three cases it is an isolated fixed point.
We say that an isolated point p ∈ Fix(σ) is of type (t, s) if the local action at p
is given by At,s. We denote by nt,s the number of isolated fixed points by σ with
matrix At,s.

We further denote by Nσj , kσj , j = 1, 2, 4 the number of isolated points and
smooth rational curves in Fix(σj). We observe that Nσ4 = 0 since σ4 only fixes
curves or it is empty as explained in Theorem 2.1. We recall [1, Proposition 2.2] :

Proposition 2.5. Let σ be a non–symplectic automorphism of order 8 acting
on a K3 surface X. Then Fix(σ) is never empty nor it can be the union of two
smooth elliptic curves. It is the disjoint union of smooth curves and Nσ ≥ 2 isolated
points. We denote α =

∑
K⊂Fix(σ)

(1− g(K)) and the following relations hold:

n2,7 + n3,6 = 2 + 4α, n4,5 + n2,7 − n3,6 = 2 + 2α, Nσ = 2 + rσ − lσ − 2α.

The fixed locus of such an automorphism σ is then

(1) Fix(σ) = C ∪R1 ∪ · · · ∪Rk ∪ {p1, . . . , pN}
where C is a smooth curve of genus g ≥ 0 and Rj , j = 1, . . . , k are disjoint smooth
rational curves.

We recall the following remarks and lemmas which are important in the study
of the fixed locus of σ.

Remark 2.6. A non–symplectic automorphism σ of order 8 acts on a set of
smooth rational curves of X which are fixed by σ4 either trivially, i.e. each smooth
rational curve is σ–invariant, possibly pointwise fixed by σ, or it exchanges smooth
rational curves two by two, or finally σ permutes four rational curves.

Lemma 2.7. Four cyclically permuted smooth rational curves by a non–symplectic
automorphism σ of order 8 on a K3 surface X are either σ4–invariant (not point-
wise fixed), or pointwise fixed by σ4.
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Proof. We can prove it simply as follows. Let Ci, i ∈ {1, . . . , 4} be four
smooth rational curves such that σ(Ci) = Ci+1, i = 1, 2, 3 and σ(C4) = C1, and as-
sume that C1 is invariant by σ4, then σ4(C2) = σ4(σ(C1)) = σ(σ4(C1)) = σ(C1) =
C2. In particular if C1 is pointwise fixed, then one proves in a similar way that
C2 is pointwise fixed. A similar proof holds also for C3 and C4, so we get the
statement. �

We denote by 2aσ the number of smooth rational curves exchanged by σ and
fixed by σ2, and by 4sσ the number of smooth rational curves cyclic permuted by
σ and pointwise fixed by σ4 (and clearly they are interchanged by σ2 two by two).
Let now aσ2 be the number of the pairs of rational curves interchanged by σ2 and
pointwisely fixed by σ4, then observe that 2aσ2 = 4sσ and so aσ2 ∈ 2Z.

An important remark about the local behaviour of σ2 in a neighborhood of a
fixed point is the following:

Remark 2.8. The isolated fixed points by a non–symplectic automorphism σ
of type (2, 7) and (3, 6) are also isolated fixed points in Fix(σ2). The points of type
(4, 5) in Fix(σ) are contained in a smooth fixed curve by σ2. In fact the action of

σ2 at such points is given by the matrix

(
1 0
0 ζ28

)
which implies that these points

belong to a smooth curve in Fix(σ2). For this reason we can say that if there exist
points of (4, 5)–type then kσ2 > kσ.

The following is a result about local actions of σ at a point on a rational curve.
With the same notation of Remark 2.3 if R is σ–invariant (not pointwise fixed)
each action of σ on R has two fixed points. There are some restrictions about the
possible actions of σ, in particular if we have an action on one of the fixed points
then the action on the other point is determined. We recall the following result
which is stated in a similar way in [6, Lemma 8.1].

Proposition 2.9. Let σ be a non–symplectic automorphism of order 8 on a
K3 surface X and suppose that the fixed locus of the involution σ4 is the union of
smooth rational curves. Then if p1 is an isolated fixed point for σ and it is contained
on a rational curve R fixed by σ4, there exists another fixed point p2 for σ on R. If
the local action in p1 is of (2, 7)–type then the local action in p2 is of (3, 6)–type and
vice–versa. If the action in p1 is of (4, 5)–type then the action in p2 is of (4, 5)–type.

Proof. We know that the action of a non–trivial finite order automorphism
on a rational curve has two fixed points. Let p1 and p2 be the two fixed points on
R. We can assume that the two fixed points are p1 = (1 : 0) and p2 = (0 : 1).
Hence if z is a local coordinate for p1 on the rational curve R ' P1 then 1

z is a local

coordinate for p2 on R. So that if σ acts by z 7→ ζj8z, 0 ≤ j ≤ 7 at p1 then at p2 it

acts as 1
z 7→

1

ζj8z
= ζ8−j8

1
z . Observe that j = 0 is not possible otherwise R would be

pointwise fixed by σ. Also j = 1, 3, 5, 7 are not possible. In fact R is fixed by σ4 so
that we must have ζ4j8 = (−1)j = 1 which implies j = 2, 4, 6. For these j’s one can
compute that the local action at p1 and p2 (as points on X) can be diagonalized
with (t, s) as in the statement (up to permutation of the coordinates). �



ORDER EIGHT 7

3. The classification

Our goal is to give a classification of non–symplectic automorphisms of order
eight under the assumption that their fourth power fixes only rational curves. Let
σ be such an automorphism, then

Fix(σ4) = R′1 ∪ · · · ∪R′T

where the R′i’s are smooth rational disjoint curves. This implies that:

Fix(σ) = R1 ∪ · · · ∪Rkσ ∪ {p1, . . . , pN}

which means that in the description of equation (1) we have g(C) = 0.

Theorem 3.1. Let σ be a non–symplectic automorphism of order eight acting
on a K3 surface X with Pic(X) = S(σ4). Suppose that Fix(σ4) is not empty and
it is the union of smooth rational curves. Then kσ ∈ {0, 1} and the invariants of σ
are as in Table 2.

Proof. Consider p1 a fixed isolated point for σ. From Remark 2.3 there exists
a smooth rational curve in Fix(σ4) such that p1 ∈ R′i. From Remark 2.4, R′i is
σ–invariant. Since a finite order automorphism of a rational curve has two fixed
points, there exists another fixed point for σ on R′i : we call it p2. We conclude
that Nσ is even. From what we know about the local behaviour of σ at a fixed
point, see Proposition 2.9, we know that if a fixed point is of (2, 7)–type then the
other fixed point on the same rational curve R′i is of (3, 6)–type. If there is an
action of (4, 5)–type on p1 then there is an action of (4, 5)–type on p2. By these
considerations we obtain:

n2,7 = n3,6

n4,5 ∈ 2Z.
Using Proposition 2.5 we obtain:

α = kσ

n3,6 = n2,7 = 1 + 2kσ ≥ 1

n4,5 = 2 + 2kσ ≥ 2

Thanks to Remark 2.8 the number of curves in Fix(σ2) is:

kσ2 = kσ +
n4,5

2
+ 2aσ.

To conclude the proof we consider two cases, kσ ≥ 1 and kσ = 0.

kσ ≥ 1: In this case kσ2 ≥ 3 so the possible cases are kσ2 = 3 and kσ2 = 4 from
Table 1. But from Remark 1.1 we know that mσ2 has to be even, so
checking again in Table 1, the unique case is kσ2 = 3 which has mσ2 = 2.
By using the previous equalities we get then that n4,5 = 4, kσ = 1, aσ = 0
and n4,5 = 4, n2,7 = n3,6 = 3 so that Nσ = n4,5 + n3,6 + n2,7 = 10. We
can use Remark 1.1 and Proposition 2.5 to conclude that rσ = 13, lσ = 3,
mσ = 1, m1 = 1.
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kσ = 0: By using the equalities stated at the beginning of the proof we obtain:

kσ = 0,

n3,6 = n7,2 = 1,

n4,5 = 2.

So that in this case Nσ = 4. Observe that σ2 is an automorphism of order
4 and it contains a rational curve in the fixed locus since two points of
(4, 5)–type in Fix(σ) are contained on a fixed curve for σ2 so the number
of curves in Fix(σ2) is:

kσ2 = kσ +
n4,5

2
+ 2aσ ≥ 1.

From Remark 1.1 we know that mσ2 has to be even, so using Table 1 we
conclude that there are four possible cases.
If mσ2 = 4 then k2

σ = 1. From the previous equation aσ = 0. So we
have (rσ2 ,mσ2 , lσ2 , Nσ2 , kσ2 , aσ2) = (10, 4, 4, 6, 1, 0).
If mσ2 = 2 then k2σ ∈ {3, 2, 1}. If kσ2 = 3 from the previous equation
aσ = 1, so that (rσ2 ,mσ2 , lσ2 , Nσ2 , kσ2 , aσ2) = (16, 2, 2, 10, 3, 0).
If kσ2 = 2 from the previous equation aσ = 1

2 , which is not possible.

If kσ2 = 1 from the previous equation aσ = 0. In this case for σ2 the
invariants are (rσ2 ,mσ2 , lσ2 , Nσ2 , kσ2 , aσ2) = (12, 2, 6, 6, 1, 2).
We use then Remark 1.1 and Proposition 2.5 to compute the remaining
invariants for σ given in the Table 2.

m1 mσ rσ lσ Nσ kσ aσ Examples
1 1 13 3 10 1 0 5.1
2 2 6 4 4 0 0
1 1 9 7 4 0 1 5.2
1 3 7 5 4 0 0

Table 2. Invariants of the automorphism

�

4. Elliptic fibrations

Definition 4.1. Let X be a complex surface. An elliptic fibration is a holo-
morphic map f : X −→ B to a smooth curve B such that the generic fiber is a
smooth connected curve of genus one. A jacobian elliptic fibration is an elliptic
fibration admitting a section π : B −→ X such that f ◦ π = IdB. The surface X
is called an elliptic surface if it admits an elliptic fibration (not necessarily jaco-
bian). We call Fv the fiber f−1(v) over a point v ∈ B. The Mordell–Weil group
is the group of sections of the elliptic fibration.

The zero section of an elliptic fibration is a chosen section s : B −→ X and
we identify the map s with the curve s(B) on X. The point of intersection between
the zero section and a fiber is the zero of the group law on the fiber.
For K3 surfaces we have that B = P1 (see [11]) and, if the fibration is jacobian, it
admits a Weierstrass equation:

(2) y2 = x3 +A(t)x+B(t),
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where A(t) and B(t) are two polynomials with complex coefficients with t ∈ P1 such
that deg(A(t)) = 8 and deg(B(t)) = 12. Here the zero section is t 7→ (0 : 1 : 0).
The discriminant of the fibration is a degree 24 polynomial:

(3) ∆(t) = 4A(t)3 + 27B(t)2.

The equation (2) defines an elliptic fibration if and only if ∆(t) does not vanish
identically. Each zero of ∆(t) corresponds to a point v of the base P1 such that
Fv is a singular fiber of the fibration. There are at most finitely many singular
fibers. Let δ be the order of vanishing of ∆ at a point corresponding to a singular
fiber, by the Kodaira classification the possible singular fibers are recalled in Table
3 where we denoted by Θ0 the component of a fiber meeting the zero section. The
first column in the Table 3 contains the name of the reducible fiber according to
Kodaira classification, the second the Dynkin diagram associated to the fiber, the
last column contains the order of vanishing of ∆ at the point corresponding to the
singular fiber.

Name Dynkin diagram Description δ
II a cuspidal rational curve 2

III Ã1 two rational curves meeting in a point of order 2 3

IV Ã2 three rational curves meeting at one point 4
I1 a nodal rational curve 1

I2 Ã1 Θ0 = Θ1 2

In Ãn−1
Θ0 − Θ1 − . . . Θi
| |

Θn−1 − Θn−2 − . . . Θi+1

n

I∗k D̃k+4

Θ0 Θk+3
� �

Θ2 . . . Θi − Θi+1 . . . Θk+2
� �

Θ1 Θk+4

k + 6

IV ∗ Ẽ6

Θ0 − Θ1 − Θ2 − Θ3 − Θ4
|

Θ5
|

Θ6

8

III∗ Ẽ7

Θ0 − Θ2 − Θ3 − Θ4 − Θ5 − Θ6 − Θ7
|

Θ1

9

II∗ Ẽ8

Θ0 − Θ1 − Θ2 − Θ3 − Θ4 − Θ5 − Θ6 − Θ7
|

Θ8

10

Table 3. Kodaira classification

A simple component of a fiber is a component with multiplicity one. In Table 4
we describe the singular fibers of an elliptic fibration with the multiplicities of the
vertices of the extended Dynkin diagrams and we list the components with their
multiplicities. The Néron–Severi group of a surface admitting a jacobian elliptic
fibration contains the class of a fiber F and the class of the zero section s. Since the
fibers are all algebraic equivalent, we have F · F = 0. The zero section intersects
each fiber in one point, so that F · s = 1. The sections of an elliptic fibration on a
K3 surface are smooth rational curves and this implies that their self–intersection
is −2. Moreover, if X is a K3 surface that admits a jacobian elliptic fibration, then
there is an embedding of U in NS(X), where U is the two dimensional lattice
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U =

{
Z2,

(
0 1
1 −2

)}
.

Observe that by taking the generators F and F + s the lattice U is isometric to the
hyperbolic two dimensional lattice

U =

{
Z2,

(
0 1
1 0

)}
.

If f : X −→ P1 admits an n-torsion section sn of order n in the Mordell–Weil
group then it induces an automorphism of the same order on X. This acts as the
identity on the base of the fibration and as a translation by the section on each
fiber, hence it is a symplectic automorphism [8, Chapter 15, Lemma 4.4])

Name simple components Dynkin diagram

Ãn Θi, i = 0, . . . , n− 1

q q qq q q1 1 1

1 1 1

D̃k+4 Θi, i = 0, 1, k + 3, k + 4

qq q q q q qq@
�

�
@

1

1 2 2 2 2

1

1

Ẽ6 Θi, i = 0, 4, 6

q q q q qqq
1 2 3 2 1

2
1

Ẽ7 Θi, i = 0, 7
q q q q q q qq1 2 3 4 3 2 1

2

Ẽ8 Θ7

q q q q q q q qq2 4 6 5 4 3 2 1

3

Table 4. Dynkin diagrams with the multiplicities of the components

5. Examples

We give here examples corresponding to the cases discussed in Theorem 3.1.
These are constructed by using jacobian elliptic fibrations on K3 surfaces.
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5.1. Example kσ = 1. The case kσ = 1 in Theorem 3.1 occurs, this means
that we can find an example of a non–symplectic automorphism of order 8 on a K3
surface X such that its fixed locus consists of a smooth rational curve and of 10
isolated points and the fixed locus of σ4 consists of eight smooth rational disjoint
curves. Consider the elliptic fibration on X given by:

y2 = x(x2 + tp6(t))

with p6(t) := (a6t
6 + a4t

4 + a2t
2 + a0) = (t2 − α1)(t2 − α2)(t2 − α3), where

a6, a4, a2, a0, α1, α2, α3 ∈ C, and the order 8 automorphism acting on it:

σ : (x, y, t) 7→ (−ix, ζ8y,−t).

By [9, Section 3] a holomorphic 2–form can be written as ωX = dt∧dx
2y so that

one computes

σ(ωX) = ζ8ωX ,

hence σ acts purely non–symplectically. Moreover σ acts as an involution on the
base P1 and it has order four on each fiber of the fibration.

The discriminant is ∆(t) = 4t3(t2−α1)3(t2−α2)3(t2−α3)3. Recall that t ∈ P1

so if we consider the homogenization of the polynomial in coordinates (t : u), we
obtain ∆(t, u) = 4t3(t2 − α1u

2)3(t2 − α2u
2)3(t2 − α3u

2)3u3.
We take now α1 = 0 and α2 = α3. Under this assumtion the equation of the elliptic
fibration becomes

y2 = x(x2 + t(t2 − α2)2)

and ∆(t) = 4t9(t2 − α2)6 which in homogeneous coordinates (t : u) is equal to
∆(t, u) = 4t9(t2 − α2u

2)6u3. For generic choice of the coefficient α2 the fibration
has 4 singular fibers which correspond to the four zeros of ∆(t, u). To be more

precise the fibration has a fiber of type III∗ over 0, which corresponds to the Ẽ7

Dynkin diagram, a fiber of type III over ∞ which consists in two rational curves
tangent in a point and two fibers of type I∗0 over ±√α2, see Table 3. The action of
σ on the base fixes two points: 0 and ∞, and so it preserves the fibers over these
two points, the fibers III and III∗, and it exchanges the two fibers of type I∗0 . If
f : X −→ P1 is the elliptic fibration then Fix(σ) ⊂ f−1(0)∪ f−1(∞). Observe that
the fibration has a two torsion section s2, given by t 7→ (0 : 0 : 1) = (x : y : z)
and the zero section s, given by t 7→ (0 : 1 : 0) = (x : y : z). These sections are
preserved by the action of σ and they have two fixed points corresponding to the
intersection with the fibers over 0 and ∞. These two sections are pointwise fixed
by the action of σ2. The sections s2 and s are simple sections which means that
they meet one of the components of III∗ of multiplicity one (not the same), they
meet one of the two components of III (not the same) in a non–singular point and
they meet the fibers of type I∗0 in one of the components of multiplicity 1 (not the
same). We know that the components are not the same since the sections s and s2
are contained in the fixed locus of σ4 and the above mentioned components of the
singular fibers are not fixed pointwise by σ4 and cannot contain more than two fixed
points. Now we can see that the two fixed points on each section are contained in
III∗ and III. The fiber of type III consists in two tangent rational curves. Each
of these two rational curves has a fixed point which is not the tangency point, but
a non–trivial finite order automorphism acting on a rational curve has two fixed
points, so we conclude that the double point on III is fixed by σ. Observe that
the sections s and s2 are preserved so that all the components of the fiber III are
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preserved. On the fiber of type III∗ we have the two fixed points given by the
intersections with the two sections s ans s2. Since the sections s and s2 are not
exchanged then all components in III∗ are preserved. The unique component of
this fiber of multiplicity four is preserved by σ and it contains three fixed points
so it is pointwise fixed. The component of multiplicity two which intersects the
component of multiplicity four contains then a fixed point and we know that there
is another fixed point on it. In conclusion Nσ = 10 and kσ = 1.

The square of the automorphism σ2 : (x, y, t) 7→ (−x, iy, t) preserves each fiber
and acts as an automorphism of order four on it. Moreover σ2 fixes two points on
the generic smooth fiber, these two fixed points are contained in the two sections s
and s2. This gives that kσ2 ≥ 2.
Since lσ2 = 2mσ = 2 and mσ2 = 2m1 = 2 using Table 1 for the classification
of non–symplectic automorphisms of order 4, we know that the invariants for σ2

are (rσ2 ,mσ2 , lσ2 , Nσ2 , kσ2 , aσ2) = (16, 2, 2, 10, 3, 0). The curves fixed by σ2 are the
curves fixed by σ and the two sections s and s2. The points fixed by σ2 are 10
but they are not the same fixed points by σ, in fact the 4 fixed points for σ on s
and s2 now lie on fixed curves (namely the curves s and s2) and they do not give
any contribution, but we add exactly 4 other points on the two fibers I∗0 . For this
reason the number of fixed points remains the same.

Consider the curve defined by y = 0. From the equation of the elliptic fibration
we obtain x = 0, which gives the zero section, and the curve C: x2+t2(t2−α2)2 = 0
which has a 2 : 1 morphism to P1 and has possibly ramification points where
t2(t2−α2)2 = 0. These points lie on the four singular fibers: the fiber III, the two
fibers of type I∗0 and the fiber III∗. One has to study carefully the intersection of
C with the Dynkin diagram of the fibers to understand the ramification. The curve
C meets III in the double point, I∗0 in the two components of multiplicity one (so
it does not ramify here) and III∗ in the component of multiplicity two.

Recall that the Riemann–Hurwitz formula applied to a 2 : 1 morphism from a
curve C to the projective line P1 is given by:

2g(C)− 2 = 2(0− 2) +
∑
p∈C

(ep − 1)

where the sum runs over the ramification points which are two points in this case:
the point on the fiber over 0, i.e. on III∗ and the point on the fiber over ∞ i.e
on III and ep is the ramification index at a ramification point p. In this case
ep = 2. By using the formula we can compute in an easy way the genus of the
curve C ⊂ Fix(σ4) which is g(C) = 0. Hence the fixed curves by σ4 are all rational
and we have eight of them : three components of the fiber III∗, two sections s and
s2, the curve C and two other rational curves which are fixed on the two fibers of
type I∗0 .

5.2. Example kσ = 0. The case kσ = 0 in Theorem 3.1 occurs when kσ2 = 3.
We can consider the same elliptic fibration of the previous example, and we fix
α1 = 0 and α2 = α3 as before. As we have already observed the fibration has a
2–torsion section given by t 7→ (0 : 0 : 1) = (x : y : z). Denote by τ the symplectic
involution associated to this 2–torsion section. As we have observed before, this
involution is symplectic. The involution exchanges the zero section s and the 2–
torsion section s2. We cannot find fixed points for τ on the generic fiber since it
acts as a translation, but we know (see [12, Section 5]) that a symplectic involution
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has eight fixed points on a K3 surface. Consequently the 8 fixed points for τ are
on the singular fibers of the elliptic fibration, recall that these are a fiber of type
III∗, two fibers of type I∗0 and a fiber of type III.

On each of the two fibers of type I∗0 we have two fixed points on the component
of multiplicity two since the sections s and s2 are exchanged. On the fiber of type
III∗ we have three fixed points, two of them are on the component of maximal
multiplicity and the other is on the component of multiplicity two which intersects
the component of maximal multiplicity. On the fiber of type III the two rational
curves are exchanged and so we have a fixed point for τ which is the double point.
We consider now σ ◦ τ . By a direct computation one computes σ ◦ τ = τ ◦ σ so
that we have an automorphism of order eight. Since τ is symplectic and σ acts
purely non–symplectically we have that σ ◦τ acts purely non–symplectically too on
the elliptic K3 surface. Now the fixed point for τ on III is also a fixed point for
σ, so it is a fixed point for σ ◦ τ . The fibers I∗0 are exchanged by σ so we cannot
find fixed points for σ ◦ τ on them and two of the three fixed points on III∗ are
on a fixed curve for σ so they contribute to Fix(σ ◦ τ). Finally we conclude that
Fix(σ ◦ τ) consists of four points. Where one of them is the double point of III
and three are on the fiber III∗. Finally since σ and τ commute (σ ◦ τ)2 = σ2, so
that the behaviour of the order four automorphism is the same as it is described in
the previous example.
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