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Abstract. We give two explicit versions of the decomposition theorem of Beilin-
son, Bernstein and Deligne applied to the universal family of quartic surfaces of P3.
The starting point of our investigation is the remark that the nodes of a quartic
surface impose independent conditions to the linear system | OP3(4) |. Although
this property is known in literature, we provide a di�erent argument more suited to
our purposes. By a result of [8], the indipendence of the nodes implies in turn that
each component of Severi's variety is smooth of the expected dimension and that
the dual variety is a divisor with normal crossings around Severi's variety. This
allows us to study the complex Rπ∗QX , the derived direct image of the constant

sheaf over the universal family of quartic surfaces X π−→ P34, both in the open set
parametrizing smooth and nodal quartics and in a tubular neighborhood of the
variety of Kummer surfaces. We obtain in both cases an explicit decomposition
and a formality result for the complex Rπ∗QX .
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1. Introduction

We consider the Veronese variety of P3 imbedded in P := P34 by means of the
linear system of quartic surfaces:

X ⊂ P :=| OP3(4) |= P34.

We also denote by X∨ ⊂ P∨ the dual hypersurface of X and by X the universal
hyperplane family

X ⊂ X × P∨,

equipped with its natural projections:

X
q←− X π−→ P∨, dimX = 36.

Our main aim in this paper is to take a closer look at Severi's varieties Vδ ⊂ X∨

in relation to the behavior of the derived direct image Rπ∗QX �around� the dual
hypersurface X∨. Speci�cally, it is well known that a quartic surface of P3 can have
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at most 16 ordinary double points (nodes for short). Fix 1 ≤ δ ≤ 16 and denote
by Vδ ⊂ X∨ the locally closed subset parametrizing quartic surfaces with δ nodes.
Assume S = X ∩ H ⊂ P3, H ∈ Vδ, is a quartic surface with δ nodes. It is well
known that any nodal quartic surface is unobstructed, namely that, whatever the
number of singularities of S is,

the nodes of S impose independent conditions to the linear system | OP3(4) |.

This fact is generally proved by resorting to deformation theory and showing
that a nodal K3 surface is unobstructed (compare with [3, De�nition 34]). In this
way one sees that the deformations of the surface have a submersion onto the local
deformations of the singularities, so that one can obtain independent smoothings of
all the singular points (see for instance [2] and [3, Section 1.3]). Another approach
that goes back to an idea of Severi consists in proving directly that the nodes of
a surface of degree d of P3 impose independent conditions on adjoints of degree
≥ 2d − 5 (we recall that a k-adjoint of S is a surface of degree k containing the
nodes). This is accomplished by means of a careful study of the strict transform of
the surface in the blowing up of P3 at the nodes (compare with [17, Section 2]). In
this paper we provide another proof of the unobstructedness property which mainly
makes use of the smoothness of the universal deformation of a minimal resolution of
a quartic nodal surface in the moduli space of quasi-polarized K3 surfaces combined
with the universal property of Hilbert scheme (compare with Theorem 2.2). We do
this both in order to be reasonably self-contained and also because our approach is
most suited for the local study of the derived direct image Rπ∗QX . Furthermore,
we believe that the techniques used in this work can be extended to other examples
of nodal hyperplane sections of Fano threefolds.
Combining deformation theory with [8, Theorem 3.3], the property above implies

in turn that Vδ is smooth of the expected dimension and that (cfr. Corollary 2.3)
the dual variety X∨ is a divisor with normal crossings around Severi's variety Vδ.
As we said above, our next aim in this paper is to apply this result to understand

the behavior of the derived direct image Rπ∗QX in some neighborhood of Severi's
varieties. The main ingredient is the decomposition theorem of Beilinson, Bernstein
and Deligne. By [7, Sec. 2], the decomposition theorem applied to π provides a
non-canonical decomposition

(1) Rπ∗QX ∼=
⊕
i∈Z

⊕
j∈N

IC(Lij)[−i− 34)], in Db
c(P∨),

where Db
c(P∨) denotes the derived category of Q-vector sheaves on P∨ and IC(Lij)

are the intersection cohomology complexes (see e.g. [6] for the de�nition). The local
system Lij is supported on a suitable locally closed stratum of codimension j in
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P∨ usually called support of the decomposition. If H ∈ U := P∨\X∨, then XH is
smooth. Thus π−1(U) → U is a smooth �bration and the sheaves Riπ∗QX restrict
to local systems on U , in the following denoted by Riπ∗QX |U . The general �bre of
R2π∗QX |U represents the intermediate cohomology of the (smooth) general �bre of
π.
Usually, the unique linear systems that are explicitely known are those supported

in U (the general support). In our case we have

Li0 = Riπ∗QX |U
(compare with [7, (2.5)]). On the contrary, the supports appearing in the splitting
(4) and the local systems Lij are generally rather mysterious objects when j ≥ 1.
Such supports are contained in the dual hypersurface X∨.
Our second main result is that all the supports other than the general one are

disjoint from Severi's varieties Vδ: qui voglio dire che tutti i supporti diversi da U ,
relativi ai sistemi locali Lij con j ̸= 0, sono contenuti nel chiuso N , quindi sono
disgiunti dalle varietá di Severi. In altri termini, nel passaggio da U a N∗, che é un
aperto strettamente piú grande in quanto contiene le varietá di Severi, non nascono
nuovi addendi della decomposizione.

Theorem 1.1. Set N ⊂ X∨ be the closed set parametrizing quartic surfaces with
at least one singular point that is not a node. So N∗ ⊂ P∨ is the Zariski open set
parametrizing smooth and nodal quartic surfaces. For every i such that 0 ≤ i ≤ 4,
we have

IC(Li0)[−34] |N∗= Riπ∗QX |N∗ , in Db
c(N

∗).

In particular, the decomposition theorem 1 looks like

Rπ∗QX |N∗∼=
⊕
0≤i≤4

Riπ∗QX [−i] |N∗

in the open set N∗ .

We observe in passing that the result above says also that the derived direct image
complex Rπ∗QX |N∗ is quasi isomorphic to the direct sum of its cohomology sheaves.
In other words, Theorem (1.1) can be seen as a formality theorem for Rπ∗QX |N∗ .
It is well known that the perverse cohomology sheaves appearing in the decom-

position theorem are semisimple (cfr. [6, Theorem 1.6.1]). It is known that the
perverse sheaves IC(Li0)[−34] |N∗= Riπ∗QX |N∗ are simple in the Zariski open set
N∗ (cfr. Corollary 3.3). Of course, there is no reason why they remain simple in
a neighborhood of some Severi's variety Vδ. In the last section we take a closer
look to the splitting �around� the variety V := V16 parametrizing Kummer quartics,
providing the splitting in simple perverse sheaves of the restriction of Rπ∗QX to a
tubular neighborhood of V .
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2. Components of the Severi's variety

In this paper, we will use notations very similar to those of [7, Section 2]. Specif-
ically, we set

X ⊂ P :=| OP3(4) |∼= P34

the Veronese variety of P3 imbedded in P by means of the linear system of quartic
surfaces. We also denote byX∨ ⊂ P∨ the dual hypersurface ofX. Consider moreover
the universal hyperplane family

X ⊂ X × P∨,

equipped with its natural projections:

X
q←− X π−→ P∨, dimX = 36.

The quartic surfaces of the complete linear system | OP3(4) | are the �bres of π:
XH := π−1(H) = X ∩H, dimXH = 2.

Let Con(X) ⊂ X denotes the conormal variety of X:

Con(X) := {(p,H) ∈ X × P∨ : TXp ⊆ H}, dimCon(X) = 33,

where TXp denotes the embedded tangent space to X at p. We set π1 : Con(X)→
P∨ the restriction of π : X −→ P∨ to Con(X). In particular, we have

X∨ = π1(Con(X)).

It is well known that a quartic surface of P3 can have at most 16 ordinary double
points (nodes for short). Fix 1 ≤ δ ≤ 16 and denote by Vδ ⊂ X∨ the locally closed
subset parametrizing quartic surfaces with δ nodes. Assume S = X ∩ H ⊂ P3,
H ∈ Vδ, is a quartic surface with δ nodes. Our main aim in this section is to prove
that, whatever the number of singularities of S is,

the nodes of S impose independent conditions to the linear system | OP3(4) |.

As we explained in the introduction, this issue has already been addressed by several
authors but our approach is di�erent as it is mainly based on the smoothness of
the universal deformation of a minimal resolution of a quartic nodal surface and
the universal property of Hilbert scheme. Futhermore, by [8, Theorem 3.3], the
independence of nodes implies that Vδ is smooth of the expected dimension.

Notations 2.1. Fix S = X ∩ H ⊂ P3, H ∈ Vδ, and denote by S̃ the minimal
resolution of S. Then S̃ is a quasi-polarized K3 surface of degree 4 (and genus 3) [13,

De�nition II 4.1]. Set D := Def(S̃) the universal deformation of S̃ [13, Corollary VI
2.7]. By the local Torelli theorem [13, Proposition VI 2.8], D embeds isomorphically,
via the period map, in the period domain for K3 surfaces [13, Section VI 1.1] which
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is an open set in a quadric Q ⊂ P21 ∼= P(H2(S̃,C)). If h ∈ H2(S̃,C) denotes the
fundamental class of the curve of genus 3 providing the quasi-polarization, then

D′ := D ∩ h⊥

represents the deformation space of S̃ in the moduli space of quasi-polarized K3
surfaces of degree 4 [13, Section VI 2.4].

Theorem 2.2. Let S ⊂ P3 be a quartic surface with δ nodes

S = X ∩H ⊂ P3, H ∈ Vδ.
Then the set ∆ := SingS of singular points of S imposes independent conditions to
the linear system | OP3(4) |:

dimH0(IP3,∆(4)) = 35− δ.
Proof. Let TVδ

denotes the Zariski tangent space of Vδ at H. By deformation theory
we have the identi�cation:

TVδ
∼=| H0(IP3,∆(4)) | .

The statement amounts to prove that

dimTVδ
= 34− δ.

We remark in passing that the condition above implies that Vδ, in a neighborhood
of S, is the complete intersection of the smooth branches of X∨ (at S), that have
independent tangent hyperplanes [8, Theorem 3.3].

As in (2.1), denote by S̃ the minimal resolution of S. If p : M → D′ is the

universal deformation of S̃ in the moduli space of quasi-polarized K3 surfaces of
degree 4, and S → M the line bundle corresponding to h (cfr. (2.1)), then p∗(S)
is a vector bundle of rank 4 on D′ by the Riemann-Roch theorem. Consider the
projective bundle

F := P(Fr(p∗(S))),
where Fr(p∗(S)) denotes the frame bundle of the direct image p∗(S). The bundle
F is a principal bundle with �bre the projective linear group PGL(4,C) on D′

representing the family of deformations of S̃ equipped with a birational morphism
to a quartic in P3. Indeed, a point in F is a pair (F, S ′), where S ′ belongs to D′ and
F is a frame of the linear system

| H0(S ′,S |S′) |,
thus representing a map

S ′ → P3,

whose image is a quartic in P3.
By letting S to vary in D′, we get a morphism

(2) γ :M×D′ F → P3 ×F ,
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whose image can be thought of as the universal family of quartics that are birational
to a surface in D′.
By the universal property of Hilbert scheme, the image of (2) can be recovered

from the universal family of quartic surfaces by pull-back through an analytic mor-
phism

(3) ρ : F −→ P∨

(we observe in passing that the domain and the target of ρ have the same dimension).
Denote by x ∈ F the point corresponding to the composition

S̃ → S ↪→ P3.

We claim that the di�erential of ρ at x has maximal rank. In order to prove the
claim, we argue by contradiction and assume

0 ̸= v = (v1, v2) ∈ ker dρx ⊂ TF ,x
∼= TPGL(4,C),e × TD′,S̃

We proceed in two steps, according that v2 vanishes or not.
If v2 = 0, then v is vertical and is represented by an element of the Lie algebra

of PGL(4,C)e �xing the equation of S. In particular, the nodes p1, . . . , pδ ∈ S are
�xed. Correspondingly, we have a vector �eld in P3 which vanishes at each node.
By abuse of notations, we still denote by v such a vector �eld. Consider the blow-up
of P at the nodes:

P̃3 := Bl∆P3, ∆ := {p1, . . . , pδ},

E

��

j
// P̃3

f
��

∆
i
// P3.

Consider the exact sequence describing the tangent bundle of P̃3 [11, Lemma 15.4]

0→ TP̃3 → f ∗TP3 → j∗Q → 0,

where Q denotes the universal quotient bundle of the exceptional divisor E. Since
the vector �eld v vanishes in ∆ its image in j∗Q vanishes as well. Hence v ̸= 0 lifts

to a vector �eld of P̃3 which restricts to a vector �eld of our K3 surface S̃ ⊂ P̃3.
This leads to a contradiction owing to H0(S̃, TS̃) = 0 [13, p. 330].
Assume now 0 ̸= v2 ∈ TD′,S̃ and consider the following commutative diagram

F
p̃
��

ρ
// P∨

B
g
//

g̃
>>

D′
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where B is the unit disc in C and g̃ is a germ passing through x, with tangent
vector v (hence g is tangent to v2). Of course we can assume g injective. So g

is a deformation of S̃, with in�nitesimal deformation given by v2, in the universal
deformation space, preserving the quasi-polarization h. Correspondingly, we have a
curve

C := ρ ◦ g̃(B) ⊂ P∨

in the space of quartics representing a deformation of S. By resolving the restrition
to C of the universal family of P, we �nd again a deformation of S̃ parametrized by
the curve C. Speci�cally, let H ⊂ P3×P∨ be the universal family of quartic surfaces
of P3 and let HC be the family of quartics parametrized by C via base change:

HC

��

// H

��

C // P∨

Resolving the singularities ofHC if necessary we get a deformation of S̃ parametrized
by C. By the universal property of D = Def(S̃), such a deformation is provided by
an analytic map s : C → D′, thus we have

F
p̃
��

ρ
// C

s
~~

B
g
//

g̃
>>

D′

This diagram is commutative. Indeed, since any quartic surface determines the K3
surface obtained by blowing up its singularities we �nd

y = ρ(x′) =⇒ p̃(x′) = s(y), ∀y ∈ C = ρ(g̃(B)).

Thus we have

s ◦ ρ ◦ g̃ = g.

We �nd a contradiction

0 ̸= v2 = dg(1) = d(s ◦ ρ)(dg̃(1)) = ds(dρ(v)) = ds(0) = 0

and the claim is so proved.
The morphism ρ : F → P has injective di�erential so it is a local isomorphism

around x. Let C1, C2, . . . , Cδ denote the fundamental classes of the (−2)-curves
obtained by blowing-up the nodes of S and consider the subvariety

Dδ := D ∩ ⟨h,C1, C2, . . . , Cδ⟩⊥
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parametrizing the deformations of S̃ which preserve such curves in the Picard group.
Accordingly, via base change, we get a subvariety of F :

Fδ

��

// F
p̃
��

Dδ
// D′

By [13, Section VI 2.4] we have

ρ−1(Vδ) = Fδ.

As in (2.1), consider the perid domain of K3 surfaces Q ⊂ P21 = P(H2(S̃;C)). The
tangent hyperplane to Q at S̃ is the projectivization of the orthogonal subspace
to a cocycle c2,0 generating H2,0(S̃;C). If the Zariski tangent space TVδ

had larger
dimension than expected then the same would happen for

dρ−1TVδ
= TFδ,x

∼= TePGL(4,C)× ⟨c2,0, h, C1, C2, . . . , Cδ⟩⊥.

In view of the non-degeneracy of the intersection form, this would amount to a linear
relation in H2(S̃;C) between c2,0, h, C1, C2, . . . , Cδ. This is impossible. □

By [8, Theorem 3.3], the previous result implies:

Corollary 2.3. Fix 1 ≤ δ ≤ 16. The locally closed set Vδ ⊂ X∨, parametrizing
quartic surfaces with δ nodes, is smooth of the expected dimension

dimVδ = 34− δ.

Assume H ∈ Vδ, so that

S := X ∩H ⊂ P3,

is a quartic surface with δ nodes. For every su�ciently small ball B ⊆ P∨ containing
H, the variety B ∩X∨ is a divisor of B with normal crossings.

In short, this result is achieved by combining two fundamental facts. First of all,
by [14, Proposition 3.3] the morphism π1 : Con(X) → P∨ is unrami�ed over the
nodal locus. This in turn implies that π1 provides an isomorphism of a suitable
analytic neighborhood of a pair (p, S) ∈ Con(X) (p is a node of S) with a branch
of X∨ at S. The other relevant fact [12, p. 209] is to observe that the embedded
tangent space of such a branch is p, viewed as a hyperplane of P∨. So the di�erent
branches of X∨ meet transversally at any point of Vδ as soon as the nodes impose
independent conditions to the linear system.
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3. The decomposition theorem

We keep the same notations of the previous sections. If H ∈ U := P∨\X∨, then
XH is smooth. Thus π : π−1(U)→ U is a smooth �bration and the sheaves Riπ∗QX
restrict to local systems on U , in the following denoted by Riπ∗QX |U . The general
�bre of R2π∗QX |U represents the intermediate cohomology of the (smooth) general
�bre of π.
By [7, Section 2], the decomposition theorem applied to π provides a non-canonical

decomposition

(4) Rπ∗QX ∼=
⊕
i∈Z

⊕
j∈N

IC(Lij)[−i− 34)], in Db
c(P∨),

(Db
c(P∨) is the derived category of Q-vector sheaves on P∨). Lij denotes a suitable

local system on a stratum of codimension j in P∨. In particular, we have

Li0 = Riπ∗QX |U
(compare with [7, (2.5)], where a slightly di�erent notation is used). The intersection
cohomology complexes IC(Lij) are semisimple perverse sheaves [9, Section 5].

Notations 3.1. We denote by N ⊂ X∨ the closed set parametrizing quartic surfaces
with at least one singular point that is not a node.

Our main aim is to determine, as explicitly as we can, the decomposition above in
N∗, the open set parametrizing either smooth or nodal quartic surfaces. Our main
result is the following.

Theorem 3.2. In the Zariski open set N∗ ⊂ P∨, parametrizing smooth and nodal
quartic surfaces, we have (0 ≤ i ≤ 4):

IC(Li0)[−34] |N∗= Riπ∗QX |N∗ , in Db
c(N

∗).

Proof. First of all, we consider the easiest cases i.e. i ̸= 2. We observe that, if
i ̸= 2, then the sheaf Riπ∗QX is a trivial local system on N∗. This is obvious
for the extremal cases i = 0, 4, because the �bre at H of the sheaf Riπ∗QX is
H i(X ∩ H,Q) ∼= Q, if i = 0, 4, and the cohomology in top and lowest degree is
invariant via monodromy. As for the cases i = 1, 3, this is consequence of the fact
that any nodal quartic S has the cohomology which embeds in the cohomology of
its minimal resolution, which is a K3 surface. Thus we have

H1(S) = H3(S) = 0, if S = X ∩H, ∀H ∈ N∗,

hence
R1π∗QX |N∗= R3π∗QX |N∗= 0.

On the other hand, the complex IC(Li0)[−34] |N∗ is de�ned as the intermediate
extension of Riπ∗QX |U [9, Section 5.2], which is a trivial local system as we have
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just observed. In the light of the smoothness of N∗, the complex IC(L30)[−34] |N∗

is a trivial local system as well. We conclude

IC(Li0)[−34] |N∗= Riπ∗QX |N∗ , ∀i ̸= 2.

We are left with the hardest case

(5) IC(L20)[−34] |N∗= R2π∗QX |N∗ .

By Corollary (2.3), we can assume that the intersection N∗ ∩X∨ is a divisor with
normal crossings in the open set N∗.
We start with the following claim

(6) Hl(IC(L20)[−34])H = 0, ∀H ∈ N∗ ∩X∨, ∀l ≥ 1

whereHl(IC(L20)[−34])H denotes the l-th cohomology of the complex IC(L20)[−34]
at H ∈ N∗ ∩X∨.
Since the intersection N∗ ∩ X∨ is a divisor with normal crossings in the open

set N∗, the local system L20 |U= R2π∗QX |U has a canonical extension to a vector
bundle R on N∗ (see [5] and [18]). Further, in a suitable neighborhood of any
hyperplane H ∈ N∗ ∩ X∨, the equation of X∨ has the form t1 . . . tδ = 0 (δ ≤ 16)
and the local system L20 |U has monodromy operators T1, . . . , Tδ, with Tρ given by
moving around the hyperplane tρ = 0. If we denote by Nρ the logarithm of the
monodromy operator Tρ, by [4] and [15, p. 322] the cohomology

Hl(IC(L20)[−34])H
of the intersection cohomology complex at H ∈ N∗ ∩ X∨ can be computed as the
l-th cohomology of the complex of �nite-dimensional vector spaces

Bp :=
⊕

i1<i2<···<ip

Ni1Ni2 . . . NipRH ,

with di�erential acting on the summands by the rule

Ni1 . . . N̂ir . . . Nip+1RH
(−1)r−1Nir−→ Ni1 . . . Nir . . . Nip+1RH .

Fix H ∈ N∗ ∩ X∨. Since S := H ∩ X is nodal, the logarithm of the monodromy
operators Nρ act according to the Picard-Lefschetz formula. Furthermore, as S has
δ ordinary double points, the vanishing spheres are disjoint to each other and we
have

NαNβ = 0, for any α ̸= β.

So the complex above is concentrated in degrees 0 and 1:

Hl(IC(L20)[−34])H = 0, ∀H ∈ N∗ ∩X∨, ∀l ≥ 2.

In order to prove the claim (6), we have only to take care of the case l = 1.
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The exact sequence above reduces to

(7) 0→ H0(IC(L20)[−34])H → RH →
δ⊕

ρ=1

NρRH → H1(IC(L20)[−34])H → 0.

Consider a hyperplane Ht ∈ U very near to H, such that St := Ht ∩X is smooth,
denote by Bρ a small ball around the ρ-th node of S by σρ the Milnor sphere in
St ∩Bρ.
By the Picard-Lefschetz formula, the map

RH →
δ⊕

ρ=1

NρRH

of (7) coincide with

(8) H2(St)→
δ⊕

ρ=1

σ∨
ρ ·Q, ψ ∈ H2(St)→

δ⊕
ρ=1

⟨ψ, σρ⟩σ∨
ρ .

On the other hand, by excision, we have

H l(S,∪ρ(S ∩Bρ)) ∼= H l(St,∪ρ(St ∩Bρ)).

Combining the exact sequence

0 = H1(∪ρ(S ∩Bρ))→ H2(S,∪ρ(S ∩Bρ))→ H2(S)→ H2(∪ρ(S ∩Bρ)) = 0,

where we have taken into account the conic nature of isolated singularities of a
divisor [16], with the following one

· · · → H1(∪ρ(St ∩Bρ))→ H2(St,∪ρ(St ∩Bρ))→ H2(St)→ H2(∪ρ(St ∩Bρ))→,
we �nd the exact sequence

(9) 0→ H2(S)→ H2(St)→ H2(∪ρ(St ∩Bρ)) ∼=
δ⊕

ρ=1

σ∨
ρ ·Q→ 0

(recall that H3(S) = 0 holds true for any nodal quartic S).
Combining (7), (8) and and (9), we �nd

H0(IC(L20)[−34])H ∼= H2(S) ∼= (R2π∗QX )H

and
H1(IC(L20)[−34])H = 0.

The claim (6) follows.
By the claim, the intersection cohomology complex IC(L20)[−34] is indeed a sheaf

in Db
c(N

∗), hence (5) is a consequence of the isomorphism

H0(IC(L20)[−34])H ∼= (R2π∗QX )H , ∀H ∈ N∗,
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just proved. □

Corollary 3.3. In the derived category Db
c(N

∗), the splitting in simple summands
provided by the decomposition theorem 4 is

Rπ∗QX |N∗∼=
⊕
0≤i≤4

Riπ∗QX [−i] |N∗= QN∗ ⊕R2π∗QX [−2] |N∗ ⊕QN∗ [4].

Proof. Combining (4) with Theorem 3.2 we �nd

Rπ∗QX |N∗∼=
⊕
0≤i≤4

Riπ∗QX [−i] |N∗ ⊕P,

for a suitable constructible complex P . For any H ∈ N∗, put S := X ∩H ⊂ P3 the
corresponding quartic surface. We have

H i(S,Q) = Hi(Rπ∗QX )H ∼= Hi(π∗QX [−i])H ⊕Hi(P )H = H i(S,Q)⊕Hi(P )H .

Hence
Hi(P )H = 0, ∀i, ∀H ∈ N∗,

meaning that P vanishes in Db
c(N

∗). In order to conclude, it su�ces to observe that
R2π∗QX |N∗ is simple in the category of perverse shaves of N∗. By [9, Theorem
5.2.12], this is equivalent to the irreducibility of the local system R2π∗QX [−2] |U ,
which is a classical result (compare for instance with [19, Section 3.2.3]). □

Remark 3.4. (1) Our result shows that no support other than the general one
intersect the Zariski open set N∗ (so they are contained in N). In particular,
all the supports other than the general one are disjoint from Severi's varieties
Vδ, whatever the number of nodes.

(2) The result isomorphism

Rπ∗QX |N∗∼=
⊕
0≤i≤4

Riπ∗QX [−i] |N∗

can be stated by sayng that the derived direct image complex Rπ∗QX |N∗

is quasi isomorphic to the direct sum of its cohomology sheaves. In other
words, Corollary (3.3) can be seen as a formality theorem for the complex
Rπ∗QX |N∗ .

4. The moduli space of Kummer surfaces.

In this section our aim is to determine the decomposition in simple summands of
Rπ∗QX |T , in a tubular neighborhood T of the Severi variety of Kummer quartics.

Notations 4.1. Set V := V16 the Severi variety parametrizing Kummer quartics.
By Corollary 2.3, there is a tubular neighborhood T of V such thatX∨∩T is a divisor
with normal crossings in T . Set T 0 := T\X∨∩T , the locus of smooth quartic surfaces
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that are �near� to a Kummer. Fix H ∈ V and consider a hyperplane Ht ∈ T 0 very
near to H, so that St := Ht ∩ X is smooth. Denote by Bρ, 1 ≤ ρ ≤ 16, a small
ball around the ρ-th node of S by σρ ∈ H2(St,Q) the corresponding Milnor sphere
in St ∩ Bρ. By the Picard-Lefschetz formula, the span ⟨σ∨

1 , . . . σ
∨
16⟩ ⊂ H2(St,Q) of

their Poincaré duals extend via monodromy to a sub-local system Σ ⊂ R2π∗QX |T 0 .

Theorem 4.2. With notations as above, the orthogonal Σ⊥ extends to a local system

in T , denoted by Σ
⊥
, such that

Σ
⊥ |V= H0(IC(L20)[−34]) |V .

Furthermore, the decomposition in simple perverse sheaves of Rπ∗QX |T is the fol-
lowing

Rπ∗QX |T∼= QT ⊕ Σ
⊥
[−2]⊕ ι∗Σ[−2]⊕QT [−4],

where ι : T 0 → T denotes the inclusion.

Proof. We use the notations of the proof of Theorem 3.2. In particular, the local
system R2π∗QX |T 0 has a canonical extension to a vector bundle R on T , in a
suitable neighborhood of any hyperplane H ∈ V we have the monodromy operators
T1, . . . , T16 and their logarithms N1, . . . , N16.
As T ∩X∨ is a divisor with normal crossings, if we �x a small neighborhood B of

H in P∨, then the local fundamental group π1(B\(B ∩X∨), H) ∼= Zδ is independent
of H ∈ V . So, the rank of the map

R →
⊕
i

NiR

appearing in the sequence (7) is invariant and its kernel is a vector bundle on T .
Furthermore, from the description of the canonical extension of R given e.g. in [18,
sec. 2], one infers that such a kernel is the Zδ-invariant part of the local system

(R2π∗QX )|T 0 ⊗ C, thus it locally coincides with the claimed extension Σ
⊥
in view

of the Picard-Lefscetz formula. Moreover, since the tubular neighborhood T is
homeomorphic to a �ber bundle on V , the long exact sequence of homotopy groups
of T 0

· · · → Zδ → π1(T
0, H)→ π1(T,H) ∼= π1(V , H)→ 0

shows that Σ
⊥
is in fact a local system on the whole T . The isomorphism

Σ
⊥ |V= H0(IC(L20)[−34]) |V

follows just taking into account the exact sequence (7).
Comparing the statement with Corollary 3.3, since we have

R2π∗QX |T∼= Σ
⊥ ⊕ ι∗Σ,
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we only need to prove that the summands in the splitting are simple. By [9, Theorem
5.2.5], the simplicity of an intermediary extension in the category of perverse sheaves
amounts to the irreducibility of the corresponding local system.
We start with the simplicity of ι∗Σ, we observe that that fundamental group

π1(V , H) acts on its generators σ∨
1 , . . . σ

∨
16 by �exchanging the branches� of the normal

crossings divisor X∨∩T . So, in order to conclude the proof, it su�ces to prove that
the monodromy acts transitively on the nodes. In order to do this, �x a Kummer
quartic S ∈ V and denote by P1, . . . , P16 the nodes of S. By letting S to vary in V ,
the points P1, . . . , P16 span a subvariety N ⊂ H |V . The natural map κ : N → V is
an étale morphism of degree 16. In order to prove the statement, it su�ces to show
that N is connected. By [10, Theorem 10.3.18], any Kummer quartic is projectively
isomorphic to a quartic surface described by a polynomial varying in the Segre cubic
primal S ⊂ V , which is the dual variety of the Castelnuovo-Richmond quartic CR4.
Of course, in order to prove our claim, it is enough to prove that κ−1(S) is connected,
so from now on we assume S ∈ S. But the connectedness of κ−1(S) simply follows
from the description of CR4, given in [10, p. 608], as the moduli space of abelian
surfaces with full level two structures. Indeed, moving around in S we are allowed
to change as we like the level two structure of the abelian surface associated to S.
This amounts to a transitive action of the monodromy group on the set P1, . . . , P16

because the nodes of any surface in S form an orbit of the Heisenberg group [10, p.
608].

As for the irreducibility of Σ
⊥
, since π1(T,H) ∼= π1(V , H) (H ∈ V), we are left

with the prove of the irreducibility of Σ
⊥ |V .

To this end we argue as in Section 1. Consider A = A(2,2) the analytic moduli
space of abelian surfaces with polarization (2, 2), i.e. the quotient

H2/G(2,2),

where H2 is the Siegel upper half space and where the discrete group G(2,2) is de�ned
in [1, �8]. The moduli space A is a coarse moduli space for the functor parametrizing
isomorphisms classes of abelian surfaces of type (2, 2) [1, Corollary 8.2.7].
Set

τ :M → A

the universal family over A and by L → M the line bundle on M providing the
polarization (2, 2). The direct image τ∗(L) is a vector bundle of rank 4 on A. As in
Section 2, consider the projective bundle

ξ : E := P(Fr(τ∗(L)))→ A,

where Fr(τ∗(L)) denotes the frame bundle of the direct image τ∗(L).
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A point in E is a pair (F,A), where A ∈ A is an abelian surface and F is a frame
of the linear system | LA |, thus representing a map A → P3, whose image is a
Kummer quartic in P3.
By letting A to vary in A, we get a morphism

(10) ϕ :M ×A E → P3 × E ,
whose image is the restriction to V of H ⊂ P3 × P, the universal family of quartic
surfaces of P3. By the universal property of Hilbert scheme, the family (10) can be
recovered from H via base change with a morphism

(11) ψ : E −→ V .

To prove the irreducibility of Σ
⊥ |V it su�ces to observe that its pull-back ψ∗Σ

⊥ |V
is irreducible since it coincides with ξ∗R2τ ∗QM , whose irreducibility is well known.

□
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