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Abstract. A generalized Kummer surface X of order 3 is the minimal
resolution of the quotient of an abelian surface A by an order 3 sym-
plectic automorphism. We study a generalization of a problem of Shioda
for classical Kummer surfaces, which is to understand how much X is
determined by A and conversely. The surface X posses a big and nef
divisor LX such that L2

X = 0 or 2 mod 6. We show that for surfaces with
L2
X = 6k with k 6= 0, 6mod 9, the surface X determines the transcen-

dental lattice T (A) of A and the Hodge structure on T (A). Conversely
if A and B are Fourier-Mukai partners (i.e. if the Hodge structures
of their transcendental lattices are isomorphic) and Y is the general-
ized Kummer surface which is the minimal resolution of the quotient
of B by an order 3 symplectic automorphism, we obtain that X and Y
are isomorphic. These results are also know to hold for surfaces with
L2
X = 2mod 6 from a previous work. When k = 0 or 6mod 9, we show

that X determines T (A) and its Hodge structure, but the converse does
not hold in general.

1. Introduction

An (algebraic and complex) generalized Kummer surface X = Km3(A)
of order 3 is a K3 surface which is the minimal resolution of the quotient
A/GA of an abelian surface A by an order 3 symplectic automorphism group
GA. In [11, 6, 10] we study when there exists another Abelian surface B
and order 3 automorphism group GB such that (B,GB) is not isomorphic
to (A,GA) but the generalized Kummer surfaces Km3(A) and Km3(B) are.
That question is a natural extension to generalized Kummer surfaces of a
problem of Shioda on classical Kummer surfaces.

Recall that the quotient surface A/GA has 9 cups singularities, each of
these being resolved by two (−2)-curves on X. For a very general abelian
surface A, the K3 surface X has Picard number 19. The positive generator
LX of the orthogonal complement in the Néron-Severi group NS(X) of the 18
exceptional curves of the resolution X → A/GA satisfies L2

X = 0 or 2 mod 6.
Let us also recall that for an abelian surface (respectively a K3 surface) Y ,

a Fourier-Mukai partner of Y is an abelian surface (respectively K3 surface)
Y ′ such that there is an isomorphism of Hodge structures

(T (Y ),CωY ) ' (T (Y ′),CωY ′).
1
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Here the transcendental lattice T (Y ) is the orthogonal complement inH2(Y,Z)
of the Néron-Severi lattice NS(Y ) ⊂ H2(Y,Z) and ωY is a generator of the
space of holomorphic 2-forms.

Let (A,GA) and (B,GB) be two abelian surfaces with an order 3 sym-
plectic automorphism group. Suppose that X = Km3(A) is a generalized
Kummer surface with Picard number 19. Consider the following two asser-
tions:
(I) The surface B is a Fourier–Mukai partner of A.
(II) The surfaces Km3(B) and Km3(A) are isomorphic.
As shown in [11], for generalized Kummer surfaces X with L2

X = 2 mod 6,
the assertions (I) and (II) are equivalent. The aim of this paper is to prove
the following result:

Theorem 1. Let X be a generalized Kummer surface such that L2
X = 6k,

for k ∈ N∗.
a) Suppose that k 6= 0 and 6 mod 9. Then (I) is equivalent to (II).
b) Suppose k = 0 or 6 mod 9. Then (II) implies (I), but (I) does not im-
plies (II) in general: there exist abelian surfaces with order 3 symplectic
automorphisms that are Fourier-Mukai partners and such that the associated
generalized Kummer surfaces are not isomorphic.

By [5], since X = Km3(A) has Picard number 19 > 2 + ` (here ` is the
length of the discriminant group of NS(X), which is also the length of T (X),
and therefore is ≤ 3), if a K3 surface is a Fourier-Mukai partner of Km3(A),
then it is isomorphic to Km3(A). The assertion (II) is therefore equivalent
to :
(II’) The surfaces Km3(A) and Km3(B) are Fourier-Mukai partners, i.e.
there exists a Hodge isometry

(T (Km3(A)),CωKm3(A)) ' (T (Km3(B)),CωKm3(B)).

In case L2
X = 2 mod 3, the equivalence between (I) and (II’) (and therefore

with (II)) is much simpler. Indeed, it is easy to compare the Hodge struc-
tures, since in that case T (Km3(A)) is isometric to T (A)(3), (where the 3
means that the quadratic intersection form of the lattice is multiplied by 3).
In case L2

X = 0 mod 6, one only knows that T (Km3(A)) contains an index
3 sub-lattice isometric to T (A)(3) and that subtlety makes the proof much
more involved.

A generalized Kummer structure on the generalized Kummer surface X is
an isomorphism class of pairs (B,GB) such that the associated generalized
Kummer surface Km3(B) is isomorphic to X = Km3(A). The generalized
problem of Shioda can be rephrased as the problem to understand if there is
a unique generalized Kummer structure. Theorem 1 shows that a generalized
Kummer structure {(B,GB)} onX is such that B is a Fourier-Mukai partner
of A, for X such that L2

X 6= 0, 6 mod 9. Theorem 1 is a key-result in order
to compute the number of generalized Kummer structures in [10] according
to the value of L2

X , for L
2
X 6= 0, 6 mod 9.
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In [4, 5], Hosono, Lian, Oguiso and Yau study the analogous problem
for the classical Kummer surfaces (and compute the number of Kummer
structures of some Kummer surfaces). For these surfaces, one always has
T (Km(A)) = T (A)(2), and the equivalence between the analog of (I) and (II)
for Kummer surfaces is immediate. The fact that for generalized Kummer
surfaces (I) does not imply (II) is all the more noteworthy.

The paper is structured as follows: In Section 2, we give preliminaries and
notations on lattice theory. In Section 3, we explain how we proceed to prove
Theorem 1. One wants in particular to know the over-lattices of T (A)(3)
which are isomorphic to T (X). Sections 4 and 5 are devoted to compute
these over-lattices. Section 6 is a proof of Theorem 1 when k 6= 0, 6 mod 9,
and section 7 deals with the remaining cases.
Acknowledgements. The authors thank Simon Brandhorst and Igor

Reider for useful conversations.

2. Preliminaries on lattices and notations

The following section gives preliminaries and notations on lattice theory,
a standard reference is [8, Section 1]. The part on torsion quadratic modules
of the form (uv ) is well-known, but we couldn’t find a proper reference.

2.1. The discriminant group of a lattice as a torsion quadratic mod-
ule. Let L be an even lattice ; the intersection of two elements v, v′ ∈ L is
denoted by vv′ ∈ Z. The bilinear pairing extends to L⊗Q, and the dual of
L is

Ľ := {v ∈ L⊗Q | ∀w ∈ L, vw ∈ Z}.

The discriminant group of L is a torsion quadratic module, denoted by AL:
its subjacent group is the finite abelian group Ľ/L, and its quadratic form
qL : Ľ/L → Q/2Z is defined for 1

nw ∈ Ľ (for n ∈ Z, n 6= 0 and w ∈ L such
that 1

nw ∈ Ľ) by

qL(
1

n
w) =

1

n2
w2 mod 2Z.

If v ∈ L, one has

(
1

n
w + v)2 =

1

n2
w2 + 2

1

n
wv + v2.

Since 1
nw ∈ Ľ, 2 1

nwv is an even integer and since L is even, one has v2 ∈ 2Z,
thus the quadratic form qL is a well defined function on the finite group Ľ/L.

Let L be the lattice Zn with Gram matrix G for the canonical basis. The
columns c1, . . . , cn of G−1 considered as elements of Qn/Zn generate the
group AL, moreover the quadratic form qL on these generators is given by
the matrix G−1 = (tciGcj)1≤i,j≤n, where the diagonal entries of G−1 are
taken modulo 2Z, and the other entries are taken modulo Z (and respecting
the symmetry).
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2.2. Genus of lattice, discriminant group and over-lattices. By def-
inition, two lattices L1, L2 are in the same genus if L1 ⊗ Qp ' L2 ⊗ Qp for
all primes p and L1 ⊗ R ' L2 ⊗ R. One has

Theorem 2. ([8, Corollary 1.9.4]) The lattices L1, L2 are in the same genus
if and only if they have the same signature and have isometric discriminant
groups.

Any over-lattice LH of L is (up to isometry) the pull-back LH = π−1(H)
by the quotient map π : Ľ → Ľ/L of an isotropic subgroup H contained in
AL = Ľ/L.

An isometry g ∈ O(L) induces an isometry ḡ of AL. If H1 ⊂ AL is an
isotropic sub-group, so is H2 = ḡ(H1) and g induces an isometry between
the over-lattices LH1 and LH2 preserving the lattice L. More generally, two
over-lattices ι1 : L ↪→ L1, ι2 : L ↪→ L2 are said isomorphic if there exists an
isometry g of L extending to an isometry g̃ between L1 and L2. Then the
following diagram

L
ι1→ L1

↓ g ↓ g̃
L

ι2→ L2

is commutative. Let H1, H2 be the isotropic sub-groups of AL corresponding
to over-lattices L1, L2. One has:

Proposition 3. ([8, Proposition 1.4.3]). The over-lattices ι1 : L ↪→ L1, ι2 :
L ↪→ L2 are isomorphic if and only if there exist an isometry g of L such
ḡ(H1) = H2.

LetM be a lattice containing L with finite index, letH1, . . . ,Hn be the set
of all isotropic sub-groups of the (finite) group AL such that their associated
over-lattices L1, . . . , Ln are isometric toM . Let ιj : L ↪→ Lj be the inclusion
of L in Lj . Suppose that the over-lattices ιj : L ↪→ Lj , j = 1, . . . , n are
isomorphic. Then:

Corollary 4. Up to isometries of L and M , there exists a unique embedding
of L in M .

Proof. Let ι : L ↪→ M , ι′ : L ↪→ M be two embeddings, let H,H ′ be the
two isotropic sub-groups of L corresponding to these over-lattices. There
exists two indices s, t ∈ {1, . . . , n} such that (up to isometries) ι : L ↪→ M
is isomorphic to ιs : L ↪→ Ls and ι′ : L ↪→ M is isomorphic to ιt : L ↪→ Lt,
the over-lattices Ls, Lt corresponding to Hs and Ht respectively. Since by
hypothesis ιs : L ↪→ Ls and ιt : L ↪→ Lt are isomorphic, the over-lattices
ι : L ↪→ M , ι′ : L ↪→ M are isomorphic, thus there exists an isometry g̃ of
M such that ι ◦ g̃ = ι′. �

2.3. Examples of quadratic torsion modules. In this section, we give
some examples of quadratic torsion modules which we will later use to com-
pute the discriminant groups of various lattices.
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Consider u
v ∈ Q \ {0} with u, v coprime such that either u or v is even.

Let us denote by (uv ) the torsion quadratic module (Z/vZ, q) with quadratic
form q : Z/vZ→ Q/2Z defined by

q(x) =
ux2

v
∈ (

1

v
Z)/2Z ⊂ Q/2Z.

If x′ = x+ tv with t ∈ Z, one has

q(x′) =
u(x2 + 2xtv + t2v2)

v
=
ux2

v
+ u(2xt+ t2v) =

ux2

v
= q(x),

thus q is well-defined; here we use that u or v is even at the third equality (if
both were odd, the form q would be well-defined only modulo Z). For u, u′
coprime to v, one has

(
u

v
) = (

u′

v
)

if and only if u = u′mod 2v.
Suppose that v = ab with a, b coprime integers, and let s, t ∈ Z such

that as + bt = 1. If s′, t′ is another Bézout pair, one has s′ = s + mb and
t′ = t−ma for m ∈ Z.
• Suppose that u is even, (thus a and b are odd). Then, since u is even,

one has us = us′mod 2b, ut = ut′mod 2a and the torsion quadratic modules

(
us

b
), (

ut

a
)

are independent of the choice of the Bézout pair (s, t).
• Suppose that u is odd and a, say, is even, b is odd. The relation as+bt =

1 implies that t is odd. Moreover, since b is odd, up to changing s by s+mb
for m ∈ Z, one can choose s to be even, and in fact one must do it in order
for the quadratic form of (usb ) to have values in Z/2Z. That choice of s is
unique modulo 2b. The choice of t is then unique modulo 2a, and in the
notations: (usb ), (uta ), it is always implicitly supposed that s is even.

In both cases u even or odd, the relation

u

ab
=
tu

a
+
su

b

implies that (uv ) decomposes as a direct sum

(
u

v
) = (

tu

a
) + (

su

b
)

where we use the canonical isomorphism xmod ab→ (x mod a, xmod b) be-
tween Z/abZ and Z/aZ ⊕ Z/bZ (we recall that a, b are coprime integers).
For v = ab with ab coprime, we denote by (uv )a = ( tua ) the restriction of (uv )

to Z/aZ. Since s is even, in Z/2aZ one has b̄t̄ = 1̄, thus we sometimes write
(uv )a = (u/ba ).

The decomposition ( uab) = ( tua ) + ( sub ) implies that if v = pn1
1 . . . pnkk is

the factorization of v into a product of distinct primes, the torsion quadratic
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module (uv ) is isometric to a direct sum

(
u1
pn1
1

) + · · ·+ (
uk
pnkk

)

for some integers ui coprime to pi and such that ui or pi is even. More
generally, using that a finite abelian group is the direct sum of its p-sub-
groups, a torsion quadratic module M is a direct sum M = ⊕p primeMp of
p-sub-groups. For p ≥ 3, Mp is a direct sum of torsion quadratic modules of
the form ( upn ) (for u even, coprime to p and n ∈ N∗). For p = 2, the situation
is more complicated, see [3].

Let be w ∈ Z such that w̄ ∈ Z/vZ is a unit. For any n ∈ Z, one has

u(w + nv)2 = uw2 + 2nuwv + un2v2 = uw2 mod 2v,

(where in the last equality we use that u or v is even), thus group of units
(Z/vZ)∗ acts on the set of torsion quadratic modules (uv ) by w̄.(uv ) = (uw

2

v ).
One has

∀x ∈ Z/vZ,
uw2

v
x2 =

u

v
(w̄x)2,

therefore the automorphism of Z/vZ defined by x → w̄x is an isometry
between the torsion quadratic modules w̄.(uv ) and (uv ). Conversely, if there
is an isometry between (uv ) and (u

′

v ), the subjacent automorphism ψ of Z/vZ
being of the form x→ w̄x for some w̄ ∈ (Z/vZ)∗, one has u′ = uw2 mod 2v,
thus u′ = uw2 mod v and u/u′ ∈ (Z/vZ)∗ is a square.

Suppose that v is an odd prime. The set Sq of square elements in (Z/vZ)∗

is a sub-group of index 2. Let m2 : Z/vZ → 2Z/Z2vZ be the map defined
by x+ vZ→ 2x+ 2vZ; it is a bijection. Let E be the set

E = m2((Z/vZ)∗).

The set E is in bijection with the set of quadratic torsion modules by the
map u ∈ E → (uv ). There is a natural faithful action of Sq on E given by

(s, u) ∈ Sq × E → m2(m
−1
2 (u)s) ∈ E.

That action has two orbits, corresponding to the invertible square, and in-
vertible non-square in Sq. Thus there are only two isometry classes among
the torsion quadratic modules (uv ), u ∈ E. For example, the only torsion
quadratic modules on Z/3aZ up to isometry are ( 2

3a ) and ( 4
3a ) (for a ≥ 1).

3. Fourier-Mukai partners in case L2
X = 0 mod 6

Suppose that the generalized Kummer surface X = Km3(A) satisfies
L2
X = 6k. Then (see [10, Theorem 7]), there exists a basis of T (A) with

Gram matrix  −2k 0 0
0 2 3
0 3 6

 ,
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therefore T (A)(3) has a basis with Gram matrix

(3.1)

 −6k 0 0
0 6 9
0 9 18

 .

Let T (X) be the transcendental lattice of X: this is the orthogonal comple-
ment of NS(X) in H2(X,Z).

Proposition 5. The lattice T (X) has a basis with Gram matrix −6k 0 0
0 6 3
0 3 2

 .

It is unique in its genus. The discriminant group AT (X) is generated by
( 1
6k , 0, 0), (0, 23 ,−1) and is isomorphic to Z/6kZ× Z/3Z.

Proof. See [10, Section 2.4] for the first two assertions; the last one follows
from a direct computation. �

One has

Proposition 6. There exists a morphism πA∗ : T (A)(3)→ T (X) such that
πA∗ is an isometry onto its image and πA∗(T (A)) has index 3 in T (X).

Proof. The morphism πA∗ is defined in [11, Section 2.3], where it is shown
that the lattice πA∗(T (A)) is isometric to T (A)(3). For the assertion on the
index, it is sufficient to compare the discriminant of the two lattices. �

Suppose that there exists in T (A)(3)⊗Q a unique over-lattice T of T (A)(3)
such that T is isometric to T (X), where X = Km3(A). Let us suppose more-
over that T contains a unique sub-lattice isometric to T (A)(3). Let (B,GB)
be another abelian surface B with an order 3 symplectic automorphism group
GB.

Theorem 7. Under the above hypothesis, there exists a Hodge isometry

(3.2) (T (A),CωA) ' (T (B),CωB)

if and only if there exists a Hodge isometry

(T (Km3(A)),CωKm3(A)) ' (T (Km3(B)),CωKm3(B)).

Proof. By Proposition 5, the lattice T (X) is uniquely determined by the
lattice T (A) and conversely, in particular, the lattice T (X) is isometric
to T (X ′) (where X ′ = Km3(B)) if and only T (A) is isometric to T (B).
Suppose that one has an isomorphism of Hodge structures (T (A),CωA) '
(T (B),CωB), then T (A) ' T (B) and from the hypothesis, there exists in
T (B)(3) ⊗ Q a unique over-lattice T ′ isomorphic to T (X ′). The Hodge
structure (T (X),CωX) is then uniquely determined by (T,CωA): necessar-
ily (T (X),CωX) ' (T,CωA), and also (T (X ′),CωX′) ' (T ′,CωA), therefore
the Hodge structures (T (X),CωX) and (T (X ′),CωX′) are isomorphic.
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Conversely, suppose that there exists an isomorphism

φ : (T (X),CωX)→ (T (X ′),CωX′)

of Hodge structures. Since T contains a unique sub-lattice isometric to
T (A)(3) and T (X) ' T ' T (X ′), the sub-lattice T (A)(3) is sent by φ to
T (B)(3) and there is a Hodge isomorphism (T (A),CωA) ' (T (B),CωB). �

Let us therefore study the over-lattices T of T (A)(3) such that T (A)(3) has
index 3 in T . We can suppose that these lattices are contained in T (A)(3)⊗Q.
The quadratic form on the discriminant group AT (A)(3) is given by

Q =

 − 1
6k 0 0
0 2

3 −1
3

0 −1
3

2
9

 .

In the following list of 13 elements of the form (v; sq) ∈ AT (A)(3) ×Q/2Z:

(3.3)

(0, 0,
1

3
; 0)

(0,
1

3
, 0; 2

3), (0,
1

3
,
1

3
; 2
3), (0,

1

3
,
2

3
; 14

3 ),

(
1

3
, 0, 0;−2

3k), (
1

3
, 0,

1

3
;−2

3k), (
1

3
, 0,

2

3
;−2

3k)

(
1

3
,
1

3
, 0;−2

3k + 2
3), (

1

3
,
1

3
,
1

3
;−2

3k + 2
3), (

1

3
,
1

3
,
2

3
;−2

3k + 14
3 ),

(
1

3
,
2

3
, 0;−2

3k + 8
3), (

1

3
,
2

3
,
1

3
;−2

3k + 2
3), (

1

3
,
2

3
,
2

3
;−2

3k + 8
3),

are the 13 generators

v = (a1, a2, a3) ∈ AT (A)(3)

of the 13 order 3 sub-groupsHv of AT (A)(3) ' Z/6kZ×Z/3Z×Z/9Z, and their
square sq = vQ tv ∈ Q/2Z. We denote by Tv the pull-back in T (A)(3) ⊗ Q
of the group Hv ⊂ AT (A)(3). We remark that the groups generated by the
elements

(0,
1

3
, 0; 2

3), (0,
1

3
,
1

3
; 2
3), (0,

1

3
,
2

3
; 14

3 )

in list 3.3 are not isotropic sub-groups, thus their pull-back to T (A)(3)⊗Q
are not over-lattices of T (A)(3). For any k, the case v0 = (0, 0, 13) gives an
index 3 over-lattice isometric to T (X).

Let Nover be the number of over-lattices of T (A)(3) in T (A)(3)⊗Q that
are isomorphic to T (X). From the above discussion on case v0 = (0, 0, 13),
we get that Nover ≥ 1. The aim of the next two Sections is to prove the
following result:

Theorem 8. We have
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k = 1 or 2 mod 3 k = 0 mod 9 k = 3 mod 9 k = 6 mod 9
Nover 1 3 1 2

w (0, 0, 13)
(0, 0, 13)
(13 , 0,

1
3)

(13 , 0,
2
3)

(0, 0, 13)
(0, 0, 13)
(13 , 0, 0)

where in the last line are the elements w such that Tw is isometric to T (X).

For k = 2 mod 3, we remark that the element v = (0, 0, 13) in list (3.3) is
the only possibility in order for Tv to be an over-lattice of T (A)(3). Let us
check the possibilities from the list (3.3) according to the remaining cases
k = 0 or 1 mod 3.

4. Case k = 0 mod 3

Let us prove Theorem 8 when k = 0 mod 3. In this case k = 3k′ for k′ ∈ Z,
the possibilities different from v0 = (0, 0, 13 ; 0) are

(13 , 0, 0;−2
3k), (13 , 0,

1
3 ;−2

3k), (13 , 0,
2
3 ;−2

3k).

4.1. Case k = 3k′ and v = (13 , 0, 0). Let us study the case

v = (
1

3
, 0, 0) ∈ AT (A)(3).

We have that v2 = −2
3k, and this is 0 in Q/2Z since k = 3k′ by assumption.

Then the Gram matrix in some basis of the over-lattice Tv associated to Hv

is  −2k′ 0 0
0 6 9
0 9 18

 .

The lattice Tv has discriminant group isomorphic to Z2k′Z× Z/3Z× Z/9Z,
generated by the columns of the matrix − 1

2k′ 0 0
0 2

3
−1
3

0 −1
3

2
9

 .

Proposition 9. The lattice Tv is isometric to T (X) if and only if k =
6 mod 9.

Proof. The elements

(
1

2k′
, 0, 0), (0, 23 ,−

1
3), (0, 0, 19)

generate ATv ' Z/2k′Z×Z/3Z×Z/9Z and have intersection matrix Diag(− 1
2k′ ,

2
3 ,

2
9).

The lattice T (X) has discriminant group isomorphic to

Z/6kZ× Z/3Z = Z/18k′Z× Z/3Z,

thus if 3|k′, Tv is not isometric to T (X). If 3 6 |k′, then

AT (X) ' Z/2k′Z× Z/3Z× Z/9Z ' ATv
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and we must compare the quadratic forms. The quadratic form on T (X) is
Diag(− 1

18k′ ,
2
3). Since 3 6 |k′, one has

(− 1

18k′
) = (− u

2k′
) + (−v

9
),

where u ∈ (Z/2k′Z)∗ is such that 9u = 1 mod 2k′ and v ∈ (Z/9Z)∗ is such
that 2kv = 1 mod 9. Since 9u = 1 mod 2k′, there exists u′ ∈ (Z/2k′Z)∗ such
that u′2 = u, thus (− u

2k′ ) is isometric to (− 1
2k′ ). Suppose that k′ = 1 mod 3,

then −(2k′)−1 = 1, 4 or 7 mod 9, and since 4 = 22 mod 9, 7 = 52 mod 9,
we obtain that (−v

9 ) = (49). Suppose that k′ = 2 mod 3, then −(2k′)−1 =

2, 5 or 8 mod 9, and since 5 = 2 · 52 mod 9, 8 = 2 · 22 mod 9, we obtain that
(−v

9 ) = (29). Therefore, the quadratic form on AT (X) is isometric to

(4.1) (− 1
2k′ ) + (49) + (23) if k′ = 1 mod 3

(− 1
2k′ ) + (29) + (23) if k′ = 2 mod 3.

Thus T (X) is isometric to Tv if and only if k = 6 mod 9. In that case T (X)
and Tv are in the same genus, but we know from proposition 5 that T (X) is
unique in its genus, therefore T (X) and Tv are isometric. �

4.2. Case k = 3k′ and v = (13 , 0,
1
3). Let Tv be the over-lattice associated

to v = (13 , 0,
1
3). There is basis in which the Gram matrix of T = Tv is −2k′ + 2 0 3

0 6 9
3 9 18

 .

The discriminant group AT of T has order 54k′ ; it is generated by the
columns c1, c2, c3 of  − 1

2k′ 0 1
3k′

− 1
2k′

2
3

1
3( 1
k′ − 1)

1
3k′ −1

3
2
9(1− 1

k′ )

 .

Making the substitution c2 → 2c2 + 2k′c1, (which is possible since c2 has
order 3), gives the generators

(4.2)

 − 1
2k′ 0 1

3k′

− 1
2k′

1
3

1−k′
3k′

1
3k′ 0 2

9(k
′−1
k′ )


with intersection matrix  −1

2k′ 0 1
3k′

0 2
3 0

1
3k′ 0 2(k′−1)

9k′

 ,

thus T is isometric to

(4.3)
(

2

3

)
+

( −1
2k′

1
3k′

1
3k′

2(k′−1)
9k′

)
.
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We will also use the transformation c3 → c3 + c2 in Equation 4.2; then one
gets the generators e1, e2, e3

(4.4)

 − 1
2k′ 0 1

3k′

− 1
2k′

1
3

1
3k′

1
3k′ 0 2

9(k
′−1
k′ )


with intersection matrix  − 1

2k′ 0 1
3k′

0 2
3

2
3

1
3k′

2
3

2(4k′−1)
9k′

 .

4.2.1. Sub-case v = (13 , 0,
1
3) and k = 0 mod 9. Suppose that k = 0 mod 9.

Let us prove

Lemma 10. The lattice T associated to v = (13 , 0,
1
3) is isometric to T (X)

Proof. Let be k′ ∈ N such that k = 3k′ and let us define k′′ by k′ = 3αk′′

with α ≥ 1 and k′′ prime to 3. Let us study the torsion quadratic module

Q =

( −1
2k′

1
3k′

1
3k′

2(k′−1)
9k′

)
in Equation 4.3. Let A⊥3T be the subgroup of elements that have prime to
3 order in the finite abelian group AT . We can then define v′2 = v2 + 2

3v1,

where v1, v2 are the base vectors. Let P =

(
1 2

3
0 1

)
be the basis change

matrix; one has

tPQP =

( −1
2k′ 0
0 2

9

)
' (
−1

2k′
) + (

2

9
),

where since we consider the sub-group A⊥3T , the form (29) is the zero form,
and the quadratic form on A⊥3T is therefore (− 1

2k′ ). For the 3-torsion sub-
group AT (3), let us consider v′1 = v1 + 3

2−2k′ v2 (one has 2− 2k′ = 2 mod 3).

Under the basis change by P ′ =
(

1 0
3

2−2k′ 1

)
, the quadratic form on AT (3)

is isometric to( −1
2(k′−1) 0

0 2
9(1− 1

k′ )

)
'
(

−1

2(k′ − 1)

)
+

(
2

9
(1− 1

k′
)

)
and since we consider here the sub-group AT (3) and k′ − 1 = −1 mod 3, the
form

(
−1

2(k′−1)

)
is zero, and the quadratic form on AT (3) is isometric to(

2

9
(1− 1

k′
)

)
=

(
2(k′ − 1)/k′′

3α+2

)
.

We thus conclude that the quadratic form on T is

(− 1
2k′ ) for elements in A⊥3T ,(

2(k′−1)
9k′

)
+ (23) for elements in AT (3).
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Now the quadratic form on T (X) is

(− 1

6k
) + (

2

3
).

The two quadratic forms are equal if they are equal at any prime. At prime
3, they are equal if and only if

(−1/(2k′′)

3α+2
) = (

2(k′ − 1)/k′′

3α+2
),

this is the case if and only if
2(k′ − 1)/k′′

−1/(2k′′)
= 4(1− 3αk′′)

is a square modulo 3α+2, this is equivalent to 1 − 3αk′′ ∈ 3α+2 is a square.
Let v = 1−3αk′′/2 ∈ Z/3α+2Z, then v2 = 1−3αk′′+ 32αk′′/4 and therefore,
when α ≥ 2, v2 = 1− 3αk′′ is a square. One can check that this is also true
for α = 1 by a direct computation. Thus we obtain that, at prime 3, the two
quadratic forms are equal.

Now for the part coprime to 3, we must compare (− 1
2k′ ) = (−1/3α

2k′′ ) with
(− 1

6k ) = (−1/3α+2

2k′′ ): these forms are isometric since they differ by a square.
We thus proved that the two lattices T, T (X) are in the same genus. Since

the genus contains a unique element by Proposition 5, the two lattices are
isomorphic. �

4.2.2. Sub-case v = (13 , 0,
1
3) and k = 3 mod 9. Suppose that k = 3k′ with

k′ = 1 mod 3, and let us prove

Lemma 11. The lattice T associated to v = (13 , 0,
1
3) is not isometric to

T (X)

Proof. Using Equation 4.2, the discriminant group is generated by the columns
of  − 1

2k′ 0 1
3k′

− 1
2k′

1
3 −k′′

k′
1
3k′ 0 2k′′

3k′


(where k′ = 3k′′ + 1) and we remark that

c3 − 2k′′c1 = (
1

3
, 0, 0)

thus the discriminant group AT is generated by the columns of − 1
2k′ 0 1

3
− 1

2k′
1
3 0

1
3k′ 0 0


which shows that, when k′ = 1 mod 3, the discriminant group of T is

AT ' (Z/3Z)3 × Z/2k′Z.
It is not isomorphic to Z/18k′Z × Z/3Z, therefore T is not isometric to
T (X). �
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4.2.3. Sub-case v = (13 , 0,
1
3) and k = 6 mod 9. Suppose that k = 3k′ with

k′ = 2 mod 3. Let us prove
Lemma 12. The lattice T associated to v = (13 , 0,

1
3) is not isometric to

T (X)

Proof. One can check that, as abstract groups, the discriminant groups
AT (X) and AT are isomorphic. Let us study the 3-torsion part AT (3) of
AT and the quadratic form restricted to that part. Since 3 6 |k′, from 4.4,
the generators of AT (3) are the columns c1, c2, c3 of the matrix 0 0 1

3
0 1

3
1
3

4
3 0 2

9(k′ − 1)

 .

Since k′ 6= 1 mod 3, the element c1 is a multiple of c3 and the generators of
AT (3) are c2, c3, with intersection matrix(

2
3

2k′

3
2k′

3
2k′

9 (4k′ − 1)

)
.

Then c′3 = c3 − kc2 is such that c′3c2 = 0 and c′23 = 2
9k
′(k′ − 1). We obtain

that AT (3) is isometric to (23) + (2k
′(k′−1)
9 ). Using that k′ = 2, 5 or 8 mod 9,

it is easy to check that in any case (2k
′(k′−1)
9 ) ' (49). We conclude that

AT (3) is isometric to (23) + (49). But we know from Equation 4.1 that when
k′ = 2 mod 3, the 3-torsion part of AT (X) is (23) + (29). Therefore T is not
isometric to T (X) when k′ = 2 mod 3. �

4.3. Case k = 3k′ and v = (13 , 0,
2
3). Let v = (13 , 0,

2
3) ∈ AT (A)(3), v′ =

(13 , 0,
1
3) and let Tv, Tv′ be the associated over-lattices.

Lemma 13. The lattices Tv and Tv′ are isomorphic. The lattice Tv is iso-
metric to T (X) if and only if k = 0 mod 9.

Proof. The matrix

(4.5) g =

 1 0 0
0 −1 −3
0 1 2


is an order 6 isometry of the lattice T (A)(3) with Gram matrix

QT (A)(3) =

 −6k 0 0
0 6 9
0 9 18


(one has tgQT (A)(3)g = QT (A)(3)) and g(13(v1 + v3)) = 1

3(v1 + 3v2 + 2v3).
Its action on the discriminant group sends the group Hv′ generated by the
class of v′ = 1

3(v1 + v3) in AT (A)(3) to the group Hv generated by the class
of v = 1

3(v1 + 2v3) in AT (A)(3). Therefore, the element g induces an isometry
between the over-lattices Tv′ , Tv which are the pull-back in T (A)(3) ⊗ Q of
Hv′ and Hv. The lattice Tv has therefore the same properties as the lattice
Tv′ studied in Section 4.2. �
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5. Case k = 3k′ + 1

Let us prove Theorem 8 when k = 1 mod 3. When k = 3k′ + 1, the cases
different from (0, 0, 13) are the six generators v in the following list

(13 ,
1
3 , 0), (13 ,

1
3 ,

1
3), (13 ,

1
3 ,

2
3),

(13 ,
2
3 , 0), (13 ,

2
3 ,

1
3), (13 ,

2
3 ,

2
3),

of the six order 3 isotropic groups Hv.

Lemma 14. Let T be the over-lattice corresponding to the isotropic order 3
group Hv = 〈v〉, with v in the above list. The lattice T is not isometric to
T (X).

Proof. The isometry g in Equation 4.5 acts on the discriminant group AT (A)(3)
and the above 6 elements form one orbit for that action. It is therefore
enough to study the over-lattice T corresponding to one of these elements,
say v = (13 ,

1
3 , 0). The Gram matrix of the corresponding over-lattice in some

basis is

QT =

 −2k′ 1 0
1 6 9
0 9 18


the discriminant group has order 54k′ + 18 = 18k (here, k = 3k′ + 1); it is
generated by the columns c1, c2, c3 of

Q−1T =

 − 3
2k

1
k − 1

2k
1
k

2k′

k −k′

k

− 1
2k −k′

k
4k−3
18k

 .

In AT , one has c2 = 2k′c1. Moreover, c1 − 3c3 = (0, 0,−2
3). We observe

that the column 2kc3 is (0, 0, 4k−39 ). Since 4k − 3 is coprime to 9, the group
generated by 2kc3 contains (0, 0,−2

3). We thus obtain that the discriminant
group is cyclic, generated by c3: T cannot be isometric to T (X). �

6. Preservation of T (A)(3) into T (X) under O(T (X)), proof of
the main Theorem in case k 6= 0, 6 mod 9

We recall that T (X) is the lattice with Gram matrix

Q1 =

 −6k 0 0
0 6 3
0 3 2


in basis β1 = (e1, e2, e3). Let T1 ' T (A)(3) be the lattice generated by
e1, e2, 3e3. Let us show that

Proposition 15. The orthogonal group O(T (X)) preserves T1.

Proof. Let g = (aij)1≤i,j≤3 ∈ O(T (X)); one has tgQ1g = Q1. The lattice T1
is preserved by g if and only if ge1, ge2, 3ge3 ∈ T1. Since T1 = 〈e1, e2, 3e3〉,
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this is the case if and only if the coefficients a31, a32 are 0 mod 3. The relation
tgQ1g = Q1 implies that mod 3, one has

tgQ1g =

 ∗ ∗ 2a31a33
∗ ∗ 2a32a33
∗ ∗ 2a233

 =

 0 0 0
0 0 0
0 0 2

 ,

thus a33 = 1 or 2 mod 3 and a31 = a32 = 0 mod 3, which implies the result.
�

Let T2 be a lattice with Gram matrix

Q2 =

 −6k 0 0
0 6 9
0 9 18


in some basis v1, v2, v3; it is isomorphic to T1. Let ι : T2 ↪→ T (X) be an
embedding of lattices. Let us identify T2 with its image in T (X) trough the
embedding ι.

Proposition 16. Suppose that k 6= 0 and 6 mod 9. Then T1 = T2, in other
words: T (X) contains a unique sub-lattice isomorphic to T (A)(3).

Proof. By Theorem 8, the hypothesis on k implies that the over-lattice T (X)
of T2 is obtained by 1

3v3 ∈ T (X). Then β2 = (v1, v2,
1
3v3) is a basis of T (X).

These vectors have intersection matrix Q2 equal to Q1. Let P be the base-
change matrix between these two basis, one has

Q1 =t PQ2P

and since Q1 = Q2, the matrix P sending the base β1 to the base β2 defines
an element of O(T (X)). Since O(T (X)) preserves T1, the vectors v1, v2, v3
are in T1, thus T1 = T2. �

Corollary 17. When k 6= 0 and 6 mod 9, the hypothesis of Theorem 7 are
satisfied, and therefore it proves Theorem 1 in these cases.

7. Cases L2
X = 6k with k = 0 or 6 mod 9

7.1. On the implication (II) ⇒ (I) in cases k = 0 or 6 mod 9. Suppose
that k = 0 or 6 mod 9. Let v1, v2, . . . be the generators of the (distinct)
isotropic groups H1, H2, . . . of AT (A)(3) such that the corresponding over-
lattices T1, T2, ... are isometric to T (X). Let (B,GB) be another abelian
surface with an order 3 symplectic automorphism group.

Proposition 18. Suppose that k = 0 or 6 mod 9 and that the over-lattices
T1, T2, . . . of T (A)(3) are isomorphic. If there exists an isomorphism of
Hodge structures

ψ : (T (Km3(A)),CωKm3(A))→ (T (Km3(B)),CωKm3(B))

then there exists an isomorphism of Hodge structures

(T (A),CωA) ' (T (B),CωB).
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Proof. Since the over-lattices T1, T2, . . . are isomorphic, by Corollary 4, there
is a unique embedding of T (A)(3) in T (Km3(A)) up to isometries. More-
over, by Proposition 15, any isometries of T (Km3(A)) preserves the image of
T (A)(3), thus we recover uniquely (T (A),CωA) from (T (Km3(A)),CωKm3(A)).
The isomorphism ψ must send T (A)(3) to T (B)(3), and therefore it induces
an isomorphism of Hodge structures between (T (A),CωA) and (T (B),CωB).

�

The next sub-section shows that the over-lattices T1, T2, . . . of T (A)(3)
are indeed isomorphic, so that the hypothesis of Proposition 18 are satisfied,
and that will prove the implication (II) ⇒ (I) of Theorem 1.

7.2. On the orthogonal group of T (A)(3) and isomorphic over-lattices.
Recall that T (A)(3) has a basis with Gram matrix

(7.1)

 −6k 0 0
0 6 9
0 9 18

 .

Proposition 19. The lattice T (A)(3) is unique in its genus and the map

O(T (A)(3))→ O(AT (A)(3))

is surjective.

Proof. The discriminant group AT (A)(3) is (isomorphic to) Z/9Z × Z/3Z ×
Z/6kZ. For a prime p, the length `p of the p-torsion subgroup is `3 = 3,
`p = 1 for p 6= 3 dividing k, otherwise `p = 0.

By [7, Chapter VIII, Lemma 7.7(1)], the quadratic form Q is 2-regular, by
[7, Chapter VIII, Lemma 7.6(3)] Q is 3-pseudoregular, and by [7, Chapter
VIII, Lemma 7.6(1)] it is p-regular for any prime p ≥ 5. One can therefore
apply [7, Chapter VIII, Theorem 7.5 (4)] to conclude that the genus of
T (A)(3) is {T (A)(3)} and that the natural map O(T (A)(3))→ O(AT (A)(3))
is surjective. �

If L is a torsion quadratic module, there is a decomposition L = ⊕pLp
into p-torsion elements, and

O(L) =
∏
p

O(Lp),

where O is the orthogonal group i.e. the group preserving the quadratic
form. The discriminant group AT (A)(3) has quadratic form

Q =

 − 1
6k 0 0
0 2

3 −1
3

0 −1
3

2
9

 .

Let us prove the following result:

Proposition 20. Suppose that k = 6 mod 9 and consider v0 = (0, 0, 13) and
v1 = (13 , 0, 0). The associated over-lattices Tv0 , Tv1 are isomorphic.
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Proof. In order to prove that the over-lattices Tv0 , Tv1 are isomorphic, one
must show that there exists an element O(T (A)(3)) that acts on AT (A)(3) by
sending v0 to v1. But by Proposition 19, the map O(T (A)(3))→ O(AT (A)(3))
is surjective, therefore it is sufficient to prove that there exists τ ∈ O(AT (A)(3))
sending v0 to v1. Since we supposed that k = 6 mod 9, one has

(
− 1

6k

)
3

=
(
2
9

)
,

thus on the 3-torsion part, the quadratic form is

Q3 =

 2
9 0 0
0 2

3 −1
3

0 −1
3

2
9

 .

The matrix

τ =

 0 −6 1
0 1 0
1 6 0


defines an automorphism of the (3-torsion part of the) group AT (A)(3) =

Z/9Z × Z/3Z × Z/6kZ and satisfies tτQ3τ − Q3 =

 0 1 0
1 12 −1
0 −1 0

, thus

this is an element of the orthogonal group of AT (A)(3). The transformation
exchanges (19 , 0, 0) and (0, 0, 19), thus it also exchanges v1 = (13 , 0, 0) and
v0 = (0, 0, 13). �

Proposition 21. Suppose that k = 0 mod 9. Let be v0 = (0, 0, 13), w1 =

(13 , 0,
1
3) and w2 = (13 , 0,

2
3), the elements of AT (A)(3). The associated over-

lattices Tv0 , Tw1 , Tw2 are isomorphic.

Proof. The isometry in Equation (4.5) of T (A)(3) sends w1 to w2. By Propo-
sition 19, the map O(T (A)(3))→ O(AT (A)(3)) is onto, therefore, in order to
prove that the over-lattices Tv0 , Tw1 , Tw2 are isomorphic, it is sufficient to find
an element τ ∈ O(AT (A)(3)) sending v0 to an element in {w1, 2w1, w2, 2w2}.
The group AT (A)(3) is isomorphic to

Z/6kZ× Z/3Z× Z/9Z

through the map ( a6k ,
b
3 ,

c
9) → (a, b, c) and we will often identify ( a6k ,

b
3 ,

c
9)

with (a, b, c). The discriminant group AT (A)(3) has quadratic form

Q =

 − 1
6k 0 0
0 2

3 −1
3

0 −1
3

2
9

 .

At prime 3, the quadratic form is

Q3 =

 u
3a+1 0 0

0 2
3 −1

3
0 −1

3
2
9

 ,

where k = 3at, for a ≥ 2, t coprime to 3 and u is even such that u(−2t) =
1 mod 3a+1. The torsion quadratic module

(
u

3a+1

)
is isometric to

(
2

3a+1

)
or(

4
3a+1

)
, and the isometry sends the order 3 element element (3a, 0, 0) to
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(w3a, 0, 0) with w ∈ {1, 2}. It remains therefore to study the following two
possibilities:
• Suppose that u = 2 and a ≥ 3. The matrix

τa =

 2 · 3a−1 − 1 −14 · 3a 8 · 3a−1
0 −4 1
7 −48 11

 .

define an endomorphism of the group

AT (A)(3) = Z/3a+1Z× Z/3Z× Z/9Z

(for example, the (3, 2) entry is the well-defined map Z/3Z → Z/9Z, x̄ →
−48x). The matrix 2 · 3a−1 − 1 −14 · 3a 7 · 3a−1

3 −10 2
20 −87 17


also define an endomorphism and one can check that its product with τa acts
by the identity on AT (A)(3), thus τa is an automorphism of AT (A)(3). One
computes that

tτaQ3τa−Q3 =

 10 + 8 · 3a−3 −56 · (3a−2 + 1) 32 · 3a−3 + 13
−56 · (3a−2 + 1) 392(3a−1 + 1) + 2 −224 · 3a−2 − 89
32 · 3a−3 + 13 −224 · 3a−2 − 89 128 · 3a−3 + 20


therefore if a ≥ 3, the entries of the above matrix are integers and the di-
agonal entries are even numbers, so that τa preserves the quadratic form of
AT (A)(3): it is an element of O(AT (A)(3)). One has τa(0, 0, 3) = (8·3a, 3, 33) =
(2 · 3a, 0, 6), therefore the image by τa of the isotropic group generated by
v0 = (0, 0, 3) is the isotropic group generated by w1 = (3a, 0, 3): that implies
that the two associated over-lattices are isomorphic.

In case a = 2, it is not difficult to check that the matrix τ2 =

 5 −18 3
2 −10 2
17 −69 14


gives an isometry of AT (A)(3) with the same properties as above when a ≥ 3.
• Suppose that u = 4 and a ≥ 3. The matrix

θa =

 4 · 3a−1 − 1 −14 · 3a 8 · 3a−1
1 −10 2
13 −78 16

 .

define an automorphism of the group AT (A)(3). One has

tθaQ3θa−Q3 =

 26 + 64 · 3a−3 −224 · 3a−2 − 144 128 · 3a−3 + 30
−224 · 3a−2 − 144 784 · 3a−1 + 898 −448 · 3a−2 − 185

128 · 3a−3 + 30 −448 · 3a−2 − 185 38 + 256 · 3a−3

 ,

so that θa is an element of O(AT (A)(3)) when a ≥ 3. Since

θa(0, 0, 3) = (8 · 3a, 6, 48) = (2 · 3a, 0, 3),

the image by θa of the isotropic group generated by v0 = (0, 0, 3) is the
isotropic group generated by 2w2 = (2 · 3a, 0, 3): that implies that the two
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associated over-lattices are isomorphic.

When a = 2, it is not difficult to check that the matrix θ2 =

 2 −126 24
0 −4 1
5 −66 14


gives an isometry with the same properties as above. �

Corollary 22. Suppose that k = 3k′, with k′ = 0 or 2mod 3. Suppose that
there is an isomorphism of Hodge structures

(T (Km3(A)),CωKm3(A)) ' (T (Km3(B)),CωKm3(B)).

Then there is an isomorphism of Hodge structures

(T (A),CωA) ' (T (B),CωB).

Proof. In this cases, all the over-lattices that are isometric to T (X) are
isomorphic, thus we can apply Proposition 18. �

7.3. About the implication (I) ⇒ (II). Suppose that k = 0 or 6 mod 9.
Let v1, v2, . . . be generators of the isotropic groups H1, H2, . . . of AT (A)(3)
such that the corresponding over-lattices T1, T2, ... of T (A)(3) are isometric
to T (X). We know from Propositions 20 and 21 that these lattices T1, T2, . . .
are isomorphic.

Proposition 23. Let be i 6= j and let ω defining a Hodge structure on
Ti ⊗ Q = Tj ⊗ Q. The Hodge structures (Ti,Cω) and (Tj ,Cω) are not
isomorphic for a general period ω.

Proof. Let us recall some facts about integral Hodge structures of K3 type,
for which a reference is [12, Section 7.2.3]. A Hodge structure on a rank 3
lattice T of signature (2, 1) is the data of a point ω ∈ P(T ⊗ C) such that
w2 = 0 and ww̄ > 0, for w ∈ ω = Cw. Then the space T ⊗C decomposes as

T ⊗ C = Cw ⊕ Ct⊕ Cw̄,

where Ct is the orthogonal complement of the space Cw ⊕ Cw̄; this is a
real subspace: Ct = Ct. The set of Hodge structures is an (euclidian)
open subset in the smooth quadric QT ' P1 defined by ω2 = 0. In fact,
this is the complement of the real axis in C ⊂ P1 = QT , in particular, it is
biholomorphic to H∪H, where H is the complex upper-plane (see [1, Section
2.3]). Two Hodge structures ω, ω′ on T are isomorphic if and only if there
exists an isometry g ∈ O(T ) such that

gC(ω) = ω′,

where gC is the complexification of g (an isometry of T acts as an homography
on H ∪H ⊂ QT ).

The fixed point set of a projective automorphism g acting on P(T ⊗ C)
is a union of linear subspaces, thus the stabilizer group (in the projective
automorphism group) of the smooth quadric QT acts faithfully on QT .

Since we suppose that the over-lattices Ti and Tj are isomorphic, there
exist isometries h| ∈ O(T (A)(3)) and h : Ti → Tj such that the following
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diagram is commutative
T (A)(3) ↪→ Ti
↓ h| ↓ h

T (A)(3) ↪→ Tj

.

We consider Ti and Tj contained in T (A)(3)⊗C. The complexification hC of
the lattice isometry h preserves the quadric Q = {ω2 = 0} ⊂ P(T (A)(3)⊗C)
containing the Hodge structures. That quadric is the same for T (A)(3), Ti
and Tj . For ω ∈ Q, the isometry h induces an isomorphism between the
Hodge structures (Ti, ω) and (Tj , hC(ω)).

Suppose that for a general period ω ∈ Q, the Hodge structures (Ti, ω) and
(Tj , ω) are isomorphic. Then (Tj , ω) and (Tj , hC(ω)) are isomorphic: there
exists an isometry g ∈ O(Tj) such that gC(ω) = hC(ω). Since O(Tj) is a
countable set, there exists a g ∈ O(Tj) such that for an infinite number of ω,
one has gC(ω) = hC(ω), and therefore, in fact, gC(ω) = hC(ω) for all ω, thus
∀ω ∈ Q, h−1C gC(ω) = ω. Since the projective automorphism group preserving
Q acts faithfully on Q , this implies that h = ±g, and h is an isometry of Tj .
This is a contradiction, therefore for general ω ∈ Q, the Hodge structures
(Tj , ω) and (Tj , hC(ω)) are not isomorphic, and we conclude that (Tj , ω),
(Ti, ω) are not isomorphic. �

Recall that for k = 0 or 6 mod 9, we denote by T1, T2, ... the over-lattices
of T (A)(3) that are isometric to T (X). Let us fix a period ω. The Hodge
structure (T (A)(3), ω) induces Hodge structures

(Tj , ω), j = 1, 2, ...

and by Proposition 23, these Hodge structures are not isomorphic for general
ω. One has

Corollary 24. By the subjectivity of the Period map, there exist generalized
Kummer surfaces surfaces X1, X2, . . . such that (T (Xs),CωXs) ' (Ts,Cω)
for s = 1, 2, ..., with Xs = Km(As, Gs), such that A1, A2, ... are Fourier-
Mukai partners but such that X1, X2, . . . are not isomorphic.

Remark 25. We remark that one has an isomorphism of Q-Hodge structures
(T (Xi)⊗Q,Cω) ' (T (Xj)⊗Q,Cω), and according to [9] it is algebraic, i.e.
is induced by a correspondence between Xi and Xj .
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