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Introduction by the Organisers

The meeting Komplexe Analysis attracted 52 mathematicians from 10 countries. It
was the aim of the conference to cover a wide spectrum, thus enabling in particular
the younger mathematicians to get an overview of the most recent important
developments in the subject.

The main topics were

• Kähler geometry. Presentations were delivered by Dinh, Eyssidieux and
Paun, covering complex dynamics, Kähler-Einstein metrics and Kähler
manifolds with nef anticanonical classes.

• holomorphic symplectic varieties; covered by talks of Hwang, Kirschner
and Sarti. The main themes were Lagrangian tori, singular symplectic
varieties and automorphisms.

• moduli spaces (of curves, abelian varieties and sheaves). Talks were given
by Casalaina-Martin, Farkas, Grushevsky, Möller, Toma andWandel, deal-
ing with various features of moduli spaces.

Calabi-Yau varieties were considered in talks by Diverio and Laza.
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Various other talks covered a broad spectrum of questions in complex
geometry. Some of them were of algebraic nature such as Mukai’s talk
on Enriques surfaces, of Gongyo around the minimal model program and
of Graf on the Bogomolov-Sommese vanishing theorem. Of more analytic
nature were the talks of Klingler relating topology and symmetric dif-
ferentials, and of Verbitsky on non-Kähler twistor spaces. Contributions
with a geometric focus were presented by Pereira on foliations of uniruled
manifolds, and by Catanese on uniformization.

Finally Grivaux gave an account of the Grothendieck-Riemann-Roch
theorem on complex manifolds and Huckleberry presented results on the
hyperbolicity of cycle spaces.
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Abstracts

Hyperbolicity of cycle spaces and automorphism groups of flag
domains

Alan Huckleberry

Our goal here is to explain the results in [H], in particular the following fact.

Theorem 1. The cycle space Cq(D) of a flag domain D is Kobayashi hyperbolic.

One application, which is stated precisely below, is the complete description of
the connected component Aut0(D) of the group of holomorphic automorphisms of
the flag domain.

1. Background

Let G be a connected, complex Lie group. A compact complex G-homogeneous
space Z = G/P which can be realized as G-orbit in some projective space is
referred to as a flag manifold. We assume that G acts (almost) effectively on Z
and consequently that G is semisimple. The study of such manifolds, e.g., from
the point of view of representation theory, requires algebraic group methods and
considerations of combinatorial geometry. Borel subgroups B, which by definition
are maximal connected solvable subgroups, play a key role in this study of such
manifolds. For example, such a subgroup has only finitely many orbits in Z and
each such orbit O = B.z is algebraically equivalent to some affine space Cm(O. In
particular, the closures S, Schubert varieties, of these Schubert cells freely generate
the homology of Z. We explain below how certain special Schubert varieties play
a role in the proof of the above theorem.

A real form G0 of G is the connected component of the fixed point locus of an
involutive antiholomorphic automorphism τ : G → G. For example, the mixed
signature unitary and orthogonal groups, SU(p, q) and SO(p, q), are examples of
such groups. As a subgroup of G, a real form G0 acts on every G-flag manifold Z
and it is a basic fact that it has only finitely many orbits. In particular, G0 has
at least one (and usually many) open orbit. We denote such an open orbit by D
and refer to it as a flag domain.

We consider here non-compact real forms G0 with (unique up to conjugation)
maximal compact subgroups K0. Among the basic facts proved in [W] it is shown
that in every flag domainK0 has exactly one orbit which is a complex submanifold.
We view this as a point in the cycle space Cq(Z) of q-dimensional cycles. It is known
that Cq(Z) is smooth at C0 (see Part III of [FHW]) and therefore it makes sense to
define Cq(D) as the irreducible component which contains C0 of the full cycle space
of D. This cycle space is not to be confused with the MD which is the connected
component containing C0 of the intersection of the orbit G.C0 with Cq(D) and
which has been thoroughly studied (see, e.g., [FHW]). Remarkably, with very few
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exceptions MD only depends on G0, i.e., neither on D nor Z. On the other hand,
the full cycle component Cq(D) is strongly dependent on both D and Z.

2. Two methods for the proof

The first main method used for the proof of the above theorem is to use special
Schubert varieties to parameterize the cycles in Cq(D). Given K0 and an Iwasawa-
decomposition G0 = K0A0N0 we consider Schubert varieties S of a Borel subgroup
B which containsA0N0 and which are of dimension n−q. A strong duality theorem
can be proved: If S is the closure of O with S = O∪̇E, then either S has empty
intersection with D or S has finite transversal intersection with every C ∈ Cq(D).
In the latter caseE is contained in the complement ofD and therefore the incidence
hypersurface HS := {C ∈ Cq(Z) : E ∩ C 6= ∅} is in the complement of Cq(D) in
Cq(Z).

The second method amounts to showing that if enough of the above mentioned
incidence hypersurfaces are used (they areQ-Cartier), one can build aG0-bundle L
with the associated projective hyperplanes being realized in the complement of the
image of Cq(D) (the restricted map is finite) being contained in the complement.
Moving these hyperplanes with G0, we obtain sufficiently many complementary
hyperplanes to prove the hyperbolicity.

3. Description of the automorphism group

If D is pseudoconvex, which in the case of flag domains is equivalent to it being
holomorphically convex, then the Remmert reduction D → Dred has base which
is a Hermitian symmetric space of noncompact type. Since such symmetric spaces
are contractible Stein manifolds, this fibration is the trivial bundle. Unless D =
Dred, in which case the automorphism group of D is well-understood, Aut0(D)
is of course infinite-dimensional. Nevertheless it can be easily described. If D
is not pseudoconvex, then the following is the key result for the description of

Ĝ0 := Aut0(D).

Theorem 2. If D is not pseudoconvex, then the induced action of Ĝ0 on Cq(D)
is effective.

The hyperbolicity of Cq(D) implies that its automorphism group is a Lie group
acting properly in the compact-open topology. One shows that the imbedding of

Ĝ0 guaranteed by the above theorem realizes it as a closed subgroup of AutCq(D)
and with a bit more work one proves the following.

Theorem 3. The group Aut(D) is a Lie group acting properly on D in the
compact-open topology.

In fact one can show that the action of connected component Ĝ0 on D can be
extended to Z so that, with the exception of a few examples which occur in the

classification of Onishchik, Ĝ0 = G0.
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Singular Kähler-Einstein metrics on Fano varieties

Philippe Eyssidieux

(joint work with Robert Berman, Sébastien Boucksom, Vincent Guedj)

The talk was a report on [2]. Kähler-Einstein metrics on pairs (X,D) with klt
singularities such that KX + D > 0 or KX + D = 0 have been constructed in
[4] and the present work lays the fundations of the study of their counterpart on
log-Fano pairs, generalizing to the singular setting a part of the basic theory in
the smooth case as presented in [7].

Definition 1. Let Y be a normal complex projective variety, dim(Y ) = n, and
D =

∑
i aiEi be an effective Q-divisor. Say (Y,D) is log-Fano if:

(1) (KY +D) is Q-Cartier,
(2) (Y,D) is klt,
(3) −(KY +D) is ample.

Let (Y,D) be log-Fano. Fix a smooth metric h on theQ-line bundle L = KY+D.
Then h defines canonical a volume form of Y reg which has finite volume hence
extends trivially to a Radon measure v(h) on Y .

A plurisubharmonic metric Φ = e−φh on−(KY +D) (i.e.: φ−log |s|2h is plurisub-
harmonic for all s a holomorphic multisection of −(KY +D)) defines a Radon mea-

sure on Y by the prescription mΦ
not.
= e−Φ = e−φv(h) and also a Monge-Ampère

probability measure MA(Φ) = (ddcΦ)n/V .

Definition 2. The plurisubharmonic metric Φ is Kähler-Einstein if MA(Φ) =
e−Φ/

∫
Y
e−Φ.

The usual regularity theory of degenerate Monge-Ampère equations yields:

Theorem 1. If Φ is Kähler-Einstein, then Φ ∈ C0(Y ) ∩C∞(Y reg −D).

Hence the restriction of ddcΦ to Y reg − D is a Kähler Einstein metric in the
usual sense.

Next, we generalize in the singular setting the classical Ding-Tian and Mabuchi
functionals to plurisubharmonic metrics on −(KY +D) so that the classical vari-
ational characterisation holds:

Theorem 2. The infimum of the Ding-Tian and Mabuchi functionals coincide.
Moreover, the following are equivalent:
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• Φ minimizes the Mabuchi functional,
• Φ minimizes the Ding-Tian functional,
• Φ is Kähler-Einstein.

Using this, we prove (using a method of Berman-Berndtsson in the smooth
case) a Bando-Mabuchi theorem:

Theorem 3. Kähler-Einstein metrics on the log-Fano pair (Y,D) form a single
Aut0(Y,D) orbit.

A compactness theorem is formulated and used to generalize a theorem of Tian
claiming that a Kähler-Einstein metric exists provided the Ding-Tian (or Mabuchi)
functional tends to infinity when the Aubin-Yau energy does. This enables, using
a nice trick due to [1] in the smooth case, to produce examples with non-quotient
singularities, such as a double covering of Pn, n ≥ 3, ramified over a degree
d hypersurface with only lc singularities (e.g.: nodes) provided d is even and
n+ 2 ≤ d ≤ 2n+ 1.

The theory also yields a generalization of the convergence of Ricci iteration [5, 6]
and of the weak convergence of the Kähler-Ricci flow along the lines of Berman’s
simplification of this consequence of Perelman’s estimates.

To conclude, it is appropriate to quote the work [3] which enables to realize these
singular Kähler Einstein metrics on Fano varieties as Gromov Hausdorff limits of
smooth Fano Kähler-Einstein metrics.
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Birkhäuser Verlag, Basel (2000).

Log canonical models and variation of GIT for genus four canonical
curves

Sebastian Casalaina-Martin

(joint work with David Jensen, Radu Laza)

The Hassett–Keel program aims to give modular interpretations of certain log
canonical models of Mg, the moduli space of stable curves of fixed genus g, with
the ultimate goal of giving a modular interpretation of the canonical model for
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large g. Recall that for α ∈ [0, 1] the log canonical models of Mg considered in
the program are the projective varieties

Mg(α) := P

(
∞⊕

n=0

H0
(
n(KMg

+ αδ)
))

,

where δ is the boundary divisor in Mg. The program, while relatively new, has
attracted the attention of a number of researchers, and we point out that Hassett
and Hyeon have explicitly constructed the spaces Mg(α) for α ≥ 7

10 − ǫ (see
Hassett–Hyeon [9, 8]).

For large genus, completing the program in its entirety still seems somewhat
out of reach. On the other hand, the case of low genus curves affords a gateway
to the general case, providing motivation and corroboration of expected behavior.
The genus 2 and 3 cases were completed recently (Hassett [7], Hyeon–Lee [11]).

In genus four, the known spaces in the program are (see Hassett–Hyeon [9, 8],
and Hyeon–Lee [10]):

(1) M4 =M4[1,
9
11 )

��
M

ps

4 =M4[
9
11 ,

7
10 )

**❚❚❚
❚❚❚

❚❚

//❴❴❴❴❴❴❴❴❴❴ M
hs

4 =M4(
7
10 ,

2
3 )

uu❥❥❥❥
❥❥❥

❥

((◗◗
◗◗

◗◗
◗

M
cs

4 =M4(
7
10 ) M4(

2
3 )

where the notationMg(I) for an interval I meansMg(α) ∼=Mg(β) for all α, β ∈ I.
The double arrows correspond to divisorial contractions, the single arrows to small
contractions, and the dashed arrows to flips. Fedorchuk recently constructed the
final space in the program M4(

8
17 + ǫ) via GIT for (3, 3) curves on P1 × P1 [6].

In recent work with Jensen and Laza [5], we have further investigated the re-
maining steps in the program in genus 4. The results are obtained by a variation
of GIT construction on a projective bundle PE parameterizing intersections of
quadrics and cubics in P3. This completes the program in genus 4 outside of the
interval α ∈ (59 ,

2
3 ), where using the predictions of Alper–Fedorchuk–Smyth [2], we

expect that there are exactly two more critical values: α = 19
29 and α = 49

83 .

Theorem 1 (Casalain-Martin–Jensen–Laza [5]). For α ≤ 5
9 , the log minimal

models M4(α) arise as GIT quotients of the parameter space PE. Moreover, the
VGIT problem gives us the following diagram:
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(2)
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More specifically,

i) the end point M4(
8
17

+ ǫ) is obtained via GIT for (3, 3) curves on P1 × P1 as
discussed in Fedorchuk [6];

ii) the other end point M4(
5
9
) is obtained via GIT for the Chow variety of genus 4

canonical curves (discussed further below);

iii) the remaining spaces M4(α) for α in the range 8
17

< α < 5
9
are obtained via

appropriate Hilbm
4,1 quotients, with the exception of α = 23

44
.

In low genus there is an interesting connection between some of the spaces
arising in this program, and ball quotient compactifications arising from work of
Kondo [12, 13]. Recall that while arithmetic quotients D/Γ admit Bailly–Borel
compactifications (D/Γ)∗, in general, it is difficult to determine what geometric
objects should correspond to the boundary points. For ball quotients and quotients
of Type IV domains, a now standard approach to this type of problem is to use a
comparison with a moduli space constructed via GIT, and there is a well developed
theory that covers this (see Looijenga [14, 15] and Looijenga–Swierstra [17]).

Returning to the case of curves, Kondo [12, 13] has constructed ball quotient
compactifications (B6/Γ6)

∗ and (B9/Γ9)
∗ of the moduli space of non-hyperelliptic

genus three and four curves respectively. In the case of genus 3 curves, where the
space of plane quartics provides a natural GIT compactification, the problem of
ascribing geometric meaning to the boundary points was completed by Looijenga
[16] and Artebani [3].

In joint work with Jensen and Laza, we discuss the relationship between the
space (B9/Γ9)

∗ and a GIT model of M4. To be precise, we construct a GIT quo-

tient M
GIT

4 of canonically embedded genus four curves via a related GIT problem
for cubic threefolds. Results for cubic threefolds due to Allcock [1] allow us to

completely describe the stability conditions for M
GIT

4 . With this, we can employ
general results of Looijenga [14] to give an explicit resolution of the period map

M
GIT

4 99K (B9/Γ)
∗. The main result is the following:

Theorem 2 (Casalaina-Martin–Jensen–Laza [4]). The period map M
GIT

4 99K

(B9/Γ)
∗ is resolved by blowing up a single point, which corresponds to a genus

four ribbon curve in P3. The GIT quotient M
GIT

4 is isomorphic to a GIT quotient
of a Chow variety of canonically embedded genus four curves, as well as to the
space M4(5/9) in the Hassett–Keel program.



Komplexe Analysis 11

References

[1] D. Allcock, The moduli space of cubic threefolds, J. Algebraic Geom., 12 (2) (2003), 201–223.
[2] J. Alper, M. Fedorchuk and D.I. Smyth, Singularities with Gm-action and the log minimal

model program for Mg, arXiv:1010.3751v1, 2010.
[3] M. Artebani, A compactification of M3 via K3 surfaces, Nagoya Math. J., 196 (2009),

1–26.
[4] S. Casalaina-Martin, D. Jensen and R. Laza, The geometry of the ball quotient model of the

moduli space of genus four curves, in Compact moduli spaces and vector bundles, 107–136,
Contemp. Math., 564, Amer. Math. Soc., Providence, RI, 2012.

[5] S. Casalaina-Martin, D. Jensen and R. Laza, Log canonical models and variation of GIT
for genus four canonical curves, arXiv:1203.5014v1 [math.AG], 2012.

[6] M. Fedorchuk, The final log canonical model of the moduli space of stable curves of genus
four, Int. Math. Res. Not., 2012.

[7] B. Hassett, Classical and minimal models in the moduli space of stable curves of genus two,
in Geometric methods in algebra and number theory, volume 235 of Progr. Math., pages
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[12] S. Kondō, A complex hyperbolic structure for the moduli space of curves of genus three, J.
Reine Angew. Math., 525 (2000), 21–232.
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The Grothendieck-Riemann-Roch theorem for complex manifolds

Julien Grivaux

The Grothendieck-Riemann-Roch (GRR) theorem for abstract complex mani-
folds has been the object of many researches since the end of the sixties. These
can be divided in three main classes :

1. Holomorphic GRR theorem (Hodge cohomology)

This project has been developed by O’Brian, Toledo and Tong, starting from
the index theorem [14], [12], and ending ten years later with a proof of the GRR
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theorem in Hodge cohomology for arbitrary proper morphisms [11]. In 1992, Kashi-
wara initiated a strategy to give a conceptual proof of this result (see [9, Chap. 5]
and [6]). The central tool in his approach is the use of analytic Hochschild homol-
ogy, and more precisely the construction of a dual Hochschild-Kostant-Rosenberg
isomorphism. Kashiwara’s strategy has been completely carried out in [7].

2. Topological GRR theorem (De Rham cohomology)

The first step in this direction is Atiyah-Hirzebruch’s result for immersions [1].
Much later, Levy [10] proved the GRR theorem in De Rham cohomology in full
generality. This proof is very technical and has remained mostly unknown even
among specialists, and no other approach of this problem has been found till now.

3. Metric GRR theorem (Bott-Chern cohomology)

The explicit computation of curvature forms for direct images of hermitian
holomorphic vector bundles started with Quillen’s fundamental paper [13], and was
carried out for locally-Kähler fibrations in [3] and [4]. The Kählerianity assumption
has recently been removed in [2], this yields the GRR theorem in Bott-Chern
cohomology provided that the derived direct images of the bundle are locally free.

One of the finest known cohomology theory for abstract complex manifolds in
which Chern classes can be constructed is Deligne-Bĕılinson cohomology. The
Grothendieck-Riemann-Roch theorem in this cohomology remains an open ques-
tion for general proper holomorphic morphisms between complex manifolds. For
projective morphisms, the result has been proved in [5]. In [8], it is shown that the
degree two component of the GRR formula in Deligne cohomology is invariant by
deformation. This is a first step towards the understanding of the GRR theorem
in this setting. The result has applications in the theory of non-Kählerian complex
surfaces.

References

[1] M. F. Atiyah and F. Hirzebruch. The Riemann-Roch theorem for analytic embeddings.
Topology, 1:151–166, 1962.

[2] J.-M. Bismut. Hypoelliptic Laplacian and Bott-Chern cohomology. Preprint, 2011.
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Singularities of theta divisors and the geometry of A5

Gavril Farkas

This is a report on joint work with Sam Grushevsky, Riccardo Salvati-Manni
and Alessandro Verra. We recall that theta divisor Θ of a generic principally po-
larized abelian variety (ppav) is smooth. The ppav (A,Θ) with a singular theta
divisor form the Andreotti-Mayer divisor N0 in the moduli space Ag. The divi-
sor N0 has two irreducible components, denoted θnull and N

′
0: here θnull denotes

the locus of ppav for which the theta divisor has a singularity at a two-torsion
point, and N ′

0 is the closure of the locus of ppav for which the theta divisor has
a singularity not at a two-torsion point. The theta divisor Θ of a generic ppav
(A,Θ) ∈ θnull has a unique singular point, which is a double point. Similarly, the
theta divisor of a generic element of N ′

0 has two distinct double singular points x
and −x. One can naturally assign multiplicities to both components of N0 such
the following equality of cycles holds:

(1) N0 = θnull + 2N ′
0.

Generically for both components the double point is an ordinary double point (that
is, the quadratic tangent cone to the theta divisor at such a point has maximal
rank g — equivalently, the Hessian matrix of the theta function at such a point
is non-degenerate). Considering the sublocus θg−1

null ⊂ θnull parameterizing ppav
(A,Θ) with a singularity at a two-torsion point, that is not an ordinary double
point of Θ, it can be proved that

(2) θg−1
null ⊂ θnull ∩N ′

0.

It is natural to investigate the non-ordinary double points on the other component
N ′

0 of the Andreotti-Mayer divisor. Similarly to θg−1
null , we define N ′g−1

0 , or, to
simplify notation, H , to be the closure in N ′

0 of the locus of ppav whose theta
divisor has a non-ordinary double point singularity. Thus we consider the cycle

(3) Ng−1
0 := θg−1

null + 2N ′g−1
0 = θg−1

null + 2H.

To understand the geometric situation, especially in low genus, we compute the
class:
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Theorem 1. The class of the cycle H inside Ag is equal to

[H ] =

(
g!

16
(g3 + 7g2 + 18g + 24)− (g + 4)2g−4(2g + 1)

)
λ21 ∈ CH2(Ag).

As usual, λ1 := c1(E) denotes the first Chern class of the Hodge bundle and
CHi denotes the Q-vector space parameterizing algebraic cycles of codimension
i with rational coefficients modulo rational equivalence. Comparing classes and
considering the cycle-theoretic inclusion 3θ3null ⊂ H , we get the following result,
see Section 4 for details:

Theorem 2. In genus 4 we have the set-theoretic equality θ3null = H.

We then turn to genus 5 with the aim of obtaining a geometric description of
H ⊂ A5 via the dominant Prym map P : R6 → A5. A key role in the study of
the Prym map is played by its branch divisor, which in this case equals N ′

0 ⊂ A5,
and its ramification divisor Q ⊂ R6. We introduce the antiramification divisor
U ⊂ R6 defined cycle-theoretically by the equality

P ∗(N ′
0) = 2Q+ U .

Using the geometry of the Prym map, we describe both Q and U explicitly in
terms of Prym-Brill-Noether theory. Our result is the following:

Theorem 3. The ramification divisor Q of the Prym map P : R6 → A5 equals
the Prym-Brill-Noether divisor in R6, that is,

Q = {(C, η) ∈ R6 : V3(C, η) 6= 0} .
The antiramification divisor is the pull-back of the Gieseker-Petri divisor from
M6, that is, U = π∗(GP1

6,4). The divisor Q is irreducible and reduced.

The rich geometry of Q enables us to (i) compute the classes of the closures
Q and U inside the Deligne-Mumford compactification R6, then (ii) determine
explicit codimension two cycles in R6 that dominate the irreducible components
of H . In this way we find a complete geometric characterization of 5-dimensional
ppav whose theta divisor has a non-ordinary double point. First we characterize
θ4null as the image under P of a certain component of the intersection Q∩P ∗(θnull):

Theorem 4. A ppav (A,Θ) ∈ A5 belongs to θ4null if an only if it is lies in the
closure of the locus of Prym varieties P (C, η), where (C, η) ∈ R6 is a curve with
two vanishing theta characteristics θ1 and θ2, such that

η = θ1 ⊗ θ∨2 .

Furthermore, θ4null is unirational and [θ4null] = 27 · 44λ21 ∈ CH2(A5).

Observing that [H ] 6= [θ4null] in CH2(A5), the locus H must have extra irre-
ducible components corresponding to ppav with a non-ordinary singularity that
occurs generically not at a two-torsion point. We denote by H1 ⊂ A5 the union of
these components, so that at the level of cycles

H = θ4null +H1,

where [H1] = 27 · 49λ21. We have the following characterization of H1:
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Theorem 5. The locus H1 is unirational and its general point corresponds to a
Prym variety P (C, η), where (C, η) ∈ R6 is a Prym curve such that η ∈W4(C)−
W 1

4 (C) and KC ⊗ η is very ample.

As an application of this circle of ideas, we determine the slope of A5. Let
Ag be the perfect cone (first Voronoi) compactification of Ag. The slope of an

effective divisor E ∈ Eff(Ag) is defined as the quantity

s(E) := inf
{a
b
: a, b > 0, aλ1 − b[D]− [E] = c[D], c > 0

}
,

where D := Ag − Ag is the boundary. If E is an effective divisor on Ag with
no component supported on the boundary and [E] = aλ1 − bD, then s(E) :=
a
b ≥ 0. One then defines the slope (of the effective cone) of the moduli space as

s(Ag) := infE∈Eff(Ag)
s(E). For g = 5, the class of the closure of the Andreotti-

Mayer divisor is [N ′
0] = 108λ1 − 14D, giving the upper bound s(A5) ≤ 54

7 . Our
result is that this divisor actually determines the slope of the moduli space:

Theorem 6. The slope of A5 is computed by N ′
0, that is, s(A5) =

54
7 . Further-

more, κ(A5, N ′
0) = 0, that is, the only effective divisors on A5 having minimal

slope are the multiples of N ′
0.

Density of positive closed currents and dynamics of Hénon maps

Tien-Cuong Dinh

(joint work with Nessim Sibony)

We introduce a new method to prove equidistribution properties in complex dy-
namics of several variables. We obtain the equidistribution for saddle periodic
points of Hénon-type maps on Ck. A key point of the method is a notion of den-
sity which extends both the notion of Lelong number and the theory of intersection
for positive closed currents on Kähler manifolds. This is a joint work with Nessim
Sibony.
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Rational curves on Calabi-Yau threefolds and a conjecture of Oguiso

Simone Diverio

Let X be a compact projective manifold over C, ω a Kähler metric on X , and
consider the following statements:

(1) The holomorphic sectional curvature of ω is strictly negative.
(2) The manifold X has non-degenerate negative k-jet curvature.
(3) The manifold X is Kobayashi hyperbolic.
(4) The manifold X is measure hyperbolic.
(5) The manifold X is of general type.
(6) The manifold X does not contain any rational curve.
(7) The canonical bundle KX of X is nef.
(8) The canonical bundle KX of X is ample.

Perhaps only (2) needs some more explanations, which will be given subse-
quently. We have the following diagram of conjectural and actual implications:

(7) (4)
?

44 (5)
tt

(6)
44 (8)

ttxx

(6)

OO

(3)

OO

oo

?⑥⑥⑥⑥

>>
⑥⑥⑥⑥

?
44 (2)

tt

?

OO

(1)oo

?

OO

As the diagram shows, the central conjecture here is the equivalence between
(4) and (5) (i.e. that measure hyperbolic implies general type), which is known
to hold true whenever X is a projective surface. In spite of this, in the sequel we
will mostly concentrate ourselves on the conjecture a latere, known as Kobayashi’s
conjecture, which states that (3) should imply (5) (and hence (8)). We shall
give some hints and recent results both from a differential-geometric and algebro-
geometric viewpoints; moreover, we shall fix our attention on threefolds, since it
is the first unknown case.

To begin with, observe that several powerful machineries from birational ge-
ometry —such as the characterization of uniruledness in terms of negativity of
the Kodaira dimension, the Iitaka fibration, the abundance conjecture (which is
actually a theorem in dimension three)— permit to reduce this conjecture to the
following statement: a projective threefold X of Kodaira dimension κ(X) = 0
cannot be hyperbolic. By the Beauville-Bogomolov decomposition theorem and
elementary properties of hyperbolic manifolds, in dimension three it suffices to
show that a Calabi-Yau threefold is not hyperbolic. Here, by a Calabi-Yau threefold
we mean a simply connected compact projective threefold with trivial canonical
class KX ≃ OX and hi(X,OX) = 0, i = 1, 2.

Differential-geometric viewpoint. A weaker form of (3) ⇒ (5) and (8), more
differential-geometric in flavor, is to show that negative holomorphic sectional cur-
vature implies ampleness of the canonical bundle. This is known up to dimension
three, by the work of [4]. Again, the core here is to show that the negativity of the
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holomorphic sectional curvature of (X,ω) forces the real first Chern class c1(X)R
to be non-zero.

A possible proof of this fact goes as follows. First, observe that an averaging
argument shows that negative holomorphic sectional curvature implies negative
scalar curvature. Now, suppose that c1(X)R = 0. Then, there exists a smooth
function f : X → R such that Ricci(ω) = i∂∂f . Now, take the traces with respect
to ω of both sides: modulo non-zero multiplicative constants, on the left we find
the scalar curvature and on the right the ω-Laplacian of f which must therefore
be always non-zero. Hence, f is constant and the scalar curvature must be zero,
contradiction.

Unfortunately, having negative holomorphic sectional curvature is much stron-
ger than being hyperbolic. In [1], it is conjectured that a weaker notion of nega-
tive curvature, namely non-degenerate negative k-jet curvature, should be instead
equivalent (and it is proved there that it actually implies hyperbolicity). Let us
explain briefly what this notion is, referring to [1] for more details.

Let JkX → X be the holomorphic fiber bundle of k-jets of germs of holomor-
phic curves γ : (C, 0) → X and JkX

reg its subset of regular ones, i.e. such that
γ′(0) 6= 0. There is a natural action of the group Gk of k-jets of biholomorphisms
of (C, 0) on JkX , and the quotient JkX

reg/Gk admits a nice geometric relative
compactification JkX

reg/Gk →֒ Xk. Here, Xk is a tower of projective bundles over
X . In particular, it is naturally endowed with a tautological line bundle OXk

(−1),
as well as a holomorphic subbundle Vk ⊂ TXk

of its tangent bundle.

Definition. The manifold X is said to have non-degenerate negative k-jet curva-
ture if there exists a singular hermitian metric on OXk

(−1) whose Chern curvature
current is negative definite along Vk and whose degeneration set is contained in
Xk \ (JkXreg/Gk).

Observe that if X has negative holomorphic sectional curvature, then it natu-
rally has a non-degenerate negative 1-jet curvature. The following question seems
therefore particularly appropriate.

Question. Is it true that if X has non-degenerate negative k-jet curvature then
c1(X)R 6= 0?

Algebro-geometric viewpoint. Algebraic geometers expect more than non-
hyperbolicity of Calabi-Yau’s: a folklore conjecture states that every Calabi-Yau
manifold should contain a rational curve. For threefolds, let us cite a couple of
results in this direction:

• The article [3] is the culmination of a series of papers by Wilson in which he
studies in a systematic way the geometry of Calabi-Yau threefolds; among
many other things, it is shown there that if the Picard number ρ(X) > 13,
then there always exists a rational curve on X .

• Following somehow the same circle of ideas, it was proven in [6] (see also
[5]) that a Calabi-Yau threefold X has a rational curve provided there
exists on X a non-zero effective non-ample line bundle on X .
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By the Cone Theorem, if there exists on a Calabi-Yau manifold X a non-zero
effective non-nef line bundle, then there exists on X a rational curve (generating
an extremal ray). Therefore, we can always suppose that such an effective line
bundle is nef. Remark, on the other hand, that in Peternell’s result, the effectivity
hypothesis is crucial (regarding it in a more modern way) in order to make the
machinery of the logMMP work. In this spirit, Oguiso asked in [5] the following
question: is it true that if a Calabi-Yau threefold X possesses a non-zero nef non-
ample line bundle, then there exists a rational curve on X?

Here is a positive answer, under a mild condition on the Picard number of X .

Theorem (Diverio, Ferretti [2]). Let X be a Calabi-Yau threefold and L → X
a non-zero nef non-ample line bundle. Then, X has a rational curve provided
ρ(X) > 4.

In order to give a rough idea of the techniques involved in this kind of business,
let us state (a special case of) the Kawamata-MorrisonCone conjecture and explain
how it would almost imply the Kobayashi conjecture.

Conjecture (Kawamata-Morrison). Let X be a Calabi-Yau manifold. Then, the
action of Aut(X) on the nef-effective cone of X has a rational polyhedral funda-
mental domain.

Proposition. Suppose that the Kawamata-Morrison conjecture holds. Then, the
Kobayashi conjecture is true in dimension three, except possibly if there exists a
Calabi-Yau threefold of Picard number one which is hyperbolic.

Proof. We shall suppose that the Kawamata-Morrison conjecture holds true and
that there exists a hyperbolic Calabi-Yau threefold X with ρ(X) ≥ 2 and derive
a contradiction.

Since X is supposed to be hyperbolic, it does not contain any rational curve
and Aut(X) is finite. The Kawamata-Morrison conjecture implies therefore that
the nef cone of X is rational polyhedral.

Now, since it is rational polyhedral, rational points are dense on each face of the
nef boundary. Moreover, at most one of these faces (which are at least in number
of ρ(X) ≥ 2) can be contained in the hyperplane given by (c2(X) · D) = 0: in
fact this is a “true” hyperplane since if c1(X) = c2(X) = 0, then X would be a
finite étale quotient of a complex torus, so that X would not be hyperbolic (nor a
Calabi-Yau manifold in our strict sense).

Therefore, there exists on X a (in fact plenty of) nef Q-divisor D such that
c2(X) ·D > 0. Computing its Euler characteristic and using Kawamata–Viehweg
vanishing, D can be shown to be effective. But then, since there exists on X a non-
zero effective non-ample divisor, there exists a rational curve on X , contradicting
its hyperbolicity.
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Symmetric differentials and the fundamental group

Bruno Klingler

(joint work with Yohan Brunebarbe, Burt Totaro)

We discussed the following result proven in [1]: let X be a compact connected
Kähler manifold with no global holomorphic symmetric differentials. Then any
finite dimensional representation of π1(X) over any field has finite image.

Notice that the class of such manifolds is large, including projective varieties of
general type.
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Cusps of plane curves, a conjecture of Chisini, and meromorphic
differentials with real periods

Samuel Grushevsky

(joint work with Igor Krichever)

In this talk we presented our joint work in progress with Igor Krichever, on
bounding the number of cusps of plane curves using real-normalized differentials.
The detailed results will appear as [GK12].

Real-normalized differentials are meromorphic differentials on Riemann sur-
faces, with no residues, and with all periods real. In [GK09] we applied real-
normalized differentials to obtain a new proof of Diaz’ theorem on dimension of
complete subvarieties of the moduli space of curves Mg; in [GK11] we applied
them to prove the vanishing of certain tautological homology classes, predicted by
Faber’s conjecture. In [Kr11] Krichever used real-normalized differentials to prove
Arbarello’s conjecture on complete subvarieties of Mg, and in [Kr12] Krichever
used real-normalized differentials to obtain a strong upper bound on dimension of
complete subvarieties of the moduli space of stable curves of compact type.

The main result of our work will be as follows.
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Theorem. There exists an explicit function N(g, d) such that for any g suf-
ficiently large with respect to d, for any smooth genus g curve with d marked
points, (X, p1, . . . , pd) ∈ Mg,d, the number of common zeroes of any pair of real-
normalized differentials on X, with double poles at each pi with no residue (and
with R-linearly independent singular parts at each pi) is at most N(g, d).

This theorem has an application to bounding the number of cusps of plane
curves.

Corollary. There exists an explicit functionM(d) such that a degree d plane curve
C ⊂ P2 that has only nodes and simple cusps as singularities has at most M(d)
cusps.

It appears that the bound M(d) we obtain above will be better than the previ-
ously known upper bounds for the number of cusps of plane curves.

To obtain the corollary from the theorem, note that the two coordinate differ-
entials dx and dy, for the non-homogeneous coordinates on P2, when restricted to
C, vanish simultaneously precisely at the cusps, and have double poles with no
nodes at the d intersection points of C with the line at infinity. Suppose C has k
cusps and n nodes; then its normalization C̃ has genus (d − 1)(d − 2)/2 − k − n,

and the pullbacks of dx and dy to C̃ give two meromorphic differentials with
d double poles and zero periods. The above theorem then applies to give k ≤
N((d− 1)(d− 2)/2− k − n, d), from which the corollary follows.

We prove the main theorem by degeneration. To this end, we recall that local
real-analytic coordinates at any point of Mg,d are given by the set of absolute pe-
riods (integrals over elements of H1(X,Z)) and relative periods (integrals from one
zero to another) of one real-normalized differential. As explained in [GK11], this
implies that the locus where the two real-normalized differentials have a prescribed
number of common zeroes, if non-empty, has expected dimension. Moreover, two
real-normalized differentials can have n common zeroes, then this can happen for
arbitrary values of absolute periods. We further study possible degenerations: do-
ing this for real-normalized differentials in general as opposed to only the case
of plane curves allows us to exclude the case of non-separating degenerations, by
requiring the period of the real-normalized differential to be non-zero over every
cycle — and thus ensuring that a non-zero-homologous loop cannot be contracted.
We refer to [GK12] for the details of the argument.
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Characterizations of varieties whose universal cover is a bounded
symmetric domain

Fabrizio Catanese

(joint work with Antonio José Di Scala)

A central problem in the theory of complex manifolds has been the one of determin-
ing the compact complex manifoldsX whose universal covering X̃ is biholomorphic
to a bounded domain Ω ⊂ Cn.
A first important restriction is given by theorems by Siegel and Kodaira, extending
to several variables a result of Poincaré, and asserting that necessarily such a
manifold X is projective and has ample canonical divisor KX .
A restriction on Ω is given by another theorem of Siegel, asserting that Ω must be
holomorphically convex.
The question concerning which domains occur was partly answered by Borel who
showed that, given a bounded symmetric domain Ω ⊂ Cn, there exists a properly
discontinuous group Γ ⊂ Aut(Ω) which acts freely on Ω and is cocompact (i.e., is
such that X =: Ω/Γ is a compact complex manifold with universal cover ∼= Ω).

Consider the following question: given a bounded domain Ω ⊂ Cn, how can we tell
when a projective manifold X with ample canonical divisor KX has Ω as universal
covering ?
The question was solved by Yau in the case of a ball, using the theorem of Aubin
and Yau asserting the existence of Kähler Einstein metrics for varieties with ample
canonical bundle. The existence of such metrics, joint to some deep knowledge of
the differential geometry of bounded symmetric domains, allows to obtain more
general results.
Together with Franciosi ([3]) we took up the question for the case of a polydisk, and
a fully satisfactory answer was found in [1] for the special case where the bounded
symmetric domain has all factors of tube type, i.e., when these are biholomorphic,
via the Cayley transform, to some tube domain

Ω = V + iC,

where V is a real vector space and C ⊂ V is an open self dual cone containing no
lines.

Theorem 1.([1]) Let X be a compact complex manifold of dimension n. Then
the following two conditions:

(1) KX is ample
(2) X admits a semi special tensor ψ 6= 0 ∈ H0(Sn(Ω1

X)(−KX)⊗ η), where η
is a 2-torsion invertible sheaf.
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hold if and only if X ∼= Ω/Γ , where Ω is a bounded symmetric domain of tube
type with the special property

(*) Ω is a product of irreducible bounded symmetric domains Dj of tube type
whose rank rj divides the dimension nj of Dj,

and Γ is a cocompact discrete subgroup of Aut(Ω) acting freely.
Moreover, the degrees and the multiplicities of the irreducible factors of the

polynomial ψp determine uniquely the universal covering X̃ = Ω.
In particular the polydisk case is as follows: X admits a semi special tensor

ψ ∈ H0(Sn(Ω1
X)(−KX)⊗ η) such that, given any point p ∈ X , the corresponding

hypersurface Fp =: {ψp = 0} ⊂ P(TXp) is reduced ⇔ X ∼= (Hn)/Γ.

Theorem 2.([1]) Let X be a compact complex manifold of dimension n. Then
the following two conditions:

(1) KX is ample
(2) X admits a slope zero tensor ψ ∈ H0(Smn(Ω1

X)(−mKX)), (here m is a
positive integer);

hold if and only if X ∼= Ω/Γ , where Ω is a bounded symmetric domain of tube
type and Γ is a cocompact discrete subgroup of Aut(Ω) acting freely.

Moreover, the degrees and the multiplicities of the irreducible factors of the

polynomial ψp determine uniquely the universal covering X̃ = Ω.

The above characterizations are important in order to obtain precise formulations
of some results of Kazhdan.
Corollary. Assume that X is a projective manifold with KX ample, and that the
universal covering X̃ is a bounded symmetric domain of tube type.

Let σ ∈ Aut(C) be an automorphism of C.

Then the conjugate variety Xσ has universal covering X̃σ ∼= X̃.

In our joint work we have been able to give other, perhaps less elegant, but
more general formulations which hold for all bounded symmetric domains. For
instance, in the case where there are no ball factors, we got the following result,
using the algebraic curvature tensor.

Theorem 3.([2]) Let X be a compact complex manifold of dimension n with
KX ample.

Then the universal covering X̃ is a bounded symmetric domain without factors
of ball type if and only if there is a holomorphic tensor s ∈ H0(End(TX ⊗ T∨

X))
enjoying the following properties:

1) given any point p ∈ X , there is a splitting of the tangent space T = TX,p

T = T ′
1 ⊕ ...⊕ T ′

m

such that the Mok characteristic cone CS splits into m irreducible components
CS ′(j) with

2) CS ′(j) = T ′
1 × CS ′

j ...× T ′
m

3) CS ′
j ⊂ T ′

j fulfills: if Wj := {w ∈ T ′
j |w + CS ′

j ⊂ CS ′
j}, then Wj = 0

4) CS ′
j is contained in a linear subspace (this is equivalent to CS ′(j) being

contained in a linear subspace) if and only if CS ′
j = 0 and dim (T ′

j) = 1.
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Recall that the Mok characteristic cone CS ⊂ TX is defined as the projection
on the first factor of the intersection ker(s) ∩ {t ∈ (TX ⊗ T∨

X)Rank(t) = 1}.
In work in progress we are pursuing more precise and less tautological charac-

terizations which allow to determine the universal covering explicitly.
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Enriques surfaces whose automorphism groups are virtually abelian

Shigeru Mukai

A (minimal) Enriques surface S is the quotient of a K3 surface X by a fixed-
point-free involution ε : X → X . We consider it over the complex number field.
Its Picard group is isomorphic to the second cohomology group H2(S,Z). The
torsion part of H2(S,Z) is generated by the first Chern class c1(S). The torsion
free part is an even integral unimodular lattice of rank 10. An Enriques surface S
is algebraic and the automorphism group AutS is discrete. Its number of moduli
is 10.

If an Enriques surface S is (moduli theoretically) very general, then S does not
contain a smooth rational curve on it. Every positive isotropic divisor class on such
an S defines an elliptic fibrtation whose Mordell-Weil rank1is 8. In particular,
AutS is infinite if S is very general. The automorphism group AutS shrinks when
S becomes special and has smooth rational curves on it. As the most extreme case,
Nikulin[9] and Kondo[5] classified the Enriques surfaces with only finitely many
automorphisms into seven types I, –, VII. In this talk we explain our recent result
(and its proof) on the next case. Recall that a group is called virtually abelian if
it contains a finitely generated abelian group as normal subgroup of finite index.

Theorem A. The automorphism group AutS of an Enriques surface S is vir-
tually abelian if and only if either AutS is finite or S is of (lattice) type E8, that
is, the twisted Picard group Picω S contains the (negative definite) root lattice of
type E8 as sublattice.

The following lists the lattice type of Enriques surfaces with virtually abelian
automorphism groups.

1For an elliptic fibration Φ : S → P1, the rank of the Mordell-Weil group of its Jacobian
fibration is called the Mordell-Weil rank of Φ for short.



24 Oberwolfach Report 43/2012

No. I’ II III IV V

Lattice type E8 D9 (D8 +A1 +A1)
+
W (D5 +D5)W (E7 +A2 +A1)W

Lieberman type Kondo-Mukai type
(see Example C) (cf. [6])

VI VII
E6 +A4 (A9 +A1)

+

Hessian (cf. [4]) Fano[3]

Here L+ denotes an odd (integral) lattice which contains L as sublattice of
index 2. See Definition B below for lattice type L or LW , which is the key of our
proof of the theorem. Our lattice type is a refinement of the root invariants of
Nikulin[9] in terms of the twisted cohomology group.

1. Twisted cohomology

The kernel of the Gysin map π∗ : H2(X,Z) → H2(S,Z) is a free Z-module
of rank 12, which we call the twisted cohomology group of an Enriques surface
S and denote by Hω(S,Z), where π : X → S is the canonical (or universal)
covering. Hω(S,Z) is isomorphic to the second cohomology group H2(S,ZωS) of S
with coefficients in the unique non-trivial local system ZωS . Hence, the natural non-
degenerate pairing ZωS × ZωS → ZS induces a Z-valued bilinear form on Hω(S,Z),
for which the following holds (cf. [2]):

• Hω(S,Z) is an odd unimodular lattice I2,10 of signaure (2, 10).
• Hω(S,Z) carries a polarized Hodge structure Hω(S) of weight 2 with
Hodge number (1, 10, 1).

• The (1, 1)-part ofHω(S) is the kernel of the pushforward map π∗ : PicX →
PicS. We call it the twisted Picard lattice and denote by Picω S.

• The modulo 2 reduction Hω(S,Z) ⊗ Z/2 is canonically isomorphic to the
usual cohomology H2(S,Z/2) with Z/2 coefficient.

The twisted Picard lattice Picω S is negative definite, and does not contain a
(−1)-element by Riemann-Roch. Let L be such a lattice, that is, negative definite
and 6∋ (−1)-element.

Definition B. An Enriques surface S is of lattice type L (resp. LW ) if the
twisted Picard lattice Picω S contains L as primitive sublattice and if the orthog-
onal complement of L →֒ Hω(S,Z) is odd (resp. even).

The orthogonal complement is even if and only if L⊗Z/2 contains Wu’s class,
that is, c1(S) modulo 2. The number of moduli of Enriques surfaces of (lattice)
type L or LW is equal to 10− rankL.

Example C. An Enriques surface is called Lieberman type if it is isomorphic
to the quotient of a Kummer surface Km(E1 × E2) of product type by ε+, where
Ei, i = 1, 2, is an elliptic curve and ε+ is the composite of (−1E , 1E) and the
translation by a 2-torsion (a1, a2) with 0 6= ai ∈ (Ei)(2). An Enriques surface S
is of Lieberman type if and only if it is of type D8,W , that is, Picω S contains D8

primitively and the orthogonal complement of D8 →֒ Hω(S,Z) is isomorphic to
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U +U(2), where U (resp. U(2)) denotes the rank 2 lattice given by the symmetric

matrix

(
0 1
1 0

)
(resp.

(
0 2
2 0

)
). (The orthogonal complement is isomorphic to

〈1〉 + 〈−1〉 + U(2) if S is of type D8.) The IIIrd Enriques surface in the above
table is of Lieberman type with E1 = E2 = C/(Z+ Z

√
−1).

If C is a smooth rational curve on an Enriques surface, then its pullback splits
into two disjoint rational curves C0 and C1. Their difference [C0]− [C1] defines a
(−2)-element in Picω S up to sign, which is called the twisted fundamental class
of C. In particular, a tree of smooth rational curves on S of ADE-type defines a
negative definite sublattice of the same type in Picω S.

2. Outline of proof of Theorem A

Assume that AutS is not finite but virtually abelian. Then S has an elliptic
fibration Φ0 : S → P1 of positive Mordell-Weil rank, and all other elliptic fibrations
Φ 6= Φ0 have Mordell-Weil rank zero. In particular S has one and only one elliptic
fibration of positive Mordell-Weil rank modulo AutS. By an argument similar to
[9], S is of type either E8, A9, E7 +A2, (A5 +A5)

+ or (D6 + A3 + A1)
+
W . Except

for E8, S has more than one elliptic fibrations of positive Mordell-Weil rank. For
example, in the cases of type A9 and (A5 +A5)

+, it is deduced from the action of
the alternating group A5. In the last case, it is deduced from the fact that S is
the normalization of the diagonal Enriques sextic

S : (x20 + x21 + x22 + x23) +
√
−1

(
1

x20
+

1

x21
+

1

x22
+

1

x23

)
x0x1x2x3 = 0

in P3. (This equation was found in [8] as the octahedral Enriques sextic.) In the
case of type E8, AutS is virtually abelian by Barth-Peters[1, §4].
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Foliations on Uniruled Manifolds

Jorge Vitório Pereira

(joint work with Frank Loray, Frédéric Touzet)

Bogomolov and McQuillan proved that the ampleness of the tangent sheaf of a
foliation along a curve imposes strong restriction on the leaves intersecting such
curve, see [1]. It is natural to ask if less positivity along a curve also imposes
constraints on the geometry of the foliation. Although we do not have a general
answer to such question we do have some positive results after imposing that the
curve is a free rational curve.

Proposition. Let F be a foliation on an uniruled projective manifold X. If there
exists a general free morphism f : P1 → X such that h0(P1, f∗TF ⊗OP1(−1)) > 0
then through a general point x ∈ X there exists a rational curve contained in a
leaf of F .

By general free morphism we mean general in some irreducible component of
the space of morphisms.

If we further impose that F has codimension one then even the weakest kind
of positivity that one can imagine already has implications to the structure of the
foliation.

Theorem. Let F be a codimension one foliation on an n-dimensional uniruled
projective manifold X. If f : P1 → X is a general free morphism, δ0 = h0(P1, f∗TF),
and δ−1 = h0(P1, f∗TF ⊗ OP1(−1)) then at least one of the following assertions
holds true.

(a) The foliation F is transversely projective.
(b) The foliation F is the pull-back by a rational map of a foliation G on a

projective manifold of dimension ≤ n− δ0 + δ−1.

The results above appear in [2] as Proposition 6.13, and Theorem 5 respectively.
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Singular irreducible symplectic spaces

Tim Kirschner
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1. Period mappings for (nonproper) families of manifolds

Let g : Y → S be a submersive, yet not necessarily proper(!), morphism of
complex manifolds. Fix an integer n and denote

H
n(g) := Rng∗(Ω

q

Y/S)

the n-th relative algebraic de Rham module associated to g. Then, in the very
spirit of [4], we define (in a canonical way) a sheaf map

∇n
GM(g) : H

n(g) → Ω1
S ⊗OS

H
n(g),

which turns out to be a flat connection on H n(g).
Thus, when H := H n(g) is a locally finite free module (i.e., a vector bundle)

on S, we see that

H := ker(∇n
GM(g))

is a locally constant sheaf of CS-modules on S with the property that the evident
map

OS ⊗CS
H → H

is an isomorphism. In particular, for any s ∈ S, we obtain an isomorphism of
complex vector spaces

Hs → H
n(Ys)

if we assume the base change map for algebraic de Rham cohomology

C⊗OS,s
Hs → H

n(Ys)
to be one.

Furthermore, in case S is simply connected, fixing a base point t ∈ S, we dispose
of a family of ismorphisms

φs,t : H
n(Ys) → Hs → H(S) → Ht → H

n(Yt),
where the point s varies through S. Therefore, for any integer p, we are in the
position to define a period mapping

Pp,nt (g) : S → Gr(H n(Yt))
by setting

(Pp,nt (g))(s) := φs,t [F
p
H

n(Ys)] ,
where

FpH n(Ys) := im
(
Hn(Ys, σ≥pΩ

q

Ys
) → Hn(Ys,Ω q

Ys
)
)
.

Now an easy argument shows that when FpH n(g) ⊂ H n(g) is a vector sub-
bundle and, for all s ∈ S, the base change map

C⊗OS,s
(FpH n(g))s → FpH n(Ys)

is an isomorphism, then the period mapping Pp,nt (g) is holomorphic.
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2. The local Torelli theorem

Following the example set by [1, Definition 1.1], we make the

Definition. A complex space X is called symplectic when X is normal and there
exists an element σ ∈ Ω2

X(Xreg) such that

(1) dσ = 0,
(2) σ is nondegenerate on Xreg in the sense that the contraction with σ gives

rise to an isomorphism of sheaves on Xreg

ΘXreg
→ Ω1

Xreg
;

(3) for all resolutions of singularities f : X̃ → X , there exists an element

σ̃ ∈ Ω2
X̃
(X̃) such that we have

σ̃|f−1(Xreg) = f∗(σ) ∈ Ω2
X̃
(f−1(Xreg)).

In the realm of [5], we develop a theory, in parts generalizing classical results
from [3], for the period mappings introduced in Section 1. As an application of
this theory we prove

Theorem 1 ([5]). Let f : X → S be a proper, flat morphism of complex spaces
and t ∈ S. Assume that the family f is semi-universal in t, that S is smooth and
simply connected, and that the fibers of f are Kähler, have rational singularities
and singular loci of codimension ≥ 4.

Moreover, assume that Xt is symplectic with

dimC

(
Ω2

Xt
((Xt)reg)

)
= 1.

Set

Y := {x ∈ X : f is submersive in x}
and g := f |Y : Y → S. Then the period mapping

P2,2
t (g) : S → Gr(1,H 2(Yt))

is (well-defined, holomorphic, and) a 1-codimensional local immersion at t.

Remark 1. Theorem 1 implicitly claims that the assumptions listed in Section 1
needed to define P2,2

t (g) (in the holomorphic sense) are fulfilled. As a matter of
fact, we show:

Given a proper, flat morphism f : X → S of complex spaces such that S is
smooth and the fibers of f are Kähler, have rational singularities and singular loci
of codimension ≥ 4, then the following assertions hold:

(1) For all pairs (p, q) of integers such that p+ q ≤ 2, the module Rqg∗(Ω
p
Y/S)

is locally finite free on S and compatible with base change.
(2) The relative Frölicher spectral sequence for the morphism g degenerates

in the corresponding entries.

Remark 2. Theorem 1 generalizes [8, Theorem 8].
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Corollary. In the situation of Theorem 1, when R2f∗(CX ) is a locally constant
sheaf on S, we have:

(1) The period mapping of mixed Hodge structures

P2,2
t (f)MHS : S → QXt

⊂ Gr(1,H2(Xt,C))
is a local biholomorphism at t, where QXt

denotes the zero set cut out by
the Beauville-Bogomolov form qXt

(see Theorem 2 below).
(2) The restriction mapping

H2(X,C) → H2(Xreg,C)

is an isomorphism.

3. The Fujiki relation

[7, Theorem (2.5)] says that the Kuranishi space of a projective, symplectic
complex space X with singular locus of codimension ≥ 4 is smooth. A slight
alteration of the proof in loc. cit. shows that the statemant holds true for all
compact, Kähler (instead of merely projective) complex spaces.

As a consequence, employing crucially the results of Section 2, one derives

Theorem 2 ([5]). Let X be a compact, Kähler type, connected, symplectic complex
space such that

dimC(Ω
2
X(Xreg)) = 1

and

codim(Sing(X), X) ≥ 4.

Then the Fujiki relation holds for X, i.e., for all a ∈ H2(X,C) we have
∫

X

a2r =

(
2r

r

)
qX(a)r,

where r := 1
2 dim(X) and

qX(a) :=
r

2

∫

X

(wr−1wr−1a2) + (r − 1)

∫

X

(wr−1wra)

∫

X

(wrwr−1a),

where w ∈ F2H2(X) ⊂ H2(X,C) such that
∫
X
wrwr = 1.

Remark. Theorem 2 is classical for X an irreducible holomorphic symplectic man-
ifold (cf. [2, Theorem 4.7]); note that the corresponding proof relies heavily on
differential geometric means. Our proof for Theorem 2, which is in a sense of
purely algebraic nature, is inspired by [6].
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The abundance conjecture for slc pairs and its applications

Yoshinori Gongyo

(joint work with Osamu Fujino)

The following theorem is one of the main results of this talk. It is a solution of
the conjecture raised in [F] (see [F, Conjecture 3.2]). For the definition of the log
pluricanonical representation ρm, see Definitions 1 below.

Theorem 1 (cf. [F, Section 3], [G1, Theorem B]). Let (X,∆) be a projective log
canonical pair. Suppose that m(KX+∆) is Cartier and that KX+∆ is semi-ample.
Then ρm(Bir(X,∆)) is a finite group.

Definition 1 ([F, Definition 3.1]). Let (X,∆) (resp. (Y,Γ)) be a pair such that X
(resp. Y ) is a normal scheme with a Q-divisor ∆ (resp. Γ) such that KX+∆ (resp.
KY + Γ) is Q-Cartier. We say that a proper birational map f : (X,∆) 99K (Y,Γ)
is B-birational if there exist a common resolution α : W → X and β : W → Y
such that α∗(KX + ∆) = β∗(KY + Γ). This means that it holds that E = F
when we put KW = α∗(KX + ∆) + E and KW = β∗(KY + Γ) + F . We put
Bir(X,∆) = {σ|σ : (X,∆) 99K (X,∆) is B-birational}.

Then, we consider log pluricanonical representation

ρm : Bir(X,∆) → AutC(H
0(X,m(KX +∆)))

In Theorem 1, we do not have to assume that KX + ∆ is semi-ample when
KX + ∆ is big. As a corollary of this fact, we obtain the finiteness of Bir(X,∆)
when KX +∆ is big. It is an answer to the question raised by Cacciola and Tasin.

Theorem 2. Let (X,∆) be a projective log canonical pair such that KX + ∆ is
big. Then Bir(X,∆) is a finite group.

In the framework of [F], Theorem 1 will play important roles in the study of
Conjecture 1 (see [Ft], [AFKM], [Ka], [KMM], [F], [G1], and so on).

Conjecture 1 ((Log) abundance conjecture). Let (X,∆) be a projective semi log
canonical pair such that ∆ is a Q-divisor. Suppose that KX + ∆ is nef. Then
KX +∆ is semi-ample.

Theorem 1 was settled for surfaces in [F, Section 3] and for the case where
KX + ∆ ∼Q 0 by [G1, Theorem B]. To carry out the proof of Theorem 1, we

introduce the notion of B̃-birational maps and B̃-birational representations for sub
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kawamata log terminal pairs, which is new and is indispensable for generalizing
the arguments in [F, Section 3] for higher dimensional log canonical pairs.

By Theorem 1, we obtain a key result.

Theorem 3. Let (X,∆) be a projective semi log canonical pair. Let ν : Xν → X
be the normalization. Assume that KXν +Θ = ν∗(KX +∆) is semi-ample. Then
KX +∆ is semi-ample.

By Theorem 3, Conjecture 1 is reduced to the problem for log canonical pairs.
After we circulated the paper [FG], Hacon and Xu proved a relative version of
Theorem 3 by using Kollár’s gluing theory (cf. [HX]).

Let X be a smooth projective n-fold. By our experience on the low-dimensional
abundance conjecture, we think that we need the abundance theorem for projective
semi log canonical pairs in dimension ≤ n − 1 in order to prove the abundance
conjecture for X . Therefore, Theorem 3 seems to be an important step for the
inductive approach to the abundance conjecture. The general strategy for proving
the abundance conjecture is explained in the introduction of [F]. Theorem 3 is a
complete solution of Step (v) in [F, 0. Introduction].

We will discuss the relationship among the various conjectures in the minimal
model program. Let us recall the following two important conjectures.

Conjecture 2 (Non-vanishing conjecture). Let (X,∆) be a projective log canonical
pair such that ∆ is an R-divisor. Assume that KX +∆ is pseudo-effective. Then
there exists an effective R-divisor D on X such that KX +∆ ∼R D.

By [DHP, Section 8] and [G2], Conjecture 2 can be reduced to the case when X
is a smooth projective variety and ∆ = 0 by using the global ACC conjecture and
the ACC for log canonical thresholds (see [DHP, Conjecture 8.2 and Conjecture
8.4]).

Conjecture 3 (Extension conjecture for divisorial log terminal pairs (cf. [DHP,
Conjecture 1.3])). Let (X,∆) be an n-dimensional projective divisorial log terminal
pair such that ∆ is a Q-divisor, x∆y = S, KX +∆ is nef, and KX +∆ ∼Q D ≥ 0
where S ⊂ SuppD. Then

H0(X,OX(m(KX +∆))) → H0(S,OS(m(KX +∆)))

is surjective for all sufficiently divisible integers m ≥ 2.

Note that Conjecture 3 holds true when KX + ∆ is semi-ample. It is an easy
consequence of a cohomology injectivity theorem. We also note that Conjecture 3
is true if (X,∆) is purely log terminal (cf. [DHP, Corollary 1.8]). The following
theorem is one of the main results of this tlk. It is a generalization of [DHP,
Theorem 1.4].

Theorem 4 (cf. [DHP, Theorem 1.4]). Assume that Conjecture 2 and Conjecture
3 hold true in dimension ≤ n. Let (X,∆) be an n-dimensional projective divisorial
log terminal pair such that KX + ∆ is pseudo-effective. Then (X,∆) has a good
minimal model. In particular, if KX +∆ is nef, then KX +∆ is semi-ample.
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By our inductive treatment of Theorem 4, Theorem 3 plays a crucial role.
Therefore, Theorem 1 is indispensable for Theorem 4.
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Recent results on automorphisms of irreducible holomorphic
symplectic manifolds

Alessandra Sarti

Definition. An irreducible holomorphic symplectic (IHS) manifold X is a com-
pact, complex, Kähler manifold which is simply connected and admits a unique
(up to scalar multiplication) everywhere non-degenerate holomorphic 2-form.

From the definition follows that the dimension of X is even and the canonical
divisor is trivial.
Examples. 1) If the dimension of X is 2 then IHS manifolds are K3 surfaces.
2) If dimX = 2n, n ≥ 2, there are two families of examples studied by Beauville

[3], in 1983: the Hilbert scheme of points Hilb[n](Σ) of a K3 surface of dimension 2n

and of second Betti number b2 = 23; the generalized Kummer variety Km[n](A)
of dimension 2n and, if n > 2, of second Betti number b2 = 7. If n = 2 then

dim(Km[1](A)) = 2 and in this case the generalized Kummer variety is a Kummer
surface. There are moreover two examples of O’Grady [13, 12] one in dimension
10 (b2 = 24) and the other in dimension 6 (b2 = 8). Since their Betti numbers are
different these examples are not deformation equivalent to each other and until
now, up to deformation, these are all the known examples of IHS manifolds.
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The aim of the talk is to study automorphisms of prime order on an IHS man-
ifold X . Denote by ωX the everywhere non-degenerate holomorphic 2-form. We
call an automorphism ψ of X symplectic if its action on ωX is trivial otherwise it
is called non-symplectic. In the case of K3 surfaces the study of automorphisms
was started by Nikulin in [10] and then many of its results were generalized to

IHS manifolds by Beauville [2]. If X is deformation equivalent to Hilb[2](Σ) there
is a very recent description of the fixed locus of ψ in the case that ψ is a (non)-
symplectic involution, by Beauville, Camere, Mongardi [4, 8, 9]. Here we study
the case of non-symplectic automorphisms of prime order p ≥ 3.
Examples of non symplectic automorphisms and their fixed locus.
1) Let Σ be a K3 surface and ϕ a non-symplectic automorphism of Σ. In a natu-
ral way ϕ induces an automorphism (a natural automorphism) ϕ[n] on the Hilbert

scheme Hilb[n](Σ). Assume that the order of ϕ is 3 and n = 2. The fixed locus of
ϕ is always of the form

Σϕ = Cg ∪R1 ∪ . . . ∪Rk ∪ {p1, . . . , pN}
with Cg a smooth curve of genus g ≥ 0, Ri a smooth rational curve, i = 1, . . . , k,
and pj , j = 1, . . . , N an isolated fixed point (cf. [1, Theorem 2.2]), then by using
the local action of ϕ at a fixed point and the properties of the Hilbert scheme,

one computes the fixed locus on Hilb[2](Σ). Up to isomorphism this consists of
(N +Nk+ k) copies of P1, N(N − 1)/2 isolated fixed points, k(k− 1)/2 copies of

P1 × P1, k copies of P2, N + 1 curves Cg, k copies of P1 ×Cg and one Hilb[2](Cg)
(cf. [6]).
2) Let V be a cubic hypersurface in P5, then

F (V ) = {l ∈ Gr(1, 5) | l ⊂ V }
is the Fano variety of lines on V . Beauville and Donagi [5] in 1984 have shown

that F (V ) is deformation equivalent to Hilb[2](Σ). Consider the automorphism of
P5 given by:

ψ0 : (x0 : . . . : x5) 7→ (x0 : . . . : x4 : ξx5), ξ = e
2πi
3 .

The family of invariant cubics is

V : L3(x0, . . . , x4) + x35 = 0

where L3 is a homogeneous polynomial of degree 3. One can see that ψ0 acts
non-symplectically on F (V ) and the fixed locus of ψ0 on V consists of a cubic
3-fold C = {L3(x0, . . . , x4) = 0, x5 = 0}. The induced fixed locus on F (V ) is the
Fano surface of C which is a surface of general type with Hodge diamond: h0 = 1,
h1,0 = h0,1 = 5, h2,0 = h0,2 = 10, h1,1 = 25.

When studying the fixed locus of automorphisms on manifolds there are two
important formulas that one can apply to get information: the topological and the
holomorphic Lefschetz fixed point formulas. In the case of non-symplectic auto-
morphisms of prime order acting on K3 surfaces, in [1] the authors uses Smith exact
sequences to give a formula for h∗(Σϕ,Fp) =

∑
i≥0 h

i(Σϕ,Fp), where Σ is a K3
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surface, ϕ is of order p and acts non-symplectically on Σ. A generalization of this
formula to IHS manifolds is given by Boissière, Nieper-Wisskirchen and the author
in [7, Corollary 5.12]. In order to give it in the case of IHS manifolds that are de-

formation equivalent to Hilb[2](Σ) we introduce some notations. A non-symplectic
automorphism ψ of prime order p on an IHS manifold X deformation equivalent to

Hilb[2](Σ) induces an action on the Z-module H2(X,Z), which together with the
Beauville-Bogomolov quadratic form is a lattice isometric to U⊕3 ⊕ E⊕2

8 ⊕ 〈−2〉,
where U is the unique unimodular hyperbolic lattice of signature (1, 1). The ac-
tion of ψ on H2(X,Z) determines an invariant sublattice T (X) and we denote
by S(X) its orthogonal complement. It turns out that the transcendental lattice
TX ⊂ S(X) and the Néron-Severi lattice NS(X) ⊂ T (X). In the paper [7, Lemma
5.3] it is shown that the lattice T (X)⊕ S(X) has finite index pa in H2(X,Z) for
a certain integer a ≥ 0 and the lattice S(X) is p-elementary, more precisely its
discriminant group is the sum of a copies of Z/pZ, [7, Lemma 6.5]. Finally the
rank of S(X) is equal to (p− 1)m for a certain integer m > 0. Recall also that for
a non-symplectic automorphism of prime order p acting non-symplectically on X
we have 2 ≤ p ≤ 23.

Theorem ([7, Corollary 6.15]). Let X be deformation equivalent to Hilb[2](Σ), G
be a group of non-symplectic automorphisms of prime order p on X with 3 ≤ p ≤ 19
and p 6= 5. Then:

h∗(XG,Fp) = 324− 2a(25− a)− (p− 2)m(25− 2a) +
1

2
m((p− 2)2m− p)

with 2 ≤ m(p− 1) ≤ 23, 0 ≤ a ≤ min{m(p− 1), 23−m(p− 1)}.

Remarks. 1) We have to exclude the case p = 5 in the Theorem since in the
proof one needs the isomorphism Sym2(H2(X,Fp)) ∼= H4(X,Fp). By a result of

Verbitsky [14], Sym2(H2(X,Q)) ∼= H4(X,Q) and we compute in [7, Proposition
6.6] that the index of Sym2(H2(X,Q)) in H4(X,Q) is 223 · 5. So the first isomor-
phism holds only for p 6= 2, 5.
2) An immediate consequence of the formula is that a non-symplectic automor-
phism of order 3 has always fixed points on X ([7, Proposition 6.17]).
Applications. In the recent work [6] we combine the formula of the Theorem, the
topological Lefschtez formula and results of Nikulin on lattices [11] to get tables
for any 3 ≤ p ≤ 19, p 6= 5 of the invariants m and a of the invariant lattice and
its orthogonal complement. In fact we show that these two lattices are uniquely
determined by m and a, this generalizes an analogous result for K3 surfaces [1,
Proposition 3.2]. We show also that all the cases of our table are possible. For ex-
ample in the case of the Example 2, that we gave at the beginning of the report,
the topological Euler characteristic of the fixed locus is χ = 27, h∗(Xψ0 ,F3) = 67
and one computes that m = 11 and a = 1. Using lattice theory one shows that
T (X) = 〈6〉 and S(X) = U⊕2 ⊕ E⊕2

8 ⊕A2.
This example answer also the question: Does there exist non-natural non-symplectic
automorphisms of prime order p ≥ 3 on X? Here we say that an automorphism
ψ on X is natural if there exists a K3 surface Σ and an automorphism ϕ on Σ
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such that the couple (X,ψ) is deformation equivalent to (Hilb[2](Σ), ϕ[2]) (see [9,
Definition 1.1]). The previous example answer positively this question, since for a
natural automorphism we must have that the rank of T (X) is at least 2. In fact,
in [2], Beauville shows that X is algebraic so we can find an invariant ample class

and the class of the exceptional set on Hilb[2](Σ) is invariant too. This gives two
classes in T (X).
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Semi-algebraic horizontal subvarieties of Calabi-Yau type

Radu Laza

(joint work with Robert Friedman)

Alongside curves, two classes of varieties for which we have a reasonably good un-
derstanding of the moduli spaces are the K3 surfaces and the principally polarized
abelian varieties. For these two cases the main tool for studying their moduli is
the period map. Except these cases the use of period maps towards understanding
moduli spaces has been limited so far. One of the main reasons for this is that,
except for weight 1 Hodge structures or weight 2 HS with h2,0 = 1, the periods
of algebraic varieties satisfy non-trivial relations (the Griffiths transversality re-
lations, ∇F p ⊆ F p−1). The purpose of this note is to discuss the image of the
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period map in some cases (beyond abelian varieties and K3s), with special focus
on Calabi-Yau threefolds.

Specifically, let D be a period domain, i.e. a classifying space for polarized Hodge
structures of weight n. We consider Z ⊂ D a closed horizontal subvariety (i.e. the
Griffiths transversality relations are satisfied for Z). If Z is coming from algebraic
geometry, then Z is stabilized by a big monodromy group Γ. More precisely, if Γ is
the stabilizer of Z in the natural arithmetic group G(Z) acting on D, then Γ acts
properly discontinuously on Z, the image Γ\Z ⊆ G(Z)\D is a closed subvariety,
and it is the image of a quasi-projective variety under a proper holomorphic map.
Thus it is reasonable in general to look at closed horizontal subvarieties Z of D such
that Γ\Z is quasi-projective. Actually, we will need a mild technical strengthening
of this hypothesis which we call strongly quasi-proj! ective (i.e. Γ′\Z is quasi-
projective for all finite index subgroups Γ′ in Γ). On the other hand, since D is an
open subset of its compact dual Ď, and Ď is a projective variety, it is natural to
look at those Z which can be defined algebraically, i.e. such that Z is a connected
component of Ẑ ∩ D, where Ẑ is a closed algebraic subvariety of Ď. We will refer
to such Z as semi-algebraic in D. Under this assumptions (big monodromy and
semi-algebraic), we obtain the following theorem:

Theorem 1. Let Z be a closed horizontal subvariety of a classifying space D for
Hodge structures and let Γ be the stabilizer of Z in the appropriate arithmetic
group G(Z). Assume that

(i) S = Γ\Z is strongly quasi-projective;
(ii) Z is semi-algebraic in D.

Then Z is a Hermitian symmetric domain whose embedding in D is an equivariant,
holomorphic, horizontal embedding.

The main ingredients used in the proof are the theorem of the fixed part as
proved by Schmid for variations of Hodge structure over quasi-projective varieties,
Deligne’s characterization of Hermitian symmetric domains [Del79], and the recent
theory of Mumford–Tate domains as developed by Green–Griffiths–Kerr [GGK12].
Theorem 1, in the case where D itself is Hermitian symmetric (and thus S is a
subvariety of a Shimura variety), has been proved independently by Ullmo–Yafaev
[UY11], using similar methods. This result is related in spirit, but in a somewhat
different direction, to a conjecture of Kollár [KP11], which says roughly that, if
Z is simply connected and semi-algebraic, and S = Γ\Z is projective for some
discrete group Γ of biholomorphisms of Z, then Z is the product of a Hermitian
symmetric space and a simply connected projective variety.

Theorem 1 is a general result for arbitrary Hodge numbers. We now focus
on the classification of the possibilities occurring in the previous theorem for the
case of Hodge structures of Calabi–Yau type (i.e. weight n Hodge structures with
hn,0 = 1). Partial classification results in this direction were previously obtained by
Gross [Gro94] and Sheng–Zuo [SZ10]. Specifically, for Hermitian symmetric spaces
of tube type, Gross [Gro94] has constructed certain natural variations of Hodge
structure of Calabi–Yau type. This construction was extended by Sheng–Zuo



Komplexe Analysis 37

[SZ10] to the non-tube case to construct complex variations of Hodge structure.
Generalizing, these results we obtain a complete classification of the Hermitian
VHS of Calabi-Yau type:

Theorem 2. For every irreducible Hermitian symmetric domain of non-compact
type D = G(R)/K, there exists a canonical R-variation of Hodge structure V of
Calabi–Yau type. Any other irreducible equivariant R-variation of Hodge structure
of Calabi–Yau type on D can be obtained as a summand of SymnV or SymnV

{
−a

2

}

(if D is not a tube domain), where { } denotes the half-twist operation (cf. [vG01]).

We note that the periods of many families of Calabi-Yau threefolds (e.g. quintic
threefolds, mirror quintics, etc.) do not satisfy the semi-algebraic assumption of
Theorem 1. However, there are interesting geometric examples (such as exam-
ples constructed by Borcea [Bor97], Voisin [Voi93], Rohde [Roh09], van Geemen
[GvG10]) that fit in with Theorems 1 and 2. We also mention here that one of
main open questions related to Theorem 2 is the geometric realization of VHS of
Calabi-Yau threefold type over the exceptional domain of type E7 given by the
theorem (e.g. see [Bai00]).

Finally, in the weight three case, it is possible to explicitly describe the em-
bedding Z →֒ D from the perspective of Griffiths transversality and to relate this
description to the Harish-Chandra realization of D and to the Korányi–Wolf tube
domain description. There are further connections to homogeneous Legendrian
varieties (e.g. [BG83], [LM07]) and the four Severi varieties of Zak.
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Bogomolov–Sommese vanishing on log canonical pairs

Patrick Graf

In his famous paper [2], Bogomolov proved the following theorem.

Theorem 1 (Bogomolov–Sommese vanishing). Let X be a complex projective
manifold and D ⊂ X a divisor with simple normal crossings. For any invertible
subsheaf L ⊂ ΩpX(logD), we have κ(L ) ≤ p, where κ(L ) denotes the Kodaira–
Iitaka dimension of L .

Theorem 1 is an important ingredient in the proof of the Bogomolov–Miyaoka–
Yau inequality.

Building on the Extension Theorem of Greb–Kebekus–Kovács–Peternell [4,
Thm. 1.5], I generalized Theorem 1 to the setting of reflexive differential forms
on log canonical pairs as follows.

Theorem 2 (Bogomolov–Sommese vanishing on log canonical pairs). Let (X,D)

be a complex projective log canonical pair. If A ⊂ Ω
[p]
X (log⌊D⌋) :=

(
ΩpX(log⌊D⌋)

)∗∗
is a Weil divisorial subsheaf, then its Kodaira–Iitaka dimension κ(A ) ≤ p.

A Weil divisorial sheaf is a reflexive sheaf of rank 1. The Kodaira–Iitaka di-
mension of a Weil divisorial sheaf A measures the growth of sections of reflexive
tensor powers of A , analogously to the case of line bundles.

There is also a slightly more general version of Theorem 2. It uses Campana’s
language of orbifoldes géométriques [3], called C-pairs in [5].

In the course of the proof of Theorem 1, I showed the following generalization
of the well-known Negativity lemma of birational geometry (see [1, Lem. 3.6.2] or
[6, Lem. 3.39]).

Proposition 1 (Negativity lemma for bigness). Let π : Y → X be a proper bira-
tional morphism between normal quasi-projective varieties. Then for any nonzero
effective π-exceptional Q-Cartier divisor E, there is a component E0 ⊂ E such
that −E|E0

is π|E0
-big.

Furthermore, I showed that on dlt C-pairs, there is a version of the adjunction
formula as well as a residue map for symmetric differential forms, and that these
two are compatible with each other in the following sense.
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Theorem 3 (Residues of symmetric differentials). Let (X,D) be a dlt C-pair and
D0 ⊂ ⌊D⌋ a component of the reduced boundary. Set Dc

0 := DiffD0
(D−D0), such

that (KX +D)|D0
= KD0

+Dc
0. Then the pair (D0, D

c
0) is also a dlt C-pair, and

for any integer p ≥ 1, there is a map

reskD0
: Sym

[k]
C ΩpX(logD) → Sym

[k]
C Ωp−1

D0
(logDc

0)

which on the snc locus of (X, ⌈D⌉) coincides with the k-th symmetric power of the
usual residue map for snc pairs.

The main idea for the proof of Theorem 1 is best explained in the simple case

where X is a cone over an elliptic curve and D = 0. Let A ⊂ Ω
[1]
X be a Weil

divisorial sheaf. We want to show that κ(A ) ≤ 1.
Let f : Z → X be the log resolution of X given by blowing up the vertex, and let

E = Exc(f). By the Extension Theorem of [4, Thm. 1.5], there is an embedding

f [∗]
A := (f∗

A )∗∗ →֒ Ω1
Z(logE),

and κ(f [∗]A ) ≤ 1 by Theorem 1. However, since reflexive pullback does not
commute with reflexive tensor powers, in this situation in general we only have
the inequality κ(f [∗]A ) ≤ κ(A ). Therefore we enlarge the sheaf f [∗]A by taking
its saturation B ⊂ Ω1

Z(logE). We prove that sections of A [k] := (A ⊗k)∗∗ extend

to sections of B[k]. Then κ(A ) = κ(B), and we are done.
The proof is by contradiction: Assuming that some section of A [k] acquires

a pole when being pulled back, we use the fact that E ⊂ Z has negative self-
intersection to deduce that B|E is ample. On the other hand, the residue sequence
for the pair (Z,E) shows that B|E injects into the trivial line bundle. This yields
the desired contradiction.

For the general proof, the fact that contractible curves have negative self-
intersection is replaced by Proposition 1. A more serious issue is that we cannot
really work on a log resolution, because it “extracts too many divisors”. Instead,
we have to pass to a minimal dlt model (Z,DZ) → (X,D), a partial resolution of
(X,D) which extracts only divisors of discrepancy exactly −1. Minimal dlt models
exist by [1]. However, (Z,DZ) is not an snc pair, but only a dlt pair, which makes
the proof technically rather involved. In particular, we have to use Theorem 3 on
(Z,DZ).
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Rational curves and special metrics on twistor spaces

Misha Verbitsky

1. Special Hermitian metrics on complex manifolds

The twistor spaces, as shown by Hitchin, are never Kähler, except two examples:
CP 3, being a twistor space of S4, and the flag space, being a twistor space of
CP 2 ([Hi]). A way of weaken the Kähler condition is to consider the equation
ddc(ωk) = 0, where dc = −IdI; this equation is non-trivial for all 0 < k < n.
When k = 1, a metric, satisfying ddcω = 0, is called pluriclosed, or strong
Kähler torsion; such metrics are quite important in physics and in generalized
complex geometry. The main result of this talk is the following theorem, similar
to Hitchin’s result.

Theorem 1. Let M be a twistor space of a compact 4-dimensional anti-selfdual
Riemannian manifold. Assume that M admits a pluriclosed Hermitian form ω.
Then M is Kähler.

2. Symplectic Hermitian metrics

When a pluriclosed Hermitian form ω is (1,1)-part of a closed (and hence sym-
plectic) form ω̃, ω is called taming or Hermitian symplectic.

In the paper [ST] Streets and Tian have constructed a parabolic flow for Hermit-
ian symplectic metric, analoguous to the Kähler-Ricci flow. They asked whether
there exists a compact complex Hermitian symplectic manifold not admitting a
Kähler structure. This question was considered in [EFG] for complex nilmanifolds,
but the results were mostly negative. However, the pluriclosed metrics exists on
many complex nilmanifolds.

The present talk grew as an attempt to answer the Streets-Tian’s question
for twistor spaces. However, it was found that the twistor spaces are not only
never Hermitian symplectic, they never admit a pluriclosed metric unless they are
Kähler.

3. Rational curves and pluriclosed metrics

Unlike many complex non-algebraic manifolds, the twistor spaces are very rich
in curves: there exists a smooth rational curve passing through any finite subset
of a twistor space.

For an almost complex structure I equipped with a taming symplectic form, all
components of the space of complex curves are compact, by Gromov’s compactness
theorem ([Gr, AL]). I will show that the same is true for pluriclosed metrics, if I
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is integrable (1). This is used to show that a twistor space admitting a pluriclosed
metrics is actually Moishezon (3).

However, Moishezon varieties satisfy the ddc-lemma. This is used to show that
any pluriclosed metric is in fact Hermitian symplectic.

Finally, by using the Peternell’s theorem characterizing Moishezon manifolds in
terms of currents, I prove that no Moishezon manifold can be Hermitian symplectic
(1).

4. Rational curves on Tw(M)

Definition 1. An ample rational curve on a complex manifold M is a smooth

curve S ∼= CP 1 ⊂M such that NS =
⊕n−1

k=1 O(ik), with ik > 0.

Theorem 2 (Gromov). Let M be a compact Hermitian almost complex manifold,

X the space of all complex curves on M , and X
Vol−→ R>0 the volume function.

Then Vol is proper (that is, preimage of a compact set is compact).

Proof: [Gr], [AL].

Corollary 1. LetM be a complex manifold, equipped with a pluriclosed Hermitian
form ω, and X a component of the moduli of complex curves. Then the function
Vol : X −→R>0 is constant, and X is compact.

Proof: Since Vol ≥ 0, the set Vol−1(]−∞, C]) is compact for all C ∈ R, hence
Vol has a minimum somewhere in X . However, a pluriharmonic function which
has a minimum is necessarily constant (E. Hopf’s strong maximum principle).
Therefore, Vol is constant: Vol = A. Now, compactness of X = Vol−1(A) follows
from Gromov’s theorem.

5. Quasilines and Moishezon manifolds

Theorem 3 (Campana). Let M be a complex manifold, S ⊂M a ample line, and
W its deformation space. Assume that W is compact. Then M is Moishezon.

Corollary 2. Let M be a twistor space admitting a pluriclosed (or plurinegative)
Hermitian metric. Then M is Moishezon.

6. Pluriclosed and Hermitian symplectic metrics on twistor spaces

The following theorem is similar to results from [HL], and proven in the same
fashion.

Theorem 4. Let M be a compact, complex n-manifold. Then

(a): M admits no pluriclosed metrics ⇔ M admits a positive, ddc-exact
(n− 1, n− 1)-current.

(b): M admits no Hermitian symplectic metrics ⇔ M admits a positive,
exact (n− 1, n− 1)-current.

This leads to the following proposition.
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Proposition 1. Any twistor space M which admits a pluriclosed metric also ad-
mits a Hermitian symplectic structure.

Proof: By 2, M is Moishezon. Then, [DGMS] implies that M satisfies ddc-
lemma. Therefore, any exact (2,2)-current is ddc-exact. Applying 4, we obtain
that M is Hermitian symplectic.

Corollary 3. Let M be a twistor space admitting a pluriclosed (or Hermitian
symplectic) metric. Then M is Kähler.

Proof: Th. Peternell has shown that any non-Kähler Moishezon n-manifold
admits an exact, positive (n − 1, n− 1)-current. Therefore, it is never Hermitian
symplectic (4). Therefore, by 1, M cannot be pluriclosed.
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Moduli Spaces of Tautological Sheaves on Hilbert Squares of K3
Surfaces

Malte Wandel

Introduction. Recall that the list of known examples of irreducible holomorphic
symplectic manifolds is very short. Up to deformation they are:

• moduli spaces of sheaves on K3 surfaces (e.g. K3 surfaces, Hilbert schemes
of points on K3 surfaces),

• generalized Kummer varieties,
• two sporadic examples of O’Grady (one of which is constructed from mod-
uli spaces of sheaves on K3 surfaces).

Note that many of them are directly connected to moduli spaces of sheaves on K3
surfaces which are, themselves, irreducible holomorphic symplectic manifolds.
This leads to the following question:

Question. Let X be an IHS manifold and M a moduli space of sheaves on X . Is
X again an IHS manifold?
Since this question posed as above seems far to general let us formulate the fol-
lowing first aim:
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Aim. Find examples of stable sheaves on higher (i.e. greater than 2) dimensional
IHS manifolds and study their moduli spaces!

Tautological sheaves. Let X be an algebraic K3 surfaces. Denote by X [n] the
Hilbert scheme of n points on X . There is a universal family Ξ ⊆ X × X [n]

which leads to the so-called tautological functor (−)[n] := ΦOΞ
: Db(X) →

Db(X [n]). It takes sheaves (bundles of rank r) to sheaves (bundles of rank nr).
Furthermore the McKay correspondence gives an equivalence of derived categories
Db(X [n])→̃Db

Sn
(Xn) ([BKR], [Hai]). In his thesis Scala ([Sca]) gave a description

of the image of tautological objects in Db
Sn

(Xn) under the BKRH-correspondence.
Using these results Krug ([Kru]) computed the extension groups of tautological
objects. These computations, among other things, show that the tautological
functor is faithful.

Stability. (From now on we will restrict to the case n = 2.)
In his thesis Schlickewei ([Schl]) gave a first proof of the stability of a certain
class of tautological vector bundles on X [2] associated with line bundles. When
we talk about stability we have to fix a polarization first. So let us recall that
Pic(X [2]) ∼= Pic(X) ⊕ ZD, where D ⊂ X [2] parametrizes length two subschemes
of X having support only in one point. Now let H ∈ Pic(X) be an ample line
bundle. Then HN := H − ND is ample for all N ≫ 0. We have the following
result:

Theorem. ([Wan]) Let F be a rank one torsion-free sheaf or a rank two µH-stable
vector bundle on X satisfying c1(F) 6= 0. Then for sufficiently large N , F [2] is a
rank two µHN

-stable sheaf (rank four µHN
-stable vector bundle resp.) on X [2].

Deformations of tautological sheaves. By Krug the infinitessimal deforma-
tions of a tautological sheaf F [2] are given as follows:

Ext1(F [2],F [2]) ∼= Ext1(F ,F)
⊕

H1(F)∨ ⊗H0(F).

(Here we assumed h2(F) = 0.) Let us call the first summand on the right hand side
the surface deformations of F [2] and the second one the additional deformations.
Since F [2] is built from F by means of a Fourier−Mukai transformation and the
deformation theory of F is unobstructed, we can deduce:

Proposition. Let F be a stable sheaf on X s.t. F [2] is again stable. Then the
surface deformations of F [2] are unobstructed.

Corollary. We have a local immersion of the corresponding moduli spaces.

Remark. If h1(F) = 0 we have a local isomorphism of the moduli spaces.

Caution. In general these moduli spaces of sheaves on X [2] are not smooth in the
point corresponding to F [2]. This will be illustrated in the following example.

Example. Let X be an elliptically fibred K3 and denote by E the fibre class and
by C the class of a section. Consider F := O(C + kE) ⊗ Ip, for k ≥ 2 and some
p ∈ X . The surface deformations in this case correspond exactly to deformations
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of the point p inside X . Now the line bundle O(C + kE) has base locus C. So
if p ∈ C we deduce H0(F) ∼= H0(O(C + kE)). But if we deform p in a direction
e ∈ Ext1(F ,F) which is transversal to C, some section s ∈ H0(F) will not deform
with it. Now with a bit of deformation theory one can deduce that the deformation
of F [2] corresponding to (e, s) in Krug’s formula has nonvanishing obstruction.

Open Questions.

• So far it is not known if the additional deformations may be realized as
real deformation of the tautological sheaves and may produce interesting
new examples of moduli spaces.

• A good description of the Atiyah class of the tautological objects would
be very helpful to discuss many interesting problems concerning the de-
formation theory of these sheaves.
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Connected components of strata of the cotangent bundle to the
moduli space of curves

Martin Möller

(joint work with Dawei Chen)

The cotangent bundle to the moduli space of curves parameterizes pairs (X, q) of
a Riemman surface togehter with a quadratic differential. It is stratified according
to the number and types of zeros, the strata thus being indexed by partitions of
4g − 4. The topology of the strata is of fundamental interest for understanding
the Teichmüller geodesic flow. Here we complete the classification of connected
components. This is motivated by the investigation of non-varying phenomena for
slopes of one-dimensional Hurwitz spaces ([1]).

A slightly easier problem is the classification of connected components of strata
of the Hodge bundle. This parameterizes Riemann sufaces together with abelian
differentials. We denote the strata by

ΩMg(m1, . . . ,mk) =

{
(X,ω) : g(X) = g, div(ω) =

k∑

i=1

mizi

}
,
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where
∑
mi = 2g − 2. We call a component of such a stratum hyperelliptic,

if it parameterizes exclusively curves with abelian (resp. quadratic) differentials
that arise as pullback of quadratic differentials on the projective line via a double
covering.

Theorem 1 ([2]). Besides hyperelliptic strata, the stata ΩMg(m1, . . . ,mk) are
connected except when all mi are even. In this case there are two components,
distinguished by the parity of the spin structure H0(X,OX(

∑ mi

2 zi)).

For quadratic differentials we address a slightly more general problem that the
one alluded to in the introduction. That is, we allow simple poles, so that the
volume of the Riemann surface X in the euclidian metric |q| is still finite. For
di ≥ 1 with

∑
di = 4g − 4 we let

Qg(d1, . . . , dk) =

{
(X, q) : g(X) = g, div(q) =

k∑

i=1

dizi

}
.

This problem was addressed in [3], but no algebraic invariant was found distin-
guishing the exceptional strata. Probably for this reason, moreover, some of the
exceptional strata were missing. In the following statement we give the algebraic
invariant and the complete list.

Theorem 2 ([3], [1]). Besides hyperelliptic strata, the stata Qg(d1, . . . , dk) are
connected except for the strata Q3(9,−1), Q3(6, 3,−1), Q3(3, 3, 3,−1) in genus
three and the strata Q4(12), Q4(9, 3), Q4(6, 6), Q4(6, 3, 3) and Q4(3, 3, 3, 3) in
genus four. In this case there are two components, distinguished by the parity of
H0(X,OX(divo(q)/3).

The interesting observation is that the dimension distinguishes connected com-
ponents rather than jumping at loci of codimension one, as expected from semi-
continuity. We prove that for the exceptional strata the dimension statement is
equivalent to a bundle on an elliptic curve canonically associated with the pair
(X, q) being trivial resp. three-torsion but not trivial. Torsion orders, on the other
hand, are well-known to be deformation invariants.
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Webs of Lagrangian tori in projective symplectic manifolds

Jun-Muk Hwang

(joint work with Richard M. Weiss)

A simply-connected compact Kähler manifold M with a holomorphic symplectic
form ω is called a compact hyperkähler manifold if H0(M,Ω2

M ) = Cω (cf. [5]).
One central problem in compact hyperkähler manifolds is to find a good condition
for the existence of holomorphic or almost holomorphic fibrations on a compact
hyperkähler manifold. In the survey [1] of problems in hyperkähler geometry,
Beauville asked whether the existence of a Lagrangian torus in M gives rise to
such a fibration (Question 6 in [1]).

In a joint-work [6] with R. Weiss, we prove the following partial answer to Beauville’s
question.

Theorem 1 Let A ⊂M be a Lagrangian torus in a compact hyperkähler man-
ifold. Then there exists a meromorphic map f : M 99K B dominant over a pro-
jective variety B, such that on a nonempty Zariski open subset Mo ⊂ M with
A ⊂ Mo, the restriction f |Mo is a proper holomorphic submersion onto a Zariski
open subset Bo ⊂ B and A is a fiber of f .

In [7], Matsushita showed that if a compact hyperkähler manifold admits an almost
holomorphic fibration, like the map f in Theorem 1, then it admits a regular
fibration morphism. Thus Theorem 1 together with Matsushita’s result gives a
complete answer to Beauville’s question.

The outline of the proof of Theorem 1 is as follows. By the result of Ran and Voisin
(Theorem 8.7 in [2]), deformations of a Lagrangian torus A ⊂ M give rise to a
multi-valued holomorphic foliation on a Zariski open subset in M . If this foliation
is univalent, Theorem 1 is easily obtainable. Thus the main issue is how to deal
with the multi-valuedness. Let d be the number of sheets of this multi-valued
foliation. Assuming d > 1, we want to derive a contradiction. Let µ : M̃ →M be
the corresponding generically finite covering of degree d. By fixing a general point
x ∈ M , we have the finite monodromy group G acting on µ−1(x). This group G
has distinguished subgroups H1, . . . , Hd arising from the loops based at x that lie
on the leaves of the multi-valued foliation through x. By a result of [3], one can
assume that the subgroup 〈H1, . . . , Hd〉 of G acts transitively on µ−1(x). From
this transitivity, a purely group-theoretic argument shows that we have a pair
Hi 6= Hj such that the action of the subgroup 〈Hi, Hj〉 moves the i-th sheet to the
j-th sheet. The proof of the last statement uses Wielandt’s work on subnormal
subgroups in [8]. To get a contradiction from this, we need a geometric result
on the integrability of the local distribution given by a pair of sheets of multi-
valued foliation. This geometric result is established by means of the theory of
action-angle variables (cf.[4], Section 44) for completely integrable Hamiltonian
systems.
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Compact moduli spaces for slope-semistable sheaves

Matei Toma

(joint work with Daniel Greb)

In this talk we present the construction of a compactification of the moduli
spaces of slope-stable reflexive sheaves with respect to real ample polarizations
over higher dimensional projective manifolds. In general even with respect to ra-
tional polarizations no complex analytic compactifications were previously known
for moduli spaces of slope-stable vector bundles over n-dimensional projective
manifolds X when n ≥ 3. Gauge-theoretical compactifications of these moduli
spaces have been constructed over base manifolds of arbitrary dimension n, cf. [5],
but the existence of a complex analytic structure on them was established only for
n = 2, [1], [2].

Let X be a projective manifold of dimension n and Picard number ρ and fix
topological invariants r ∈ Z>0, ci ∈ H2i(X,Z), 1 ≤ i ≤ n of the torsion free
sheaves on X we wish to parameterize. We start by introducing a locally finite
chamber structure on the ample cone AmpR(X) ⊂ NSR(X) accounting for the
slope-stability variation for our sheaves in dependence of the chosen polarization.
When n ≥ 3 and ρ ≥ 3 this chamber structure differs from that introduced in
[3], which is not locally finite. For n ≥ 3 and ρ = 2 it had been observed in
[4] that the corresponding walls may be irrational and the question of existence
of complex analytic moduli spaces for real polarizations was asked. We show
that slope stability with respect to any real ample polarization H ∈ AmpR(X)
is equivalent to slope-stability with respect to some rational multi-polarization
(H1, ..., Hn−1), where Hi ∈ AmpQ(X); here we say that a torsion free sheaf E on
X is slope-stable (resp. slope-semistable) with respect to (H1, ..., Hn−1) if for any
coherent subsheaf F of E of intermediate rank we have
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c1(F ) ·H1 · ... ·Hn−1

rank(F )
< (resp. ≤)

c1(E) ·H1 · ... ·Hn−1

rank(E)
.

Our main result is

Theorem 1. LetX be an n-dimensional complex projective manifold, H1, ..., Hn−1

rational ample classes on X, ci ∈ H2i
(
X,Z

)
, 1 ≤ i ≤ n − 1 integer cohomology

classes, r a positive integer, c ∈ K(X)num a class with rank r, and Chern classes
ci(c) = ci, and Q a line bundle on X with c1(Q) = c1 ∈ H2(X,Z). Denote by
Mµss the functor that to each weakly normal scheme of finite type over C associates
the set of isomorphism classes (modulo twists by line bundles coming from S) of
S-flat families of (H1, ..., Hn−1)-semistable torsion-free coherent sheaves of class
c and determinant Q on X. Then, there exists a class un−1 ∈ K(X)num, a
positive integer N , a weakly normal projective variety Mµss with ample line bundle
OMµss(1), and a natural transformation

Mµss → Hom(·,Mµss)

with the following properties:

(1) For any S-flat family F of slope-semistable sheaves of class c and deter-
minant Q with induced classifying morphism ΦF : S →Mµss we have

Φ∗
F (OMµss(1)) = λF (un−1)

N ,

where λF (un−1) is the determinant line bundle on S induced by F and
un−1.

(2) For any other polarised variety (M ′,OM ′(1)) fulfilling the conditions spelled
out in (1), there exists some positive integer d, and a uniquely determined
morphism ψ :Mµss →M ′ such that ψ∗(OM ′ (1)) = OMµss(d).

The triple (Mµss,OMµss(1), N) is characterized by these properties up to unique
isomorphism, and up to replacing (OMµss(1), N) by (OMµss (d), dN).

The constructed moduli spaceMµss is a compactification of the weak normaliza-
tion of the moduli space of reflexive (H1, ..., Hn−1)-stable sheaves. More precisely
we have:

Proposition 1. There exists a natural morphism

φ :
(
Mµs
refl

)wn →Mµss

from the weak normalization of the moduli space of (H1, ..., Hn−1)-stable, reflexive

sheaves Mµs
refl to M

µss that embeds
(
Mµs
refl

)wn
as a Zariski-open subset of Mµss.

Moreover whenH1 = ... = Hn−1 =: H there is a natural morphism (MGss)wn →
Mµss from the weak normalization of the moduli space of Gieseker-semistable
sheaves with the given invariants on X to our moduli space of slope-semistable
sheaves.

The proof of our main result generalizes Le Potier’s from the two-dimensional
case. In [1] Le Potier mentions that his results could be extended to higher
dimensions if a restriction theorem of Mehta-Ramanathan type were available
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for Gieseker-H-semistable sheaves. Indeed such a result would be needed if one
proceeded by restrictions to hyperplane sections on X . We avoid the Gieseker-
semistability issue and instead restrict our families directly to the corresponding
complete intersection curves. Here slope-semistability and Gieseker-semistability
are the same. The price to pay is some loss of flatness of the restricted families.
In order to overcome this difficulty we need to pass to weak normalizations for our
family bases.

We expect that the constructed spaces Mµss provide complex analytic struc-
tures on the gauge-theoretical compactifications of moduli spaces of slope-stable
vector bundles also in dimensions larger than two.
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Twisted Fiberwise Kähler-Einstein Metrics and Albanese Map of
Manifolds with Nef Anticanonical Class

Mihai Păun

We will give here an account of our recent work [33], in which we establish
the surjectivity of the Albanese map associated to a compact Kähler manifold
whose anticanonical bundle is nef. This result was conjectured by J.-P. Demailly,
Th. Peternell and M. Schneider in [12]. We obtain it as a consequence of a theorem
concerning the variation of twisted fiberwise Kähler-Einstein metrics, which is our
main technical result in [33].

Let p : X → Y be a holomorphic surjective map, where X and Y are compact
Kähler manifolds. We denote by W ⊂ Y an analytic set containing the singular
values of p, and let X0 := p−1(Y \W ). Let {β} ∈ H1,1(X,R) be a real coho-
mology class of (1, 1)-type, which contains a non-singular, semi-positive definite
representative β.

Our primary goal in [33] is to investigate the positivity properties of the class

c1(KX/Y ) + {β},
which are inherited from similar fiberwise properties.

In this perspective, the main statement we obtain is as follows.
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Theorem 1. Let p : X → Y be a surjective map. We consider a semi-positive
class {β} ∈ H1,1(X,R), such that the adjoint class c1(KXy

) + {β}|Xy
is Kähler

for any y ∈ Y \W . Then the relative adjoint class

c1(KX/Y ) + {β}
contains a closed positive current Θ, which equals a (non-singular) semi-positive
definite form on X0.

As a consequence of the proof of the previous result, the current Θ will be greater
than a Kähler metric when restricted to any relatively compact open subset of X0,
provided that β is a Kähler metric. Also, if β ≥ p⋆(γ) for some (1,1)-form γ on
Y , then we have

Θ ≥ p⋆(γ).

We remark that if the class β is the first Chern class of a holomorphic Q-line
bundle L, that is to say, if

{β} ∈ H1,1(X,R) ∩H2(X,Q),

then there are many results concerning the positivity of the twisted relative canon-
ical bundle, cf. [2], [3], [4], [6], [14], [17], [18], [21], [22], [23], [24], [25], [28], [35],
[36], [40], [41], [42] to quote only a few.

The references [35], [37] are particularly important for us; indeed, a large part
of the arguments presented by G. Schumacher in [35], [36] will be used in our
proof, as they rely on the complex Monge-Ampère equation as substitute for the
theory of linear bundles used in the other works quoted above (see section 3.2 of
this paper).

Before stating a few consequences of our main result, we recall the following metric
version of the usual notion of nef line bundle in algebraic geometry, as it was
introduced in [10].

Definition 1. Let (X,ω) be a compact complex manifold endowed with a her-
mitian metric, and let {ρ} be a real (1,1) class on X . We say that {ρ} is nef (in
metric sense) if for every ε > 0 there exists a function fε ∈ C∞(X) such that

(1) ρ+
√
−1∂∂fε ≥ −εω.

Thus the class {ρ} is nef if it admits non-singular representatives with arbitrary
small negative part. It was established in [11] that if X is projective and if {ρ}
is the first Chern class of a line bundle L, then L is nef in the algebro-geometric
sense if and only if L is nef in metric sense.

Let X → D be a non-singular Kähler family over the unit disk. Then we have the
following (direct) consequence of Theorem 1.1.

Corollary 1. We assume that the bundle KXt
is nef, for any t ∈ D. Then KX/D

is nef.
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We remark that in the context of the previous corollary, much more is expected to
be true. For example, if the Kähler version of the invariance of plurigenera turns
out to be true, then it would be enough to assume in Corollary 1.3 that KX0

is
pseudo-effective in order to derive the conclusion that KX/D is pseudo-effective.

The second application of Theorem 1.1 concerns the Albanese morphism as-
sociated to a compact Kähler manifold X . We denote by q := h0(X,T ⋆X) the
irregularity of X , and let

Alb(X) := H0(X,T ⋆X)
⋆/H1(X,Z)

be the Albanese torus of associated to X . We recall that the Albanese map
αX : X → Alb(X) is defined as follows

αX(p)(γ) :=

∫ p

p0

γ

modulo the group H1(X,Z), i.e. modulo the integral of γ along loops at p0.
We assume that −KX is nef, in the sense of the definition above. It was con-

jectured by J.-P. Demailly, Th. Peternell and M. Schneider in [12] that αX is
surjective; some particular cases of this problem are established in [12], [32], [7].
If X is assumed to be projective, then the surjectivity of the Albanese map was
established by Q. Zhang in [45], by using in an essential manner the char p meth-
ods. More recently, in the article [46], the same author provides an alternative
proof of this result, based on the semi-positivity of direct images.

We settle here the conjecture in full generality.

Theorem 2. Let X be a compact Kähler manifold such that −KX is nef. Then
its Albanese morphism αX : X → Alb(X) is surjective.

Besides Theorem 0.1, our proof is using some ideas from [12] and [5]; we sketch
next an argument in which we still need to assume that X is projectuve, but which
can be adapted to the Kähler case via 0.1.

To begin with, as a consequence of the semi-positivity results in [4], [38] we infer
the next statement.

Corollary 2. Let p : X → Y be a surjective map between non-singular projective
manifolds. We consider L→ X a nef line bundle, such that H0

(
Xy,KXy

+L|Xy

)
6=

0. Then the bundle KX/Y + L is pseudo-effective.

We refer e.g. to [33] for the proof. �

Let X be a non-singular manifold such that −KX is nef, and let

αX : X → Alb(X)

be its Albanese morphism. We assume that αX is not surjective; let

Y ( Alb(X)
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be the image of αX . We denote by πY : Ŷ → Y the desingularization of Y , and

let p : X̂ → Ŷ be the map obtained by resolving the indeterminacy of the rational

map X 99K Ŷ .

The idea is to apply Corollary 0.5 with the following data

X := X̂, Y := Ŷ

and L := π⋆X(−KX); here we denote by πX : X̂ → X the modification of X , so
that we have

πY ◦ p = αX ◦ πX .
The hypothesis required by Corollary 0.5 are quickly seen to be verified: indeed,
the nefness of the bundle L is due to the fact that −KX is nef, and if we denote
by E the effective divisor such that

(2) KX̂ = π⋆(KX) + E

then we see that KX̂y
+L is simply equal to E|X̂y

. This bundle is clearly effective.

Hence we infer that the bundle

(3) KX̂/Ŷ + π⋆X(−KX)

is pseudo-effective. But this bundle equals E − p⋆(KŶ ); let Λ be a closed positive
current in the class corresponding to E − p⋆(KŶ ). Since the Kodaira dimension
of KŶ is at least 1 (we refer to [20] for a justification of this property), we obtain
two Q-effective divisors say W1 6= W2 linearly equivalent with KŶ . As a conclu-
sion, we obtain two different closed positive currents belonging to the class of the
exceptional divisor E, namely Λ+p⋆(Wj) for j = 1, 2. This is of course absurd. �

Remark 1. The proof above shows that Theorem 0.4 still holds true if X is pro-
jective, and if we replace the hypothesis −KX nef with the hypothesis −KX

pseudo-effective, and the multiplier ideal sheaf associated to some of its positively
curved metrics is equal to the structural sheaf . The arguments used are absolutely
similar.

Remark 2. Let X be a Fano manifold, and let p : X → Y be a submersion onto
a non-singular manifold Y . Then it follows that Y is Fano as well (see [26], [16]).
This result can be obtained via the following elegant argument, very recently found
and explained to us by S. Boucksom cf. [5]. By the results e.g. in [2], the direct
image of the bundle

KX/Y + L

is positive provided that L is an ample line bundle. We take L = −KX and we
are done. A similar idea, ε-close to our arguments in this section can be found in
the article [12] by J.-P. Demailly, Th. Peternell and M.Schneider (cf. the proof of
their Theorem 2.4). �
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In order to prove Theorem 0.1, we show that the so-called fiberwise twisted
Kähler-Einstein metric endows the bundleKX/Y |X0

with a metric whose curvature
is bounded from below by −β. Thus, the twisted version of the psh variation of the
Kähler-Einstein metric established in [35] holds true. Finally, we show that the
local weights of the metric constructed in this way are bounded near the analytic
set X \X0. In order to establish this crucial fact we combine the approximation
theorem in [13], together with a precise version of the Ohsawa-Takegoshi extension
theorem, [4]. The difficulty steams from the fact that in order to establish the
estimates for the said weights we cannot rely on the geometry of the manifold Xy,
as y is approaching a singular value of the map p.

Once this result is proved, the general case of Theorem 0.4 is obtained along
the lines of the projective case discussed above.

References

[1] R. Berman, Relative Kähler-Ricci flows and their quantization, arXiv:1002.3717.
[2] B. Berndtsson, Curvature of Vector bundles associated to holomorphic fibrations, to appear

in Ann. of Maths. (2007).
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