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Abstract. The quotient singularities of dimensions two and three obtained from poly-
hedral groups and the corresponding binary polyhedral groups admit natural resolutions
of singularities as Hilbert schemes of regular orbits whose exceptional fibres over the
origin reveal similar properties. We construct a morphism between these two resolu-
tions, contracting exactly the excess part of the exceptional fibre. This construction is
motivated by the study of some pencils of K3-surfaces arising as minimal resolutions of
quotients of nodal surfaces with high symmetries.

1. Introduction

Consider a binary polyhedral group G̃ ⊂ SU(2) corresponding to a polyhedral group

G ⊂ SO(3,R) through the double-covering SU(2) → SO(3,R). The group G̃ acts freely

on C
2 −{0} and the quotient C

2/G̃ is a surface singularity with an isolated singular point

at the origin. The exceptional divisor of its minimal resolution of singularities X → C
2/G̃

is a tree of smooth rational curves of self-intersection −2, intersecting transversely, whose
intersection graph is an A-D-E Dynkin diagram. The classical McKay correspondence

([23]) relates this intersection graph to the representations of the group G̃, associating
bijectively each exceptional curve to a non-trivial irreducible representation of the group:
the correspondence in fact identifies the intersection graph with the McKay quiver of

the action of G̃ on C
2. Among these irreducible representations we find all irreducible

representations of the group G: we call them pure and the remaining ones binary. Since

G̃/G ∼= {±1}, one can produce a G-invariant cone C
2/{±1}

∼
−→ K →֒ C

3 whose quotient

K/G is isomorphic to C
2/G̃. In this note, we prove the following result, conjectured by

W. P. Barth:

Theorem 1.1. There exists a crepant resolution of singularities of C
3/G containing a

partial resolution Y → K/G with the property that the intersection graph of its exceptional
locus is precisely the McKay quiver of the action of G on C

3, together with a resolution
map X → Y mapping isomorphically the exceptional curves corresponding to pure repre-
sentations and contracting those associated with binary representations to ordinary nodes.

We make this construction in the framework of the Hilbert schemes of regular orbits of
Nakamura ([25]) providing, thanks to the Bridgeland-King-Reid theorem ([5]), the natural
candidates for the resolutions of singularities in dimensions two and three. We produce a
morphism S between these two resolutions of singularities, define our partial resolution
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Y as the image of this map and study the effect of S on the exceptional fibres:

G̃-Hilb
(
C

2
) S //

eπ

��

S
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G-Hilb
(
C

3
)

π

��

Y

��

+
�
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C
2/G̃

∼ // K/G � � // C3/G

Although the exceptional fibres can be described very explicitly in all cases (see [19]), by
principle our proof avoids any case-by-case analysis. Therefore, the key point consists in
a systematic modular interpretation of the objects at issue.
From the strict point of view of the McKay correspondence, this construction shows some
new properties revealing again the fertility of the geometric construction of the McKay
correspondence following Gonzales-Sprinberg and Verdier [14], Ito-Nakamura [19], Ito-
Najakima [18] and Reid [26]. The beginning of the story was devoted to the study of all
situations in dimension two and three, in general by a case-by-case analysis. Then efforts
were made to understand how to get all these cases by one general geometric construction
([18, 5]). The development followed then the cohomological direction in great dimensions
in a symplectic setup ([21, 11]), leading to an explicit study of a family of examples of
increasing dimension for the specific symmetric group problem ([3]). The new point of view
in the present paper consists in working between two situations of different dimensions
for different - but related - groups and construct a relation between them. This may be
considered as a concrete application of some significant results in this area coming again
at the beginning of the story, dealing with a now quite classical material approached by
natural transformations between moduli spaces.
This study is motivated by previous works of Sarti [27] and Barth-Sarti [2] studying special
pencils of surfaces in P3 with bipolyhedral symmetries. The minimal resolutions of the
associated quotient surfaces are K3-surfaces with maximal Picard numbers. For some
special fibres of these pencils, the resolution looks locally like the quotient of a cone by
a polyhedral group, and our result gives a local interpretation of the exceptional locus in
these cases.
The structure of the paper is as follows: in Section 2 we introduce the notations and
we recall some basic facts about clusters and in Section 3 we recall the construction of
the Hilbert schemes of points and clusters. The Sections 4, 5 and 6 give a brief survey
on polyhedral, binary polyhedral and bipolyhedral groups, their representations and the
classical Mckay correspondences in dimensions two and three. In Section 7 we start the
study of the map S . First we show that it is well defined (lemma 7.1) and then that it is
a regular projective map, which induces a map between the exceptional fibres (proposition
7.2). In Section 8 the theorem 8.1 is the fundamental step for proving the main theorem 1.1:
we show that the map S contracts the curves corresponding to the binary representations
and maps the curves corresponding to the pure representations isomorphically to the
exceptional curves downstairs. In Section 9, as an example we describe in details the case

when G̃ is a cyclic group. Finally the Section 10 is devoted to an application to resolutions
of pencils of K3-surfaces.
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2. Clusters

In the sequel, we aim to study a link between the two-dimensional and the three-dimensional
McKay correspondences. In order to avoid confusion, we shall use different sets of letters
for the corresponding algebraic objects at issue in both situations. In this section, we fix
the notations and the terminology.

2.1. General setup. Let V be a n-dimensional complex vector space and G a finite
subgroup of SL(V ). We denote by O(V ) := S∗(V ∨) the algebra of polynomial functions
on V , with the induced left action g · f := f ◦ g−1 for f ∈ O(V ) and g ∈ G.
We choose a basis X1, . . . ,Xn of linear forms on V , denote the ring of polynomials in
n indeterminates by S := C[X1, . . . ,Xn] and identify O(V ) ∼= S. The ring S is given a
graduation by the total degree of a polynomial, where each indeterminate Xi has degree
1. In particular, the action of the group G on S preserves the degree.
Let mS := 〈X1, . . . ,Xn〉 be the maximal ideal of S at the origin. We denote by SG

the subring of G-invariant polynomials, by mSG its maximal ideal at the origin and by
nG := mSG · S the ideal of S generated by the non-constant G-invariant polynomials
vanishing at the origin. The quotient ring of coinvariants is by definition SG := S/ nG.
An ideal I ⊂ S is called a G-cluster if it is globally invariant under the action of G

and the quotient S/I is isomorphic, as a G-module, to the regular representation of G:
S/I ∼= C[G]. A closed subscheme Z ⊂ C

n is called a G-cluster if its defining ideal I(Z) is
a G-cluster. Such a subscheme is then zero-dimensional and has length |G|. For instance,
a free G-orbit defines a G-cluster. In particular, a G-cluster contains only one orbit: the
support of a cluster is a union of orbits, and any function constant on one orbit and
vanishing on another one would induce a different copy of the trivial representation in the
quotient S/I.
We are particularly interested in G-clusters supported at the origin. Then I ⊂ mS and
in fact this condition is enough to assert that the cluster is supported at the origin: else,
the support of the cluster would consist in more than one orbit. Furthermore, one has
automatically nG ⊂ I, since any non-constant function f ∈ nG not contained in I would
induce a new copy of the trivial representation in the quotient S/I, different from the one
already given by the constant functions. Hence we wish to understand the structure of
the G-clusters I such that nG ⊂ I ⊂ mS, equivalent to the study of the quotient ideals
I/nG ⊂ mS/nG ⊂ S/nG = SG, with the exact sequence:

(1) 0 −→ I/nG −→ SG −→ S/I −→ 0.

From now on, we assume that the group G is a subgroup of index 2 of a group R ∈ GL(V )
generated by reflections (we follow here the terminology of [7]), i.e. elements g ∈ R such
that rk(g − IdV ) = 1.
The structure of the action of R on S has the following properties (see [7]):

• The algebra of invariants SR is a polynomial algebra generated by exactly n alge-
braically independent homogeneous polynomials f1, . . . , fn of degrees di.

• |R| = d1 · . . . · dn.
• The set of degrees {d1, . . . , dn} is independent of the choice of the homogeneous

generators.
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• The algebra of coinvariants is isomorphic to the regular representation: SR
∼= C[R].

As a byproduct, we get that the algebra of coinvariants SR is a graded finite-dimensional
algebra.
From this and the fact that G = R ∩ SL(V ), one deduces the structure of the action of G

on S (see [4, 12, 13]):

• There exists a homogeneous R-skew-invariant polynomial fn+1 ∈ S, i.e. such that
g·fn+1 = det(g).fn+1 for all g ∈ R, unique up to a multiplicative constant, dividing
any R-skew-invariant polynomial: hence the set fn+1 · SR is precisely the set of
R-skew-invariants. A natural choice for this element is fn+1 = Jac(f1, . . . , fn).

• SG = C[f1, . . . , fn, fn+1].
• nG = nR ⊕ Cfn+1.
• SR = SG ⊕ Cfn+1.

Note that, as a G-module, C[R] is isomorphic to two copies of C[G]. It follows that mS/nG

is a graded finite-dimensional algebra which, as a G-module, consists exactly of each non-
trivial representation ρ of G repeated 2 dim ρ times: one can denote the occurrences of each
representation ρ by V (1)(ρ), . . . , V (2 dim ρ)(ρ) where each V (i)(ρ) is given by homogeneous
polynomials modulo nG.
Thanks to the exact sequence (1), giving a G-cluster supported at the origin consists in
choosing, for each non-trivial representation ρ of G, dim ρ copies of ρ in mS/nG. But this

gives many choices since any linear combination of some V (i)(ρ) and V (j)(ρ) provides such
a copy. The ground idea is that one does not have to make all these choices in order to
define I (see §9 for an explicit example).
For such an ideal I with nG ⊂ I ⊂ mS, we consider the finite-dimensional G-modules
W ⊂ S generating I in the sense that I = W · S + nG. Such modules do exist thanks to
the preceding construction. Among these choices, we consider the minimal ones, i.e. such
that no strict G-submodule of them generate I in the preceding sense.
If W is a generator in this sense, then

I = W · S + nG = W + mS ·W + nG = W + mS · I + nG.

This means that the C-linear map W → I/(mS · I + nG) is surjective. Also, since W is a
G-module and since mS ·I+ nG is G-stable, this map is G-linear. If W is a minimal set of
generators, it satisfies in particular W ∩ (mS · I + nG) = {0} since this intersection would
provide a G-submodule whose complementary in W is a smaller G-submodule generating
I. Hence, for W minimal one gets an isomorphism of G-modules W ∼= I/(mS · I + nG).
We set then V (I) := I/(mS · I + nG). The set of generators of V (I) may not be uniquely
determined, but its structure as a G-module is unique. The important issue, that will
be the core of the classification, will be to determine whether V (I) is irreducible or not,
although it is a minimal set of generators.

2.2. Notations for the two- and three-dimensional cases. When applying the pre-
ceding constructions in dimensions two or three, we fix the following notations:

• For n = 2, the polynomial ring is denoted by A := C[x, y], the group by G̃ and
any ideal by I.

• For n = 3, the polynomial ring is denoted by B := C[a, b, c], the group by G and
any ideal by J .

3. Moduli space of clusters

We recall here the constructions of the Hilbert schemes of points or clusters.
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3.1. Hilbert scheme of points. Let X ⊂ P
n
C

be a quasi-projective scheme and N a

positive integer. Consider the contravariant functor HilbNX from the category of schemes
to the category of sets

HilbNX : (Schemes) → (Sets)

which is given by

HilbNX(T ) :=




Z ⊂ T ×X

∣∣∣∣∣∣∣∣

(a) Z is a closed subscheme

(b) the morphism Z →֒ T ×X
p
−→ T is flat

(c) ∀t ∈ T,Zt ⊂ X is a closed subscheme
of dimension 0 and length N





By a theorem of Grothendieck ([15]), this functor is representable by a quasi-projective
scheme HilbN (X) equipped with a universal family ΞXN ⊂ HilbN (X) ×X. In the sequel,

we shall always denote by p the projection to the moduli space (here HilbN (X)) and by

q the projection to the base (here X). When X is projective, the scheme HilbN (X) is
projective and comes with a very ample line bundle (for ℓ≫ 0):

det
(
p∗

(
OΞX

N
⊗ q∗OX(ℓ)

))
.

When X = C
n, one gets an open immersion HilbN (Cn) →֒ HilbN (Pn

C
) corresponding to the

restriction of the universal family. The induced restriction of the preceding determinant

line bundle provides us the very ample line bundle det
(
p∗OΞCn

N

)
on HilbN (Cn).

There exists a natural projective morphism from HilbN (X) to the symmetric product
SN (X) sending a closed subscheme to the corresponding 0-cycle describing its support,
called the Hilbert-Chow morphism:

H : HilbN (X) −→ SN (X).

By a theorem of Fogarty ([10]), the scheme HilbN (X) is connected. For dimX = 2, it is
reduced, smooth and the morphism H is a resolution of singularities.

3.2. Hilbert scheme of regular orbits. We consider the sub-functor G-Hilb
Cn of Hilb

|G|
Cn

given by

G-HilbCn(T ) :=
{
Z ∈ Hilb

|G|
Cn (T ) | ∀t ∈ T,Zt ⊂ C

n is a G-cluster
}
.

This functor is representable by a quasi-projective scheme G-Hilb(Cn) called the Hilbert
scheme of G-regular orbits, which is a union of some connected components of the sub-

scheme of G-fixed points
(
Hilb|G|(Cn)

)G

. Furthermore, the quotient C
n/G can be iden-

tified with a closed subscheme of S|G|(Cn) and since the support of a G-cluster consists
exactly of one orbit through G, the restriction of the Hilbert-Chow morphism factorizes
through a projective morphism (see [5, 18, 28]):

H : G-Hilb(Cn) −→ C
n/G.

There is a unique irreducible component of G-Hilb(Cn) containing the free G-orbits and
mapping birationally onto C

n/G. This component is taken as the definition of the Hilbert
scheme of G-regular orbits in [25]. By the theorem of Bridgeland-King-Reid [5], if n ≤
3, then G-Hilb(Cn) is already irreducible, reduced, smooth and the map H a crepant
resolution of singularities of the quotient C

n/G. Moreover, H is an isomorphism over the
open subset of free G-orbits. As a byproduct, the two definitions coincide.
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As before, the scheme G-Hilb(Cn) is equipped with a universal family ZG which is the re-
striction of the universal family ΞCn

|G| corresponding to the closed immersion G-Hilb(Cn) →֒

Hilb|G|(Cn). The induced restriction of the determinant line bundle provides us, by nat-
urality of the construction of the determinant of a family (see [17, §8.1]), the very ample
line bundle det (p∗OZG

) on G-Hilb(Cn).

4. Rotation groups

4.1. Polyhedral groups. Let SO(3,R) be the group of rotations in R
3. Up to conjuga-

tion, there are five different types of finite subgroups of SO(3,R), called polyhedral groups:

• the cyclic groups Cn ∼= Z/nZ of order n ≥ 1;
• the dihedral groups Dn

∼= Z/nZ ⋊ Z/2Z of order 2n, n ≥ 1;
• the group T of positive isometries of a regular tetrahedra, isomorphic to the alter-

nate group A4 of order 12;
• the group O of positive isometries of a regular octahedra or a cube, isomorphic to

the symmetric group S4 of order 24;
• the group I of positive isometries of a regular icosahedra or a regular dodecahedra,

isomorphic to the alternate group A5 of order 60.

4.2. Binary polyhedral groups. Let H be the real algebra of quaternions, with basis
(1, i, j, k). The norm of a quaternion q = a·1+b·i+c·j+d·k is N(q) := a2+ b2+ c2+ d2,
a, b, c, d ∈ R. Let S be the three-dimensional sphere of quaternions of length 1 and H the
three-dimensional vector subspace of pure quaternions (i.e. a = 0). For q ∈ S, the action
by conjugation φ(q) : H → H, x 7→ q · x · q−1 is an isometry. Since the group S is
isomorphic to SU(2) by the identification

q =

(
a+ ib c+ id
−c+ id a− ib

)
,

one gets an exact sequence

0 −→ {±1} −→ SU(2)
φ

−→ SO(3,R) −→ 0.

For any finite subgroup G ⊂ SO(3,R), the inverse image G̃ := φ−1G is called a binary
polyhedral group. It is a finite subgroup of SU(2) or equivalently, up to conjugation, of
SL(2,C):

• the binary cyclic groups C̃n ∼= C2n have order 2n;

• the binary dihedral groups D̃n have order 4n;

• the binary tetrahedral group T̃ has order 24;

• the binary octahedral group Õ has order 48;

• the binary icosahedral group Ĩ has order 120.

4.3. Representations of polyhedral groups. Consider a binary polyhedral group G̃,
the associated polyhedral group G and set τ := {±1}:

0 −→ τ −→ G̃
φ

−→ G −→ 0.

This exact sequence induces an injection of the set of irreducible representations of G in the

set of irreducible representations of G̃: if ρ : G → GL(V ) is an irreducible representation

of G, it induces by composition a representation of G̃ which is τ -invariant, i.e. such that

ρ(−g) = ρ(g) for all g ∈ G̃. Thanks to this property, if the representation ρ would admit

a non-trivial G̃-submodule, it would also be a non-trivial G-submodule after going to the
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quotient G̃/τ ∼= G. This shows also that the image of the injection (since G is a quotient

of G̃):

Irr(G) →֒ Irr(G̃)

consists precisely on those irreducible representations which are τ -invariant. These rep-
resentations are called pure and the remaining representations are called binary. More

precisely, if ρ : G̃→ GL(V ) is an irreducible representation of G̃, the subspace

V τ := {v ∈ V | v = ρ(−1)v}

is a G̃-submodule of V . Hence either V τ = V and the representation ρ is pure, or ρ is
binary and V τ = {0}.
For each type of binary polyhedral group, we draw the list of the irreducible representations
with their dimension. The binary representations are labelled by a “˜” and the trivial
representation is denoted by χ0 in all cases:

• binary cyclic group C̃n, n ≥ 1:
representation χ0 {χj}j=1,...,n−1 {χ̃j}j=1,...,n

dimension 1 1 1

• binary dihedral group D̃n for n = 2ℓ+ 1, ℓ ≥ 1:
representation χ0 χ1 {τj}j=1,...,ℓ χ̃1 χ̃2 {σ̃j}j=1,...,ℓ

dimension 1 1 2 1 1 2

• binary dihedral group D̃n for n = 2ℓ, ℓ ≥ 1:
representation χ0 χ1 χ2 χ3 {τj}j=1,...,ℓ−1 {σ̃j}j=1,...,ℓ

dimension 1 1 1 1 2 2

• binary tetrahedral group T̃ :
representation χ0 χ1 χ2 χ3 χ̃1 χ̃2 χ̃3

dimension 1 1 1 3 2 2 2

• binary octahedral group Õ:
representation χ0 χ1 χ2 χ3 χ4 χ̃1 χ̃2 χ̃3

dimension 1 1 2 3 3 2 2 4

• binary icosahedral group Ĩ:
representation χ0 χ1 χ2 χ3 χ4 χ̃1 χ̃2 χ̃3 χ̃4

dimension 1 3 3 4 5 2 2 4 6

4.4. Bipolyhedral groups. For p, q ∈ S, the action σ(p, q) : H → H, x 7→ p · x · q−1 is an
isometry and one gets an exact sequence

0 −→ {±1} −→ SU(2) × SU(2)
σ

−→ SO(4,R) −→ 0.

For any binary polyhedral group G̃, the direct image σ(G̃ × G̃) ⊂ SO(4,R) is called a
bipolyhedral group. In §10, we shall make use of the following particular groups:

• G6 = σ(T̃ × T̃ ) of order 288;

• G8 = σ(Õ × Õ) of order 1152;

• G12 = σ(Ĩ × Ĩ) of order 7200.

5. Graph-theoretic intuition

5.1. McKay quivers. If G ⊂ SL(n,C) is a finite subgroup, it defines a natural faithful
representation Q of G. Let {V0, . . . , Vk} be a complete set of irreducible representations
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of G, where V0 denotes the trivial one. For each such representation, one may decompose
the tensor products

Q⊗ Vi ∼=

k⊕

j=0

V
⊕ai,j

j

for some non-negative integers ai,j. If the character of the representation Q is real-valued,
then ai,j = aj,i for all i, j. One defines the McKay quiver as the graph with vertices
V0, V1, . . . , Vk and ai,j edges between the vertices Vi and Vj . In particular, this quiver
may contain some loops. For our purpose, we only consider the reduced McKay quiver
with vertices V1, . . . , Vk and one edge between Vi and Vj if i 6= j and ai,j 6= 0: this means
that we remove from the McKay quiver the vertex V0, all edges starting from it, all loops
and all multiple edges. When there is an edge joining Vi and Vj , the vertices are called
adjacent.
One may check that all finite subgroups of SL(2) or SO(3,R) enter in this context since
their natural representation Q is real-valued.

5.2. McKay quivers for the polyhedral groups. For each binary polyhedral group

G̃ ⊂ SU(2) and its corresponding polyhedral group G ⊂ SO(3,R), we draw the reduced
McKay quiver with our conventions. For the binary polyhedral groups, we denote by a
white vertex the pure representations and by a black vertex the binary ones. We get (see
for example [14, 12, 13]) the graphs of figure 1.
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In the sequel, we shall interpret these graphs as the intersection graphs of a family of
smooth rational curves meeting transversally. One may then get the following intuition:
looking at the two-dimensional graphs, if one contracts the curves associated to a binary
representation (black nodes), then one gets as intersection graph precisely the correspond-
ing graph in dimension three!
Another property of the two-dimensional quivers is that no two pure representations and no
two binary representations are adjacent. This means that the preceding idea of contraction
contracts only one curve each time.

6. Exceptional fibres in dimensions two and three

Considering the Hilbert-Chow morphism H : G-Hilb(Cn) −→ C
n/G, our purpose is to

describe the exceptional fibre H −1(O) over the origin O ∈ C
n/G in the two- and three-

dimensional cases. Note that all finite subgroups of SL(2,C) or SO(3,R) enter in the
context of §2 since they are subgroups of index 2 of a reflection group (see [13, §2.7]).
Hence we may apply the general procedure for the study of the clusters supported at the
origin.
The understanding of the exceptional fibre in these cases was achieved by Ito-Nakamura
[19, 20] in dimension two and by Gomi-Nakamura-Shinoda [12, 13] in dimension three, by
a case-by-case analysis. For the two-dimensional case, there is another proof by Crawley-
Boevey [8] avoiding this case-by-case analysis. We recall the results.
For any finite group G, Irr∗(G) denotes the set of irreducible representations but the trivial
one.

6.1. Structure of the exceptional fibre in dimension two. Let G̃ ⊂ SL(2,C) be a
binary polyhedral group and denote the Hilbert-Chow morphism by

π̃ : G̃-Hilb
(
C

2
)
−→ C

2/G̃.

For each non-trivial irreducible representation ρ of G̃, set

E(ρ) := {I ∈ π̃−1(O)red |V (I) ⊃ ρ}.

Theorem 6.1. ([19, Theorem 3.1]

• Each E(ρ) is a smooth rational curve of self-intersection −2.
• π̃−1(O)red =

⋃
ρE(ρ) and π̃−1(O) =

∑
ρ dim ρ · E(ρ) as a Cartier-divisor, ρ ∈

Irr∗(G̃).
• If I ∈ E(ρ) and I /∈ E(ρ′) for all ρ 6= ρ′, then V (I) ∼= ρ.
• If I ⊂ E(ρ) ∩ E(ρ′), then V (I) ∼= ρ ⊕ ρ′ and the curves E(ρ) and E(ρ′) intersect

transversally at I.
• The intersection graph of these curves is the reduced McKay quiver of the group

G̃.

In particular, a generator V (I) does not contain more than one copy of any irreducible
representation, and E(ρ)∩E(ρ′) 6= ∅ if and only if the representations ρ and ρ′ are adjacent.

6.2. Structure of the exceptional fibre in dimension three. Let G ⊂ SO(3,R) be
a polyhedral group and denote the Hilbert-Chow morphism by

π : G-Hilb
(
C

3
)
−→ C

3/G.

For each non-trivial irreducible representation ρ of G, set

C(ρ) := {J ∈ π−1(O)red |V (J) ⊃ ρ}.
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Theorem 6.2. ([13, Theorem 3.1])

• Each C(ρ) is a smooth rational curve.
• π−1(O)red =

⋃
ρC(ρ), ρ ∈ Irr∗(G).

• If J ∈ C(ρ) and J /∈ C(ρ′) for all ρ 6= ρ′, then V (J) ∼= ρ.
• The intersection graph of these curves is the reduced McKay quiver of the group
G.

6.3. Explicit parameterizations. Let us explain briefly the explicit parameterizations
of the exceptional curves obtained in loc.cit. This description holds both in dimensions
two and three so we do it with our general notations. The example of the cyclic group is
treated in §9. As we explained in §2,

mS/nG
∼=

⊕

ρ∈Irr(G)
ρ6=ρ0

2 dim ρ⊕

i=1

V (i)(ρ)

where ρ0 denotes the trivial representation. Thanks to the exact sequence

0 −→ I/nG −→ mS/nG −→ mS/I −→ 0,

if one wants to parameterize a flat family of clusters over P1, one has to choose, in the
trivial sheaf:

OP1 ⊗
⊕

ρ∈Irr(G)
ρ6=ρ0

2 dim ρ⊕

i=1

V (i)(ρ),

a locally free G-equivariant sheaf affording the regular representation on each fibre whose
quotient is also locally free. The parameterizations are then produced as follows: one
chooses one non trivial subbundle

OP1(−1) ⊗ ρ →֒ OP1 ⊗ (V (i)(ρ) ⊕ V (j)(ρ))

for some appropriate choice of the indices, and shows that this gives the required family
whose points I are characterized by their generator

V (I) ⊂ P(V (i)(ρ) ⊕ V (j)(ρ)).

That is: once one choice has been made, the other choices are automatic, and we shall see
that they always correspond to a trivial subbundle (see 8.4).

7. Geometric construction

Let G̃ be a binary polyhedral group acting on A = C[x, y]. Set τ := 〈±1〉 ⊂ G̃ and

G := G̃/τ the associated polyhedral group as before. It is important for the sequel to
begin so, and not to choose the group G with its action on some coordinates first, as we
shall see. We aim to define a regular map

S : G̃-Hilb
(
C

2
)
−→ G-Hilb

(
C

3
)

inducing a map between the exceptional fibres over the origin.
Since Aτ = C[x2, y2, xy], we consider the following composition of ring morphisms, with
B = C[a, b, c]:

(2) σ : B // //B
/
〈ab− c2〉

∼ //Aτ //A
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where the identification is defined by a = x2, b = y2, c = xy. The action of G̃ on A induces
an action of G on Aτ . Using the identification, we can define an action of G on the
coordinates a, b, c, inducing an action on B with the property that the cone K = 〈ab− c2〉
is G-invariant. This is the reason why we did not fix the action of G at first: another
choice of identification would induce another action of G.
Let I be an ideal of A and J := σ−1(I) the corresponding ideal of B. Observe the following
property of the map σ:

Lemma 7.1. If I is a G̃-cluster in A, then J is a G-cluster in B. Furthermore, if I is
supported at the origin, then so is J .

Proof. If I is a G̃-cluster, then A/I ∼= C[G̃]. Since the group τ is finite, we have isomor-
phisms:

B/J ∼= Aτ/Iτ ∼= (A/I)τ ∼= C[G̃]τ ∼= C[G],

hence J is a G-cluster in B. Furthermore, note that σ−1
mA = mB hence if I is a G̃-cluster

supported at the origin, one has I ⊂ mA and then J ⊂ mB, which implies that J is also
supported at the origin (see §2.1). �

Therefore, this construction defines set-theoretically a map between the two moduli spaces

of clusters S : G̃-Hilb
(
C

2
)
−→ G-Hilb

(
C

3
)

by S (I)
Def
= J . It remains to see that this

map is a regular morphism.

Proposition 7.2. The map S is regular, projective, and induces a map between the
exceptional fibres.

Proof.
⋄ In order to get that the map S is regular, we show that it is induced by a natural
transformation between the two functors of points

G̃-Hilb
C2(·) =⇒ G-Hilb

C3(·).

Let T be a scheme and Z ∈ G̃-Hilb
C2(T ). Then Z ⊂ T × C

2 is a flat family of G̃-clusters

over T and the map Z →֒ T × C
2 is τ -equivariant (for a trivial action on T ). It induces a

family

Z/τ →֒ T × (C2/τ) →֒ T × C
3

where the quotient C
2/τ is considered as the cone 〈ab− c2〉 in C

3. If T is a point, this is
precisely our set-theoretic construction since then if Z is given by an ideal I, Z/τ is given
by the ideal Iτ .
In order to show that Z/τ ∈ G-Hilb

C3(T ), we have to prove that this family is flat over T .
Since this problem is local in T , we may assume that T is an affine scheme, say T = SpecR.
Then the family Z is given by a τ -equivariant quotient R⊗A ։ Q so that the composition
R →֒ R⊗CA ։ Q makes Q a flat R-module. The family Z/τ is then given by the quotient

R →֒ R⊗C B ։ R⊗C A
τ

։ Qτ ,

where the quotient R⊗CB ։ R⊗CA
τ is induced by tensorization of the quotient B ։ Aτ .

We have to show that this makes Qτ a flat R-module. By hypothesis, the functor Q⊗R−
in the category of R-modules is exact. Since τ is finite, the functor (−)τ is also exact in
this category, and we note that the functor Qτ⊗R− is the composition of this two functors
since

Qτ ⊗R N = (Q⊗R N)τ
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for any R-module N . Hence the functor Qτ ⊗R − is exact, which means that the family
is flat.
⋄ The composition of ring morphisms (2) gives an equivariant ring morphism

C[a, b, c]
σ //

G

VV
C[x, y]

eG

VV

inducing a surjective map at the level of the invariants: C[a, b, c]G // //
C[x, y]

eG , hence

a closed immersion

η : C
2/G̃ = SpecC[x, y]

eG −→ SpecC[a, b, c]G = C
3/G.

Taking more care of the cone K = C
2/τ (in the notations of the introduction), the equi-

variant map

C
2 //

eG

WW C
2/τ //

G

UU C
3

G

WW

induces the η map between the quotients:

η : C
2/G̃

∼ //
(
C

2/τ
)/
G //C3/G

sending the origin O ∈ C
2/G̃ to the origin O ∈ C

3/G and by definition of S the following
diagram is commutative:

G̃-Hilb
(
C

2
) S //

eπ
��

G-Hilb
(
C

3
)

π

��

C
2/G̃

η // C3/G

This implies that S induces a map between the exceptional fibres

π̃−1(O)
S
−→ π−1(O).

⋄ We prove that the map S is proper by applying the valuative criterion of properness.
Let K be any field over C and R ⊂ K any valuation ring with quotient field K. Consider
a commutative diagram:

SpecK
φ //

i

��

G̃-Hilb
(
C

2
)

S

��
SpecR

ψ // G-Hilb
(
C

3
)

We have to show that there exists a unique factorization

SpecK
φ //

i

��

G̃-Hilb
(
C

2
)

S

��
SpecR

ψ //

φ̃
88rrrrrrrrrrr

G-Hilb
(
C

3
)

making the whole diagram commute.
By modular interpretation, the data of the map φ consists in an ideal I ⊂ K[x, y] such

that K[x, y]/I ∼= C[G̃] ⊗C K and K[x, y]/I is K-flat (it is here trivial since K is a field).
Similarly, the data of the map ψ consists in an ideal J ⊂ R[a, b, c] such that R[a, b, c]/J ∼=
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C[G] ⊗C R and R[a, b, c]/J is R-flat. The commutativity S ◦ φ = ψ ◦ i : SpecK →
G-Hilb

(
C

3
)

means the following. Consider the diagram of ring morphisms induced by
natural extension of scalars and base-change from the map σ:

R[a, b, c]
σR //

� _

��

R[x, y]
� _

��
K[a, b, c]

σK // K[x, y]

Then the commutativity condition means that σ−1
K (I) = J ·K[a, b, c].

We are looking for a map φ̃ such that φ̃ ◦ i = φ and S ◦ φ̃ = ψ, i.e. for an ideal Ĩ ⊂
R[x, y] such that R[x, y]/Ĩ ∼= C[G̃] ⊗C R and R[x, y]/Ĩ is R-flat, satisfying the conditions

Ĩ ·K[x, y] = I and σ−1
R (Ĩ) = J .

A natural candidate is Ĩ
Def
= I∩R[x, y]. We have to prove that it satisfies all the conditions

and that it is unique for these properties. Denote by ν : K −{0} → H the valuation with
values in a totally ordered group H, satisfying the properties:

ν(x · y) = ν(x) + ν(y) and ν(x+ y) ≥ min(ν(x), ν(y)) for x, y ∈ K − {0}

and such that R = {x ∈ K | ν(x) ≥ 0} ∪ {0}. Recall that R is by definition integral and
that a R-module is flat if and only if it is torsion-free (see for instance [1, 16]).

• It is already clear that Ĩ ·K[x, y] ⊂ I. Conversely, Let P =
∑

i,j pi,jx
iyj ∈ I and

p ∈ {pi,j} an element of minimal valuation. If ν(p) ≥ 0, then P ∈ Ĩ. Else all

coefficients of p−1P have positive valuation and so p−1P ∈ Ĩ. So P = p · (p−1P ) ∈

Ĩ ·K[x, y], hence the equality.
• By commutativity of the above diagram,

σ−1
R (Ĩ) = σ−1

R (I ∩R[x, y])

= σ−1
K (I) ∩R[a, b, c]

= (J ·K[a, b, c]) ∩R[a, b, c].

It is already clear that J ⊂ (J · K[a, b, c]) ∩ R[a, b, c]. Conversely, let P ∈ (J ·
K[a, b, c])∩R[a, b, c], decomposed as P =

∑
ℓ Uℓ ·Vℓ with Uℓ ∈ J and Vℓ ∈ K[a, b, c].

As before, there exists a coefficient q in all Vℓ’s of minimal valuation, and we
assume ν(q) < 0 (else there is no problem). Then q−1P ∈ J . By assumption, the
R-module R[a, b, c]/J is torsion-free, so the multiplication by q−1 ∈ R is injective.
This means that P ∈ J .

• By definition, we have an R-linear inclusion R[x, y]/Ĩ →֒ K[x, y]/I, which shows

that R[x, y]/Ĩ is torsion-free, hence flat. It inherits an action of G̃ and since

K[x, y]/I ∼= C[G̃] ⊗C K, there exists a subrepresentation V of C[G̃] such that

R[x, y]/Ĩ ∼= V⊗CR (this uses the flatness, see [20, lemma 9.4]). By the isomorphism

of R-modules R[x, y]/Ĩ ⊗RK ∼= K[x, y]/I, the representation V is such that V ⊗R

K = C[G̃] ⊗C K, which forces V ∼= C[G̃].

• The uniqueness of the candidate follows from the condition Ĩ ·K[x, y] = I since as
we already noted:

I ∩R[x, y] = (Ĩ ·K[x, y]) ∩R[x, y] = Ĩ

so our natural candidate is the only possibility.
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⋄ To finish with, remark that any proper map between to quasi-projective varieties is
automatically a projective map. �

8. Contracted versus non-contracted fibres

Theorem 8.1. Consider the restriction of the map S : G̃-Hilb
(
C

2
)
−→ G-Hilb

(
C

3
)

to
a reduced curve E(ρ). Then:

(1) If the representation ρ is pure, then S maps isomorphically the curve E(ρ) onto
the curve C(ρ).

(2) If the representation ρ is binary, then S contracts the curve E(ρ) to a point.

Proof. Let E(ρ) be any exceptional curve. Since the map S sends this curve to the bunch
of curves π−1(O), the image lies in some irreducible component C and the restricted
morphism S : E(ρ) → C is a proper map. We prove that:

• if the representation ρ is binary, then the map S : E(ρ) → C contracts the curve
to a point;

• if the representation ρ is pure, then C = C(ρ) and the restricted map S : E(ρ) →
C(ρ) is an isomorphism.

The parameterizations of the two curves E(ρ) and C defines a composite proper map f
whose properties reflect those of the restriction of S :

P1
∼

φ
//

f

��

E(ρ) ⊂ G̃-Hilb
(
C

2
)

S

��
P1

∼

ψ
// C ⊂ G-Hilb

(
C

3
)

We know (see [16, II.6.8,II.6.9]) that either the map f contracts the curve to a point, or
it is a finite surjective map. The basic idea in order to determine which case occurs is
to suppose given an ample line bundle OP1(a) on the target (with a > 0): if the map f
contracts the curve to a point, then f∗OP1(a) is trivial and else f∗OP1(a)

∼= OP1(deg(f) ·a)
is ample.
The natural candidate for an ample line bundle over the curve C is the determinant
det(p∗OZ(C)) obtained by restriction of the universal family Z(C) := ZG|C .

The parameterization P1
φ

−→ G̃-Hilb
(
C

2
)

of the curve E(ρ) corresponds to a flat fam-

ily Z eG
(ρ) ⊂ P1 × C

2 which is the restriction to E(ρ) of the universal family Z eG
over

G̃-Hilb
(
C

2
)
. The direct image p∗OZ eG

(ρ) is a vector bundle of rank |G̃| over P1 equipped

with an action of G̃ affording the regular representation on each fibre. It admits an isotyp-

ical decomposition over the irreducible representation of G̃ and we recall the well-known
explicit decomposition:

Lemma 8.2.

p∗OZ eG
(ρ)

∼=
(
OP1(1) ⊕O⊕ dim ρ−1

P1

)
⊗ ρ⊕

⊕

ρ′∈Irr( eG)
ρ′ 6=ρ

O⊕ dim ρ′

P1
⊗ ρ′

Proof of the lemma. This is an equivalent form of [22, §2.1 lemma] or [18, Proposition
6.2(3)]. We recall briefly the argument. Since this bundle is a quotient of OP1 ⊗ A (see
§6.3), it is generated by its global sections, hence it is a sum of line bundles OP1(a) for
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a ≥ 0. By the classical observation deg(p∗OZ eG
(ρ)) = 1 (see [14]), all line bundles are trivial

but one, of degree one. �

In particular, note that det(p∗OZ eG
(ρ)) ∼= OP1(dim ρ) is the ample determinant line bundle

in dimension two.
Thanks to the functorial definition of the map S , the composition

P1
φ

−→ G̃-Hilb
(
C

2
) S
−→ G-Hilb

(
C

3
)

parameterizes the flat family Z eG(ρ)/τ whose structural sheaf is OZ eG
(ρ)/τ =

(
OZ eG

(ρ)

)τ

and one gets:

f∗(det(p∗OZ(C))) = det
(
(p∗OZ eG

(ρ))
τ
)
.

Now, as we noticed in §4.3, taking the invariants under τ keeps invariant the pure repre-
sentations and kills the binary ones. Hence:

• If the representation ρ is binary, then:
(
p∗OZ eG

(ρ)

)τ
∼=

⊕

ρ′∈Irr(G)

O⊕dim ρ′

P1
⊗ ρ′

hence det(p∗OZ eG
(ρ))

τ ∼= OP1 is trivial;

• If the representation ρ is pure, then:
(
p∗OZ eG

(ρ)

)τ
∼=

(
OP1(1) ⊕O⊕ dim ρ−1

P1

)
⊗ ρ⊕

⊕

ρ′∈Irr(G)
ρ′ 6=ρ

O⊕ dim ρ′

P1
⊗ ρ′

hence det(p∗OZ eG
(ρ))

τ ∼= OP1(dim ρ) is ample.

This achieves the first part of the proof. It remains to show that in the case of a pure
representation ρ, the target curve is C = C(ρ) and that the finite surjective map f is an
isomorphism. We do it by hand. A point I ∈ E(ρ) is characterized by the choice of V (I)
and generically V (I) ∼= ρ. For a pure representation ρ, the polynomials defining V (I) are
even hence:

V (Iτ ) = V ((A · V (I) + nA)τ ) ⊃ V (I)

so generically V (Iτ ) = V (I) (only modified by setting a = x2, b = y2, c = xy). This means
that C = C(ρ) and if I 6= J ∈ E(ρ), then V (I) 6= V (J) hence the images are also different,
so the map is generically injective. This concludes the proof. �

As a byproduct of our argument, we get the following equivalent in dimension three of the
lemma 8.2 which, to our knowledge, does not appear explicitly in the literature:

Corollary 8.3. For any finite subgroup G ⊂ SO(3,R) and any non-trivial representation
ρ of G, the restriction of the tautological bundle to the exceptional curve C(ρ) decomposes
as:

p∗OZG(ρ)
∼=

(
OP1(1) ⊕O⊕ dim ρ−1

P1

)
⊗ ρ⊕

⊕

ρ′∈Irr(G)
ρ′ 6=ρ

O⊕ dim ρ′

P1
⊗ ρ′

Proof. The same argument as in the proof of lemma 8.2 shows that this bundle in generated
by its global sections. The bijectivity of the map f on the curves associated to pure
representations (in the notation of the proof of theorem 8.1) implies that det(p∗OZG(ρ)) ∼=
OP1(dim ρ), hence in the isotypical decomposition there is only one non-trivial line bundle,
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of degree one, and we already know by the explicit parameterizations that the isotypical
component corresponding to ρ is not trivial. �

Remark 8.4. In the decomposition of the lemma 8.2, the unique presence of the OP1(1)
corresponds to the choice of the line V (I) in a projective space P(ρ ⊕ ρ) as explicitly
described in §6.3. The fact that no other ample bundle occurs reflects the property that
once one choice has been made, the other generators of the ideal do not involve the choice
any more, as one can easily notice from the explicit computations of [20, §13,§14] (see §9
in this paper for an example). In the three-dimensional case, the same situation occurs
thanks to the corollary 8.3.

We get now the theorem 1.1 presented in the introduction as a corollary of the theorem
8.1:

Corollary 8.5. The image Y := S (G̃-Hilb
(
C

2
)
) projects onto the quotient K/G, induc-

ing a partial resolution of singularities containing only the exceptional curves corresponding

to pure representations. The map S : G̃-Hilb
(
C

2
)
−→ Y is a resolution of singularities

contracting the excess exceptional curves to ordinary nodes.

Proof. The projection π : Y −→ C
3/G factors through K/G by construction of Y. The

other assertions result from theorem 8.1. The excess curves contract to ordinary nodes
since, as one checks with the figure 1, each excess (−2)-curve is contracted to a different
point. �

9. Example: the cyclic group case

Let the cyclic group C̃n ∼= Z/(2n)Z act on C
2 with generator:

(
ξ 0
0 ξ−1

)
with ξ = e

2πi
(2n) .

The choice of coordinates made in §7 implies that the group Cn ∼= Z/nZ acts on C
3 with

generator: 


ξ2 0 0
0 ξ−2 0
0 0 1


 .

The irreducible representations of the cyclic group C̃n are given by the matrices (ξi),
i = 0, . . . , 2n − 1. For i even, they are also the irreducible representations of Cn. There
are then n pure and n binary representations. With the notations of §4.3, we set χi :=
ρ2i and χ̃i = ρ2i+1 for i = 0, . . . , n − 1. By Theorem 8.1, the exceptional curves on

C̃n-Hilb
(
C

2
)

corresponding to the binary representations are contracted by S to a node

on S (C̃n-Hilb
(
C

2
)
) whereas the curves corresponding to the pure representations are in

1 : 1 correspondence with the exceptional curves downstairs (see figure 2). In this section,
we check this by a direct computation.

The ring of invariants C[x, y]
eCn is generated by x2n, y2n, xy and C[a, b, c]Cn is generated

by c, an, bn, ab. Recall the description of the exceptional curves of C̃n-Hilb
(
C

2
)

following
[20, Theorem 12.3]. We sort the basis of the algebra of coinvariants with respect to each
irreducible representation:

{1}, {x, y2n−1}, . . . , {xi, y2n−i}, . . . , {x2n−1, y}.
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Figure 2. Contracted fibres for C̃4

To choose a cluster I/nA supported at the origin amounts in choosing one copy of each
non-trivial representation, i.e. for all i = 1, . . . , 2n − 1 a point (pi : qi) ∈ P1 defining the
ideal by the generators:

〈p1x− q1y
2n−1, . . . , pix

i − qiy
2n−i, . . . , p2n−1x

2n−1 − q2n−1y〉.

But the point is that one only needs one choice. Suppose there exists an index i such that
piqi 6= 0, and take the smaller i with this property. Set p = pi, q = qi and v = pxi−qy2n−i.
Then since xy is invariant, xi+1, . . . , x2n−1 ∈ I/nA and y2n−i+1, . . . , y2n−1 ∈ I/nA so all
our other choices were trivial, and V (I) = C · v. More formally, we parameterized the
exceptional curve E(ρi) by a subbundle:

OP1(−1) ⊗ ρi ⊕
⊕

j 6=i

OP1 ⊗ ρj →֒
⊕

j

(OP1 ⊕OP1) ⊗ ρj .

If there is no such index, suppose xi is the minimal power of x in the choice: in order to
find once each non-trivial representation one has to choose y2n−i+1 and the minimal set
of generators V (I) = C · xi ⊕ C · y2n−i+1 contains two adjacent representations.

Otherwise stated, a C̃n-cluster at the origin takes the form:

Ij(p : q) := 〈pxj − qy2n−j, xy, xj+1, y2n−j+1〉,
1 ≤ j ≤ 2n− 1, (p : q) ∈ P1

(the above expression contains enough generators to include the two possible cases) and

E(ρj) = {Ij(p : q)}.

By the same method, one sees easily that a Cn-cluster at the origin takes the form:

Jk(s : t) := 〈sak − tbn−k, c, ak+1, bn−k+1, ab〉,
1 ≤ k ≤ n− 1, (s : t) ∈ P1

and

C(χk) = {Jk(s : t)}.

Recall that with the construction (2) we have to compute σ−1(Ij(p : q)). Denoting by σ̄
the map B

/
〈ab− c2〉 −→ A, it is equivalent to compute σ̄−1(Ij(p : q)). First we compute

Ij(p : q)τ ∈ Aτ . We distinguish two cases:
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• j even, i.e. j = 2j′, j′ = 1, . . . , n− 1. In this case we have

Ij(p : q)τ = Ij(p : q) = 〈p(x2)
j′
− q(y2)

n−j′
, xy, (x2)

j′+1
, (y2)

n−j′+1
〉

expressed in Aτ = C[x2, y2, xy]. Then

σ̄−1(Ij(p : q)) = 〈paj
′

− qbn−j
′

, c, aj
′+1, bn−j

′+1〉

= Jj′(p : q).

• j odd, i.e. j = 2j′ +1, j′ = 0, . . . , n−1. Observe that xy ∈ Ij(p : q)τ and (x2)j
′+1,

yn−j
′

∈ Ij(p : q)τ , but px2j′+1 − qy2n−2j′−1 /∈ Ij(p : q)τ . So

σ̄−1(Ij(p : q)) = 〈aj
′+1, bn−j

′

, c〉.

We observe then that

σ̄−1(Ij(p : q)) ∈ C(ρj′) ∩ C(ρj′+1)

since

σ̄−1(Ij(p : q)) = Jj′(0 : 1) = Jj′+1(1 : 0).

The curves E(ρj) with j even correspond to the pure representations and are not con-
tracted by S as the previous computation shows, the curves with j odd correspond to the
binary representations: these are contracted by S .

10. Application

10.1. Pencils of symmetric surfaces. Let HC := H⊗R C be the complexification of the
space of quaternions. By the choice of the coordinates q = a·1+b·i+c·j+d·k, a, b, c, d ∈ C,
one gets an isomorphism P3

∼= P(HC) such, that for n = 6, 8, 12 the bipolyhedral group
Gn acts linearly on P3, leaving invariant the quadratic polynomial Q := a2 + b2 + c2 + d2.
In [27] it is shown that the next non-trivial invariant is a homogeneous polynomial Sn of
degree n. Consider then the following pencil of Gn-symmetric surfaces in P3:

Xn(λ) = {Sn + λQn/2 = 0}, λ ∈ C.

In [27] it is proved that the general surface Xn(λ) is smooth and that for each n there
are precisely four singular surfaces in the corresponding pencil: the singularities of these
surfaces are ordinary nodes forming one orbit through Gn.
Consider now the pencil of quotient surfaces in P3/Gn:

{Xn(λ)/Gn}, λ ∈ C.

In [2] it is proved that these quotient surfaces have only A-D-E singularities and that
the minimal resolutions of singularities Yn(λ) → Xn(λ)/Gn are K3-surfaces with Picard
number greater than 19. For the four nodal surfaces in each pencil, a careful study of the
stabilizers of the nodes shows that, if X denotes one of these nodal surfaces, the image
of the node on X/Gn ⊂ P3/Gn is a particular quotient singularity locally isomorphic to

C
2/G̃ ⊂ C

3/G for some polyhedral group G explicitly computed (see [2, §3, Proposition
3.1]):

• for n = 6: C3,T ;
• for n = 8: D2,D3,D4,O;
• for n = 12: D3,D5,T ,I.
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Therefore, our theorem 1.1 gives locally a group-theoretic interpretation of the exceptional
curves of the K3-surfaces Yn(λ) over the particular singularities of the nodal surfaces.
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