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1. Zusammenfassung

D a s T h e m a v o n m e in e r H a b ilita tio n ist Die Geometrie einiger spezieller algebraischer Va-

rietäten, in sb e so n d e re u n te rsu ch e ich d ie K 3-F l̈a ch e n . D ie A rb e ite n , d ie ich v o rle g e , sin d d ie
A rtik e ln :

(1) m it W o lf B a rth , P olyhed ral Grou ps and P encils of K 3 -S u rfaces w ith maximal P icard

N u mber, Asian J. of Math. V o l. 7 , N o . 4, p p . 5 19 – 5 38 , 2 0 0 3.

(2 ) S ymmetric su rfaces w ith many S ingu larities, C om m . in Alg e b ra V o l. 32 , N o . 10 ,
p p . 37 45 -37 7 0 , 2 0 0 4.

(3) A geometrical constru ction for the generators of some refl ection grou p, S e rd ica Math.
J., 31, p p . 2 2 9 -2 42 , 2 0 0 5 .

(4) w ith A n d re a s K n u tse n , C a rla N o v e lli, O n Varieties that are u niru led by lines, C om -
p ositio Math. 142 , p p . 8 8 9 – 9 0 6 , 2 0 0 6 .

(5 ) Grou p A ctions, cyclic coverings and families of K 3 su rfaces, e rsch e in t in C anad ian
Math. B u ll.

(6 ) T ranscend ental lattices of some K 3 su rfaces, e rsch e in t in Math. N achr.

(7 ) w ith B e rt v a n G e e m e n , N iku lin involu tions on K 3 su rfaces, e rsch e in t in Math. Z .

(8 ) w ith S a m u e l B o issìe re , C ontraction of excess fi bres betw een the M ckay correspond ence

in d imensions tw o and three, e rsch e in t in Ann. Inst. F ou rie r

(9 ) w ith A lic e G a rb a g n a ti, S ymplectic au tomorphisms of prime ord er on K 3 su rfaces,
P re p rin t m a th .A G / 0 6 0 37 42 , e in g e re ich t.

(10 ) w ith S a m u e l B o issìe re , C ou nting lines on su rfaces, P re p rin t m a th .A G / 0 6 0 6 10 0 , e in -
g e re ich t.

(11) w ith A lic e G a rb a g n a ti, P rojective mod els of K 3 su rfaces w ith an even set, P re p rin t
m a th .A G / 0 6 1118 2 , e in g e re ich t.

Ich w e rd e sie im F o lg e n d e n k u rz b e sch re ib e n , m a n sie h e d ie L ite ra tu ra n g a b e n fü r d ie v e r-
w e n d e te n A b k ü rz u n g e n .
1 ) Arb e iten ü b e r F l̈achen m it v ie len D op p e lp u nk ten: In m e in e r P ro m o tio n h a b e
ich m ich m it d e r F ra g e b e sch ä ftig t, w ie v ie le g e w ö h n lich e D o p p e lp u n k te e in e F l̈a ch e v o m
G ra d d in P3 m a x im a l h a b e n k a n n , u n d ich h a b e d re i n e u e e in d im e n sio n a le F a m ilie n v o n
F l̈a ch e n in P3 b e sch rie b e n . D ie se h a b e n G ra d 6 ,8 b z w . 12 u n d d ie S y m m e trie n d e r so g e n a n -
n te n b i-p o ly e d risch e n T e tra e d e rg ru p p e (= G6), O k ta e d e rg ru p p e (= G8) b z w . Ik o sa e d e rg ru p p e
(= G1 2 ), d .h . d ie P o ly n o m e , d ie d ie F a m ilie n d e fi n ie re n , sin d in v a ria n t u n te n d e r O p e ra tio n
v o n Gd ⊂ S O (4, R), d = 6 , 8 b z w . 12 . J e d e F a m ilie e n th ” a lt g e n a u v ie r F l” a ch e n m it
g e w ” o h n lich e n D o p p e lp u n k te n . In sb e so n d e re g ib t e s in d e r F a m ilie v o m G ra d 12 e in e F l̈a ch e ,
d ie 6 0 0 g e w ö h n lich e D o p p e lp u n k te h a t (s. [S a 1]).
D ie G ru p p e n G6 u n d G1 2 sin d U n te rg ru p p e n d e r S p ie g e lu n g sg ru p p e n [3, 4, 3] u n d [3, 3, 5 ].
M it H ilfe d e r G6− b z w . G1 2 −in v a ria n te n F l̈a ch e n in P3 k o n n te ich in d e r A rb e it [S a 3] e in e
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einfache geometrische Konstruktion für die Erzeugenden des R ings der invarianten Polynome
vom Grad 2, 6, 8, 12 bzw. 2, 12, 20, 30 angeben (diese wurden auf eine andere Weise von
R acah beschrieben). In der Arbeit [Sa2] betrachte ich weitere Untergruppen der SO(4,R)
und untersuche deren eindimensionalen Familien von invarianten Flächen in P3. Ich schränke
meine Untersuchung auf die Gruppen ein, die die Heisenberggruppe enthalten. Z usammen
mit den Grppen Gd ergeben die Gruppen aus [Sa2] eine vollständige Liste von Gruppen, die
die Heisenberggruppe enthalten.
2) Flächen mit vielen (disjunkten) Geraden: In der Arbeit [BoSa2] mit Samuel Boissière
(Universität Nizza) konstruieren wir Flächen in P3 mit vielen (disjunkten) Geraden. Für diese
Anzahl gibt es Abschätzungen von Segre und Miyaoka. Es ist wohlbekannt, dass eine glatte
Kubik 27 Geraden enthält; für Flächen vom Grad vier gibt es Arbeiten u.a. von Segre und
Nikulin. Das Problem ist noch off en für den Grad d ≥ 5. Klassische Beispiele sind die
Fermatsche Flächen xd

0
+ xd

1
+ xd

2
+ xd

3
= 0, die 3d2 Geraden enthalten. Andere Beispiele

sind die Flächen der Art: φ(x, y ) − ψ(z , t) = 0 wobei φ, ψ homogene Polynome vom Grad
d sind. In diesem Artikel beschreiben wir Flächen, die gegeben sind durch die Gleichung:
φ(x, y ) − ψ(z , t) = 0 vollständig und wir geben alle möglichen Anzahlen von Geraden an.
Wir studieren auß erdem einige Flächen mit vielen Symmetrien und wir geben ein Beispiel
einer Fläche vom Grad acht mit 352 Geraden an. Das verbessert ein Ergebnis von Caporaso-
Harris-Mazur, die eine Fläche mit 256 Geraden konstruieren. Wir geben auch einige neue
Beispiele von Flächen mit vielen disjunkten Geraden an, die ein vorheriges Ergebnis von
R ams verbessern.
3 ) Arbeit über die K lassifi kation von geregelten 3 -Mannigfaltigkeiten: In [KNS]
konnten wir das folgende Ergebnis zeigen: Sei X eine irreduzible Varietät vom Dimen-
sion k ≥ 3, H ist ein global erzeugter und big Geradenbündel auf X mit Hk := d, n =
dim H 0(X,H) − 1. Wenn d < 2(n − k) − 4, und (k, d, n) 6= (3, 27, 19), dann ist X geregelt
von Geraden. Im Fall von 3-Mannigfaltigkeiten ist diese Abschätzung optimal, denn für
d = 2n − 10 haben wir Beispiele von 3-Mannigfaltigkeiten gefunden, die nicht geregelt von
Geraden sind. Unser Ergebnis gilt insbesondere für Varietäten in P

n. Im Fall von Flächen
wurde eine solche Abschätzung von M. R eid und X iao angegeben. Das bis jetzt beste Ergeb-
nis für k-Mannigfaltigkeiten X in P

n, X glatt war von Horowitz. Er zeigte: ist der Grad
d < 3/2(n − k − 1), dann ist X geregelt von Geraden. Unser Ergebnis verbessert dieses
R esultat, auß erdem gilt es für jede Varietät ohne Annahme über die Singularitäten von X .
Um unser Ergebnis zu zeigen, verwenden wir die Mori-Theorie und das Minimal-Model-
Programm, insbesondere benutzen wir einige Ergebnisse von Mella.
4 ) Arbeiten über K 3 -Flächen: Eine K3-Fläche S ist eine glatte, kompakte Fläche über C,
die einfach zusammenhängend ist und ein triviales kanonisches Bündel hat. Die K3-Flächen
sind von besonderem Interesse wegen ihrer wichtigen Eigenschaften, z.B. sind sie alle zueinan-
der diff eomorph, es gilt die Surjektivität der Periodenabbildung, und nach dem Theorem von
Torelli kann man sie durch die Hodge-Struktur (also durch das transzendete Gitter und das
Picard-Gitter) klassifizieren. Sie wurden in den letzten Jahren eingehend untersucht, z.B.
wegen ihrer arithmetischen Eigenschaften und nicht zuletzt wegen ihrer R olle in der Physik
und insbesondere in der String-Theorie: Sie sind Calabi-Y au-Mannigfaltigkeiten der Dimen-
sion zwei und spielen eine wichtige R olle in der Spiegel-Symmetrie. Mit diesen Flächen habe
ich mich sehr intensiv in den letzten Jahren beschäftigt, und insbesondere habe ich mich mit
den folgenden Themen befaß t:
K 3 -Flächen mit groß er P icard-Zahl. In den Arbeiten [BaSa], [Sa4] und [Sa5] beschäftige
ich mich mit Familien von K3-Flächen mit groß er Picard-Z ahl (das Maximum für eine K3-
Fläche ist 20). Es ist schwierig, Beispiele von solchen Familien zu konstruieren und die Flächen
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in der Familie zu identifizieren, die eine höhere Picard-Zahl haben. Damit verbunden ist das
Problem, Büschel von K3-Flächen mit großer Picard-Zahl und minimaler Anzahl von sin-
gulären Fasern zu konstruieren. Einige Beispiele sind in Arbeiten von Beauville, Belcastro,
Verrill-Yui, Narumiya-Shiga enthalten. In [BaSa] zusammen mit Wolf Barth beschreibe ich
die Q uotienten der Familien {Xλ}λ∈P1

nach den Gruppen Gd (s. Arbeit [Sa1]): Diese sind
Familien von K3-Flächen, bei denen die allgemeine Fläche Picard-Zahl 19 hat und es vier
singuläre Fasern gibt, die Picard-Zahl 20 haben. Insgesamt enthält die Familie aber fünf sin-
guläre Fasern. In dem Artikel berechnen wir das Picard-Gitter der Flächen explizit. In [Sa4]
beschreibe ich weitere Familien von K3-Flächen mit großer Picard-Zahl und kleiner Anzahl
von singulären Fasern. Hier betrachte ich spezielle Untergruppen G von Gd. Dann ist die
Gd-invariante Familie {Xλ}λ∈P1

auch G-invariant und unter einigen Bedingungen sind die
Q uotienten Xλ/G wieder K3-Flächen mit großer Picard-Zahl. Wenn außerdem G Normal-

teiler von Gd mit [G : Gd] = 2, 3 ist, kann man Xλ/G als 2- bzw. 3-zyklische Überlagerung

von Xλ/Gd betrachten. Mit Hilfe dieser Überlagerung kann man das Picard-Gitter von
Xλ/G in vielen Fällen genau identifizieren. Mit Hilfe der Gitter-Theorie und Ergebnissen
über q uadratische Formen kann man das transzendente Gitter der Flächen berechnen. Das
wurde von Barth für die Flächen aus [BaSa] durchgeführt. In [Sa5] berechne ich es für die
Flächen aus [Sa4]. Damit kann ich dann die K3-Flächen klassifizieren.
Ich beschäftige mich weiter mit diesen Flächen in der Arbeit in Vorbereitung [Sa6], in der ich
projektive Modelle der Flächen untersuche.
Symplektische Automorphismen auf K3-Flächen. Im Rahmen meines DFG-Forschungs-
projekts in Mailand Die Geometrie einiger Familien von K3-Flächen und symplektische Auto-

morphismen auf K3-Flächen habe ich mich mit Automorphismen auf K3-Flächen beschäftigt,
die die 2-holomorphe Form invariant lassen (symplektische Automorphismen). Solche Auto-
morphismen der Ordnung zwei heißen Nikulin-Involutionen. In dem Artikel [GS], untersuche
ich sie zusammen mit Bert van Geemen.
Nach einer Arbeit von Nikulin induzieren sie eine eindeutige Operation auf H2(X,Z). Wir
studieren die Neron-Severi-Gruppe und das transzendente Gitter. Insbesondere zeigen wir,
dass, wenn X eine Nikulin-Involution besitzt, die Picard-Zahl ≥ 9 ist und die Neron-Severi-
Gruppe eine Kopie des Gitters E8(−2) enthält (das ist das Gitter E8 mit der Bilinearform
multipliziert mit −2). Im Fall ρ = 9 bestimmen wir mit Hilfe der Gitter-Theorie vollständig
die Struktur der Neron-Severi-Gruppe in Abhängigkeit von der Polarisierung der K3-Fläche.
Wir geben an und untersuchen viele konkrete Beispiele, die die allgemeinen Sätze beleuchten
u. a. doppelte Überlagerungen der Ebene, Q uartiken in P3, vollständige Durchschnitte und
insbesondere K3-Flächen mit elliptischer Faserung.
In der Arbeit [GaSa1] beschäftige ich mich zusammen mit Alice Garbagnati (Universität
Mailand) mit symplektischen Automorphismen der Ordnung 3, 5, 7. Nach einer Arbeit von
Nikulin sind diese zusammen mit den Automorphismen der Ordnung zwei alle möglichen
Primordnungen für solche Automorphismen. Mit Hilfe von elliptischen Faserungen auf K3-
Flächen und der Gittertheorie konnten wir die Wirkung aufH2(X,Z) vollständig beschreiben.
Wie in dem Fall der Ordnung zwei (nach einem Ergebnis von Nikulin) ist diese Wirkung ein-
deutig, d.h. unabhängig von der Wahl der K3-Fläche. Ich beschäftige mich mit ähnlichen
Problemen (auch im Fall von nicht-symplektischen Automorphismen) in den Arbeiten in Vor-
bereitung: [AS] zusammen mit Michela Artebani (Universität Mailand) und [GaSa3] zusam-
men mit Alice Garbagnati.
Zw ei-teilbaren Mengen von acht disjunkten rationalen Kurven. In der Arbeit
[GaSa2] zusammen mit Alice Garbagnati (Universität Mailand) untersuchen wir K3-Flächen
mit einer 2 -teilbaren Menge von acht (−2)-rationalen Kurven (das heißt die Summe der
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Kurven ist äquivalent zu zweimal einem Divisor in der Picard Gruppe) und mit einer 2-
teilbaren Menge von gewöhnlichen Doppelpunkten (das heißt, die (−2)-rationalen Kurven
in der minimalen Aufl ösung sind eine 2-teilbare Menge). Solche K3-Flächen sind mini-
male Aufl ösungen und Quotienten einer K3-Fläche nach einer Nikulin-Involution, ihre Un-
tersuchung vervollständigt die Ergebnisse der Artikel [GS] im folgenden Sinn: Gegeben sei
eine K3-Fläche mit Automorphismus. Es ist natürlich zu fragen, was für eine Fläche der
Quotient ist und mit welchen Eigenschaften (z.B. Singularitäten). In [GaSa2] studieren wir
K3-Flächen mit gerader Menge von rationalen Kurven und mit kleinstmöglicher Picard-Zahl,
die neun ist. Es werden die Flächen klassifiziert und es wird deren Modulraum beschrieben.
Insbesondere beschreiben wir viele projektive Modelle, mit denen wir die Untersuchung er-
weitern und fortsetzen, die von Barth angefangen worden ist.
5) Arbeit über die McKay-Korrespondenz in Dimension zwei und drei: In der Ar-
beit [BoSa1] zusammen mit Samuel Boissière (Universität Nizza) geben wir eine Beziehung
zwischen der McKay-Korrespondenz in Dimension zwei und in Dimension drei. Sei G eine
endliche Untergruppe der SO(3,R) und sei G̃ ⊂ SU (2) die binäre Gruppe zur Gruppe G. Die

Gruppe G̃ operiert auf C
2 und der Quotient ist eine A D E-Flächensingularität. Ihre Aufl ösung

besteht aus glatten, rationalen (-2)-Kurven mit einem A D E-Dynkin Diagramm als dualem
Graph. Die McKay-Korrespondenz assoziert die Ecken des Graphs mit den irreduziblen

Darstellungen (6= 1) von G̃. Die Aufl ösung der Quotienten C
2/G̃ und C

3/G sind Hilbert-
Nakamura-Schemata und die exzeptionellen Kurven beider Aufl ösungen über dem Ursprung
haben sehr ähnliche Eigenschaften. Wir zeigen, dass es einen Morphismus zwischen diesen
beiden Aufl ösungen gibt, der bestimmte Kurven in der exzeptionellen Faser kontrahiert. Für
den Beweis benutzen wir die McKay-Korrespondenz zwischen Darstellungen und exzeptionelle
Kurven in Dimension zwei und drei, sowie die Theorie von Hilbert-Nakamura-Schemata.
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2. Introduction

In the papers which I collect for my Habilitation at the University of Mainz, I concentrate
my attention to algebraic varieties with some special geometric properties (for example with
many singularities or many lines) with particular attention to K3 surfaces, which occupy an
important place in the classification of algebraic surfaces. An example of such a surface is
given on the cover: this is a surface of equation

1 + x4 + y4 + z4 + a(x2 + y2 + z2 + 1)2 = 0, a = −0, 49.

in fact any quartic surface in P3 is an example of a K3 surface.
About varieties with special geometric property there are easy questions with diffi cult an-
swers, for example which is the maximal number of lines a surface of degree d in P3 can
have? Or which is the maximal number of nodes? The first question has an answer up to
the degree four, in general there are bounds of Segre and Miyaoka. It is well known that
a smooth cubic contains 27 lines; for surfaces of degree four this maximal number is also
known: it is 64, 16 if we assume that the lines are skew; these are results of Segre and
Nikulin. The problem is still open for degree d ≥ 5. Classical examples are the Fermat
surfaces xd + yd + zd + td = 0, which contain 3d2 lines. Other examples are the surfaces
of the kind ϕ(x, y) − ψ(z, t) = 0, where ϕ and ψ are homogeneous polynomials of degree d.
There are more results given by Caporaso-Harris-Mazur in [CHM], who construct examples
of surfaces with many lines in each degree and there are results of Rams in [Ram2] about
skew lines. In the case of the question about the nodes there is an answer up to the degree
six. Unfortunately there are no-standard methods to construct examples. A successful idea
is to consider surfaces with many symmetries, this was used by Barth, Endraß and other
people to construct examples of surfaces with many nodes. I used it to construct examples of
surfaces with many nodes or with many lines (cf. [Sa2], [Sa3], [BoSa2]). Strictly connected
to the problem of lines on algebraic varieties is the problem to determine when a variety is
coverd by lines or more precisely when it is uniruled by lines. The answer to the problem
in the case of surfaces is given independently by M. Reid in [Re] and by Xiao in [Xi]. They
show that for d < (4/3)(n−2) a surface X ⊂ Pn of degree d is uniruled by lines (except when
n = 9 and (X,OX (1)) = (P2,OP2

)). For varieties of higher degree this bound was unknown,
in [KNS] we give a bound for varieties of any degree and we show that this is optimal in the
case of threefolds.
Another topic of my work are the K3 surfaces, these are smooth, compact complex surfaces
which are simply connected and have trivial canonical bundle. The K3 surfaces are of partic-
ular interest because of their important properties, for example they are all diffeomerphic to
eachother, the period map is surjective and due to a theorem of Torelli, they can be classified
by their Hodge structure which involves the transcendental lattice and the Picard lattice.
They have been very much studied in the last years for example for their arithmetic prop-
erties and for their importance in Physics and in particular in the String-Theory: they are
Calabi-Yau manifold of dimension two and play an important role in the Mirror-Symmetry.
I have worked very much with these surfaces in the last years in particular with the following
topics: K3 surfaces with big Picard number and automorphisms on K3 surfaces. The maxi-
mal Picard number for a K3 surface is 20, however non-trivial families have at most Picard
number 19. It is diffi cult to construct such families and to identify the surfaces with Picard
number 20 (i.e. the singular K3 surfaces). Strict connected to this, there is the problem of
constructing families of K3 surfaces with big Picard number and small number of singular (in
the usual sense) K3 surfaces. Some examples are studied by Beauville, Belcastro, Verrill-Yui,
Narumiya-Shiga.
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During my DFG-researchproject Die geometrie einiger Familien von K3-Flächen und sym-

plektische Automorphismen auf K3-Flächen in Milan by B. van Geemen, I studied symplectic
automorphisms on K3 surfaces (i.e. those automorphisms leaving the holomorphic two form
invariant). These were extensively studied in the recent past. In a famous paper from
1979 [N1], Nikulin described the finite automorphism groups of K3 surfaces, in particular
he classified all abelian groups which act symplectically on a K3 surface, that is, they leave
the holomorphic two form invariant. This classification was completed in 1988 by Mukai in
[Muk]: he classified all isomorphism classes of finite groups acting symplectically on a K3
surface. The first case to study are the symplectic involutions (called Nikulin involutions by
Morrison in [Mo]). These are also important for their relation with the Shioda-Inose structure
introduced by Morrison in [Mo]. This structure relates K3 surfaces with large Picard number
to abelian surfaces and was studied for example in [L], [NS], [vGT]. For my research also
the results on elliptic fibrations are important. In fact, given a K3 surface with an elliptic
fibration and a section, the group of sections of the fibrations is the Mordell-Weil group of
the surface. A section of finite order defines a symplectic automorphism of the same order.
The study of these automorphisms is often very useful for gaining an understanding of the
general case. The literature on elliptic fibrations is vast, works of particular importance for
my research are of Shioda, [Shio] and Shimada, [Shim]. The last paper classifies all fibres of
type ADE in an elliptic fibration and also describes the torsion group of the Mordell-Weil
group (that is the part generated by sections of finite order).

Nikulin showed that the action induced by these automorphisms on the second cohomology
group with integer coefficients, H2(X,Z), is determined by its order and does not depend on
the particular choice of the K3 surface X. In particular, we have a canonical decomposition
into an invariant lattice and its perpendicular. In the case of Nikulin involutions, this decom-
position was identified by Morrison in [Mo], he showed that the invariant part is isometric
with U ⊕ U ⊕ U ⊕ E8(−2) (where U is a copy of the unimodular even hyperbolic plane and
E8(−2) is the lattice E8 with the bilinear form multiplied by −2) and its perpendicular is
E8(−2). The question about this decomposition is of course of interest for any other group
in the classification of Nikulin. In [GaSa1] we give this decomposition in the case of prym
order automorphisms.
Given an automorphism of a surface it is natural to ask about the properties of the quotient
surface. In the case of symplectic automorphisms, the quotient has only ADE singularities
and its minimal resolution is a K3 surface. The first case to study are the quotients by a
Nikulin involutions. More in general it is interesting to study surfaces with an even set of
eight rational (−2)-curves (that is, the sum of the curves is twice a divisor in the Picard
group) or with even sets of nodes (that is, the (−2)-curves in the resolution are an even set).
In [B2] Barth gives a description of some projective models of such surfaces. In [GaSa2] we
continue this description.

It is also interesting to study non-symplectic automorphisms, examples of such finite order
automorphisms are given in the papers [DGK], [K] and in the paper [A1], [A2], [A3], in
the particular case of order four automorphisms. In this case the study of the K3 surfaces
and of concrete examples is more complicated, for instance, there are no results on their
classification.

3. Description of the scientific works

The works which I submit for my Habilitation are the papers:
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(1) with Wolf Barth, Polyhedral Groups and Pencils of K3-Surfaces with maximal Picard

Number, Asian J. of Math. Vol. 7, No. 4, pp. 519–538, 2003.

(2) Symmetric surfaces with many Singularities, Comm. in Algebra Vol. 32, No. 10,
pp. 3745-3770, 2004.

(3) A geometrical construction for the generators of some reflection group, Serdica Math.
J., 31, pp. 229-242, 2005.

(4) with Andreas Knutsen, Carla Novelli, On Varieties that are uniruled by lines, Com-
positio Math. 142, pp. 889–906, 2006.

(5) Group Actions, cyclic coverings and families of K3 surfaces, to appear in Canadian
Math. Bull.

(6) Transcendental lattices of some K3 surfaces, to appear in Math. Nachr.

(7) with Bert van Geemen, Nikulin involutions on K3 surfaces, to appear in Math. Z.

(8) with Samuel Boissière, Contraction of excess fibres between the Mckay correspondence

in dimensions two and three, to apper in Ann. Inst. Fourier

(9) with Alice Garbagnati, Symplectic automorphisms of prime order on K3 surfaces,
Preprint math.AG/0603742, submitted.

(10) with Samuel Boissière, Counting lines on surfaces, Preprint math.AG/0606100, sub-
mitted.

(11) with Alice Garbagnati, Projective models of K3 surfaces with an even set, Preprint
math.AG/0611182, submitted.

these are the papers [BaSa], [Sa2], [Sa3], [KNS], [Sa4], [Sa5], [GS], [BoSa1], [GaSa1],
[BoSa2], [GaSa2] from the reference list. First I give a quick overwiev of the contents and
then I will explain more in details:
1) the papers [Sa2], [Sa3], [BoSa2] deal with surfaces with many nodes, lines and many sym-
metries,
2) the papers [BaSa], [Sa4], [Sa5], deal with some special families of K3 surfaces with Picard
number 19,
3) the papers [GS],[GaSa1],[GaSa2] are about symplectic automorphisms of K3 surfaces,
4) the paper [KNS] give a criterion for varieties in any degree to be uniruled by lines,
5) finally the paper [BoSa1] is about a special case of the Mckay correspondence, and it is
related to the works of 2).
1) Surfaces with many double points. In my PhD thesis I worked about the question:
which is the maximal number of nodes a surface of degree d in P3 can have. I have found
three new one dimensional families of surfaces {Xd

λ
}λ∈P1

in P3, they have degree d = 6, 8 resp.
12 and have the symmetries of the so called bipolyhedral tetrahedralgroup (= G6), octahe-
dralgroup (= G8) resp. icosahedralgroup (= G12), this means that the polynomials which
define the families are invariant for the operation of Gd ⊂ SO(4,R), d = 6, 8, 12. Each family
contains exactly four surfaces with nodes. In particular the family of degree 12 contains a



viii

surface with 600 nodes (these results are contained in my paper [Sa1]).
The groups G6 and G12 are subgroups of the reflection groups [3, 4, 3] and [3, 3, 5], which are
the symmetry groups of some special four dimensional polyhedra. By using the G6- resp.
G12−invariant surfaces in P3 I give an easy geometric construction for the generators of the
rings of the invariant polynomials, these have degree 2, 6, 8, 12 resp. 2, 12, 20, 30 (these were
described before in a different way by Racah in [Rac]). In the paper [Sa2] I consider other
subgroups of SO(4,R) and I study the one dimensional families of invariant surfaces in P3. I
restrict my study to the subgroups which contain the Heisenberg group. These together with
the groups Gd give a complete list of subgroups of SO(4,R) which contain the Heisenberg
group and have a one dimensional family of invariant surfaces.
2) Surfaces with many (disjoint) lines. In the paper [BoSa2] together with Samuel
Boissière (University of Nizza) we construct surfaces in P3 with many (disjoint) lines. First
we describe the surfaces ϕ(x, y) − ψ(z, t) = 0 completely and we give for any degree d all
the possible numbers of lines. We study also surfaces with many symmetries and we give an
example of a surface of degree eight with 352 lines. This result improves a preceding result
of Caporaso-Harris-Mazur [CHM], who construct a surface with 256 lines. We give also some
new examples of surfaces with many disjoint lines, which improve some previous result of
Rams [Ram2].
3) Classification of uniruled varieties. In [KNS] together with Andreas Knutsen (Uni-
versity of Rom) and Carla Novelli (University of Genova) we show the following result: Let
X be an irreducible variety of dimension k ≥ 3, H a globally generated and big line bundle
on X with Hk := d, n = dimH0(X,H) − 1. If d < 2(n − k) − 4 and (k, d, n) 6= (3, 27, 19)
then X is uniruled by lines. In the case of threefolds this is an optimal bound, since for
d = 2n−10 there are examples of threefolds which are not uniruled by lines. Our result holds
in particular for varieties in Pn. In the case of surfaces a similar bound was given by M. Reid
and Xiao. Until now the best result for smooth k-folds X in Pn was a result of Horowitz. He
showed that for d < (3/2)(n − k − 1), then X is uniruled by lines. Our result improves the
result of Horowitz and moreover it holds without any assumption on the singularities if X.
To prove our result we use Mori-Theory and the Minimal-Model-program, in particular we
use some previous results of Mella.
4) K3 surfaces with big Picard number. In the papers [BaSa], [Sa4], [Sa5] I work with
families of K3 surfaces with Picard number 19. In [BaSa] together with Wolf Barth (Univer-
sity of Erlangen) I describe the quotients of the one dimensional families {Xd

λ
}λ∈P1

by the
groups Gd (cf. 1 above and the paper [Sa1]): these are families of K3 surfaces, in which
the general K3 surface has Picard number 19 and there are exactly five singular fibers: one
is a degeneration and four have nodes, the latter have Picard number 20. In the paper we
describe completely the Picard lattice. In [Sa4] I describe more families of K3-surfaces with
big Picard number and small number of singular fibers, I consider some special subgroup
G of Gd, then clearly the Gd-invariant family {Xd

λ
}λ∈P1

is also G-invariant and under some

assumption on the groups G, the quotients Xd

λ
/G are again K3 surfaces with big Picard

number. Moreover if G is a normal subgroup with [G : Gd] = 2, 3 then I describe Xd

λ
/G as

2-cyclic, resp. 3-cyclic covering of Xd

λ
/Gd. This description is very helpful to identify the

Picard lattice of the covering surfaces. Then in [Sa5] with the help of lattice theory (cf. [N2])
and results on quadratic forms I describe the transcendental lattices of the surfaces described
in [Sa4] and I classify them.
I still work on these families of surfaces, in fact I’m looking for projective models of them.
This is the topic of the work in progress [Sa6].
5) Symplectic automorphisms on K3 surfaces. The symplectic automorphisms of order
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two are called Nikulin involutions. In the article [GS] I study them together with Bert van
Geemen (University of Milan).
By a paper of Nikulin they induce a unique (up to isometry) action on H2(X,Z), this means
that the operation is independent from the choice of the K3 surface. We study the Picard
lattice and the transcendental lattice, in particular we show that if a K3 surface X has a
Nikulin involution then the Picard number is ρ ≥ 9 and the Picard lattice contain a copy
of the lattice E8(−2). In the case of ρ = 9 with the help of lattice theory we describe com-
pletely the structure of the Picard lattice. We discuss also many concrete examples, which
explains the general results, in particular double covers of the plane, quartics in P3, complete
intersections and in particular elliptic fibrations.
In the paper [GaSa1] together with Alice Garbagnati (University of Milan) I study symplec-
tic automorphisms of order 3, 5, 7. Together with the order two these are all possible prime
orders for such automorphisms (at least in characteristic zero). By using lattice theory and
elliptic fibrations we identify completely the action on H2(X,Z). In the case of the order
three automorphism we show that the orthogonal complement to the invariant sublattice of
H2(X,Z) is the well known rank twelve Coxeter-Todd lattice.
I still work on similar questions in the paper in preparation [GaSa3] with Alice Garbagnati
and in the case of non-symplectic automorphisms of order three in the work in progress [AS]
with Michela Artebani (University of Milan).
6) Even sets of eight disjoint rational curves. In the submitted preprint [GaSa2]
together with Alice Garbagnati, we study K3 surfaces with an even set of eight disjoint (−2)-
rational curves or with an even set of eight nodes. Such K3 surfaces are minimal resolution
and quotient of a K3 surface by a Nikulin involution, their study complete the results of the
paper [GS] in the following meaning: we consider a K3 surface with a Nikulin involution,
then it is natural to ask what is the quotient surface and which properties has, for example
which kind of singularities. In [GaSa2] we study K3 surfaces with an even set of rational
curves and with the smallest possible Picard number, which is nine. We classify the surfaces
and we describe their moduli space. In particular we describe many projective models, which
continue and complete the study started by Barth in [B2] of such surfaces.
7 ) T he Mckay correspondence in dimension two and three. In the paper [BoSa1]
together with Samuel Boissière (University of Nizza) we give a relation between the Mckay
correspondence in dimension two and in dimension three. Let G be a finite subgroup of
SO(3,R) and let G̃ ⊂ SU(2) be the binary group associated to the group G. The group

G̃ operates on C
2 and the quotient is an ADE-surface singularity. Its resolution consists

of smooth (−2)-rational curves with an ADE-Dynkin diagram as dual graph. The Mckay
correspondence associates to the vertices of the graph the irreducible representations (6= 1)

of G̃. The resolutions of the quotients C
2/G̃ and C

3/G are Hilbert-Nakamura-Schemes and
the exceptional curves of the resolutions on the origin have very similar properties. We show
that there exists a morphism between these two resolutions, which contracts some curves in
the exceptional fiber. For the proof we use the Mckay correspondence in dimension two and
three, and also the theory of Hilbert-Nakamura-Schemes. The study of these resolutions is
related to the study of the resolutions of the singularities of the four special K3 surfaces of
the families Xd

λ
/Gd, which are fibrations of the singular space P3/Gd (cf. 3).

4. Short description of the other scientific works

1. In the paper [Sa1] from my PhD thesis I work on the question: which is the maximal
number of nodes a surface of degree d in P3 can have. For the degree d ≤ 6 this problem
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is solved by results of Cayley, Kummer, Beauville and Barth. For d ≥ 7 the exact number
is unknown. There are bound of Varchenko and Miyaoka. In this paper I find a surface of
degree 12 with 600 nodes, which improves the previous lower bound of 576 nodes of Kreiß for
a surface in this degree.
2. In the paper [ES] together with Philippe Ellia (University of Ferrara) I prove the Hartshorne
conjecture for codimension two subvarieties in the case of 2-arithmetic Buchsbaum varieties.
The exactly formulation of the Hartshorne conjecture for varieties of codimension two is the
following: each smooth variety of codimension two in Pn, n ≥ 7 is complete intersection.
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SYMMETRIC SURFACES WITH MANY SINGULARITIES

ALESSANDRA SARTI

Abstract. Let G ⊂ S O (4 ) d e n o te a fi n ite su b g ro u p c o n ta in in g th e H e ise n b e rg g ro u p .
In th e se n o te s w e c la ssify a ll th e se g ro u p s, w e fi n d th e d im e n sio n o f th e sp a c e s o f G-
in v a ria n t p o ly n o m ia ls a n d w e g iv e e q u a tio n s fo r th e g e n e ra to rs w h e n e v e r th e sp a c e h a s
d im e n sio n tw o . Th e n w e c o m p le te th e stu d y o f th e c o rre sp o n d in g G-in v a ria n t p e n c ils o f
su rfa c e s in P3 w h ich w e sta rte d in [S]. It tu rn s o u t th a t w e h a v e fi v e m o re p e n c ils, tw o
o f th e m c o n ta in in g su rfa c e s w ith n o d e s.

0. In tro d u ctio n

C o n sid e r th e K le in fo u r g ro u p V ⊆ S O(3 ). L e t Ṽ d e n o te its in v e rse im a g e in S U (2 )

u n d e r th e u n iv e rsa l c o v e rin g S U (2 )→S O(3 ). T h e im a g e o f th e d ire c t p ro d u c t Ṽ × Ṽ in
S O(4 ) u n d e r th e d o u b le c o v e rin g S U (2 )×S U (2 )→S O(4 ) is th e H e ise n b e rg g ro u p H. In
th is n o te w e c la ssify a ll th e su b g ro u p s G o f S O(4 ) w h ich c o n ta in H. F irst w e c la ssify

a ll th e su b g ro u p s o f S U (2 ) × S U (2 ) w h ich c o n ta in Ṽ × Ṽ , th e n th e ir im a g e s in S O(4 )
a re th e g ro u p s G (c f. p ro p o sitio n 1 .1 a n d se c tio n 1 .4 ). T h e y o p e ra te in a n a tu ra l w a y
o n C[x0, x1, x2, x3], th e rin g o f p o ly n o m ia ls in fo u r v a ria b le s w ith c o m p le x c o e ffi c ie n ts. In
se c tio n 3 w e g iv e g e n e ra to rs fo r th e sp a c e s C[x0, x1, x2, x3]

G
j o f h o m o g e n e o u s G-in v a ria n t

p o ly n o m ia ls o f d e g re e j w h e n e v e r th is d im e n sio n is tw o . S in c e th e g ro u p s G c o n ta in
H, w e h a v e in v a ria n t p o ly n o m ia ls o n ly in e v e n d e g re e . W h e n th e d im e n sio n is tw o th e
g e n e ra to rs a re th e m u ltip le q u a d ric qj/ 2 = (x2

0
+ x2

1
+ x2

2
+ x2

3
)j/ 2 (triv ia l in v a ria n t) a n d

a n o th e r p o ly n o m ia l o f d e g re e j w h ich w e d e n o te b y f . T h e p e n c ils

f + λ qj/ 2 = 0, λ ∈ P1,

o f su rfa c e s in th e th re e d im e n sio n a l c o m p le x p ro je c tiv e sp a c e P3 h a v e th e n a la rg e sy m -
m e try g ro u p (th is is th e re a so n w h y w e c o n sid e r ju st su b g ro u p s o f S O(4 ) c o n ta in ig H).
W e d e sc rib e th e m in se c tio n 4 . In p a rtic u la r w e fi n d th e sin g u la r su rfa c e s c o n ta in e d in
it. In [S ] w e c o n sid e re d th e c a se o f G = TT , OO, II w h ich a re th e im a g e s in S O(4 ) o f

th e d ire c t p ro d u c ts T̃ × T̃ , Õ × Õ, Ĩ × Ĩ w h e re T̃ d e n o te s th e b in a ry te tra h e d ra l g ro u p ,
Õ th e b in a ry o c ta h e d ra l g ro u p , Ĩ th e b in a ry ic o sa h e d ra l g ro u p in S U (2 ). W e d e n o te d
th e g ro u p s th e re b y G6, G8 a n d G12 a n d w e c a lle d th e m b i-p o ly h e d ra l g ro u p s. W e fo u n d
p e n c ils c o n ta in in g su rfa c e s w ith m a n y n o d e s (=o rd in a ry d o u b le p o in ts). In p a rtic u la r th e
d e g re e tw e lv e II-in v a ria n t p e n c il c o n ta in s a su rfa c e w ith 6 00 n o d e s w h ich im p ro v e s th e
p re v io u s lo w e r b o u n d fo r th e m a x im a l n u m b e r o f n o d e s o f a su rfa c e o f d e g re e tw e lv e in
P3 (c f. [C ]). H e re w e d e sc rib e th e o th e r G-in v a ria n t p e n c ils a n d sh o w th a t w e h a v e tw o
m o re p e n c ils w h ich c o n ta in su rfa c e s w ith n o d e s (th e o th e rs d o n o t c o n ta in su rfa c e s w ith
iso la te d sin g u la ritie s a t a ll). W e list th e g ro u p s G a n d th e d e g re e s j b e lo w , a s w e ll a s th e
n u m b e r o f n o d e s o n th e sin g u la r su rfa c e s. In e a ch p e n c il w e h a v e fo u r o f th e se sin g u la r
su rfa c e s a n d th e n o d e s th e re fo rm ju st o n e G-o rb it. F o r th e c o n v e n ie n c e o f th e re a d e r w e
re c a ll th e re su lts a b o u t th e TT -, OO-, a n d II-in v a ria n t p e n c ils to o .
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2 A L E S S A N D R A S A R T I

G order j nodes

(OO)′ 19 2 4 4 12 16 8

TT 288 6 12 48 48 12

OO 115 2 8 24 7 2 144 9 6

IO 2880 12 240 360 240 120

II 7 200 12 300 600 360 60

The group IO is the image in SO(4) of the direct product of the binary icosahedral group
with the binary octahedral group in SU(2)×SU(2) and (OO)′ is a subgroup of OO which
we describe in section 1.2 and 1.4. This is an index two subgroup of the refl ection group
[3,3,4] (cf. [Co2], p. 226) and has the same invariant polynomials. In all the cases but one
(G = IO), the singular surfaces contain just isolated singularities (i.e. the nodes). The
surfaces in the IO-invariant pencil contain two double lines in the base locus.
The [3,3,4]-invariant polynomials of degree two and four were already k nown by Coxeter in
[Co1]. Here we show that in the pencil of degree four we have a surface with the maximal
number possible of nodes (=16) which is a so called Kummer surface. Finally in section 6
we give a computer picture of the IO-invariant surface of degree 12 with 360 nodes.
I thank P rof. Wolf B arth at the U niversity of E rlangen for many helpful comments and
discussions.

1. Symmetry groups

D enote by H ⊆ SO(4) the Heisenberg group (with 32 elements). We want to collect
in a systematic way all the finite subgroups of SO(4) containing H, and their polyno-
mial invariants of low degree. These are invariants of the Heisenberg group with extra
symmetries.

1.1. Ternary groups. We specify the following matrices in SO(3)

A1 :=







1 0 0

0 −1 0

0 0 −1






, A2 :=







−1 0 0

0 1 0

0 0 −1






, R n :=







1 0 0

0 a −b

0 b a






,

S :=







0 −1 0

0 0 −1

1 0 0






, U :=

1

2







τ − 1 −τ 1

τ 1 τ − 1

−1 τ − 1 τ






,

where τ := 1

2
(1 +

√
5 ) = 2·cos(π

5
), a :=cos2·π

n , b :=sin2·π
n . These matrices generate the

following subgroups of SO(3)

generators order group name

V A1, A2 4 Z2 × Z2 Klein four

Dn A2, R n 2n Dn dihedral

T A1, S 12 Alt(4) tetrahedral

O A1, R 4, S 24 Sy m (4) octahedral

I A1, S, U 60 Alt(5 ) icosahedral
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Where Alt(4) and Alt(5) denote the group of even permutations of four and five elements
and Sym(4) denotes the permutation group of four elements. Whenever n ∈ N, n 6= 0,
is even, V is contained in each of the above groups. By the classification of the finite
subgroups of SO(3), these are all such subgroups.
The groups T,O and I are the rotation groups of tetrahedron, octahedron and icosahedron.
A n identification with the permutation groups is given in [Co2], p. 46-50 as well as an
identification of Dn with the symmetry group of a regular polygon with n vertices (ibid.
p. 46). Sometimes it is useful for the computations to identify the matrices above with the
cycles of the permutation groups. Indeed the identification of T and O with subgroups of
the permutation group Sym(4) is obtained by letting them act on the four space diagonals
of the unit cube. Let these lines and vectors generating them be

d1 : (1, 1, 1), d2 : (−1, 1, 1), d3 : (1,−1, 1), d4 : (1, 1,−1)

The matrices in O permute these lines by

A1 : (12)(34), A2 : (13)(24), R4 : (1423), S : (123).

Using this correspondence with permutation groups, it is easy to write down their conju-
gacy classes. We write the conjugacy classes of the dihedral group Dn, n = 2l, l ≥ 2 too.
In the next table we characterize a conjugacy class by one of its elements. Under each
representative we write the number of elements in the conjugacy class.

group repr. of a conj. class

and number of elements

V 1 A1 A2 A3

1 1 1 1

Dn 1 Rk
n Rl

n A2 A2Rn

1 2 1 l l

T 1 A1 S S2

1 3 4 4

O 1 A1 R4A2 R4 S

1 3 6 6 8

where k = 1, . . . , l − 1.
The symmetries of T obviously leave invariant the icosahedron (cf. [Co2], p. 52) with
vertices

(±1,±τ, 0), (0,±1,±τ), (±τ, 0,±1)

The matrix U permutes these vertices as

±(0, 1, τ) 7→ ±(0, 1, τ),

±(0, 1,−τ) 7→ ±(−τ, 0, 1) 7→ ±(−1,−τ, 0) 7→ ±(1,−τ, 0) 7→ ±(τ, 0,−1) 7→ ±(0, 1,−τ).

So together with the group T the symmetry U generates a group of order at least 12·5 = 60
, contained in the symmetry group of the icosahedron specified. Therefore it coincides with
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the icosahedral group I ∼= A5. The action of I on the five cosets of I/ T defines the map
I 7→ A5. Using

A1 · U = U4 · A1, A1 · U2 = U3 · A1,

S · U = U3 · A2, S · U2 = U · A2S, S · U3 = U2 · S2, S · U4 = U4 · S2A2,

one finds that under this map

A1 7→ (14)(23), S 7→ (132), U 7→ (12345).

Using this correspondence, one enumerates the conjugacy classes in I

group repr. of a conj. class

and number of elements

I 1 A1 S U U2

1 15 20 12 12

1.2. Subgroups of products of ternary groups. Here we classify subdirect products

G ⊆ G1 × G2, where G1 and G2 are finite ternary groups V,Dn (n even), T,O or I.
We assume that G contains the subgroup V × V ⊆ G1 × G2. We are interested in these
subgroups only up to interchanging the factors G1 and G2. So we assume that we are in
one of the following cases

• |G1| ≥ |G2| and G1, G2 6= Dn,
• G1 6= Dn, G2 = Dn,
• G1 = Dn and G2 = Dm.

Additionally, passing to smaller subgroups G′

i⊆Gi if necessary, we may assume that both
projections

p1 : G → G′

1, p2 : G → G′

2

are surjective, so that G ⊆ G′

1 × G′

2. Finally, we do not distinguish between groups con-
jugate in SO(3) × SO(3). In the table below we assume n 6= m, n = 2l, m = 2l′ and let
s :=lcm(n,m).

P roposition 1 .1 . T h e follow ing list is a com plete list of subgroups G ⊆ G1 × G2 under

th e a ssum ptions a bove:
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G1 G2 G |G|/16 G/V × V G1 G2 G |G|/16 G/V × V

V V V × V 1 1 V Dn V × Dn n/2 Zl × 1

T V T × V 3 Z3 × 1 T Dn T × Dn 3n/2 Z3 × Zl

T T × T 9 Z3 × Z3 3|n (T × Dn)′ n/2 Zl

(T × T )′ 3 Z3 O Dn O × Dn 6n/2 D3 × Zl

O V O × V 6 D3 × 1 4|n (O × Dn)′ 3n/2 D3l/2

T O × T 18 D3 × Z3 I Dn I × Dn 15n/2

O O × O 36 D3 × D3 Dn Dn Dn × Dn n2/4 Zl × Zl

O O × O 36 D3 × D3 (Dn × Dn)′ n/2 Zl

(O × O)′ 6 D3 Dn Dm Dn × Dm nm/4 Zl × Zl′

(O × O)′′ 18 Z3 × Z3 × Z2 (Dn × Dm)′ s/2 Zs

I V I × V 15

T I × T 45

O I × O 90

I I × I 225

Proof. We discuss the cases one-by-one. But before that, we observe that the kernels
K1 ⊆ G1 × 1 and K2 ⊆ 1 × G2 of both projections pi : G → Gi are normal subgroups.
This follows by conjugating component-wise from the surjectivity of both projections.
The groups G1 × V do not have proper subgroups containing V × V and mapping surjec-
tively onto G1, (for G1 = Dn too). So we do not need to consider the cases G2 = V .
First consider the case of G1 = I. Since I is simple, the kernel K1 ⊆ I × 1 either coincides
with I × 1, or is trivial. The latter cannot be the case, because this kernel contains V × 1.
The only possibilities are the product cases I × V , I × T , I × O, I × I and I × Dn.
Let now Q := G/V ×V and Q1 := G1/V , Q2 := G2/V . We consider Q a proper subdirect
product of Q1 × Q2.
T, T : Q ⊆ Z3 × Z3 mapping surjectively onto both factors is either the diagonal or the
anti-diagonal. The two corresponding subgroups are not conjugate in T ×T , but in T ×O
they are. The inverse image of the diagonal Z3⊆ Z3 × Z3 in T × T is (T × T )′.
O,T : Q ⊆ D3 × Z3 mapping surjectively onto both factors would have order six and be
isomorphic with D3 under p1. But there is no epimorphism of D3 onto Z3. Such a group
does not exist.
O,O: Q ⊆ D3 × D3 must have order six, twelve or 18. If it has order six, it is a graph
of an isomorphism between both factors D3. Then it is conjugate to the diagonal, and
this leads to the subgroup (O×O)′⊆O×O. The case |Q|=12 cannot occur, because then
the kernel K1⊆D3 × 1 would have order two, and could not be normal. If Q has order 18
both the kernels K1 and K2 have order three, and coincide with the unique proper normal
subgroup of D3. This implies that G contains T × T⊆O×O and is the inverse image of a
subgroup Z2⊆Z2 × Z2= O ×O/T × T . By surjectivity of projections this can only be the
diagonal. Its inverse image is (O × O)′′.
T,Dn: if Q ⊆ Z3 × Zl maps surjectively onto both the components then three divides l.
Let its inverse image be (T × Dn)′.
O,Dn: if Q ⊆ D3 × Zl maps surjectively onto both factors then two divides l. We denote
the inverse image by (O × Dn)′.
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Dn,Dn: Q ⊆ Zl × Zl mapping surjectively onto Zl is conjugate to the diagonal. We call
its inverse image (Dn × Dn)′.
Dn,Dm: Q ⊆ Zl × Zl′ mapping surjectively onto Zl and Zl′ is generated by an element of
order s/2. We call its inverse image (Dn × Dm)′.
�

1.3. Binary groups. We consider the standard double cover SU(2) → SO(3) (cf. [DV ]

p. 39– 42). Let G̃ denotes the pre-image in SU(2) of G⊆SO(3). We specify the following

matrices, M̃ , which are in the pre-image of M∈SO(3):

Ã1 :=

(

i 0

0 −i

)

, Ã2 :=

(

0 1

−1 0

)

, Ã3 :=

(

0 i

i 0

)

,

S̃ := 1
2

(

1 + i −1 + i

1 + i 1 − i

)

, Ũ := 1
2

(

τ τ − 1 + i

1 − τ + i τ

)

, R̃n :=

(

e
iπ

n 0

0 e−
iπ

n

)

.

since M̃ord(M)= −1, they have order 2·ord(M). By an argumentation as in [S] section 2,
we can write the conjugacy classes in the binary groups:

group repr. of a conj. class and number of elements

Ṽ 1 -1 Ã1 Ã2 Ã3

1 1 2 2 2

D̃n 1 -1 Ã2 Ã2R̃n R̃n
l

R̃n
k −R̃n

k

1 1 2l 2l 2 2 2

T̃ 1 -1 Ã1 S̃ −S̃ S̃2 −S̃2

1 1 6 4 4 4 4

Õ 1 -1 Ã1 R̃4Ã2 R̃4 −R̃4 S̃ −S̃

1 1 6 12 6 6 8 8

Ĩ 1 -1 Ã1 S̃ −S̃ Ũ −Ũ Ũ2 −Ũ2

1 1 30 20 20 12 12 12 12

where k = 1, . . . , l − 1.

1.4. Q uaternary groups. Here we consider the images of the finite groups G̃1 × G̃2 ⊆
SU(2) × SU(2) under the double covering map

SU(2) × SU(2) → SO(4), (q, q′) : p 7→ q · p · q′−1

(cf. [DV ] p. 42– 45), we abbreviate there G1G2. Since the corresponding subgroups of
SO(3)×SO(3) contain the group V ×V , these contain the Heisenberg group V V ⊆SO(4),
and by proposition 1.1 these are all such subgroups. We specify now the matrices:
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(A1, 1) :=













0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0













, (1, A1) :=













0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0













,

(A2, 1) :=













0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0













, (1, A2) :=













0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0













,

(A3, 1) :=













0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0













, (1, A3) :=













0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0













,

(Rn, 1) :=













α −β 0 0

β α 0 0

0 0 α −β

0 0 β α













, (1, Rn) :=













α β 0 0

−β α 0 0

0 0 α −β

0 0 β α













,

(S, 1) := 1
2













1 −1 1 −1

1 1 −1 −1

−1 1 1 −1

1 1 1 1













, (1, S) := 1
2













1 1 −1 1

−1 1 −1 −1

1 1 1 −1

−1 1 1 1













,

(U, 1) := 1
2













τ 0 1 − τ −1

0 τ −1 τ − 1

τ − 1 1 τ 0

1 1 − τ 0 τ













, (1, U) := 1
2













τ 0 τ − 1 1

0 τ −1 τ − 1

1 − τ 1 τ 0

−1 1 − τ 0 τ













,

where α := cosπ
n , β := sinπ

n .
We can write the conjugacy classes of the groups G1G2⊆SO(4) in SO(4) and their number

of elements. These are the images of the conjugacy classes of G̃1 × G̃2 in G1G2⊆SO(4)
under the double covering map. O bserve that the matrices (g1, g2)∈ SO(4) with the
same eigenvalues are conjugate (cf. (1.1) of [S]), this fact simplifies the computations
considerably. In this section and in the next one we omit the groups DnDm and (G1G2)

′

with G2 = Dn. We return to those groups later. In the tables we use the following
conventions:

• we omit the conjugacy classes of +1,−1 (these contain one element each)
• whenever the conjugacy classes (g1, g2) and its s-th power (gs

1, g
s
2) are distinct we

write them just one time since they have the same number of elements.
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G1G2 order A2, 1 A2, A2 R4, 1 R4, A2 R4, R4 S, 1 S,A2 S,R4 S, S

V V 32 12 18 0 0 0 0 0 0 0

TV 96 12 18 0 0 0 8 48 0 0

TT 288 12 18 0 0 0 16 96 0 64

OV 192 24 54 6 36 0 8 48 0 0

OT 576 24 54 6 36 0 16 192 48 64

OO 1152 36 162 12 216 36 16 288 96 64

IV 480 36 90 0 0 0 20 120 0 0

IT 1440 36 90 0 0 0 28 360 0 160

IO 2880 48 270 6 180 0 28 600 120 160

II 7200 60 450 0 0 0 40 1200 0 400

G1G2 order A2, 1 A2, A2 R4, 1 R4, A2 S, 1 S,A2

V Dn 16n 8 + 4l 6(2l + 1) 0 0 0 0

TDn 48n 8 + 4l 6(2l + 1) 0 0 8 16(2l + 1)

ODn 96n 20 + 4l 18(2l + 1) 6 12(2l + 1) 8 16(2l + 1)

IDn 240n 32 + 4l 30(2l + 1) 0 0 20 40(2l + 1)

G1G2 U, 1 U,A2 U,R4 U,S U,U U,U2 U,Rk
n

IV 12 72 0 0 0 0 0

IT 12 72 0 96 0 0 0

IO 12 216 72 96 0 0 0

II 24 720 0 480 144 144 0

IDn 12 24(2l + 1) 0 0 0 0 24

G1G2 A2, R
k
n 1, Rk

n S,Rk
n R4, R

k
n

V Dn 12 2 0 0

TDn 12 2 16 0

ODn 36 2 16 12

IDn 60 2 40 0

where k = 1, . . . , l − 1. For the groups which are not products it is a little more compli-
cated to write down the sizes of their conjugacy classes. But using the description from
proposition 1.1 one finds
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group order A2, 1 A2, A2 R4, A2 R4, R4 S, 1 S,A2 S, S

(TT )′ 96 12 18 0 0 0 0 32

(OO)′ 192 12 42 48 12 0 0 32

(OO)′′ 576 12 90 144 36 16 96 64

2. Poincaré series

In this section we want to find the dimension of the spaces of homogeneous invariant
polynomials of a given degree. We consider the Poincaré series

p(t) :=

∞
∑

j= 0

dimC[x0, x1, x2, x3]
G
j · tj

where G is a group as in section 1.4. By a theorem of M olien ([B] p. 21) and an easy
computation as in [S], (2.1), it can be written as

p(t) =
1

|G|
∑ ng

det(g − 1 · t)

where the sum runs over all the conjugacy classes of G and ng denote their number of
elements. At the denominator we have the characteristic polynomials. Using the numbers
of conjugacy classes (under SO(4)) given in section 1.4 and computing their characteristic
polynomials, the power series package of M APLE produces the following table of dimen-
sions md of invariant polynomials in degree d of the groups G⊆G1G2. Observe that since
G contains the Heisenberg group we do not have invariant polynomials of odd degree.
First we consider the case of Gi 6= Dn:

group m2 m4 m6 m8 m10 m12

V V 1 5 6 15 19 35

TV 1 1 2 5 5 13

TT 1 1 2 3 3 7

(TT )′ 1 3 4 7 9 15

OV 1 1 1 4 4 8

OT 1 1 1 2 2 4

OO 1 1 1 2 2 3

(OO)′ 1 2 3 5 6 9

(OO)′′ 1 1 2 3 3 5

IV 1 1 1 1 1 5

IT 1 1 1 1 1 3

IO 1 1 1 1 1 2

II 1 1 1 1 1 2
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Whenever G1 6= Dn and G2 = Dn, we can write the finite sums p(t) for each n. Here we
compute the first coefficients of the Poincaré series for n = 4, 6, 8.

group m2 m4 m6 m8 m10 m12

V D4 1 3 3 9 11 19

V D6 1 3 3 6 6 14

V D8 1 3 3 6 6 10

TD4 1 1 1 3 3 7

TD6 1 1 1 2 2 6

TD8 1 1 1 2 2 4

OD4 1 1 1 3 3 5

OD6 1 1 1 2 2 4

OD8 1 1 1 2 2 3

ID4 1 1 1 1 1 3

ID6 1 1 1 1 1 3

ID8 1 1 1 1 1 2

Of course, whenever md = 1, the space of invariant polynomials is spanned by the d/2-th
power of the invariant quadric (trivial invariant)

q := x2
0 + x2

1 + x2
2 + x2

3.

3. Invariants

In this section we want to compute a system of generators for the spaces C[x0, x1, x2, x3]
G
j

whenever this space has dimension two and G⊆SO(4) is a finite subgroup containing the
Heisenberg group. We distinguish two cases.
(3 .1)F irst case. Assume that G ⊆ G1G2 with Gi 6= Dn, i = 1, 2. We do some remarks on
the groups G which simplify the computations of the invariant polynomials.

• the group TV ⊆TT .
• The group TT is contained in (OO)′′. In fact the generators modulo V V are

group TT (OO)′′

generators (1, S) (1, S), (S, 1)

(S, 1) (R4A2, R4A2)

with

(R4A2, R4A2) =













1 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 0













S im ila rly to [S ] se c tio n 3, (OO)′′ is a su b g ro u p o f in d e x tw o in th e re fl e c tio n g ro u p
o f th e {3, 4, 3}-c e ll (c f. [C o 2 ] p . 149 fo r th e d e fi n itio n o f th is p o ly to p e), if w e a d d
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the generator

C =













1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1













we get the whole reflection group.
• F inally since OT ⊆OO, they hav e the same two inv ariant polynomials in degree

eight. T hose of degree ten are obtained just by multiplication with the q uadric q.

B y these remark s and considering G as in the assumption, it follows that we hav e to
compute the generators of six two-dimensional spaces C[x0, x1, x2, x3]

G
j for the following

pairs (G, j):

((OO)′, 4) (T T , 6 ) (OO, 8 ) (I O, 12) (I I , 12).

T he generators of the T T -, OO- and I I -inv ariant spaces are giv en in [S] as well as a de-
scription of the corresponding pencils of surfaces in P3 (base locus and singular surfaces).
H ere we examine the remaining cases and in the next section we describe the correspond-
ing pencils of surfaces in P3. T he basic idea to find generators of the inv ariant spaces is
the same as in [S]. F or the computations here we use the matrix representation of the
groups giv en in section 1.4 (see also [ST 1] and [ST 2]).
(OO)′-invariants. W e start with the space of H eisenberg inv ariant q uartics. It has dimen-
sion fiv e, being spanned by

f0 := x4
0 + x4

1 + x4
2 + x4

3,

f1 := 2(x2
0
x2

1
+ x2

2
x2

3
), f2 := 2(x2

0
x2

2
+ x2

1
x2

3
), f3 := 2(x2

0
x2

3
+ x2

1
x2

2
),

f4 := 4x0x1x2x3.

In terms of these inv ariants

q2 = f0 + f1 + f2 + f3.

M odulo V V , the group (OO)′ is generated by (R4A2, R4A2) and (S, S). T racing the action
of these generators on f0, . . . , f4 one finds the inv ariants q2 and f0.
I O-invariants. T he generators (U , 1), (1, S) and (1, R4) of I O operate on the space
C[x0, x1, x2, x3]

V V
12

which is 35-dimensional. A computation with M A P L E shows that
it contains the non triv ial I O-inv ariant polynomial

SI O := −
∑

i f3
i + 11

∑

i,j f2
i fj + (f2

0 − 14f2
4 )

∑

i fi + 30f0f
2
4 − 2f0

∑

i,j fifj

−30f1f2f3 + 3
√

5f4(2f0

∑

i fi −
∑

i,j fifj − f2
0 − ∑

i f
2
i + 4f2

4 )

+6
√

5Fa

where the sums run ov er all the indices i, j = 1, 2, 3, i 6= j, and

Fa := f2
1 f2 + f2

3f1 + f2
2 f3 − f1f

2
2 − f3f

2
1 − f2f

2
3

is the anti-symmetric part of SI O .
(3.2)S eco nd case . A ssume that G⊆G1G2 with G1 = Dn or G2 = Dm, n , m ≥ 4, ev en.
W ith the help of the table in section 1.4 we discuss the following cases:
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• DnDm: observe that V Dm is contained in DnDm. A direct computation shows
that the generator (1, Rn) leaves invariant a three-dimensional family of degree
four V V -invariant polynomials. G enerators in this case are f2 + f3, q2, f2 − f4.
N ow the matrix (Rn, 1) of DnDm operates on these three-dimensional space leaving
invariant q2 and f2 + f3.

• since (DnDm)′⊆DnDm these groups have already an at least two-dimensional fam-
ily of invariant polynomials of degree four, which is generated by q2 and f2 + f3.

• TDn, n ≥ 6: we have a five-dimensional family of TV -invariant in degree eight.
By the action of the generator (1, Rn), n ≥ 6 we have a two-dimensional family of
invariants. Put

Ki := x2
0
+ x2

1
− x2

2
− x2

3
+ (−1)i2x0(x2 + x3) + 2x1(x2 − x3), i = 0, 3

Ki := x2
0 + x2

1 − x2
2 − x2

3 + (−1)i2x0(x2 + x3) − 2x1(x2 − x3), i = 1, 2

then generators are

q4 and P8 :=
3

∏

i= 0

Ki.

• Suppose three divides n. Since the groups (TDn)′ are contained in TDn, they
have at least a two-dimensional family of invariant polynomials in degree eight.
We consider now the action of the extra generators (S,Rn) of (TDn)′ on the space
of degree four, resp. six V V -invariant polynomials. A direct computation with
MAPLE shows that we have no invariants other then the quadric q2, resp. q3.

• ODn, n ≥ 6: we have TDn⊆ODn and the extra generator (R4, 1) leaves the
previous polynomials invariant.

• Suppose now four divides n. Since the groups (ODn)′ are contained in ODn, they
have at least a two-dimensional family of invariant polynomials in degree eight.
Modulo V V the groups (ODn)′ have generators (S, 1) and (R4, Rn), hence they
contain the group TV . This has no non-trivial invariant polynomials of degree four
and has a two-dimensional family of invariant polynomials in degree six, generated
by q3 and S6(x) (cf. [S] p. 437 ). For n ≥ 6, S6(x) is not (ODn)′-invariant, for
n = 4 it is. In any case we do not get new invariants.

• IDn, n ≥ 8: we have a five-dimensional family of IV -invariant polynomials in de-
gree twelve. The action of (1, Rn), n ≥ 8 on this space produces a two-dimensional
family of invariant polynomials. Put

K ′

0
:= x2

0
+ x2

1
− x2

2
− x2

3
+ 2(1 − τ)(x0x2 − x1x3)

K ′

1 := x2
0 + x2

1 − x2
2 − x2

3 + 2τ(x0x3 + x1x2)

K ′

2 := x2
0 + x2

1 − x2
2 − x2

3 − 2(1 − τ)(x0x2 − x1x3)

K ′

3
:= x2

0
+ x2

1
− x2

2
− x2

3
− 2τ(x0x3 + x1x2)

K ′

4
:= 2(1 − τ)(x0x3 + x1x2) + 2(x0x2 − x1x3)

K ′

5 := −2τ(x0x3 + x1x2) + 2(x0x2 − x1x3)

then generators are

q6 and P12 :=
5

∏

i= 0

K ′

i.
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In conclusion, the dimension of C[x0, x1, x2, x3]
G
j is two, for (G, j) equal to

(DnDm, 4) n,m ≥ 4, (ODn, 8) n ≥ 6, (IDn, 12) n ≥ 8.

Remark 3.3 O bserve that the polynomials q2 and f2 + f3 are DnDn-invariant even if n

is an odd integer. As in the even case, generators of these groups are (A2, 1), (1, A2) and
(Rn, 1), (1, Rn).

4. Invariant pencils

4.1. T h e p en c il o f (OO)′-in v arian t q u artic s. We take the generators q2 and f0 :=
x4

0 + x4
1 + x4

2 + x4
3. The base locus is a double curve of degree eight. Let C8 denote the

curve {q = 0, f0 = 0}. The pencil is invariant under the matrix C too, hence by symmetry
reasons the curve C8 has bi-degree (4, 4) on q (cf. [S], section 5). Moreover we have the
following

L emma 4 .1 . The curve C8 is sm ooth and irreducible.

P roof. The J acobian matrix of C8 has rank two in each point, hence the curve is smooth.
If C8 = C ′ ∪ C ′′, the curves C ′, C ′′ would meet in some point on q (observe that they
cannot be lines of the same ruling), but this is impossible because C8 is smooth. �

Now a singular point on a surface of the pencil (6= q2) is not contained on q (cf. (6.1) of
[S]). Hence by this fact, lemma 4.1 and Bertini’s theorem the general surface in the pencil
is smooth. All the other surfaces but q2 are irreducible and reduced and the singular ones
have only isolated singularities.
The sy m m etry group of {3, 3, 4}. Consider the “ cross polytope” β4= {3, 3, 4} in R

4 with
vertices the permutations of (±1, 0, 0, 0) as in [Co2] p. 156 and edge

√
2. The generators

of (OO)′ permutes these points, hence (OO)′ is contained in the symmetry group [3, 3, 4]
of {3, 3, 4}, more precisely it is an index two subgroup. In fact the symmetry group of
β4 has order 24 · 4! = 384= 2 · 192 and by adding the generator C to (OO)′ we get the
whole symmetry group [3, 3, 4] (cf. [Co2] p. 226). In particular, observe that they have
the same invariant polynomials. The polytope β4 has N0 = 8, N1 = 24, N2 = 32, N3 = 16
the reciprocal “measure polytope” , γ4= {4, 3, 3} has N0 = 16, N1 = 32, N2 = 24, N3 = 8.
Hence we get four [3, 4, 3]-orbits of points: the vertices and the middle points of the edges
of the β4 and the vertices and the middle points of the edges of the reciprocal γ4. These
have coordinates the permutation of (±1, 0, 0, 0), (±1,±1, 0, 0), resp. (±1,±1,±1,±1),
(±1,±1,±1, 0). As points of P3 these are singular on the surfaces f0 +λq2 for λ = −1, −1

2

resp. −1

4
, −1

3
and a direct computation shows that they are all ordinary double points.

We do it for λ = −1 and (1 : 0 : 0 : 0). In the affi ne chart {x0 6= 0} the equation becomes

0 = 1 + x4 + y4 + z4 − (1 + x2 + y2 + z2)2

= −2x2 − 2y2 − 2z2 + terms of degree ≥ 4,

hence the rank of the Hessian matrix at (0, 0, 0) is three. This shows that (1 : 0 : 0 : 0) is
an ordinary double point and so are all the points in its orbit.
We collect the results on the singular surfaces in the following table. In the middle column
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we write just one point, but we mean all its permutations.

λ nodes number\description

−1 (1 : 0 : 0 : 0) 4

−1

2
(±1 : ±1 : 0 : 0) 12

−1

3
(±1 : ±1 : ±1 : 0) 16, K ummer surface

−1

4
(±1 : ±1 : ±1 : ±1) 8

∞ − double quadric

In the case of λ = −1

3
, we get a surface with 16 nodes which is the maximal number

possible for a surface of degree four. This is a K ummer surface. Observe that in this case
too as in [S] the nodes are fix points under the action of some matrices in [3, 3, 4], resp. in
(OO)′ and they are contained on lines of fix points (see (5.2) and (6.3) of [S]). Moreover
an estimation as in section 8 of [S] shows that whenever the lines of fix points do not meet
the base locus, they contain exactly four nodes. It is natural to expect that these are all
the singular surfaces in the (OO)′-invariant pencil (as in the case of the TT -, OO-, and
II-invariant pencils). This is a direct consequence of the following

Proposition 4.1. 1. The conjugacy classes in (OO)′ (under (OO)′) w ith eigenvalues ±1
are the follow ing

conj . class (A2, A2) (A2, A1) (R4A2, R4A2) (S, S) (R4, R4)

number of elements 6 12 24 32 12

number of fi x lines 6 12 24 16 6

2 . The fi x lines of the matrices in these conjugacy classes contain the maximal number
possible of node.

Proof. Choosing a fix line for each of the representative above and intersecting with the
singular surfaces we find

matrix and fix line value of λ int. points

(A2, A2) : −1 −1

2
(1 : 0 : 0 : 0) (±1 : 0 : 1 : 0)

x1 = x3 = 0 (0 : 0 : 1 : 0)

(A2, A1) : −1

2
−1

4
(0 : 1 : 1 : 0) (1 : 1 : 1 : 1)

x0 = x3, x1 = x2 (1 : 0 : 0 : 1) (−1 : 1 : 1 : −1)

(R4A2, R4A2) : −1 −1

2
(1 : 0 : 0 : 0) (0 : 0 : 1 : 1)

x1 = 0, x2 = x3 −1

3
(±1 : 0 : 1 : 1)

(S, S) : −1 −1

3
(1 : 0 : 0 : 0) (0 : 1 : 1 : 1)

x1 = x2 = x3 −1

4
(±1 : 1 : 1 : 1)

where we do not write the matrix (R4, R4), since the fix lines of the matrices in its conju-
gacy class are the same as those of the matrices in the conjugacy class of (A2, A2). From
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this table follows that:

• the fix lines above meet diff erent surfaces, hence the conjugacy classes of these
matrices are in fact, all distinct (cf. also [S] (7.3)).

• The fix lines contain the maximal number possible (four), of nodes (this shows 2.)

About the number of fix lines: observe that the conjugacy classes of (S, S) has order 32
and contains the elements (S2, S2) hence we have 32

2
= 16 distinct fix lines. Finally the

conjugacy class of (A2, A2) contains six elements, that of (A2, A1) contains twelve elements
and that of (R4A2, R4A2) contains 24 elements. Since each element in these conjugacy
classes has two fix lines and the elements with minus sign are in the same conjugacy class,
the number of fix lines is the same as the number of matrices. �

We know that the singular points form [3, 4, 3]-orbits, but we can now show something
more.

Lemma 4.2. The nodes on each singular surface form one (OO)′-orbit:

λ −1 −1

2
−1

3
−1

4

orbit 4 12 16 8

fix group mod . ± 1 S4 D4 D3 A4

order 24 8 6 12

Proof. The situation is easy for λ = −1. In fact the matrix C∈[3, 4, 3] leaves each singular
point fix, hence the group (OO)′ musts permute them. Consider λ = −1

2
, −1

3
resp. -1

4
and

assume that the orbit’s length of singular points is less or equal then 12, 16, resp. 8. Then
the fix group in (OO)′ mod. ±1 has order bigger or equal then 8, 6 resp. 12. Checking
in the table given in the previous page we see that in fact the only possibility is to have
equality. �

Put now N0 =number of nodes on a surface in the pencil, N1 =number of fix lines of
matrices in the same conjugacy class, n0=number of nodes on a line, n1=number of line
through a point. Knowing the fix groups of the singular points and using the formula

N0 · n1 = N1 · n0(1)

for a configuration of lines and points (cf. [S] section 11.), we can write the table:

R epr. of the conj. class value of λ Configuration

(A2, A2) −1 −1

2
(43, 62) (121, 62)

(A2, A1) −1

2
−1

4
(122, 122) (83, 122)

(R4A2, R4A2) −1 −1

2
−1

3
(46, 241) (122, 241) (163, 242)

(S, S) −1 −1

3
−1

4
(44, 161) (161, 161) (84, 162)

where in the second column we mean the nodes of the surfaces with the given λ.
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4.2. The pencil of IO-invariant 12-ics. We take the generators q6 and SIO. We com-
pute first the base locus. Consider the groups (1, O), resp. (I, 1), which operate on the
two rulings of the quadric q, each element there has two lines of fix points (cf. (5.4) of [S]).
For the convenience of the reader we recall the table on the length of the orbits under the
action of the octahedral group O, and of the icosahedral group I:

octahedron icosahedron

24, 12, 8, 6 60, 30, 20, 12

Now we show:

Lemma 4.3. The variety q ∩ SIO consists of an (I, 1)-orbit of twelve lines and of an
(1, O)-orbit of six singular lines of SIO.

Proof. We have deg(q∩SIO)=24. By the table above it can only have bi-degree (12, 12) or
(12, 6). An argumentation as in [S] (5.5), (b), shows that q ∩ SIO splits into the union of
lines of the two rulings of q. More precisely it contains the (I, 1)-orbit of twelve lines and
the (1, O)-orbit of twelve or of six lines. In the last case the lines have multiplicity two in
the intersection. So take the fix line (λ : µ : iλ : iµ), (λ : µ)∈P1, of the matrix (1, A2) in
the orbit of length six. A direct computation (with MAPLE) shows that it is singular on
SIO, so we are done.

�

Lemma 4.4. L et p be a singular point on a surface of the pencil SIO + λq6 and assume
that p is on the quadric q. Then p ∈ Li, i = 1, · · · , 6, where the Li’s denote the singular
lines of the base locus.

Proof. As in the proof of (6.1) in [S], if p is singular on a surface in the pencil and p ∈ q,
then p is a singular point of q ∩ SIO. Hence p ∈ Li. �

By this fact and Bertini’s theorem follows that:

Lemma 4.5 . 1. The general surface in the pencil is smooth away from the lines L1, . . . , L6.
M oreover we have:
2. The singular surfaces have only isolated singularities away from the singular lines
L1, . . . , L6. In particular they are irreducible and reduced.

Proof of 2. The surface q6 is the only not reduced surface in the pencil. Indeed, assume
that there is another not reduced surface {fm

α = 0}, α · m = 12, and degfα = α. Then
the twelve lines of the base locus in the intersection of fm

α and q would be singular too,
which is not the case. Assume now that there is a surface S in the pencil which contains a
singular curve C. The latter meets the quadric in at least one point, which by lemma 4.4
is on some Li. This point is a “pinch point” of S (for the definition of “pinch point” cf.
[SR] p. 423). We compute explicitly the pinch points along a line Li. Because of symmetry
reason it is enough to do it just for one line. We take L1:{x2 = ix0, x3 = ix1}. First we
consider the transformation x0 7→ y0, x1 7→ y1, x2 7→ y2 + i · y0, x3 7→ y3 + i · y1, which
maps L1 to {y2 = y3 = 0}. We call the transform L1 again.
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Let F := F (y0, y1, y2, y3, λ) be the equation of the pencil after the transformation. We
can write the Taylor expansion of F along L1

F = A(y0, y1, λ) · y2
2 + B(y0, y1, λ) · y2 · y3 + C(y0, y1, λ) · y2

3

+terms of order ≥ 3,

the pinch points are solution of

det

(

A 1

2
B

1

2
B C

)

= 0

which splits into the product

(x4
1 + 2x3

1x0 + 2x2
0x

2
1 − 2x3

0x1 + x4
0)(x

4
1 − 2x3

1x0 + 2x2
0x

2
1 + 2x3

0x1 + x4
0)

(x2
0 + 3x0x1 +

√
5x0x1 − x2

1)(x
2
0 − 3x0x1 −

√
5x0x1 − x2

1)

(3x4
0 − 2

√
5x2

0x
2
1 + 3x4

1)(x
4
0 + 16x2

0x
2
1 − 6

√
5x2

0x
2
1 + x4

1) = 0.

this has twenty distinct solutions (independent from λ), therefore we have “simple” pinch
points on Li, hence no singular curves. �

In this case as in the case of the pencils of [S] the singular points are contained on lines of
fix points (cf. (6.3) of [S]) and we get an estimate for the number of isolated singularities
as follows: D enote by S a surface of the IO-invariant pencil then deg(S∩∂iS) = 12·11 and
S ·∂iS = C+2L1+. . .+2L6 where degC = 12·11−12. Since C cannot be singular, there is
a j = 0, 1, 2, 3 s. t. C 6⊆∂jS. Hence deg(C∩∂jS) = (12·11−12)(12−1) = 120·11. Since the

singular points are computed two times in the intersection their number is ≤ 120·11

2
= 660.

D enote by L a line of fix points and assume that it meets the base locus in two points z1,
z2. Then for each surface S 6= q6 multzj

(L · S) = 2. In fact a line like L there can be only
a fix line of a matrix in the conjugacy class of (A2, A2) and it meets the base locus at some
line Li. Moreover an argumentation as in (7.1) of [S] shows that L cannot be tangent to
S at zi. By this fact and by a computation as in section 8 of [S], we find that a fix line
contains ≤ 8 singular points if it meets the base locus, and ≤ 12 singular points otherwise.
Finally, before giving an exact description of the singular points on the fix lines (cf. table
below) we remark that the fix lines of elements in the same conjugacy class form one orbit
under the action of IO and the points where they meet are real (cf. (7.3) and (7.5) of [S]).
The singular surfaces. We proceed by a direct computation using the lines of fix points.
The matrices of IO with fix lines containing singular points are in the conjugacy class of
(A2, A2), (S, S) or (A2, R4A2). The total number of distinct fix lines is 90, 80, resp. 180.
In the table below we give the singular surfaces and the singular points on the fix lines.
We choose a representative in each conjugacy class and a fix line of it, moreover we put
a′ :=

√
2 − 1, a :=

√
2 + 1,γ1 = 2

√
2 −

√
5, γ′

1
= 2

√
2 +

√
5, γ2 := 2 +

√
2 +

√
5 +

√
10,

γ′

2
:= −2 +

√
2 −

√
5 +

√
10, γ3 := −2 +

√
2 +

√
5 −

√
10, γ′

3
:= 2 +

√
2 −

√
5 −

√
10,

α1 := 1

2
(−1 +

√
2 −

√
10), α′

1
:= 1

2
(1 +

√
2 −

√
10), β1 := 1

2
(4 − 3

√
2 − 2

√
5 +

√
10),

α2 := 1

2
(1 +

√
2 +

√
10), α′

2 := 1

2
(−1 +

√
2 +

√
10), α3 := −2 + 3

2

√
2 −

√
5 + 1

2

√
10,
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α′

3 := 2+ 3

2

√
2+

√
5+ 1

2

√
10, β2 := 1

2
(−10+7

√
2−4

√
5+3

√
10), β3 := 1

2
(
√

2−2
√

5+
√

10),

β4 := 1

2
(2 +

√
2 +

√
10), c1 := − 74

9 72
+ 4

243

√
10, c2 := − 74

9 72
− 4

243

√
10:

matrix and fix line value of λ int. points

(A2, A2) : 0 −1

8
(1 : 0 : 0 : 0) (±a′ : 0 : 1 : 0)

x1 = x3 = 0 (0 : 0 : 1 : 0) (1 : 0 : ±a′ : 0)
(±1 : 0 : 1 : 0)

(A2, R4A2) : −1

8
(−a : 1 : 0 : 0)

x0 = −ax1, x3 = a′x2 (0 : 0 : 1 : a′)
(1 : ±a′ : 1 : a′)

c1 c2 (α1 : −β1 : 1 : a′) (α′

1
: −β3 : 1 : a′)

(−α2 : β1 : 1 : a′) (−α′

2
: β3 : 1 : a′)

(α3 : β2 : 1 : a′) (α′

3 : β4 : 1 : a′)
(−α3 : −β2 : 1 : a′) (−α′

3 : −β4 : 1 : a′)
(S, S) : 0 (1 : 0 : 0 : 0)

x1 = x2 = x3 (0 : 1 : 1 : 1)
(−1 : 1 : 1 : 1)

(−
√

5 : 1 : 1 : 1)

(
√

5 ± 2 : 1 : 1 : 1)
c1 c2 (γ1 : 1 : 1 : 1) (γ′

1
: 1 : 1 : 1)

(γ2 : 1 : 1 : 1) (γ′

2
: 1 : 1 : 1)

(γ3 : 1 : 1 : 1) (γ′

3
: 1 : 1 : 1)

Here the fix line of (A2, A2) contains two points of the base locus. Observe that the num-
ber of singular points is maximal on the lines, hence the four given λ’s are the only values
corresponding to singular surfaces.

Proposition 4.2. In the pencil SIO + λq6 we have the following IO-orbits of nodes

λ 0 c1 −1

8
c2

orbit 120 240 360 240
fix group mod. ±1 A4 D3 Z2 × Z2 D3

order 12 6 4 6

Proof. We analyze case by case the four different surface. Then a direct computation as
in section 4.2, shows that the singular points are nodes.
I. λ = 0. Observe that (1 : 0 : 0 : 0) ∈SIO is contained in three fix lines of elements in the
conjugacy class of (A2, A2). Moreover

(* ) there is a matrix of order four (1, γ)∈ IO, with γ2 = A2,

Hence (1, γ) and (A2, A2) commute and the four points on the fix line of (A2, A2) form
one orbit under the action of (1, γ). By this fact follows that we have a configuration of
lines and points. By the formula (1), we get N0 · 3 = 90 · 4, hence N0 = 120. The point
(1 : 0 : 0 : 0) is on the fix line of (S, S) too, more precisely it is contained on four such
lines. The formula 120 · 4 = 80 ·n0 shows n0 = 6 so the six points on the fix line are in the
orbit of length 120 too. In conclusion we have just one IO-orbit of singular double points.
II. λ = − 1

16
. The four points on the fix line of (A2, A2) form one orbit by (* ). The formula
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(1) gives N0 · n1 = 360. If n1 ≥ 2 then N0 ≤ 180 and the fix group in IO mod. ±1 has
order ≥ 8. Checking in the table on page 24 this is not possible. Hence N0 = 360 and
n1 = 1. The fix group has order four and it is isomorphic with Z2 × Z2. Each singular
point is contained in two fix lines of matrices in the conjugacy class of (A2, R4A2). Now
the formula (1) with N0 = 360, n1 = 2 and N1 = 180 gives n0 = 4. So we conclude that
the singular points on these fix lines are in the orbit of length 360 too.
III. λ = ci, i = 1, 2. The three points on the fix line of (S, S) form one orbit under the
action of (S, 1). The formula (1) gives N0 · n1 = 240. If n1 ≥ 2 then N0 ≤ 120 and the
fix group mod. ±1 has order ≥ 12, which is not possible (check in the table on page 24
again). Hence N0 = 240 and n1 = 1. The fix group has order six and it is isomorphic with
D3, hence three fix lines of matrices in (A2, R4A2) contain a singular points. The formula
(1) in this case gives n0 = 4, which shows that the singular points on these fix lines are in
the previous orbit too. �

We give now the table of the configurations of lines and points:

Repr. of the conj. class value of λ Configuration

(A2, A2) 0 −1

8
(1203, 904) (3601, 904)

(A2, R4A2) −1

8
ci (3602, 1804) (2403, 1804)

(S, S) 0 ci (1204, 806) (2401, 803)

4.3. The pencil of DnDm-invariant quartics. We take the generators q2 and f2 +f3 =
(x0 − ix1)(x0 + ix1)(x2 − ix3)(x2 + ix3). The latter is the union of four complex planes
meeting each other at the four complex lines {x0± ix1 = 0, x2± ix3 = 0} on q. The pencil
contains the multiple quadric q′2:= q2 − 2(f2 + f3)= (x2

0 + x2
1 − x2

2 − x2
3)

2 too. Hence with
this new generator the equation of the pencil becomes

q′2 + λq2 = (q′ + i
√

λq)(q′ − i
√

λq).

A surface in the pencil is the union of two quadrics which meet each other at the four lines
given above. An easy computation shows that none of the surface in the pencil contains
isolated singularities.

4.4. The pencil of ODn-invariant octics (n ≥ 6) and of IDn-invariant 12-ics

(n ≥ 8). We take generators q4, q6 and P8 =
∏

3

i=0
Ki, P12 =

∏

5

i=0
K ′

i (cf. (3.1.2)) and

we denote the pencils by Π m(λ):= Pm + λq
m
2 , m = 8, 12. We have

Lemma 4.6 . The base locus of the pencil is m
2
-times the intersection q ∩ Pm, m = 8, 12.

W here (as sets)

q ∩ P8 = fix lines of (1, Rn),

orbit of eight lines under (O, 1),

q ∩ P12 = fix lines of (1, Rn),

orbit of twelve lines under (I, 1).
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Proof. The element (1, Rn) has fix lines L1 : {x0 = −ix1, x2 = ix3}, L2 : {x0 = ix1, x2 =
−ix3} for each n. These are contained in each quadric Ks, s = 0, . . . , 3, resp. K ′

t,
t = 0, . . . , 5, hence they have at least multiplicity four, resp. six in the intersection q∩Pm,
m = 8, 12. By this fact and an argumentation as in [S], (5.5), it follows that the lines of
the length m = 8, 12-orbit under (O, 1), resp. (I, 1) are in the base locus too. Moreover
the previous multiplicity of intersection are exactly four, resp. six. �

Lemma 4.7. The pencil does not contain surfaces with isolated singular points.

Proof. The groups have order 96n, resp. 240n, since an isolated singular point has orbit
of finite length, it is fixed by (1, Rn). This shows that it is on the lines of the base locus,
hence not isolated. A contradiction to the assumption. �

Proposition 4.3. In the pencil we have the following singular surfaces, with one orbit of
double lines which are fix lines for the elements of some conjugacy class:

value of λ ODn : −1 1

3
0

IDn : 0

orbit ODn : 6 8 12

IDn : 30

fix lines in (A3, R
n
2

n ) (S,R2
6) (R,R

n
2

n )

the conj. class of

Proof. It is a direct computation using the equations x0 = x2, x1 = −x3; x0 = −(1 +√
3)x3 + x1, x2 = x3 + (1 −

√
3)x1 and x2 = (1 −

√
2)x0, x3 = (

√
2 − 1)x1 of a fix line of

(A3, R
n
2

n ), (S,R2
6
), resp. (R,R

n
2

n ). �

5. Final Remarks

1) By [Co2] p. 292 there are sixteen regular polytopes {p, q, r } in four dimensions. These
polytopes correspond to four distinct symmetry groups [p, q, r ] listed in the table below.
Three of these symmetry groups can be obtained from groups which we described above
by adding extra generators C and C ′, where C denotes the matrix given in section 3, C ′

is the matrix of [S] p. 433.

symmetry groups [3, 3, 3] [3, 3, 4] [3, 4, 3] [3, 3, 5]

our groups (OO)′ TT II

extra generators C C,C ′ C

The group [3, 3, 3] ∼= Sym(5) does not contain the Heisenberg group H, in fact it has some
invariant polynomials of odd degree (cf. [Co1] p. 780). In these notes we complete the
description of the G-invariant pencils of surfaces whenever G is the symmetry group of a
regular four dimensional polytope and G contains H.
2) In remark 3.3, with n = 3, we give the degree four invariant polynomials of the bi-
polyhedral dihedral group D3D3⊆SO(4). By Mukai [M] the quotient P3/D3D3 is iso-
morphic with the Satake compactification of the moduli space of abelian surfaces with
(1, 2)-polarization, hence this invariant polynomials should be related to modular forms.
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3) In [BS] the quotients X/G, G = TT,OO, II are described. It would be interesting to
examine the quotients in the remaining cases.

6. Computer Picture

We exhibit a computer picture of the I×O-symmetric surface of degree 12 with 360 nodes.
This has been realized with the program SU RF written by S. Endraß .

I × O-symmetric surface of degree 12 with 360 nodes
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A GEOMETRICAL CONSTRUCTION FOR THE POLYNOMIAL

INV ARIANTS OF SOME REFLECTION GROUPS

ALESSANDRA SARTI

Abstract. W e c o n stru c t in v a ria n t p o ly n o m ia ls fo r th e re fl e c tio n g ro u p s [3, 4, 3] a n d
[3, 3, 5 ] b y u sin g so m e sp e c ia l se ts o f lin e s o n th e q u a d ric P1 × P1 in P3. Th e n w e g iv e a
sim p le p ro o f o f th e w e ll k n o w n fa c t th a t th e rin g o f in v a ria n ts a re ra tio n a lly g e n e ra te d
in d e g re e 2 ,6 ,8 ,1 2 a n d 2 ,1 2 ,2 0 ,30 .

Key Words: P o ly n o m ia l in v a ria n ts, Refl e c tio n a n d C o x e te r g ro u p s, G ro u p a c tio n s o n
v a rie tie s.

M a th em a tics S u bject C la ssifi ca tion : P rim a ry 2 0 F 5 5 , 1 3F 2 0 ; Se c o n d a ry 1 4L30 .

0. In tro d u ctio n

T h e re a re fo u r g ro u p s g e n e ra te d b y re fl e c tio n s w h ich o p e ra te o n th e fo u r-d im e n sio n a l E u -
c lid e a n sp a c e . T h e se a re th e sy m m e try g ro u p s o f so m e re g u la r fo u r d im e n sio n a l p o ly to p e s
a n d a re d e sc rib e d in [C 2 , p . 1 45 a n d T a b le I p . 2 9 2 -2 9 5]. W ith th e n o ta tio n th e re th e
p o ly to p e s, th e g ro u p s a n d th e ir o rd e rs a re

P o ly to p e 5 − c e ll 1 6 − c e ll 2 4 − c e ll 600 − c e ll

G ro u p [3, 3, 3] [3, 3, 4] [3, 4, 3] [3, 3, 5]

O rd e r 1 2 0 384 1 1 52 1 4400

T h e y o p e ra te in a n a tu ra l w a y o n th e rin g o f p o ly n o m ia ls R = R[x0, x1, x2, x3] a n d it is
w e ll k n o w n th a t th e rin g o f in v a ria n ts RG (G o n e o f th e g ro u p s a b o v e ) is a lg e b ra ic a lly
g e n e ra te d b y a se t o f fo u r in d e p e n d e n t p o ly n o m ia ls (c f. [B , p . 357 ]). C o x e te r sh o w s in [C 1 ]
th a t th e rin g s RG, G = [3, 3, 3] o r [3, 3, 4] a re g e n e ra te d in d e g re e 2 , 3, 4, 5 re sp . 2 , 4, 6, 8
a n d sin c e th e p ro d u c t o f th e d e g re e s is e q u a l to th e o rd e r o f th e g ro u p , a n y o th e r in v a ria n t
p o ly n o m ia l is a c o m b in a tio n w ith re a l c o e ffi c ie n ts o f p ro d u c ts o f th e se in v a ria n ts (i.e ., in
th e te rm in o lo g y o f [C 1 ], th e rin g RG is rationally generated b y th e p o ly n o m ia ls). C o x e te r
a lso g iv e s e q u a tio n s fo r th e g e n e ra to rs. In th e c a se o f th e g ro u p s [3, 4, 3] a n d [3, 3, 5] h e
re c a lls a re su lt o f R a c a h ,(c f. [R ]), w h o sh o w s w ith th e h e lp o f th e th e o ry o f L ie g ro u p s
th a t th e rin g s RG a re ra tio n a lly g e n e ra te d in d e g re e 2 , 6, 8, 1 2 re sp . 2 , 1 2 , 2 0, 30.
E q u a tio n s fo r th e se g e n e ra tin g p o ly n o m ia ls c a n b e fo u n d e .g . in [M ], [S m , p . 2 1 8], [C S ,
p . 2 03] a n d m o st re c e n tly in [IK M ] (th e g ro u p s a re o fte n d e n o te d in th e lite ra tu re b y
F4 a n d H4). T h e m e th o d u se d b y M e th a in [M ] is sim p le : H e c o n sid e rs th e e q u a tio n s
o f th e re fl e c tin g h y p e rp la n e s a n d h e fi n d s a se t o f lin e a r fo rm s w h ich a re in v a ria n t u n d e r
th e a c tio n o f th e g ro u p s [3, 4, 3] re sp . [3, 3, 5], th e n h e u se s th e se to g iv e e q u a tio n s fo r
th e p o ly n o m ia l in v a ria n ts (a sim ila r m e th o d is u se d b y C o x e te r in th e c a se o f th e g ro u p s
[3, 3, 3] a n d [3, 3, 4]). In [S m , p . 2 1 8] S m ith e x p la in s h o w to o b ta in e q u a tio n s fo r th e in v a ri-
a n t p o ly n o m ia ls o f th e rin g s RG, b u t h e re fe rs to [C S ] fo r th e e x p lic it e q u a tio n s, h o w e v e r
o n ly in th e c a se o f th e g ro u p [3, 4, 3]. In fa c t C o n w a y a n d S lo a n e u se c o d in g th e o ry to
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construct the invariants of this group, but they do not consider the case of [3, 3, 5]. In
[IKM] the authors find the invariants by solving a special system of partial diff erential
equations. But as they say the method is quite elaborated and they need the support of
computer-algebra.
In this paper we give a diff erent construction, which should be interesting in particular
from the point of view of algebraic geometry: We consider some special [3, 4, 3]-, resp.
[3, 3, 5]-orbit of lines on the quadric P1 ×P1 in P3 and construct the invariant polynomials
by using the action of the group and geometric considerations. We remark that in our
construction of the polynomials we use very little computer-algebra, in fact only MA PLE
for some computation in Proposition 2.1 and 3.2 (cf. Section 4). Otherwise everything is
proved by hand and by geometric considerations. This construction seems to be interest-
ing for the following reasons:
1. We can give a simple proof of Racah’s result,
2. We establish relations between the invariants of the groups [3, 4, 3] and [3, 3, 5] and the
invariants of some binary subgroups of S U (2),
3. The construction may be helpful in the study of the geometry of the algebraic sur-
faces defined by the zero sets of the invariant polynomials. We have in fact families of
surfaces with many symmetries and by the construction, for example it is possible to de-
termine immediately the base locus of the families, which consists of sets of lines on P1×P1.

We explain now briefly our method and also the structure of the paper: D enote by T , O

and I the rotations subgroups in S O(3, R) of the platonic solids: tetrahedron, octahedron
and icosahedron, it is well known that S O(4, R) contains central extensions G6 of T × T ,
G8 of O × O and G12 of I × I by ±1. Then G6 is an index four subgroup of [3, 4, 3] and
G12 is an index two subgroup of [3, 3, 5] (cf. e.g. [Sa], Section 3). These two groups, and
G8 too, act on the three dimensional projective space P3, and in particular on the two
ruling of the quadric P1 ×P1 (this action is studied in [Sa]). The quadric can be described
as the zero set of the quadratic form:

x2

0 + x2

1 + x2

2 + x2

3

which is [3, 4, 3]- and [3, 3, 5]-invariant. By considering some special orbits of lines of P1×P1

under G6, G12 and G8, it is possible to construct explicitly [3, 4, 3]- and [3, 3, 5]-invariant
polynomials, this is done and explained in details in Section 2. In Section 3 we show that
our polynomials generate the rings of invariants RG by showing some relations between
them and the invariant forms of the binary tetrahedral group and of the binary icosahedral
group in S U (2). More precisely we define a surjective map between polynomials of degree
d on P3 and polynomials of be-degree (d, d) on P1 × P1. Then we show that the image of
a Gn-invariant polynomial n = 6, 12 splits into the product of two invariant polynomials
of the same degree under the action of the binary subgroup in S U (2) corresponding to
Gn (there are classical 2 : 1 maps S U (2) −→ S O(3), S U (2) × S U (2) −→ S O(4) which
we recall in Section 1). This corresponds in some sense to the fact that Gn contains the
product G × G (for n = 6 is G = T and for n = 12 is G = I) and each copy G × 1, 1 × G

operates on one ruling of P1×P1 and leaves the other ruling invariant. This relation is the
main ingredient in our proof of the result of Racah (Corollary 2.1). It seems to be however
interesting by itself. F inally Section 4 contains explicit computations and in Section 5
we present open problems and possible applications of the results of the paper. It is a

p leasu re to th ank W . B arth of th e U niversity of E rlangen for m any h elp fu l discu ssions and

th e referees for pointing m e ou t som e im portant b ib liograp h ical inform ation.
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1. N otations and preliminaries

Denote by R the ring of polynomials in four variables with real coefficients R[x0, x1, x2, x3],
by G a finite group of homogeneous linear substitutions, and by RG the ring of invariant
polynomials.
1. A set of polynomials F1, . . . , Fn in R is called algebraically dependent if there is a non
trivial relation

∑
αI(F

i1
1

· . . . · F in
n ) = 0,

where I = (i1, . . . , in) ∈ N
n, αI ∈ R.

2. The polynomials are called algebraically independent if they are not dependent. For the
ring RG, there always exists a set of four algebraically independent polynomials (cf. [B],
thm. I, p. 357).
3. We say that RG is algebraically generated by a set of polynomials F1, . . . , F4, if for any
other polynomial P ∈ RG we have an algebraic relation

∑
αI(P

i0 · F i1
1

· . . . · F i4
4

) = 0.

4. We say that the ring RG is rationally generated by a set of polynomials F1, . . . , F4, if
for any other polynomial P ∈ RG we have a relation

∑
αI(F

i1
1

· . . . · F i4
4

) = P, αI ∈ R

5. The four polynomials of 3 are called a basic set if they have the smallest possible degree
(cf. [C1]).
6. There are two classical 2 : 1 coverings

ρ : SU(2) → SO(3) and σ : SU(2) × SU(2) → SO(4),

we denote by T,O, I the tetrahedral group, the octahedral group and the icosahedral group
in SO(3) and by T̃ , Õ, Ĩ the corresponding binary groups in SU(2) via the map ρ. The

σ-images of T̃ × T̃ , Õ× Õ and Ĩ × Ĩ in SO(4) are denoted by G6, G8 and G12. By abuse of
notation we write (p, q ) for the image in SO(4) of an element (p, q ) ∈ SU(2)× SU(2). As
showed in [Sa] (3.1) p. 436, the groups G6 and G12 are subgroups of index four respectively
two in the reflections groups [3, 4, 3] and [3, 3, 5].

2. G eometrical construction

Denote by G̃ one of the groups T̃ , Õ or Ĩ. Clearly, the subgroups G̃ × 1 and 1 × G̃ of
SO(4) are isomorphic to G̃. Moreover, each of them operates on one of the two rulings of
the quadric P1 ×P1 and leaves invariant the other ruling (as shown in [Sa]). We recall the
lengths of the orbits of points under the action of the groups T , O and I

group T O I

lengths of the orbits 12, 6, 4 24, 12, 8, 6 60, 30, 20, 12

These lines are fixed by elements (p, 1) ∈ G̃× 1 on one ruling, resp. (1, p′) ∈ 1× G̃ on the
other ruling of the quadric. Recall that these elements have two lines of fix points with
eigenvalues α, ᾱ which are in fact the eigenvalues of p and p′. We call two lines L,L′ of
P1 × P1 a couple if L is fixed by (p, 1) with eigenvalue α and L′ is fixed by (1, p) with the
same eigenvalue.
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2.1. The invariant polynomials of G6 and of G12. Consider the six couples of lines
L1, L

′

1, . . . , L6, L
′

6 in P1 × P1 which form one orbit under the action of T̃ × 1, resp. 1× T̃ ,

and denote by f
(6)
11 , . . . , f

(6)
66 the six planes generated by such a couple of lines (and by

abuse of notation their equation, too). N ow set

F6 =
∑

g∈T̃×1

g(f
(6)
11 · f

(6)
22 · . . . · f

(6)
66 ) =

∑

g∈T̃×1

g(f
(6)
11 ) · g(f

(6)
22 ) · . . . · g(f

(6)
66 ).

Observe that an element g ∈ T̃ ×1 leaves each line of one ruling invariant and operates on
the six lines of the other ruling. A similar action is given by an element of 1× T̃ . Since we
sum over all the elements of T̃ × 1, the action of 1× T̃ does not give anything new, hence
F6 is G6-invariant. Furthermore observe that F6 has real coefficients. In fact, in the above
product, for each plane generated by the lines Li, L′

i we also take the plane generated by

the lines which consist of the conjugate points. The latter has equation f̄ii
(6)

, i.e., we have

an index j 6= i with f
(6)
j j = f̄ii

(6)
and the products f

(6)
ii · f̄ii

(6)
have real coefficients.

Consider now the orbits of lengths eight and twelve under the action of Õ × 1 and 1 × Õ

and the planes f
(8)
ii , f

(12)
j j generated by the eight, respectively by the twelve couples of

lines. As before the polynomials

F8 =
∑

g∈T̃×1

g(f
(8)
11 · . . . · f

(8)
88 ),

F12 =
∑

g∈T̃×1

g(f
(12)
11 · . . . · f

(12)
1212)

are G6-invariant and have real coefficients.
Finally we consider the lines of P1 × P1 which form orbits of length 12, 20 and 30 under
the action of Ĩ × 1 resp. 1 × Ĩ. The planes generated by the couples of lines produce the
G12-invariant real polynomials

Γ12 =
∑

g∈Ĩ×1

g(h
(12)
11 · . . . · h

(12)
1212),

Γ20 =
∑

g∈Ĩ×1

g(h
(20)
11 · . . . · h

(20)
2020),

Γ30 =
∑

g∈Ĩ×1

g(h
(30)
11 · . . . · h

(30)
3030).

2.2. The invariant polynomials of the refl ection g rou ps. We consider the matrices

C =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









, C ′ =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









,

as in [Sa] (3.1) p. 436, the groups generated by G6, C, C ′ and G12, C are the reflections
groups [3, 4, 3] respectively [3, 3, 5].

Proposition 2 .1 . 1. The polynomials F6, F8, F12, Γ12, Γ20, Γ30 are C invariant.

2 . The polynomials F6, F8, F12 are C ′ invariant.



Polynomial invariants of some reflection groups 27

Proof. 1. The matrix C interchanges the two rulings of the quadric, hence the polynomials
Fi and Γj are invariant by construction. We prove 2 by a direct computation in the last
Section. �

From this fact we obtain

Corollary 2.1. The polynomials q, F6, F8, F12 are [3, 4, 3]-invariant and the polynomials

q,Γ12,Γ20,Γ30 are [3, 3, 5]-invariant.

Here we denote by q the quadric P1 × P1.

3. T h e rings of invariant forms

Identify P3 with PM(2 × 2, C) by the map

(x0 : x1 : x2 : x3) 7→

(

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)

.(1)

Furthermore consider the map

C
2 × C

2 −→ M(2 × 2, C)

((z0, z1), (z2, z3)) 7−→

(

z0z2 z0z3

z1z2 z1z3

)

= Z.
(2)

Then Z is a matrix of determinant x2
0 + x2

1 + x2
2 + x2

3 = 0 which is the equation of q. Now
denote by OP3

(n) the sheaf of regular functions of degree n on P3 and by Oq(n, n) the
sheaf of regular function of be-degree (n, n) on the quadric q. We obtain a surjective map
between the global sections

φ : H0(OP3
(n)) −→ H0(Oq(n, n))(3)

by doing the substitution

x0 = z0z2 + z1z3
2 , x1 = z0z2 − z1z3

2i ,

x2 = z0z3 − z1z2
2 , x3 = z0z3 + z1z2

2i

in a polynomial p(x0, x1, x2, x3) ∈ H0(OP3
(n)). Observe that φ(q) = 0. Now let

t = z0z1(z
4
0 − z4

1),
W = z8

0 + 14z4
0z4

1 + z8
1 ,

χ = z12
0 − 33(z8

0z4
1 + z4

0z8
1) + z12

1

denote the T̃ -invariant polynomials of degree 6, 8 and 12 and let

f = z0z1(z
10
0 + 11z5

0z5
1 − z10

1 ),
H = −(z20

0 + z20
1 ) + 228(z15

0 z5
1 − z5

0z15
1 ) − 494z10

0 z10
1 ,

T = (z30
0 + z30

1 ) + 522(z25
0 z5

1 − z5
0z25

1 ) − 10005(z20
0 z10

1 + z10
0 z20

1 )

be the Ĩ-invariant polynomials of degree 12, 20, 30 given by Klein in [K] p. 51-58. Put
t1 = t(z0, z1), t2 = t(z2, z3), W1 = W (z0, z1), W2 = W (z2, z3) and analogously for the
other invariants.
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Proposition 3.1. If p ∈ H0(OP3(n)) is G6-in va ria n t, th en :

φ(p) =
∑

I

αIt
α1

1
t
α′

1

2
W α2

1
W

α′

2

2
χα3

1
χ

α′

3

2

If p is G12-in va ria n t, th en :

φ(p) =
∑

J

βJf
β1

1
f

β′

1

2
H

β2

1
H

β′

2

2
T β3

1
T

β′

3

2

w h ere

I = {(α1, α
′

1, α2, α
′

2, α3, α
′

3)|αi, α
′

i ∈ N, 6α1 + 8α2 + 1 2α3 = n, 6α′

1 + 8α′

2 + 1 2α′

3 = n},

J = {(β1, β
′

1, β2, β
′

2, β3, β
′

3)|βi, β
′

i ∈ N, 1 2β1 + 2 0β2 + 3 0β3 = n, 1 2β′

1 + 2 0β′

2 + 3 0β′

3 = n}.

P roo f. P u t

φ(p) = p′(z0, z1, z2, z3).

A n e le m e n t g = (g1, g2) in G6 o r G12 o p e ra te s o n (x0 : x1 : x2 : x3) ∈ P3 b y th e m a trix
m u ltip lic a tio n

g1

(

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)

g−1

2

a n d o n th e m a trix Z o f (2 ) b y

g1

(

z0z2 z0z3

z1z2 z1z3

)

g−1

2
= g1

(

z0

z1

)

·
(

z2 z3

)

g−1

2
.

C le a rly if p is G6- o r G12-in v a ria n t th e n a lso th e p ro je c tio n φ(p) w ith th e p re v io u s o p e ra tio n

is. In p a rtic u la r fo r g = (g1, 1 ) in T̃×1 , re sp . in Ĩ×1 th e p o ly n o m ia l p′ is T̃×1 -, re sp e c tiv e ly

Ĩ × 1 -in v a ria n t a s p o ly n o m ia l in th e c o o rd in a te s (z0 : z1) ∈ P1 a n d fo r a n y (z2 : z3) ∈ P1.

O n th e o th e r h a n d fo r g = (1 , g2) in 1 × T̃ , re sp . in 1 × Ĩ th e p o ly n o m ia l p′ is 1 × T̃ -,

re sp e c tiv e ly 1 × Ĩ-in v a ria n t a s p o ly n o m ia l in th e c o o rd in a te (z2 : z3) ∈ P1 a n d fo r a n y
(z0 : z1) ∈ P1. H e n c e p′ m u st b e in th e fo rm o f th e sta te m e n t. �

B y a d ire c t c o m p u ta tio n in S e c tio n 4 w e p ro v e th e fo llo w in g

Proposition 3.2. T h e qu a d ric q d oes n o t d iv id e th e po ly n o m ia ls Fi, Γj. M o reo ver, F6

d oes n o t d iv id e F12.

C orolla ry 3.1 . W e h a ve φ(q) = 0 , φ(F6) = t1 · t2, φ(F8) = W1 · W2, φ(F12) = χ1 · χ2,
φ(Γ12) = f1 · f2, φ(Γ20) = H1 · H2, φ(Γ30) = T1 · T2 (u p to so m e sca la r fa cto r).

P roo f. T h is fo llo w s fro m P ro p o sitio n 3 .1 a n d 3 .2

Proposition 3.3. T h e po ly n o m ia ls q, F6, F8, F12, resp . q,Γ12,Γ20,Γ30 a re a lgebra ica lly
in d epen d en t.

P roo f. L e t
∑

I αIq
i1F i2

6
F i3

8
F i4

12
= 0 a n d

∑

J βJqj1Γj2
12

Γj3
20

Γj4
30

= 0 b e a lg e b ra ic re la tio n s,
I = (i1, i2, i3, i4) ∈ N

4, J = (j1, j2, j3, j4) ∈ N
4, αI , βJ ∈ R, th e n

0 = φ(
∑

I αIq
i1F i2

6
F i3

8
F i4

12
)

=
∑

I′ αI′φ(F6)
i′
2φ(F8)

i′
3φ(F12)

i′
4

=
∑

I′ αI′t
i′
2

1
t
i′
2

2
W

i′
3

1
W

i′
3

2
χ

i′
4

1
χ

i′
4

2

(4 )
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similarly

0 = φ(
∑

J βJqj1Γj2
12

Γj3
20

Γj4
30

)

=
∑

J ′ βJ ′φ(Γ12)
j′
2φ(Γ20)

j′
3φ(Γ30)

j′
4

=
∑

J ′ βJ ′f
j′
2

1
f

j′
2

2
H

j′
3

1
H

j′
3

2
T

j′
4

1
T

j′
4

2
.

(5 )

If the polynomials t1,W1, χ1 are fi xed, we obtain a relation between t2,W2 and χ2, which
is the same relation as for t1, W1 and χ1 if we fi x t2,W2 and χ2. The same holds for
the polynomials f1,H1,T1 and f2,H2,T2. F rom [K ] p. 5 5 and p. 5 7 there are only the
relations

108 t41 − W 3

1 + χ2

1 = 0, 108 t42 − W 3

2 + χ2

2 = 0

and

T 2

1 + H3

1 − 17 28f5

1 = 0, T 2

2 + H3

2 − 17 28f5

2 = 0

between these polynomials. By multiplying these relations, however, it is not possible to
obtain expressions lik e (4) and (5 ). �

Corollary 3.2. The polynomials q, F6, F8, F12, resp. q,Γ12,Γ20,Γ30 generate rationally
the ring of invariant polynomials of [3, 4, 3], resp. [3, 3, 5 ].

Proof. (cf. [C1] p. 7 7 5 ) By Proposition 3.3 and Proposition 3.2 these are algebraically
independent, moreover the products of their degrees are

2 · 6 · 8 · 12 = 115 2 and 2 · 12 · 20 · 30 = 14400,

which are eq ual to the order of the groups [3, 4, 3] and [3, 3, 5 ]. By [C1] this implies the
assertion. �

4. E x plicit computations

W e recall the following matrices of S O (4) (cf. [Sa]):

(q2, 1) =













0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0













, (1, q2) =













0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0













,

(p3, 1) = 1

2













1 −1 1 −1

1 1 −1 −1

−1 1 1 −1

1 1 1 1













, (1, p3) = 1

2













1 1 −1 1

−1 1 −1 −1

1 1 1 −1

−1 1 1 1













,

(p4, 1) = 1√
2













1 −1 0 0

1 1 0 0

0 0 1 −1

0 0 1 1













, (1, p4) = 1√
2













1 1 0 0

−1 1 0 0

0 0 1 −1

0 0 1 1













,
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(p5, 1) = 1
2













τ 0 1 − τ −1

0 τ −1 τ − 1

τ − 1 1 τ 0

1 1 − τ 0 τ













,

(1, p5) = 1
2













τ 0 τ − 1 1

0 τ −1 τ − 1

1 − τ 1 τ 0

−1 1 − τ 0 τ













,

where τ = 1
2(1 +

√
5). Then we have

G roup G enerators

G6 (q2, 1), (1, q2), (p3, 1), (1, p3)

G8 (q2, 1), (1, q2), (p3, 1), (1, p3), (p4, 1), (1, p4)

G12 (q2, 1), (1, q2), (p3, 1), (1, p3), (p5, 1), (1, p5)

N ow we can write down the equations of the fix lines on P1 × P1 and those of the planes
which are generated by a couple of lines. The products of planes of Section 2.1 in the case
of the group G6 are

f
(6)
11 · f (6)

22 · . . . · f (6)
66 = (x2 − ix3)(x1 + ix3)(x2 + ix3)(x1 − ix2)(x1 − ix3)(x1 + ix2),

f
(8)
11 · f (8)

22 · . . . · f (8)
88 = (x1 + ax2 − bx3)(x1 + bx2 − ax3)(x1 − ax2 − bx3)(x1 − ax3 − bx2)

(x2 + bx1 − ax3)(x2 + ax1 − bx3)(x2 − bx1 + ax3)(x2 + bx3 − ax1),

f
(12)
11 · f (12)

22 · . . . · f (12)
1212 = (x3 − x1 + cx2)(x3 − x1 − cx2)(x2 + x3 − cx1)(x2 + x3 + cx1)

(x3 − x2 + cx1)(x3 − x2 − cx1)(x1 + x2 + cx3)(x1 + x2 − cx3)

(x1 + x3 − cx2)(x1 + x3 + cx2)(x1 − x2 + cx3)(x1 − x2 − cx3),

with a = (1/2)(1 + i
√

3), b = (1/2)(1 − i
√

3), c = i
√

2.

Then the G6-invariant polynomials F6, F8 and F12 have the following expressions

F6 = x6
0 + x6

1 + x6
2 + x6

3 + 5x2
0x

2
1(x

2
0 + x2

1) + 5x2
1x

2
3(x

2
1 + x2

3) + 5x2
1x

2
2(x

2
1 + x2

2)

+6x2
0x

2
2(x

2
0 + x2

2) + 6x2
0x

2
3(x

2
0 + x2

3) + 6x2
3x

2
2(x

2
2 + x2

3) + 2x2
0x

2
2x

2
3,

F8 = 3
∑

x8
i + 12

∑

x6
i x

2
j + 30

∑

x4
i x

4
j + 24

∑

x4
i x

2
jx

2
k + 144x2

0x
2
1x

2
2x

2
3,

F12 =
123

8

∑

x12
i +

231

4

∑

x10
i x2

j +
21

8

∑

x8
i x

4
j −

∑ 255

2

∑

x6
i x

6
j +

9 49

2

∑

x8
i x

2
jx

2
k

+
1839

2

∑

x6
i x

4
jx

2
k +

6111

4

∑

x4
i x

4
jx

4
k + 1809

∑

x6
i x

2
jx

2
kx

2
h +

7281

2

∑

x4
i x

4
jx

2
kx

2
h.

Here the sums run over all the indices i, j, k , h = 0, 1, 2, 3, always being diff erent when
appearing together. By applying the map φ, a computer computation with M APLE
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shows that

φ(F6) = −13

16
t1 · t2,

φ(F8) =
3

64
W1 · W2,

φ(F12) =
3

256
χ1 · χ2

as claimed in Corollary 3.1.
Proof of Proposition 2.1, 2. The polynomials F6, F8, F12 remain invariant by interchang-
ing x2 with x3, which is what the matrix C ′ does. �

Proof of Proposition 3 .2. We write the computations just in the case of the [3, 4, 3]-
invariant polynomials. Consider the points p1 = (i

√
2 : 1 : 1 : 0) and p2 = (1 : i : 0 : 0),

then q(p1) = q(p2) = 0 and by a computer computation with MAPLE we get F6(p1) = 26,
F8(p2) = 12 and F12(p2) = 32. This shows that q does not divide the polynomials. Since
F6(p2) = 0, F6 does not divide F12. �

Remark 4.1. Observe that an equation for a [3, 4, 3]-invariant polynomial of degree six
and for a [3, 3, 5]-invariant polynomial of degree twelve was given by the author in [Sa] by
a direct computer computation with MAPLE.

5. F inal R emark s

1. The zero sets of the polynomials which are described in this paper define algebraic
surfaces in P3(C) with many symmetries. Such surfaces are expected to have many in-
teresting geometrical properties: many lines, many singularities, etc. In [Sa] it is shown
that the projective one-dimensional families of surfaces with equations F6 + λq3 = 0 and
Γ12 + λq6 = 0, λ ∈ P1 contain each four surfaces with many nodes. The article also
describes a one-dimensional [3, 4, 3]-invariant family of surfaces of degree 8. The family
contains four surfaces with A1-singularities and it is also G8-symmetric. In Figure 1 we
show the picture of a surface with 144 nodes. But in fact the whole [3, 4, 3]-invariant family
of surfaces of degree 8 is projectively two-dimensional with equation F8 +λF6 ·q+ µ q4 = 0,
(λ, µ ) ∈ P2. It would be interesting to describe more surfaces in this family and in the
families of [3, 4, 3]-symmetric surfaces of degree 12 and of [3, 3, 5]-symmetric surfaces of
degree 20 and 30.

2. Another interesting problem is to study the quotients of the previous surfaces by the
groups. In [BS] it is shown that the G6-quotient, resp. the G12-quotient of a surface in
the family defined by F6 + λq3 = 0, resp. defined by Γ12 + λq6 = 0 is a K3-surface. It
would be interesting to identify the quotients by the groups [3, 4, 3], resp. [3, 3, 5] which
contain the groups G6, resp. G12. And in general, to describe more quotients.
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Fig. 1. [3, 4, 3]-symmetric octic with 144 nodes

x8

0
+ x8

1
+ x8

2
+ x8

3
+ 14

(

x4

0
x4

1
+ x4

0
x4

2
+ x4

0
x4

3
+ x4

1
x4

2
+ x4

1
x4

3
+ x4

2
x4

3

)

+

+168x2
0x

2
1x

2
2x

2
3 − 9

16
(x2

0 + x2
1 + x2

2 + x2
3)

4 = 0
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COUNTING LINES ON SURFACES

SAMUEL BOISSIÈR E AN D ALESSAN D R A SAR T I

Abstract. T h is p a p e r d e a ls w ith su rfa c e s w ith m a n y lin e s. It is w e ll-k n o w n th a t a c u b ic
c o n ta in s 2 7 o f th e m a n d th a t th e m a x im a l n u m b e r fo r a q u a rtic is 6 4 . In h ig h e r d e g re e
th e q u e stio n re m a in s o p e n . H e re w e stu d y c la ssic a l a n d n e w c o n stru c tio n s o f su rfa c e s
w ith h ig h n u m b e r o f lin e s. W e o b ta in in p a rtic u la r a sy m m e tric o c tic w ith 3 5 2 lin e s.

Cubic surface with 27 lines1

1 . In tro d u ctio n

M o tiv atio n fo r this p ap er is the article in 1 9 4 3 o f S eg re [1 2] which stud ies the fo llowing
classical p ro blem : W hat is the m ax im um num ber o f lines a surface o f d eg ree d in P3 can
hav e? S eg re answers this q uestio n fo r d = 4 by using so m e nice g eo m etry , showing that
it is ex actly 6 4 . F o r the d eg ree three it is a classical result that each sm o o th cubic in P3

co ntains 27 lines, but fo r d ≥ 5 this num ber is still no t k nown. In this case, S eg re shows in
loc.cit. that the m ax im al num ber is less o r eq ual to (d− 2)(1 1 d− 6 ) but this bo und is far
fro m beeing sharp . Ind eed , alread y in d eg ree fo ur it g iv es 76 lines which is no t o p tim al.
S o fro m o ne hand o ne can try to im p ro v e the up p er bo und fo r the num ber o f lines `(d) a
surface o f d eg ree d in P3 can hav e, o n the o ther hand it is interesting to co nstruct surfaces
with as m any lines as p o ssible to g iv e a lower bo und fo r `(d).
It is no to rio usly d iffi cult to co nstruct ex am p les o f surfaces with m any lines. G o o d ex am p les
so far are the surfaces o f the k ind F (x , y , z , t) = φ(x , y ) − ψ(z , t) = 0 where φ and ψ are
ho m o g eneo us p o ly no m ials o f d eg ree d. S eg re in [1 3] stud ies the case o f d eg F = 4 showing
that in this case the p o ssible num bers o f lines are 1 6 , 32, 4 8 , 6 4 . H e fi nd s these num bers by
stud y ing the auto m o rp hism s o f P1 between the two sets o f fo ur p o ints φ = 0 and ψ = 0 .
Cap o raso -H arris-M azur in [3], by using sim ilar m etho d s as S eg re, then stud y the m ax im al
num ber o f lines Nd o n such surfaces in any d eg ree d showing that Nd ≥ 3d2 fo r each d

and N4 ≥ 6 4 , N6 ≥ 1 8 0 , N8 ≥ 25 6 , N12 ≥ 8 6 4 , N20 ≥ 1 6 0 0 . In this p ap er we show the
ex actness o f these results. F irst we no te that it is eno ug h to co nsid er surfaces o f the k ind
φ(x , y ) − φ(z , t) = 0 and by a careful analy sis o f the auto m o rp hism s o f the set o f p o ints
φ = 0 o n P1 we can list all the p o ssible num bers o f lines o n surfaces o f this k ind fo r all d
and then we p ro v e:
P ro p o sitio n 3 .3 T h e m a x im a l n u m bers of lin es on F = φ(x , y ) − ψ(z , t) = 0 a re:

1 9 9 1 Mathematics Subject Classification. P rim a ry 1 4 N 1 0 ; Se c o n d a ry 1 4 Q 1 0 .
K ey w ord s and p hrases. Lin e s o n su rfa c e s, e n u m e ra tiv e g e o m e try .
T h e se c o n d a u th o r is su p p o rte d b y D F G R e se a rch G ra n t SA 1 3 8 0 / 1 -2 .
1http://enriques.mathematik.uni-mainz.de/surf/logo.jpg
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• Nd = 3d2 for d ≥ 3, d 6= 4, 6, 8, 12, 20;
• N4 = 64, N6 = 180, N8 = 256, N12 = 864, N20 = 1600.

It is well-known that the Fermat surfaces (xd − yd) − (zd − td) = 0 have 3d2 lines. O ur
proof provides a method to write equations of surfaces φ(x, y) − ψ(z, t) = 0 with each
possible number of lines. In particular, our proposition shows that it is not possible, with
these surfaces, to obtain better examples and a better lower bound for `(d). So, in order to
find better examples, one has to use new methods. In this paper we explore the following
kinds of surfaces:

• d-covering of the plane P2 branched over a curve of degree d.
• Symmetric surfaces in P3.

We show that the first method cannot give more than 3d2 lines (P roposition 4.2).
T he second method is based on the following idea: if a surface has many automorphisms
(many symmetries) then possibly it contains many orbits of lines. T his idea was used
successfully in the study of surfaces with many nodes. In this paper we find a G8-invariant
octic with 352 lines, where G8 ⊂ P GL (3,C) has order 576 (P roposition 5.2). T his shows
`(8) ≥ 352, improving the previous bound of 256.
A s stated before, one can also try to improve the upper bound for `(d). Following the
idea of Segre [12] and imposing some extra conditions on the lines on a surface, we can
find the bound d(7d−12) which surprisingly agrees with the maximal examples in degrees
4, 6, 8, 12 (Section 6).
Finally a related problem to this is to determine the maximal number m(d) of skew-lines
a surface of degree d in P3 can have. It is well-known that m(3) = 6 and m(4) = 16. For
d ≥ 5, this value is not known. A n upper bound m(d) ≤ 2d(d − 2) is given by Miyaoka
in [7], which is sharp for d = 3, 4. T here are results of R ams [9, 10] giving examples
of surfaces with d(d − 2) + 2 skew-lines (d ≥ 5) and with 19 skew-lines for d = 5. In
P roposition 8.2 we improve his examples for d ≥ 7 and gcd(d, d − 2) = 1 to d(d − 2) + 4.
T he paper is organized as follows. In Section 2 we give an overview of known results. In
Sections 3 and 4 we describe completely the surfaces of the kind φ(x, y)− ψ(z, t) = 0 and
the d-coverings of the plane td = f(x, y, z). Section 5 is devoted to the investigation of
symmetric surfaces, and in particular of an octic with 352 lines. In Section 6 we present the
uniform bound d(7d−12) and Section 7 is an application to the problem of the number of
rational points on curves. Finally, Section 8 deals with the skew-lines: we give an overview
of known results and some new examples.

A cknow led gements. We thank D uco van Straten for suggesting us this nice problem and
for interesting discussions.

2. General results

O ur objective is to investigate the number of lines contained in a smooth surface in P3.
We first recall classical results: the generic situation and the bound of Segre.

2.1. Generic situation.

It is a well-known fact that each smooth quadric surface in P3 contains an infinite number
of lines and each smooth cubic surface in P3 contains exactly 27 lines. What happens for
surfaces of higher degree? Generically:

Proposition 2 .1 . A generic smooth surface of d egree d ≥ 4 in P3 contains no line.

We briefl y recall the proof, following [1, 2].
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Proof. Let V be the vector space of degree d homogeneous polynomials in the coordinates
x, y, z, t and G be the Grassmannian of 2-planes in C

4. Consider the incidence variety
F := {(L, f) ⊂ G× V | f|L ≡ 0} with its projections p : F → G and q : F → V .
• Let L ∈ G and assume that L is generated by the vectors (1, 0, 0, 0) and (0, 1, 0, 0) in
C

4. Consider the affine neighbourhood of L in G:

U := Span{(1, 0, a, b), (0, 1, c, d)}

where a, b, c, d are local coordinates. If f ∈ p−1(U), then

f (λ(1, 0, a, b) + µ(0, 1, c, d)) = 0 ∀λ, µ ∈ C,

and denoting f =
∑

i+j+k+l=d

ai,j,k,lx
iyjzktl, the equation

∑

i+j+k+l=d

ai,j,k,lλ
iµj(λa+ µc)k(λb+ µd)l = 0 ∀λ, µ ∈ C

gives d + 1 linear equations in the coordinates (ai,j,k,l) of f ∈ V whose rank at a = b =
c = d = 0 is d+ 1: hence locally in a neighbouhood of L, the system has rank d+ 1 so p
is a locally trivial bundle of rank: dimV − (d+ 1).
• Let X be a surface of degree d in P3, given by a polynomial f ∈ V . Then the F ano

scheme parametrizing the lines contained in X is F (X) := p
(

q−1(f)
)

.
• Consider the map q : F → V . Since:

dimF = dimV − (d+ 1) + dimG = dimV − (d− 3),

for d ≥ 4 one has dimF < dimV hence the map q is not dominant. This means that the
generic fibre of q is empty. Otherwise stated, F (X) is empty for X generic. �

We shall see in the next section that the number of lines a smooth surface of degree d ≥ 4
can have is always finite, and bounded. This leads to the problem of finding surfaces with
an optimal number of lines.

2.2. Upper bound for lines.

The best upper bound known so far for the number of lines on a smooth surface of degree
d ≥ 4 in P3 is given by Segre:

Th eorem 2.2 (Segre [12]).

• The number of lines ly ing on a smooth surface of degree d ≥ 4 does not exceed

(d− 2)(11d − 6).
• The maximum number of lines ly ing on a quartic surface is exactly 64.

This bound is eff ective for d = 4 (see for instance maximal examples in Section 3.1) but
for d ≥ 5 it is believed that it could be improved. For instance, already for d = 4 the
uniform bound (d− 2)(11d − 6) is too big. The next sections are devoted to the study of
some families of surfaces with particular properties, containing many lines.

3. Surfaces of the kind φ(x, y) = ψ(z, t)

We consider a surface S given by an equation of the kind:

F (x, y, z, t) := φ(x, y) − ψ(z, t)

for two homogeneous polynomials φ, ψ of degree d. Segre gave a complete description of
the possible and maximal numbers of lines in the case d = 4 ([13, §V III]). We generalize
the method to all degrees: we treat in details the configuration of lines, give a description
of all possible numbers, and conclude with the maximal numbers of lines for such surfaces.
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3.1. Configuration of the lines.

Let Z(φ), resp. Z(ψ) denote the set of zeros of φ(x, y), resp. ψ(z, t) in P1.

Theorem 3.1. Let F (x, y, z, t) = φ(x, y) − ψ(z, t) be the equation of a smooth surface S
of degree d in P3. The number Nd of lines on S is exactly:

Nd = d(d+ αd)

where αd is the order of the group of isomorp hisms of P1 map p ing Z(φ) to Z(ψ).

Proof.

• Let L be the line z = t = 0 and L′ be the line x = y = 0. Then S ∩ L = Z(φ) and
S ∩ L′ = Z(ψ). Since the surface S is smooth, the homogeneous polynomials φ and ψ

have simple zeros. Indeed, for example in the case of the polynomial φ, if [a : b] ∈ P1 is
such that φ can be factorized by (bx− ay)2, then ∂xφ(a, b) = ∂yφ(a, b) = 0 and the point
[a : b : 0 : 0] is a singular point of S (the inverse also holds: if both φ and ψ have only
simple zeros, then S is smooth). Set Z(φ) := {P1, . . . , Pd} and Z(ψ) := {P ′

1, . . . , P
′
d}.

• E ach line Li,j joining a Pi to a P ′
j is contained in S: if Pi = [xi : yi : 0 : 0] and

P ′
j = [0 : 0 : z′j : t′j ] the line joining them consists in points [λxi : λyi : µz′j : µt′j ],
λ, µ ∈ C, which are all contained in the surface, by homogeneity of the polynomials φ and
ψ. This gives d2 lines.
• E ach line contained in S and intersecting L and L′ is one of the previous lines. Indeed,
if D is such a line, set D ∩ L = {[a : b : 0 : 0]} and D ∩ L′ = {[0 : 0 : c : d]}. Then
F (a, b, 0, 0) = φ(a, b) = 0 so [a : b : 0 : 0] is one of the points Pi and similarly [0 : 0 : c : d]
is one P ′

j .

• Let D be a line contained in S and not intersecting L. Then D does not intersect L′ (and
v ice-versa). Indeed, an equation of such a line D is given by two independent equations:

{

ax+ by + cz + dt = 0

a′x+ b′y + c′z + d′t = 0

Since D does not intersect L, the system
{

ax+ by = 0

a′x+ b′y = 0

has rank two, so we can rewrite the equations of D as the following independent equations:
{

x = αz + β t

y = γ z + δ t

Then D does not intersect L′ otherwise the matrix

(

α β

γ δ

)

would have rank one.

• Therefore, the equations of the line D define a linear isomorphism between the lines L′

and L inducing a bijection between Z(ψ) and Z(φ). Indeed, seting P ′
j = [0 : 0 : c : d],

then a := αc + β d and b := γ c + δ d have the property that [a : b : c : d] ∈ D ⊂ S so
φ(a, b) = F (a, b, c, d) + ψ(c, d) = 0 hence [a : b : 0 : 0] is a zero of φ.
• Conversely, let σ : L′ → L be an isomorphism mapping the points P ′

j to the points Pi, and
(

α β

γ δ

)

a matrix defining σ. Consider the smooth quadricQσ : x(γ z+δ t)−y(αz+β t) =

0. Its first ruling is the family of lines (p, σ(p)) for p ∈ L′. For p = [c : d], these lines are
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given by the equations

I[c:d] :

{

(γc+ δd)x− (αc + βd)y = 0

dz − ct = 0

Its second ruling consists in the family of lines of equations

I[a:b] :

{

ax− b(αz + βt) = 0

ay − b(γz + δt) = 0

for [a : b] ∈ P1. To this ruling belong the lines L ([a : b] = [0 : 1]), L′ ([a : b] = [1 : 0]) and
D ([a : b] = [1 : 1]). It is not true a priori that this D is contained in S, since the matrix
σ is defined up to a scalar factor.
In each ruling, the lines are disjoint to each other, and each line of one ruling intersects
each line of the other ruling. Since the intersection S ∩Q contains exactly the d different
lines (P ′

j , σ(P ′
j)) of the first ruling, it contains also d lines of the second ruling: Consider

a line in the first ruling not contained in S, then it intersects S in d points, and through
each of this points is attached a line of the second ruling, which also intersects the d lines
of the first ruling contained in S, so these lines of the second ruling intersect S at d + 1
points, so are contained in S. B ut it is not clear a priori with our argument that these
lines in the second ruling are different. Denote by Ud the group of d-th roots of the unit.
The group Ud × Ud acts on P3 by (ξ , η ) · [x : y : z : t] = [ξ x : ξ y : η z : η t], leaving the
surface S globally invariant since the polynomials φ and ψ are homogeneous of degree d.
Observe that the lines of the first ruling are invariant for the action, but for the second
ruling, (ξ , η ) · I[a:b] = I[ξ−1a:η−1b] so each line of the second ruling produces a length d orbit
through the action. Since the surface S contains at least one line of the second ruling, it
contains the whole orbit, this gives us d different lines.
Therefore, each isomorphism σ : L′ → L mapping Z(ψ) to Z(φ) gives d lines, and there
are no other lines. Furthermore, for two different isomorphisms, the corresponding lines
are different since the matrix defining the isomorphims are not proportional.
• Denote by αd the number of isomorphims σ : L′ → L mapping Z(ψ) to Z(φ). The
preceding discussion shows that the exact number of lines contained in the surface S is:

Nd = d2 + αdd.

�

Remark 3.2. In the proof of [3, Lemma 5.1], C aporaso-H arris-M azur proved with a simi-

lar argument that the number of lines is at least d(d+αd) and described some special values.

O ur argument includes the exactness. In the next subsections we give a full description of

the possible values of αd, in particular its maximal values for each d.

3.2. The possible numbers of lines.

N ow we want to find the possible and maximal values of Nd, or equivalently αd. If there
is at least one isomorphism σ (see the proof above), then by composing by σ−1 we are
lead to the problem of determining the possible numbers of automorphisms of P1 (or
projectivities) acting on a given set of d points on P1. Since a projectivity is defined by its
value on three points, we have always α3 = 6, and for d ≥ 4 there is only a finite number
of such isomorphisms, depending on the relative position of the points, encoded in their
cross-ratios. The case d = 4 was studied by Segre [13] with this point of view. We give a
different argument for the general case. The set Γ d of isomorphims of P1 acting on d points
defines a finite group of automorphisms of P1. First recall the classical classification:
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Polyhedral groups. There are five types of finite subgroups of SO(3,R), or equivalently
of PGL(2,C), called polyhedral groups:

• the cyclic groups Ck
∼= Z/kZ of order k ≥ 2, isomorphic to the group of isometries

of a regular polygon with k vertices in the plane;
• the dihedral groups Dk

∼= Z/kZ o Z/2Z of order 2k, k ≥ 2, isomorphic to the
group of isometries of regular polygon with k vertices in the space;

• the group T of positive isometries of a regular tetrahedra, isomorphic to the alter-
nate group A4 of order twelve;

• the group O of positive isometries of a regular octahedra or a cube, isomorphic to
the symmetric group S4 of order 24;

• the group I of positive isometries of a regular icosahedra or a regular dodecahedra,
isomorphic to the alternate group A5 of order 60.

In the sequel, we shall describe generators of these groups and their orbits on P1, in order
to get explicit constructions of surfaces.

We now proceed to the description of all possible groups of isomorphisms (d ≥ 4):

(1) Γd = {id}. This is not possible for d = 4 since there are always at least four
automorphisms of a set of four points in P1 (their cross-ratio takes generically six
different values under permutation).

(2) Γd is a cyclic group: Γd
∼= Z/kZ (k ≥ 2) with generator σ(t) = ξt where ξ is a

primitive k-th root of the unit. The action of σ on P1 has two fix points {0, ∞ } and
all other points generate a length k orbit. So, depending whether the fix points
are in the given set of d points or not we have the decomposition:

d = α+ βk

with α ∈ {0, 1, 2} and β ≥ 1:
• α = 0. The points are2:

{µ1, µ1ξ, . . . , µ1ξ
k−1}, . . . , {µβ , µβξ, . . . , µβξ

k−1}.

This forces β ≥ 3 since: if β = 1 or β = 2 then t 7→ 1/t or t 7→ µ2/(µ1t)
generate a dihedral group. For β ≥ 3 there are no other isomorphisms.

• α = 1. The points are:

{0}, {µ1, µ1ξ, . . . , µ1ξ
k−1}, . . . , {µβ , µβξ, . . . , µβξ

k−1}.

There is no other isomorphism whenever d = 1+βk ≥ 5. For k = 3 and β = 1
there are other isomorphism (a tetrahedral group).

• α = 2. The points are:

{0, ∞ }, {µ1, µ1ξ, . . . , µ1ξ
k−1}, . . . , {µβ , µβξ, . . . , µβξ

k−1}.

As before, this forces β ≥ 3.
To summarize, for the group Γd be a cyclic group Z/kZ (d ≥ 4, k ≥ 2):

• d = βk, β ≥ 3, e.g. φ(x, y) =
β
∏

i=1
(xk − λiy

k);

• d = 1 + βk ≥ 5, β ≥ 1 if k = 3, e.g. φ(x, y) = x
β
∏

i=1
(xk − λiy

k);

2Here and in the sequel, the µi’s are assumed to be generic: they are distinct and in particular they are

not the β-th roots of the unit and their k-pow ers λi := µk

i are distincts.
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• d = 2 + βk, β ≥ 3 e.g. φ(x, y) = xy
β∏

i= 1

(xk − λiy
k).

(3) Γd is a d ih ed ra l gro u p : Γd
∼= Z/kZ o Z/2Z (k ≥ 2) w ith g e n e ra to rs σ(t) = ξt a n d

s(t) = 1/t w h e re ξ is a p rim itiv e k-th ro o t o f th e u n it. T h e a c tio n o f th e d ih e d ra l
g ro u p o n P1 h a s o n e le n g th 2 o rb it {0, ∞ } a n d o n e le n g th k o rb it g e n e ra te d b y 1.
S o w e h a v e th e d e c o m p o sitio n :

d = 2α + βk + γ2k

w ith α, β ∈ {0, 1}, γ ≥ 0:
• γ = 0, α = 0 a n d β = 1. T h e p o in ts a re :

{1, ξ, . . . , ξk−1}

T h e n d = k a n d φ(x, y) = xk − yk. T h is g iv e s th e F e rm a t su rfa c e .
• γ = 0, α = 1 a n d β = 1. T h e p o in ts a re :

{0, ∞ }, {1, ξ, . . . , ξk−1}

T h is fo rc e s k 6= 2, 4 : if k = 2, th e c o n fi g u ra tio n is iso m o rp h ic to th e p re c e d in g
c a se (w ith 2k) a n d c o n ta in s m o re iso m o rp h im s, a n d if k = 4 th e re a re o th e r
iso m o rp h ism s g e n e ra tin g a n o c ta h e d ra l g ro u p . T h e n d = 2 + k a n d φ(x, y) =
xy(xk − yk).

• γ 6= 0. T h e n d ∈ {2kγ, 2+2kγ, k+2kγ, 2+k+2kγ} a n d φ c o n ta in s, b e sid e s th e
fa c to rs g iv e n in th e p re c e d in g c a se s, γ fa c to rs o f th e k in d (xk−λyk)(xk− 1

λ
yk).

(4 ) Γd is a tetra h ed ra l gro u p T . T h e g ro u p T is g e n e ra te d b y :

σ(t) = ωt, s(t) =
1 − t

1 + 2t

a c tin g o n th e se t {0, 1, ω, ω2} w h e re ω is a p rim itiv e th ird ro o t o f th e u n it. T h e
a c tio n o f T o n P1 h a s tw o le n g th fo u r o rb its:

{0, 1, ω, ω2}, {∞ ,
−1

2
,
−1

2
ω,

−1

2
ω2}

a n d o n e le n g th six o rb it g e n e ra te d b y th e fi x p o in t w = −1−
√

3
2

o f3 s. T h e se a re a ll
th e o rb its o f le n g th s fo u r o r six sin c e th e c o n ju g a c y c la sse s in T a re g e n e ra te d b y
id , s, σ, σ2. S o w e h a v e th e d e c o m p o sitio n :

d = 4α + 6β + 12γ

w ith α ∈ {0, 1, 2}, β ∈ {0, 1}, γ ≥ 0:
• γ = 0, β = 0 a n d α = 1: th e g ro u p o f iso m o rp h ism s is T .
• γ = 0, β = 0 a n d α = 2: th e g ro u p o f iso m o rp h ism s w o u ld b e O sin c e

t 7→ −1/(2t) in te rch a n g e s th e tw o le n g th fo u r o rb its.
• γ = 0, β = 1 a n d α = 0: th e g ro u p o f iso m o rp h ism s w o u ld b e O sin c e th e

le n g th six o rb it is sta b iliz e d b y t 7→ −1/(2t).
• γ = 0, β = 1 a n d α = 1: th e g ro u p o f iso m o rp h ism s is T , b e c a u se it is n o t

c o n ta in e d in a n y d ih e d ra l g ro u p a n d th e g ro u p s O o r I h a v e n o le n g th fo u r
o r te n o rb it.

• γ = 0, β = 1 a n d α = 2: a s b e fo re th e g ro u p o f iso m o rp h ism s is O.
• F o r γ 6= 0, in g e n e ra l th e g ro u p o f iso m o rp h ism s is T b u t fo r sp e c ia l p o in ts

th is c o u ld b e O o r I.

3The second fix point w′ = −1+
√

3

2
belongs to the same orbit since w = σ2s σ(w′).



40 SAMUEL BOISSIÈR E AN D ALESSAN D R A SAR T I

For example, for the tetrahedral group consider φ(x, y) = x(x3 − y3).
(5 ) Γd is an octahedral group O. The group O is generated by:

σ(t) = it, s(t) =
1

t
, a(t) =

t + i

t − i

acting on the set {0,∞, 1, i,−1,−i}. The action of O on P1 has one length six

orbit, one length eight orbit generated by the fix point w = 1+ i−
√

3−i
√

3
2

of4 a, and

one length twelve orbit generated by the fix point z = −1+
√

2 of the isomorphism5

r(t) = 1−t
1+ t

. These are all orbits of lengths six, eight or twelve since the conjugacy
classes in O are generated by id, s, σ, a, r. So we have the decomposition:

d = 6α + 8β + 12γ + 24δ

with α, β, γ ∈ {0, 1}, δ ≥ 0. Since the group O is not contained in I nor in any
dihedral group, all choices of α, β, γ, δ are possible to get Γd

∼= O.
(6) Γd is a icosahedral group I. The group I is generated by:

p5(t) :=
τt + τ − 1 + i

(−τ + 1 + i)t + τ
, q1(t) := −t, q2(t) := −1

t

where τ := 1+
√

5
2

. The only length twelve orbit is generated by a fix point of p5,

the length 20 orbit is generated by a fix point of p2
5q2 (which has order three) and

the length 30 orbit is generated by a fix point of q1. Since the conjugacy classes
in I are generated by id, p5, p

2
5, p

2
5q2, q1 there are no other orbits. So we have the

decomposition:

d = 12α + 20β + 30γ + 60δ

with α, β, γ ∈ {0, 1}, δ ≥ 0. A ll choices give Γd
∼= I.

3.3. Maximal number of lines.

A s a corollary of Theorem 3.1 and the preceding discussion of cases, we get the following
maximality result:

P rop osition 3 .3 . T he m axim al num bers of lines on S are:

• Nd = 3d2 for d ≥ 3, d 6= 4, 6, 8, 12, 20;
• N4 = 64, N6 = 180, N8 = 25 6, N12 = 864, N20 = 1600.

P roof. L ooking up at the discussion above, it appears that αd = 2d is maximal when the
group of automorphisms can not be a group T , O or I and that α4 = 12, α6 = α8 = 24
and α12 = α20 = 60 are maximal. For other values of d, if the automorphism group is T ,
resp. O, resp. I then the number of lines is:

d2 + 12d, resp. d2 + 24d, resp. d2 + 60d

and these numbers are bigger than 3d2 only if

d < 6, resp. d < 12, resp. d < 30.

So it just remains to check that the degree d = 10 is not possible for O and I and that the
degrees d = 14, 16, 18, 22, 24, 26, 28 are not possible for I, that is we cannot decompose
such a d as a sum of lengths of orbits for the groups O or I. This is clear with the
restrictions on the numbers of orbits of each type. �

4The second fix point w′ = 1+i+
√

3+i
√

3

2
belongs to the same orbit since w′ = sa σs(w).

5The second fix point z′ = −1 −

√

2 belongs to the same orbit since z′ = σr σa (z).
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Remark 3.4. Although this result was expected, one has to pass through the study of §3 .2
to prove it.

3.4. E xamples.

(1) For d generic, the Fermat surface F (x, y, z, t) = (xd − yd)− (zd − td) gives the best
example for surfaces of the kind φ(x, y) − ψ(z, t).

(2) For d = 4, Γ4 ∈ {∅ , D 2, D 4,T } so the possible numbers of lines for such surfaces
are: 16, 32, 48, 64. This agrees with Segre’s result and 64 is the maximal possible
number of lines on a q uartic surface.

(3) For d = 5, Γ5 ∈ {∅ , {id}, C 4, D 3, D 5} so the possible numbers of lines for such
surfaces are: 25, 30, 45, 55, 7 5. The general bound of Segre gives 147 .

(4) For d = 6, Γ6 ∈ {∅ , {id}, C 2, D 2, D 3, D 6,O} so the possible numbers of lines for
such surfaces are: 36, 42, 48, 60, 7 2, 108, 180. The general bound of Segre gives 240.

(5) The discussion of §3.2 gives explicit constructions of surfaces of each group Γd. For
the groups O and I, see also Section 5.

3.5. Real lines.

It is an interesting problem to find surfaces of any degree d with as many real lines as
possible. For surfaces of the kind φ(x, y) − φ(z, t) = 0, if the zeros of φ are all real, one
gets already d2 real lines (see proof of Theorem 3.1). Then, for each isomophism in the
group Γd represented by a real matrix, one gets one more real line if d is odd and two
more real lines if d is even.

4. Surfaces of the kind td = f(x, y, z)

W e consider smooth surfaces of degree d ≥ 3 given as covering of P2 ramified along a plane
curve. Let C : f(x, y, z) = 0 be a plane curve defined by a homogeneous polynomial f of
degree d and consider the surface S in P3 given by the eq uation:

F (x, y, z, t) := td − f(x, y, z).

N ote that the surface S is smooth if and only if the curve C is.
Set p = [0 : 0 : 0 : 1] ∈ P3. The projection:

(P3 − {p}) → P2, [x : y : z : t] 7→ [x : y : z]

induces a d-covering π : S → P2 ramified along the curve C.
R ecall that a point x ∈ C is a d-point (or total infl ection point) if the intersection multiplicy
of C and its tangent line at x is eq ual to d.

Proposition 4.1 .

(1) S uppose L is a line contained in S. Then π(L) is a line.

(2) L et x ∈ C and L the tangent at C in x, then the preimage π−1(L) consists in d
diff erent lines contained in S if and only if x is a d-point.

(3) L et L be a line in P2. Then π−1(L) contains a line if and only if L is tangent to

C at a d-point.

Proof.

(1) It is clear from the definition of the projection π.
(2) Assume x is a d-point. Let ∆ be a line of eq uation δ intersecting L at x. Then

d · (∆ · L) = (C ·L) so after restriction to L one has up to a scalar factor f|
L

= δd
|
L

showing that the covering restricted to L is trivial and π−1(L) consists in the
d lines t − ξiδL = 0, i = 1, . . . , d where ξ is a primitive d-th root of the unit.
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Conversely, if the covering splits, there exists a section γ ∈ H0(L,OL(1)) such
that γd = f|

L
∈ H0(L,OL(d)) so L intersects C at x with multiplicity d.

(3) If L is the tangent to C at a d-point the assertion follows from (2). Assume now
that π−1(L) contains a line. Let L be given by a linear function z = l(x, y). Then
the equation of π−1(L) is td − f(x, y, l(x, y)) = 0. Since it contains a line the
equation splits as

td − f(x, y, l(x, y)) = (t− w(x, y))Fd−1(t, x, y)

where w(x, y) is a linear form. B y comparing the coeffi cients in t one obtains
f(x, y, l(x, y)) = w(x, y)d hence the preimage consists in the d lines:

td − f(x, y, l(x, y)) =
d−1∏

i=0

(t− ξiw(x, y))

where ξ is a primitive d-th root of the unit. This means that the covering is trivial
over L so by (2) x is a d-point.

�

We deduce the number of lines contained in such surfaces:

Proposition 4.2. Let C : f(x, y, z) = 0 be a smooth plane curve of degree d with β total

inflection points. Let S the surface in P3 given by the equation:

F (x, y, z, t) := td − f(x, y, z).

Then S contains exactly β · d lines. In particular, it contains no more than 3d2 lines.

Proof. The first assertion follows directly from the lemma. For the second one, the infl ec-
tion points are the intersections of C with its H essian curve H of degree 3(d− 2) and at a
total infl ection point the intersection multiplicity of C and H is d − 2, so by B ezout one
gets β ≤ 3d. �

Remark 4.3.

• F or d = 3, it is well-known that each cubic has nine inflection points, then the

induced surface has 3 · 9 = 27 lines.

• The F ermat curves xd+yd+zd = 0 have 3d total inflection points hence the F ermat

surfaces are examples of surfaces with 3d2 lines.

5. Symmetric surfaces

We consider surfaces with many symmetries, since one can expect that such surfaces
contain many lines. Indeed, if the surface contains a line then it contains the whole orbit,
and if the symmetry group is big, hopefully this orbit has big length. To this purpose,
we first take G ⊂ P G L(4,C) be a finite group of linear transformations acting on P3 and
construct smooth G-invariant surfaces.

5.1. S urfaces w ith c y c lic sy mmetries.

D enote by Ud the group of d-th roots of the unit. The group Ud × Ud acts on C[x, y, z, t] by
diag(ξ, ξ, µ , µ ) for (ξ, µ ) ∈ Ud × Ud. The graded space of invariant polynomials decomposes
as:

C[x, y, z, t]Ud × Ud ∼= C[x, y]Ud ⊗ C[z, t]Ud .
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Since C[x, y]Ud

k = 0 for d - k and C[x, y]Ud

k = C[x, y]k otherwise, all invariant polynomials of
degree d for the action of Ud×Ud are of the kind φ(x, y)−ψ(z, t) for φ and ψ homogeneous
polynomials of degree d. These surfaces were studied in Section 3.

5.2. Surfaces with polyhedral symmetries.

We consider again surfaces of the kind φ(x, y) = φ(z, t): we studied such surfaces and
their configuration of lines in Section 3. We adopt here a diff erent point of view. Let Γ be
the group of isomorphisms of P1 permuting the zeros of φ in P1. Then φ is a projective
invariant for the action of Γ on C2, i.e. φ(g(x, y)) = λgφ(x, y) for g ∈ Γ and λg ∈ C∗. This
implies that the surface F (x, y, z, t) = φ(x, y) − φ(z, t) is invariant for the diagonal action
of Γ given by g(x, y, z, t) = (g(x, y), g(z, t)). Its number of lines is given by Theorem 3.1.
By using this observation, we can find easily equations for surfaces of this kind with the
symmetries of the groups T ,O,I. The projective invariants are computed for example in
K lein [6, I.2,§11-12-13]:

(1) A surface of degree six with octahedral symmetries and 180 lines:

φ(x, y) = xy(x4 − y4).

(2) A surface of degree eight with octahedral symmetries and 256 lines:

φ(x, y) = x8 + 14x4y4 + y8.

(3) A surface of degree twelve with octahedral symmetries and 432 lines:

φ(x, y) = x12 − 33x8y4 − 33x4y8 + y12.

(4) A surface of degree twelve with icosahedral symmetries and 864 lines:

φ(x, y) = xy(x10 + 11x5y5 − y10).

(5) A surface of degree 20 with icosahedral symmetries and 1600 lines:

φ(x, y) = −(x20 + y20) + 228(x15y5 − x5y15) − 494x10y10.

(6) A surface of degree 30 with icosahedral symmetries and 2700 lines:

φ(x, y) = (x30 + y30) + 522(x25y5 − x5y25) − 10005(x20y10 + x10y20).

5.3. Surfaces with bipolyhedral symmetries.

First recall the construction of the bipolyhedral groups. Start from the exact sequence:

0 −→ {± 1} −→ SU (2)
φ−→ SO (3,R) −→ 0.

For any polyhedral group G ⊂ SO (3,R), the inverse image G̃ := φ−1G is called a binary

polyhedral group. Now consider the exact sequence:

0 −→ {± 1} −→ SU (2) × SU (2)
σ−→ SO (4,R) −→ 0.

For G̃ a binary polyhedral group, the direct image σ(G̃ × G̃) ⊂ SO (4,R) is called a
bipolyhedral group. We shall make use of the following particular groups:

• G6 = σ(T̃ × T̃ ) of order 288;

• G8 = σ(Õ × Õ) of order 1152;

• G12 = σ(Ĩ × Ĩ) of order 7200.

The polynomial invariants of these groups were studied by Sarti in [11]. First note that
the quadratic form: Q := x2 + y2 + z2 + t2 is an invariant of the action of these groups.
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Theorem 5.1 (Sarti [11, §4]). For d = 6, 8, 12, there is a one-dimensional family of Gd-

invariant surfaces of degree d. The equation of the family is Sd + λQd/ 2 = 0. The base

locus of the family consists in 2d lines, d in each ruling of Q. The general member of each

family is smooth and there are exactly fi ve singular surfaces in each family.

From this theorem immediately follows that each member of the family contains at least
2d lines.
• The g roup G8. Denote by S8 the surface S8 = 0 where:

S8 =x8 + y8 + z8 + t8 + 168x2y2z2t2

+ 14(x4y4 + x4z4 + x4t4 + y4z4 + y4t4 + z4t4).

Proposition 5.2. The surface S8 contains exactly 352 lines.

Proof. The proof goes as follows: first we introduce Plücker coordinates for the lines in
P3, then we compute explicitly all the lines contained in the surface.
•Plücker coordinates. Let G(1, 3) be the Grassmannian of lines in P3, or equivalently of
2-planes in C4. Such a line L is given by a rank-two matrix:




a e
b f
c g
d h


 .

The 2-minors (Plücker coordinates):

p12 := af − be p13 := ag − ce p14 := ah − de

p23 := bg − cf p24 := bh − df p34 := ch − dg

are not simultaneously zero, and induce a regular map G(1, 3) −→ P5. This map is
injective, and its image is the hypersurface p12p34 − p13p24 + p14p23 = 0. In order to list
once all lines with these coordinates, we inverse the Plücker embedding in the Plücker

stratifi cation:

(1) (2) (3)
p12 = 1 p12 = 0, p13 = 1 p12 = 0, p13 = 0, p14 = 1



1 0
0 1

−p23 p13

−p24 p14







1 0
p23 0
0 1

−p34 p14







1 0
p24 0
p34 0
0 1




(4) (5) (6)
p12 = 0, p13 = 0 p12 = 0, p13 = 0, p14 = 0 p12 = 0, p13 = 0, p14 = 0
p14 = 0, p23 = 1 p23 = 0, p24 = 1 p23 = 0, p24 = 0, p34 = 1


0 0
1 0
0 1

−p34 p24







0 0
1 0
p34 0
0 1







0 0
0 0
1 0
0 1




• C ounting the lines. The line L is contained in the surface S8 if and only if the function
(u , v ) 7→ S8(u a + v e , u b + v f, u c + v g, u d + v h ) is identically zero, or equivalently if all
coefficients of this polynomial in u , v are zero. The conditions for the line to be contained
in the surface is then given by a set of polynomial equations in a, b, c , d, e , f, g, h . In order
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to count the lines, we restrict the equations to each Plücker stratum and compute the
solutions (this computation is not difficult if left to singular [4]).

(1) The stratum p12 = 1. Set p23 = c, p24 = d, p13 = g, p14 = h. The equations for
such a line to be contained in the surface are:

c7g + d7h+ 7c3g + 7d3h+ 7c4d3h+ 7c3gd4 = 0

c6g2 + d6h2 + 3c4d2h2 + 8c3gd3h+ 3c2g2d4

+6c2d2 + 3c2g2 + 3d2h2 = 0

c5g3 + d5h3 + c4dh3 + cg3d4 + 6c3gd2h2

+6c2g2d3h+ cg3 + dh3 + 6c2dh+ 6cgd2 = 0

1 + g4 + 5c4g4 + 5d4h4 + c4 + d4 + c4h4

+g4d4 + 16c3gdh3 + 36c2g2d2h2 + 16cg3d3h

+h4 + 12c2h2 + 12g2d2 + 48cgdh = 0

c3g + d3h+ c3gh4 + c3g5 + d3h5 + 6c2g2dh3

+g4d3h+ 6cg3d2h2 + 6cgh2 + 6g2dh = 0

3c2g2 + 3d2h2 + 3c2g2h4 + 3g4d2h2 + c2g6

+d2h6 + 8cg3dh3 + 6g2h2 = 0

cg7 + dh7 + 7cg3 + 7dh3 + 7cg3h4 + 7g4dh3 = 0

1 + g8 + h8 + 14g4 + 14h4 + 14g4h4 = 0

After simplification of the ideal with singular (that we do not reproduce here),
the solutions give 320 lines of the kind z = cx+ gy, t = dx+ hy.

(2) The stratum p12 = 0, p13 = 1. Set p23 = b, −p34 = d, p1 4 = h. T h e e q u a tio n s fo r
su ch a lin e to b e c o n ta in e d in th e su rfa c e a re (a fte r sim p lifi c a tio n ):

d = 0

b4h2
− b2h4

− b2 + h2 = 0

b6
− h6 + 1 3 b2

− 1 3h2 = 0

h8 + 1 4h4 + 1 = 0

b2h6 + b4 + 1 3 b2h2 + 1 = 0

T h e so lu tio n s g iv e 3 2 lin e s o f th e k in d y = bz,t = hx, sin c e th e re a re e ig h t p o ssib le
v a lu e s fo r h, a n d fo r e a ch o f th e m th e re a re fo u r v a lu e s o f b.

A n e a sy c o m p u ta tio n sh o w s th a t th e o th e r stra ta c o n ta in n o lin e , so th e re a re e x a c tly 3 52
lin e s o n th e su rfa c e . �

Remark 5.3. To our knowledge, this is the best example so far of an octic surface with

many lines. This improves widely the bound 2 56 of C aporaso-H arris-M azur [3 ].

• T h e g ro u p G6. W e ta k e :

S6 = x6 + y6 + z6 + t6 + 1 5(x2y2z2 + x2y2t2 + x2z2t2 + y2z2t2).

P ro p o sitio n 5.4 . The surface 8S6 − 5Q3 = 0 contains exactly 1 3 2 lines.
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There are surfaces with more lines (see §3.4), but this shows the existence of a surface
with 132 lines. This result can be shown in a similar way as in the G8 case.

6. A uniform bound

As we mentioned before, the uniform bound (d − 2)(11d − 6) of S egre is too big already
in degree four. We propose here another lower uniform bound, which interpolates all
maximal numbers of lines known so far, including the octic of S ection 5. Although there
is no reason for this bound to be maximal, it seems reasonable to expect that an eff ective
construction of a surface with this number of lines is possible in all degrees.
L et S be a smooth surface of degree d ≥ 3 and C a line contained in S. L et |H| be the
linear system of planes H passing through C. Then H ∩ S = C ∪ Γ where Γ is a curve of
degree d − 1. The system |Γ| is described by S egre in [12]: it is base-point free and any
curve Γ does not contain C as a component. Then:

Proposition 6.1 (S egre [12]). Either each curve Γ intersects C in d− 1 points which are

infl ections for Γ, or the points of C each of which is an infl ection for a curve Γ are 8d−14
in number. In particular, in this case C is met by no more than 8d− 14 lines lying on S.

F ollowing S egre, C is called a line of the second kind if it intersects each Γ in d − 1
infl ections. A generalization of S egre’s argument in [12, §9] gives the following result:

Proposition 6.2 . A ssume that S contains d coplanar lines, none of them of the second

kind. Then S contains at most d(7d − 12) lines.

P roof. L et P be the plane containing these d distinct lines. Then they are the complete
intersection of P with S. H ence each other line on S must intersect P in some of the
lines. B y P roposition 6.1, each of the d lines in the plane meets at most 8d − 14 lines, so
8d − 14 − (d − 1) lines not on the plane. The total number of lines is at most:

d + d(7d − 13) = d(7d − 12).

�

This bound takes the following values:

d 4 5 6 7 8 9 10 11 12 20

7d2 − 12d 64 115 180 259 352 459 580 715 864 2560

N ote that this bound matches perfectly with the maximal known examples in degrees
4, 6, 8, 12.

7. N umbe r of ra t iona l p oint s on a p l a ne c urv e

We give an application of our results to the universal bound conjecture, following C aporaso-
H arris-M azur [3]:
U niv ersal b ound conjecture. L et g ≥ 2 be an integer. There exists a number N(g)
such that for any number fi eld K there are only fi nitely many smooth curves of genus g

defi ned over K with more than N(g) K-rational points.

As mentioned in loc.cit. an interesting way to find a lower bound of N(g), or of the limit:

N := lim sup
g→∞

N(g)

g

is to consider plane sections of surfaces with many lines. Indeed, over the common field
K of definition of the surface and its lines, a generic plane section is a curve containing
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at least as many K-rational points as the number of lines. In particular, they show that
N(21) ≥ 256. Since we obtain an octic surface with 352 lines and a generic plane section
of this surface is a smooth curve of genus 21, we get:

Corollary 7.1. N(21) ≥ 352.

As we remarked in Section 6, it seems to be possible to construct surfaces with d(7d− 12)
lines. This would improve the lower bound of N(g) for many g’s. In particular, this would
improve the known estimate N ≥ 8 to N ≥ 14.

8. Sequences of skew-lines

A natural question related to the number of lines on a surface is the study of maximal
sequences of pairwise disjoint lines on a smooth surface in P3. We recall the bound of
Miyaoka and give some examples.

8.1. Upper bound for skew -lines.

The best upper bound known so far for the maximal length of a sequence of disjoint lines
on a smooth surface of degree d ≥ 4 in P3 is given by Miyaoka:

Theorem 8 .1 (Miyaoka [7, §2.2]). The maximal length of a sequence of skew-lines is

2d(d − 2) for d ≥ 4.

For d = 3, each cubic surface contains a maximal sequence of 6 skew lines. This comes
from the study of the configuration of the 27 lines (see for example [5, Theorem V .4.9]
and references therein). For d = 4, K ummer surfaces contain a maximal sequence of 16
skew lines (see for example [8] and references therein) so the bound is optimal.
But for d ≥ 5, it is not known if it is sharp.

8.2. O n M iyaoka’s bound.

We give a quick sketch of the argument of Miyaoka for the bound on the number of skew
lines, following [7, §2 E xamples 2.1,2.2].
Let X be a smooth surface of degree d ≥ 4 in P3. Assume X contains r disjoint lines
D1, . . . ,Dr. By adjunction formula, they have self-intersection −n = −(d − 2). By con-
tracting these lines one gets a surface Y with r isolated singular points which locally look
like the quotient of C2 by a finite group of order n.

Write KX +
r∑

i= 1

Di = P + N ′ with:

P := KX +
r∑

i= 1

n − 2

n
Di and N ′ :=

r∑

i= 1

n − 2

n
Di.

This provides a Z ariski decomposition in Pic(X) ⊗ Q of KX +
r∑

i= 1

Di.

Set ν := 2 − 1/ n, by [7, Theorem 1.1], one has the inequality:

rν ≤ c2(X) −
1

3
P 2.

U sing that c2(X) = d(d2 − 4d + 6) and K2
X = d(d − 4)2 one gets r ≤ 2d(d − 2).
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8.3. Examples.

In [10], R ams considers the surfaces xd−1y + yd−1z + zd−1t + td−1x = 0 and proves that
they contain a family of d(d − 2) + 2 skew-lines for any d. In [9, Example 2.3], he also
gives an example of a surface of degree five containing a sequence of 19 skew-lines. We
generalize his result, improving the number of skew-lines to d(d− 2) + 4 in the case d ≥ 7
and gcd(d, d − 2) = 1.
Consider the surface Rd : xd−1y +xyd−1 + zd−1t+ ztd−1 = 0. By our study in Section 3.1,
this surface contains exactly 3d2 − 4d lines if d 6= 6 and 180 lines for d = 6. We prove:

Proposition 8.2. The surface Rd with gcd(d, d−2) = 1 contains a sequence of d(d−2)+4
disjoint lines.

Proof. D enote by ε, γ the primitive roots of the unit of degrees d − 2 and d, and let
η := εlγs, with 0 ≤ l ≤ d− 3, 0 ≤ s ≤ d− 1. Since gcd(d, d− 2) = 1 we have d(d− 2) such
η. Now consider the points

(0 : 1 : 0 : −ηd−1), (−η : 0 : 1 : 0)

then the line through the two points is

Cl,s : (−ηλ : µ : λ : −ηd−1µ)

An easy computation shows that these lines are contained in Rd and are d(d − 2). This
form a set of d(d − 2) + 4 skew lines together with the lines

{x = 0, z + εt = 0}, {y = 0, z + t = 0},

{z = 0, x + εy = 0}, {t = 0, x + y = 0}.

�
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ON VARIETIES THAT ARE UNIRULED BY LINES

A. L. KNUTSEN, C. NOVELLI, A. SARTI

Abstract. Usin g th e ]-m in im a l m o d e l p ro g ra m o f u n iru le d v a rie tie s w e sh o w th a t fo r
a n y p a ir (X,H) c o n sistin g o f a re d u c e d a n d irre d u c ib le v a rie ty X o f d im e n sio n k ≥ 3 a n d

a g lo b a lly g e n e ra te d b ig lin e b u n d le H o n X w ith d := Hk a n d n := h0(X,H) − 1 su ch
th a t d < 2 (n− k)− 4 , th e n X is u n iru le d o f H-d e g re e o n e , e x c e p t if (k, d, n) = (3 , 2 7 , 1 9 )
a n d a ]-m in im a l m o d e l o f (X,H) is (P3,OP3(3 )). W e a lso sh o w th a t th e b o u n d is o p tim a l
fo r th re e fo ld s.

0. In tro d u ctio n

It is w e ll-k n o w n th a t a n irre d u c ib le n o n d e g e n e ra te c o m p le x v a rie ty X ⊆ P
n o f d e g re e d

sa tisfi e s d ≥ n − d im X + 1 . V a rie tie s fo r w h ich e q u a lity is o b ta in e d a re th e w e ll-k n o w n
varieties of minimal degree, w h ich a re c o m p le te ly c la ssifi e d .
V a rie tie s fo r w h ich d is “ sm a ll” c o m p a re d to n h a v e b e e n th e o b je c ts o f in te n siv e stu d y
th ro u g h o u t th e y e a rs, se e e .g . [H a , B a , F 1 , F 2 , F 3 , Is, Io , H o , R e , M 2 ]. O n e o f th e c o m m o n
fe a tu re s is th a t su ch v a rie tie s a re c o v e re d b y ra tio n a l c u rv e s.
M o re g e n e ra lly o n e c a n stu d y p a irs (X,H) w h e re X is a n irre d u c ib le k-d im e n sio n a l v a rie ty
(p o ssib ly w ith so m e a d d itio n a l a ssu m p tio n s o n its sin g u la ritie s) a n d H a lin e b u n d le o n
X w h ich is su ffi c ie n tly “ p o sitiv e ” (e .g . a m p le o r (b ira tio n a lly ) v e ry a m p le o r b ig a n d n e f).
N a tu ra lly w e se t d := Hk a n d n := d im | H| . T h e d iff e re n c e b e tw e e n d a n d n is m e a su re d
b y th e ∆ -g e n u s: ∆ (X,H) := d + k − n − 1 , in tro d u c e d b y F u jita (c f. [F 1 ] a n d [F 2 ]), w h o
in fa c t sh o w s th a t ∆ (X,H) ≥ 0 fo r X sm o o th a n d H a m p le a n d th a t H is v e ry a m p le if
e q u a lity h o ld s, so th a t th e c a se s w ith ∆ (X,H) = 0 a re th e v a rie tie s o f m in im a l d e g re e .
T h e c a se s w ith ∆ (X,H) = 1 h a v e b e e n c la ssifi e d b y F u jita [F 3 , F 4 , F 5 ] a n d Isk o v sk ih [Is].
If H is g lo b a lly g e n e ra te d w e c a n c o n sid e r th e m o rp h ism ϕH : X −→ X ′ ⊆ P

n d e fi n e d b y
| H| . O n e h a s d = (d eg ϕH)(d e g X ′) a n d d e g X ′ ≥ n − k + 1 . If d < 2 (n − k) + 2 th e
m o rp h ism ϕH is fo rc e d to b e b ira tio n a l a n d d e g X ′ = d. H e n c e in th e ra n g e d < 2 (n−k)+2
stu d y in g n o n d e g e n e ra te d e g re e d v a rie tie s in P

n, o r p a irs (X,H) w ith H g lo b a lly g e n e ra te d
a n d b ig , is e q u iv a le n t. M o re o v e r, a s th e p ro p e rty o f b e in g g lo b a lly g e n e ra te d a n d b ig is
p re se rv e d fro m H to f∗H u n d e r a re so lu tio n o f sin g u la ritie s f , th is a p p ro a ch is su ita b le
a lso to stu d y sin g u la r v a rie tie s.
T h e n o tio n o f b e in g c o v e re d b y ra tio n a l c u rv e s is in c o rp o ra te d in th e c o n c e p t o f a v a rie ty
b e in g u niru led: A v a rie ty is u n iru le d if th ro u g h a n y p o in t th e re p a sse s a ra tio n a l c u rv e .
W ith th e n o ta tio n a b o v e , d < k(n − k) + 2 is a n o p tim a l b o u n d fo r u n iru le d n e ss b y [M 2 ,
T h m . A .3 a n d E x m p l. A .4 ].
In m a n y w a y s u n iru le d v a rie tie s a re th e n a tu ra l g e n e ra liz a tio n s to h ig h e r d im e n sio n s o f
ru le d su rfa c e s. In th e M o ri p ro g ra m th e y p la y a n im p o rta n t ro le , b e c a u se - lik e in th e c a se

2000 Mathematics Subject Classification: P rim a ry : 1 4 E3 0 , 1 4 J 3 0 , 1 4 J 4 0 , 1 4 N2 5 ; Se c o n d a ry : 1 4 C2 0 ,
1 4 H 4 5 .
K ey w ord s: M in im a l m o d e l p ro g ra m , ra tio n a l c u rv e s, 3 -fo ld s, n-fo ld s, lin e a r sy ste m s.
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of ruled surfaces - these are the varieties for which the program does not yield a minimal
model, but a Mori fiber space. U niruled varieties can also be considered to be the natural
generalizations to higher dimensions of surfaces of negative K odaira dimension: in fact it
is conjectured that a (smooth) variety is uniruled if and only if its K odaira dimension is
negative. The conjecture has been established for threefolds by Miyaoka [Mi].
With the evolution of a structure theory for higher dimensional varieties in the past
decades, namely the Mori program, the geometry of rational curves on varieties has gained
new importance. The main idea is to obtain information about varieties by studying the
rational curves on them (cf. e.g. [K o]).
To measure the “degree” of the rational curves which cover X we say in addition that X

is uniruled of H-degree at most m if the covering curves all satisfy Γ · H ≤ m. Returning
to the case where H is globally generated and the morphism ϕH : X −→ X ′ ⊆ P

n is
birational as above, we see that X is uniruled of H-degree at most m if and only if X ′ is
covered by rational curves of degrees ≤ m.
For surfaces X iao [X i] and Reid [Re] independently found bounds on the uniruledness
degree of (X,H) depending on d and n. For instance they showed that an irreducible,
nondegenerate surface X ⊆ P

n is uniruled by lines if d < 4
3
(n − 2), except when n = 9

and (X,OX (1)) = (P2,OP2(3)). The same result was obtained by Horowitz [Ho] using
a different approach. In particular, it immediately follows (by taking surface sections
and using that (P2,OP2(3)) cannot be a hyperplane section of any threefold other than
a cone) that an irreducible, nondegenerate k-dimensional variety X ⊆ P

n is uniruled by
lines for k ≥ 3 if d < 4

3
(n − k). (Note that if one assumes X smooth, one gets the better

bound d < 3
2
(n− k − 1), since X is ruled by planes or quadrics in this range by [Ho, C or.

p. 6 6 8].) However it is to be expected that this “naive” inductive procedure does not yield
an optimal bound.
The purpose of this article is to obtain a bound for uniruledness degree one which is
optimal for threefolds and independent of singularities. In fact we show:

Theorem 0.1. Let (X,H) be a pair consisting of a reduced and irreducib le th ree-dimensional

variety X and a globally generated big line bundle H on X. S et d := H3 and n :=
h0(X,H) − 1.
If d < 2n − 10 th en X is uniruled of H-degree one, excep t w h en (d, n) = (27 , 19 ) and a

]-minimal model of (X,H) is (P3,OP3(3)).

(For the definition of a ]-minimal model we refer to D efinition 1.4 below.)
The bound in Theorem 0.1 is sharp since there are pairs satisfying d = 2n−10 for infinitely
many d and n, namely (P2×P

1,OP2(2)�OP1(a)) for a ≥ 2 (cf. Example 2.5 below), which
are not uniruled of H-degree one.
Observe that in Remark 2.3 below we obtain a better bound than in Theorem 0.1 for
8 ≤ n ≤ 12.
As a consequence of Theorem 0.1 we get the following result for higher dimensional vari-
eties, which is probably far from being sharp:

C orolla ry 0.2 . Let (X,H) be a pair consisting of a reduced and irreducib le k-dimensional

variety X, k ≥ 4, and a globally generated big line bundle H on X. S et d := Hk and

n := h0(X,H) − 1. If d < 2(n − k) − 4 th en X is uniruled of H-degree one.

For those preferring the notion of ∆-genus, the condition d < 2(n− k)− 4 is equivalent to
∆(X,H) < n − k − 5 = h0(X,H) − dimX − 6 .
The above results have the following corollary for embedded varieties:
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Corollary 0.3. Let X ⊂ Pn be a nondegenerate reduced and irreducible variety of dimen-
sion k ≥ 3 and degree d. If d < 2(n − k) − 4 then X is uniruled by lines, except when
(k, d, n) = (3, 27, 19) and a ]-minimal model of (X,OX (1)) is (P3,OP3(3)).

Note that the condition d < 2(n− k)− 4 implicitly requires n ≥ k + 6 in the three results
above.
To prove these results we use the ]-minimal model program of uniruled varieties introduced
for surfaces by Reid in [Re] and developed for threefolds by Mella in [M2]. The main
advantage of the ]-minimal model program is that one does not only work with birational
modifications along the minimal model program but also uses a polarizing divisor. Under
certain assumptions one manages to follow every step of the program on an effective
divisor, i.e. a (smooth) surface in the case of threefolds.
Our method of proof uses the classification results in [M2] and borrows ideas from [Re].
The crucial point is a careful investigation of pairs (X,H) such that the output of the
]-minimal model program is a particular type of Mori fiber space which we call a terminal
V eronese fi bration (see Definition 3.1 below): this is roughly speaking a terminal threefold
marked by a line bundle with at most base points fibered over a smooth curve with
general fibers being smooth Veronese surfaces (with respect to the marking line bundle)
and having at most finitely many fibers being cones over a smooth quartic curve. We
find a lower bound on the degree of such a threefold (in fact on every marked terminal
threefold having a terminal Veronese fibration as a ]-minimal model) and on the number
of degenerate fibers of the members of the marking linear system.
The precise statement, which we hope might be of independent interest, is the following:

P rop osition 0.4 . Let (X,H) be a three-dimensional terminal V eronese fi bration (see
D efi nition 3 .1 ) over a smooth curve B and set n := h0(H) − 1 and d := H3. T hen
d ≥ 2n− 10 and the general member of |H| is a smooth surface fi bered over B with ≥ n−5

2

fi bers which are unions of two conics (with respect to H) intersecting in one point (the
other fi bers are smooth quartics).

Observe that both equalities are obtained by (P2 ×P1,OP2(2)�OP1(a)), cf. Examples 2.5
and 3.4.
In S ection 1 we set notation and give all central definitions. Moreover we introduce, after
[M2], the ]-minimal models of pairs (X,H) where X is a terminal, Q-factorial threefold
and H ∈ P ic X such that the general element in |H| is a smooth surface of negative
Kodaira dimension (Theorem 1.2) and obtain results that are essential for the rest of the
paper in L emmas 1.1 and 1.5.
In S ection 2 we first obtain an “easy bound” on d such that a threefold is uniruled in
degree one (P roposition 2.1) and then we show how to reduce the proofs of our main
results Theorem 0.1 and its two corollaries to a result about uniruled threefolds having a
terminal Veronese fibration as a ]-minimal model, namely P roposition 2.4.
The proofs of P roposition 2.4 and of P roposition 0.4 are then settled in S ection 3.
Finally, in S ection 4 we give some final remarks, including a slight improvement of a result
in [M2] and of Theorem 0.1 and Corollary 0.2.

Ack n ow led gmen ts We are indebted to M. Mella for suggesting the problem and for
many helpful discussions. We were introduced to the topic during the wonderful school
P ragmatic 2 0 0 2 in Catania, and it is a great pleasure to thank all the participants, as well
as the organizer A. Ragusa. We also thank M. Andreatta, R. P ignatelli, W. Barth and
K. Ranestad for useful comments.
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1. ]-minimal models of uniruled threefolds

We work over the field of complex numbers.
A reduced and irreducible three-dimensional variety will be called a threefold, for short.
A k-dimensional projective variety X is called uniruled if there is a variety Y of dimension
k − 1 and a generically finite dominant rational map p : Y × P1 −− → X. In particular,
such a variety is covered by rational curves (cf. [Ko, IV 1.4.4]).
If H is a nef line bundle on X and m ∈ Q we say that X is uniruled of H-degree at most
m if deg (p∗H)|P1 × { y} ≤ m for every y ∈ Y , or equivalently if there is a dense open subset
U ⊆ X such that every point in U is contained in a rational curve C with C · H ≤ m (cf.
[Ko, IV 1.4.]). A consequence is that in fact every point in X is contained in a rational
curve C with C · H ≤ m (cf. [Ko, IV 1.4.4]). In particular, if X ⊆ Pn we say that X is
uniruled by lines if m = 1 with respect to H := OX(1).
For a pair (X,H) where X is terminal Q-factorial and H is a line bundle on X with
|H| 6= ∅, the threshold of the pair is defined as

ρ(X,H) := sup {m ∈ Q : rmKX is Cartier and |r(H+mKX)| 6= ∅ for some r ∈ Z>0 } ≥ 0

(cf. [Re, (2.1)] and [M2, Def. 3.1]).
Moreover we set

(1) d(X,H) := Hd im X and n(X,H) := h0(X,H) − 1 = dim |H|.

In these terms the ∆-genus, introduced by Fujita (cf. [F1] and [F2]), is

(2) ∆(X,H) := d(X,H) + dim X − n(X,H) − 1

and all the results in the paper can be equivalently formulated with the ∆-genus.
Recall that a surjective morphism f : X −→ Y with connected fibers between normal
varieties is called a M ori fiber space if −KX is f -ample, rk Pic (X/ Y ) = 1 and dimX >
dimY .
The following easy consequence of Clifford’s theorem will be useful for our purposes:

Lemma 1.1. Let (X,H) be a pair with X a terminal Q-factorial threefold and H a globally
generated and big line bundle on X. Set d := d(X,H) and n := n(X,H).
If d < 2n − 4, then:

(i) the general surface S ∈ |H| is smooth with negative K odaira dimension. In partic-
ular X is uniruled and ρ(X,H) < 1.

(ii) for any smooth irreducible S ∈ |H| and for any irreducible curve D ∈ |H|S | we
have

(3) D · KS ≤ d − 2n + 2.

Proof. The general element S ∈ |H| is a smooth irreducible surface by Bertini’s theorem,
as X has isolated singularities (cf. [M2, 2.3]).
Pick any irreducible curve D ∈ |OS(H)|. Then deg OD(H) = H3 = d and from

(4) 0 −→ OX −→ H −→ OS(H) −→ 0

and

(5) 0 −→ OS −→ OS(H) −→ OD(H) −→ 0
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we get

(6) h0(OD(H)) ≥ h0(OS(H)) − 1 ≥ h0(H) − 2 = n − 1.

Hence

(7) deg OD(H) − 2(h0(OD(H)) − 1) ≤ d − 2(n − 2) < 0,

whence by Clifford’s theorem on irreducible singular curves (see the appendix of [EKS])
we must have h1(OD(H)) = 0, so that χ(OD(H)) = h0(OD(H)) ≥ n− 1. From (5) we get

χ(OS(D)) − χ(OS) = χ(OD(H)) = h0(OD(H)) ≥ n − 1.

Combining with Riemann-Roch we get

D · KS = D2 − 2(χ(OS(D)) − χ(OS))

≤ d − 2n + 2 < −2,

proving (ii) and showing that κ(S) < 0. (The latter fact also follows from [M2, Theorem
A.3].) Now the fact that X is uniruled with ρ(X,H) < 1 follows from [M2, Def. 5.1 and
Lemma 5.2]. �

In the following theorem we collect all the results of Mella [M2] that will be useful to us.

Theorem 1.2. Let (X,H) be a pair w ith X a term in al Q-facto rial th reefo ld an d H a
glo bally gen erated an d big lin e bu n d le o n X, su ch th at th e gen eral elem en t in |H| is a
sm oo th su rface o f n egative K od aira d im en sio n .
T h en th ere exist a pair (X],H]) an d a biratio n al m ap φ : X − − → X] su ch th at:

(i) X] is term in al an d Q-facto rial, H] ∈ P ic X], |H]| h as at m o st base po in ts, an d
ρ(X],H]) = ρ(X,H) =: ρ.

(ii) φ is a fi n ite co m po sitio n o f M o ri extrem al co n tractio n s an d fl ip s, an d ρKX] + H]

is Q-n ef;
(iii) fo r an y sm oo th irred u cible S ∈ |H|, f := φ|S is a biratio n al m o rp h ism , an d S] :=

f(S) is a sm oo th su rface in |H]|;
(iv ) if X] is u n iru led o f H]-d egree at m o st m, th en X is u n iru led o f H-d egree at m o st

m;
(v ) (X],H]) belo n gs to th e fo llo w in g list:

(I) a Q-F an o th reefo ld w ith KT ] ∼ − (1 /ρ)H], belo n gin g to T able 1 belo w .

(II) a bu n d le o ver a sm oo th cu rve w ith gen eric fi ber (F,H]

|F
) ∼= (P2,OP2(2)) an d

w ith at m o st fi n itely m an y fi bers (G ,H]
|G) ∼= (S4,OS4

(1)), w h ere S4⊂ P5 is

th e co n e o ver th e n o rm al qu artic cu rve. (ρ = 2/3)

(III) a qu ad ric bu n d le w ith at m o st cA 1 sin gu larities an d H]
|F ∼ OF (1 ) fo r every

fi ber F . (ρ = 1 /2)
(IV ) (P(E),O(1 )) w h ere E is a ran k 3 vecto r bu n d le o ver a sm oo th cu rve. (ρ = 1 /3)
(V ) (P(E),O(1 )) w h ere E is a ran k 2 vecto r bu n d le o ver a su rface o f n egative

K od aira d im en sio n . (ρ = 1 /2)

P roo f. B y [M 2, D e f. 5 .1 a n d L e m m a 5 .2] w e h a v e ρ(X,H) < 1 . N o w th e e x iste n c e o f a
p a ir (X],H]) a n d a m a p sa tisfy in g c o n d itio n s (i)-(iii) fo llo w s c o m b in in g [M 2, T h m . 3.2,
P ro p . 3.6 a n d C o r. 3.1 0 ] o b se rv in g th a t it is im p lic itly sh o w n in th e p ro o f o f [M 2, T h m
3.2] th a t ρ(X],H]) = ρ(X,H).
P ro p e rty (v ) fo llo w s fro m [M 2, T h m . 5 .3 a n d D e f. 5 .1 ], n o tin g th a t th e v a lu e s o f ρ a re
e x p lic itly g iv e n in e a ch o f th e c a se s in th e c o u rse o f th e p ro o f o f [M 2, T h m . 5 .3].
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Table 1. Q-Fano threefolds

Type X] g en era l S] ∈ |H]| ρ − ρ

ρ−1
K2

S] d(X],H]) n(X],H])

(a ) P(1, 1, 2, 3) H6 ⊂ P(1, 1, 2, 3) 6/7 6 1 36 22

(b ) T6 ⊂ P(1, 1, 2, 3, 3) T6 ∩ {x4 = 0 }) 3/4 3 1 9 7

(c) T6 ⊂ P(1, 1, 2, 3, 4) T6 ∩ {x4 = 0 } 4/5 4 1 16 11

(d ) T6 ⊂ P(1, 1, 2, 3, 5) T6 ∩ {x4 = 0 } 5/6 5 1 25 16

(e) T6 ⊂ P(1, 1, 2, 2, 3) T6 ∩ {x3 = 0 } 2/3 2 1 4 4

(f) T6 ⊂ P(1, 1, 1, 2, 3) T6 ∩ {x0 = 0 } 1/2 1 1 1 2

(g ) P(1, 1, 1, 2) H4 ⊂ P(1, 1, 1, 2) 4/5 4 2 32 21

(h ) T4 ⊂ P(1, 1, 1, 2, 2) T4 ∩ {x4 = 0 } 2/3 2 2 8 7

(i) T4 ⊂ P(1, 1, 1, 2, 3) T4 ∩ {x4 = 0 } 3/4 3 2 18 13

(j) T4 ⊂ P(1, 1, 1, 1, 2) T4 ∩ {x0 = 0 } 1/2 1 2 2 3

(k ) P3 H3 ⊂ P3 3/4 3 3 27 19

(l) T3 ⊂ P(1, 1, 1, 1, 2) T3 ∩ {x4 = 0 } 2/3 2 3 12 10

(m ) T3 ⊂ P4 T3 ∩ {x0 = 0 } 1/2 1 3 3 4

(n ) T2 ⊂ P4 H2,2 ⊂ T2 2/3 2 4 16 13

(o ) T2,2 ⊂ P5 T2,2 ∩ {x0 = 0 } 1/2 1 4 4 5

(p) P6 ∩ G(1, 4) P6 ∩ G(1, 4) ∩ {x0 = 0 } 1/2 1 5 5 6

(q ) T2 ⊂ P4 T2 ∩ {x0 = 0 } ' P1 × P1 1/3 1/2 8 2 4

(r) P3 P1 × P1 ' H2 ⊂ P3 1/2 1 8 8 9

(s) P3 {x0 = 0 } ' P2 ⊂ P3 1/4 1/3 9 1 3

(t) P(1, 1, 1, 2) {x3 = 0 } ' P2 ⊂ P(1, 1, 1, 2) 2/5 2/3 9 4 6

W e have left to prove (iv). By assumption X] is covered by a family of rational curves {Γ}

such that Γ · H] ≤ m. The strict transform Γ̃ on X of each such Γ then satisfi es Γ̃ ·S ≤ m
by [M2, Lemma 3.15]. �

In the cases (I) the general S] ∈ |H]| is a smooth del Pezzo surface and OS](H]) ' ρ
ρ−1

KS] .

A list of such threefolds (with corresponding values for ρ) is given in [CF]. Moreover one
can easily calculate d(T ],H]) and n(T ],H]). Indeed

(8 ) d(X],H]) := (H])3 = (OS](H]))2 =
ρ2

(ρ − 1)2
K2

S] ,

and by R iemann-R och

(9 ) n(X],H]) := h0(H]) − 1 = h0(OS](H])) =
ρ

2(ρ − 1)2
K2

S] + 1.

In Table 1 we list all the cases (see [CF, p. 8 1]). In the table P(w1, . . . , wn) denotes the
weighted projective space with weight wi at the coordinate xi. The hyperplane given by
xi is denoted {xi = 0}. Moreover Ta (resp. Ta,b ) denotes a hypersurface of degree a (resp.
a complete intersection of two hypersurfaces of degrees a and b) and similarly for Ha and
Ha,b . The variety G(1, 4 ) is the G rassmannian parameteriz ing lines in P4, embedded in P9

by the Plück er embedding.

Definition 1.3. Following [M2, Def. 3.3] we will call (X],H]) a ]-minimal model of the
pair (X,H). In particular, by Lemma 1.1, it exists when d(X,H) < 2n(X,H) − 4 .

Note that a ]-minimal model exists for any (X,H) with X a terminal Q-factorial uniruled
threefold and H nef with h0(nH) > 1 for some n > 0 by [M2, Thm. 3.2], but it will in
general not have all the nice properties (i)-(v) in Theorem 1.2 above. W e will not need
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the ]-minimal model in complete generality, but only in the version stated in T heorem 1.2
above.
T he follow ing ex plains the terminology used in T heorem 0 .1 and C orollary 0 .3:

Definition 1.4. F or any pair (X,H) consisting of a threefold X and a big and globally
generated line bundle H on X, w ith d(X,H) < 2n(X,H) − 4 , w e w ill by a ]-minimal

mod e l o f (X,H) mean a ]-minimal model of (X̃, f∗H), w here f : X̃ −→ X is a minimal

resolution of singularities. (O bserve that d(X̃, f∗H) = d(X,H) and n(X̃, f∗H) ≥ n(X,H),
so a ]-minimal model ex ists and satisfi es the properties (i)-(v) of T heorem 1.2.)

L em m a 1.5 . W ith th e same no tatio n and assu mp tio ns as in T h eo rem 1 .2 , le t S, S] and
f be as in (iii) and set D := OS(H).

(a) W e h ave n(X],H]) ≥ n(X,H) and d(X],H]) ≥ d(X,H). In particu lar H] is b ig
and nef.

(b) L et l be th e to tal nu mber o f irred u c ib le c u rves co ntracted by f . If ρ ≥ 1/3, th en

(10 ) (D +
ρ

1 − ρ
KS)2 ≥ −l(

ρ

1 − ρ
)2.

(c) If (X],H]) is o f ty pe (I) in T h eo rem 1 .2 (v), th en

(11) d(X,H) − n(X,H) + 1 =
ρ(2ρ − 1)

2(ρ − 1)2
K2

S] .

P roo f. W e fi rst observe that n(X],H]) ≥ n(X,H) as S] = φ∗S.
W e have a commutative diagram

X
φ

//___ X]

S
f

//

?�

OO

S]
?�

OO

w here f := φ|S is w ell defi ned and birational by T heorem 1.2(iii). A s observed in [M 2,
P rop. 3.6 ] one can describe each step in the ]-minimal model program in a neighborhood
of S. M ore precisely, set X0 := X, S0 := S, Xm := X] and Sm = S] := φ∗S. D enote by
φi : Xi−1 − − → Xi for i = 1, . . . , m each birational modifi cation in the ]-minimal model
program relative to (X,H) and defi ne inductively Si := φ∗Si−1. T hen each Si is smooth,
and setting fi := φi|Si

w e can factorize f as:

S
f1

// S1

f2
// · · ·

fm−1
// Sm−1

fm
// Sm = S],

w here each fi contracts li disjoint (−1)-curves Ei
1
, . . . , Ei

li
w ith li ≥ 0 by [M 2, P rop.

3.6 ]. T he total number of contracted curves is l =
∑m

i= 1
li. W e set Di := OSi

(Si) and

D] := OS](S]).
If φi is a fl ip then Si is disjoint from the fl ipping curves by [M 2, C laim 3.7 ], so that fi is
an isomorphism.
If φi contracts a divisor onto a curve then it is show n in [M 2, C ase 3.8 ] that the fi ber Fi

of φi satisfi es Si · Fi = 0 , w hence Di · Fi = 0 , w hich means that all Ei
j satisfy Ei

j · Di = 0 .

If φi contracts a divisor onto a point then it is show n in [M 2, C ase 3.9 ] that fi is a
contraction of a single (−1)-curve Ei = Ei

1
w hich satisfi es Ei · Di = 1.



58 A. L. KNUTSEN, C. NOVELLI, A. SARTI

In other words, for every i we have three possibilities:

li = 0; or

li > 0 and Ei
j · Di = 0 for all j ∈ { 1, . . . , li}; or(12)

li = 1 and Ei
1 · Di = 1.

N ow denote by Li
j the total transform of Ei

j on S. Then (Li
j)

2 = −1 and Li
j · L

i′

j′ = 0 for

(i, j) 6= (i′, j′). We have

(13) KS = f∗KS] +
∑

Li
j

and by (12),

(14) D = f∗D] −
∑

µi
jL

i
j with µi

j ∈ { 0, 1}.

In particular

(15 ) d(X,H) = D2 = (D])2 −
∑

(µi
j)

2 = d(X],H]) −
∑

µi
j ≤ d(X],H]),

finishing the proof of (a).
From (13) and (14) we get

D +
ρ

1 − ρ
KS = f∗(D] +

ρ

1 − ρ
KS]) +

∑
(

ρ

1 − ρ
− µi

j)L
i
j ,

and since there are l terms in the sum we get

(16) (D +
ρ

1 − ρ
KS)2 = (D] +

ρ

1 − ρ
KS])2 − l(

ρ

1 − ρ
)2 +

∑
µi

j(
2ρ

1 − ρ
− µi

j).

B y definition and invariance of ρ (cf. Theorem 1.2(i)) we have that ρKT ]+H] is Q-eff ective.
From Theorem 1.2(ii) we have that it is also Q-nef, whence its restriction to S] is also
Q-eff ective and Q-nef. S ince S] is Cartier we get by adjunction that (ρKT ] + H])|S] '

(1 − ρ)( ρ
1−ρ

KS] + D]), whence by Q-nefness

(17) (D] +
ρ

1 − ρ
KS])2 ≥ 0.

Moreover the assumption ρ ≥ 1
3

is eq uivalent to ρ
1−ρ

≥ 1
2
, whence

(18)
∑

µi
j(

2ρ

1 − ρ
− µi

j) ≥ µi
j(1 − µi

j) ≥ 0.

N ow (10) in (b) follows combining (16)-(18)
We have left to prove (c). S ince S] is a smooth del Pezzo surface, we have h1(OS) =
h1(OS]) = 0. It is then easily seen by the proof of L emma 1.1 that eq uality holds in
(3) (note that we have h1(OX) ≤ h1(OX(−H)) + h1(OS) = 0 by K awamata-V iehweg
vanishing). U sing (13), (14) and (15 ) we therefore get, for D ∈ |OS(H)|:

d(X,H) − 2n(X,H) + 2 = D · KS = (f∗D] −
∑

µi
jL

i
j) · (f

∗KS] +
∑

Li
j)

= D] · KS] +
∑

µi
j =

ρ

ρ − 1
K2

S] +
∑

µi
j

=
ρ

ρ − 1
K2

S] + d(X],H]) − d(X,H).
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Now using (8) we obtain

2d(X,H) − 2n(X,H) + 2 =
ρ(2ρ − 1)

(ρ − 1)2
K2

S] ,

proving (c). �

2. Bounds for uniruledness degree one

As a “warming up” before proceeding with the proofs of the main results we give the proof
of the following bound.

Proposition 2.1. Let (X,H) be a pair consisting of a terminal Q-factorial threefold X
and a globally generated and big line bundle H on X. S et d := d(X,H) and n := n(X,H).
If n ≥ 4, d < 4

3
n − 4

3
and d 6= n − 1 for n ≤ 9, then X is uniruled of H-degree one.

Proof. Since n ≥ 4 we have 2n − 4 ≥ 4
3
n − 4

3
, whence d < 2n − 4, so by Lemma 1.1(i) the

general S ∈ |H| is smooth of negative Kodaira dimension.
Moreover for any irreducible D ∈ |H|S| we have, by Lemma 1.1(ii),

D ·
(3

2
H + KX

)

= D · (H + KX) +
1

2
D · H = D · KS +

1

2
d

≤ d − 2n + 2 +
1

2
d =

3

2
d − 2n + 2

<
3

2

(4

3
n −

4

3

)

− 2n + 2 = 0,

whence ρ(X,H) < 2/3.
It follows that the ]-minimal model (X],H]) is in the list of Theorem 1.2(v) and moreover it
cannot be as in (II) since ρ(X,H) = 2/3 in this case. In the cases (III)-(V) one immediately
sees that (X],H]) is uniruled of H]-degree one, whence (X,H) is also uniruled of H-degree
one by Theorem 1.2(iv).
We have n(T ],H]) ≥ n ≥ 4 by Lemma 1.5(a), and by using Table 1 we see that the cases
in (I) where n(X],H]) ≥ 4 and ρ < 2/3 are the cases (m), (o), (p), (q), (r) and (t). Among
these all but (r) are clearly uniruled of H]-degree one.
By (11) and Table 1 we have d − n + 1 = 0 in case (r) and by Lemma 1.5(a) we have
n ≤ n(X],H]) = 9. �

C orollary 2.2. Let (X,H) be a pair consisting of a threefold X and a globally generated
and big line bundle H on X. S et d := d(X,H) and n := n(X,H).
If d < 4

3
n − 4

3
, d 6= n w hen 5 ≤ n ≤ 8 and d 6= n − 1 for n ≤ 9, then X is uniruled of

H-degree one.

Proof. Let π : X̃ −→ X be a resolution of the singularities of X. Then π∗H is globally
generated and big with d(X̃, π∗H) = H3 = d and n(X̃, π∗H) = dim |π∗H| ≥ n and we can
apply Proposition 2.1. The additional cases d = n for 5 ≤ n ≤ 8 occur since equality does
not need to occur in n(X̃, π∗H) ≥ n. �

R emark 2.3 . We note that the last corollary improves Theorem 0.1 for n ≤ 12. Moreover,
the cases n = 3, 4 are trivial, as are the cases n = 5, 6, 7, since then ϕH(X) ⊆ Pn has
minimal degree. H ence the relevant statement, combining Theorem 0.1 and Corollary 2.2
is: X is uniruled of H-degree one in the following cases:

• n = 8 and d = 6 or 9;
• n = 9 and d = 7, 9 or 10;
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• n = 10 and d ≤ 11;
• n = 11 or 12 and d ≤ n + 2;
• n ≥ 13 and d ≤ 2n − 11, (d, n) 6= (27, 19).

Now we give the main ideas and the strategy of the proof of Theorem 0.1. The main result
we will need to prove is the following:

Proposition 2.4. Let (X,H) be a pair consisting of a terminal Q-factorial threefold X
and a globally generated, big line bundle H on X. Set d := d(X,H) and n := n(X,H).
If a ]-minimal model of (X,H) is of type (II) in Theorem 1.2(v), then d ≥ 2n − 10.

The proof of this result will be given in Section 3 below, after a careful study of the
threefolds of type (II) in Theorem 1.2(v). We will now give the proofs of Theorem 0.1 and
Corollaries 0.2 and 0.3 assuming Proposition 2.4.

Proof of T h eorem 0 .1. Let X be a reduced and irreducible 3-dimensional variety and
H a globally generated big line bundle on X. Set d := H3 and n := h0(X,H) − 1 and
assume d < 2n − 10.
Let π : X̃ −→ X be a resolution of the singularities of X. Then π∗H is globally generated
and big with d(X̃, π∗H) = H3 = d and n(X̃, π∗H) = dim |π∗H| ≥ n. Since (d, n) = (27, 19)
satisfies d = 2n − 11 we can reduce to the case where X is smooth. Therefore we assume
X is smooth.
By Lemma 1.1(i), any ]-minimal model (X],H]) of (X,H) is in the list of Theorem 1.2(v).
Moreover, by Proposition 2.4, it cannot be of type (II).
We easily see that the cases (III)-(V) are uniruled of H]-degree one. In the cases (I) we
have, by Lemma 1.5,

(19)
ρ(2ρ − 1)

2(ρ − 1)2
K2

S] = d − n + 1 ≤ n − 10 ≤ n(X],H]) − 10.

By check ing Table 1 one finds that we can only be in case (k), with equalities all the way
in (19). Hence n = n(X],H]) = 19 and d = 2n − 11 = 27. Now the result follows from
Theorem 1.2(iv). �

Proof of Corollary 0 .2. Let X be a reduced and irreducible variety of dimension k ≥ 4
and H a globally generated big line bundle on X with d := Hk and n := h0(X,H) − 1.
As just mentioned in the proof of Theorem 0.1 we can assume X is smooth.
Setting Xk := X and Hk := H, we recursively choose general smooth “hyperplane sec-
tions” Xi−1 ∈ |Hi| and define Hi−1 := Hi ⊗ OXi−1

, for 2 ≤ i ≤ k. (Note that dim Xi = i
and Hi is a line bundle on Xi.)
Let n3 := h0(H3) − 1. Then from the exact sequence

(20) 0 −→ OXi
−→ Hi −→ Hi−1 −→ 0

we have

(21) n3 ≥ n − (k − 3) = n − k + 3.

Together with the condition d < 2(n − k) − 4 this implies d < 2n3 − 10 and it follows
from Theorem 0.1 that either (X3,H3) is uniruled of degree one or (d, n3) = (27, 19) and

(X]
3,H

]
3) is (P3,O(3)).

In the second case we have equality in (21), i.e.

(22) 19 = n3 = h0(H3) − 1 = h0(H) − (k − 3) − 1 = n − k + 3.
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Denote by φ : X3 − − → X]
3 = P3 the birational map of the ]-minimal model program.

By Theorem 1.2(iii) its restriction f to S := X2 is a birational morphism onto a smooth
surface S] ∈ |OP3(3)|.
W e h a v e

1 9 = h0(OS](3)) ≥ h0(H2) ≥ h0(H3) − 1 = 1 9

b y L e m m a 1 .5 (a ) a n d (22), w h e n c e |OS](3)| = f∗|H2| a n d th is c a n o n ly b e b a se p o in t fre e
if e v e ry c u rv e E c o n tra c te d b y f sa tisfi e s E · H2 = 0. D e n o tin g b y ϕH2

a n d ϕO
S] (3) th e

m o rp h ism s d e fi n e d b y |H2| a n d |OS](3)| re sp e c tiv e ly , th is im p lie s th a t ϕO
S] (3) ◦f = ϕH2

, in

o th e r w o rd s S′ := ϕH2
(S) = ϕO

S] (3)(S
]) ' S] ⊆ P18 . M o re o v e r, b y (22), th e n a tu ra l m a p

H0(H) → H0(H2) is su rje c tiv e , so S′ = ϕH(S), w h e re ϕH : X −→ Pn is th e m o rp h ism
d e fi n e d b y |H|. N o te th a t ϕH is b ira tio n a l fo r re a so n s o f d e g re e . S e ttin g X ′ := ϕH(X) ⊆ Pn

w e th e re fo re h a v e th a t S′ ⊆ X ′ is a sm o o th , lin e a r, tra n sv e rsa l su rfa c e se c tio n (re c a ll th a t
S ⊆ X is a c o m p le te in te rse c tio n o f (k − 2) general e le m e n ts o f |H|).
W e n o w a p p ly th e th e o re m o f Z a k (u n p u b lish e d , c f. [Z a ]) a n d L ’v o v sk i (c f. [L 1 ] a n d [L 2])
w h ich sa y s th e fo llo w in g (c f. [L 2, T h m . 0.1 ]): if V ( PN is a sm o o th , n o n d e g e n e ra te
v a rie ty w h ich is n o t a q u a d ric a n d sa tisfi e s h0(NV /PN (−1 )) < 2N + 1 ; Y ⊆ PN+m is a n o n -

d e g e n e ra te , irre d u c ib le (m+ d im V )-d im e n sio n a l v a rie ty w ith m > h0(NV /PN (−1 ))−N−1 ;

a n d L = PN ⊆ PN+m is a lin e a r su b sp a c e su ch th a t V = L ∩ Y (sch e m e -th e o re tic a lly ),
th e n Y is a c o n e .
S in c e a c o n e is u n iru le d b y lin e s, th e c o ro lla ry w ill fo llo w if w e sh o w th a t h0(NS′/P1 8 (−1 )) ≤

20, w ith S′ b e in g th e 3-u p le e m b e d d in g o f a sm o o th c u b ic su rfa c e S0 in P3.
W e a rg u e a s in [G L M , p . 1 6 0-1 6 1 ] to c o m p u te h0(NS′/P1 8 (−1 )). W e g iv e th e a rg u m e n t fo r
th e sa k e o f th e re a d e r.
F ro m th e E u le r se q u e n c e a n d ta n g e n t b u n d le se q u e n c e

0 −→ OS′(−1 ) −→ C19 ⊗OS′ −→ TP1 8 (−1 ) ⊗OS′ −→ 0

0 −→ TS′(−1 ) −→ TP1 8 (−1 ) ⊗OS′ −→ NS′/P1 8 (−1 ) −→ 0

w e fi n d

(23) h0(NS′/P1 8 (−1 )) ≤ h0(TP1 8 (−1 ) ⊗OS′) + h1(TS′(−1 )) = 1 9 + h1(TS0
(−3)).

F ro m th e ta n g e n t b u n d le se q u e n c e o f S0 ⊆ P3

(24 ) 0 −→ TS0
(−3) −→ TP3(−3) ⊗OS0

−→ NS0/P3(−3) −→ 0

a n d th e fa c t th a t NS0/P3(−3) ' OS0
, w e fi n d

h1(TS0
(−3)) ≤ 1 + h1(TP3(−3) ⊗OS0

).

In v ie w o f (23) it w ill su ffi c e to sh o w th a t h1(TP3(−3) ⊗OS0
) = 0.

N o w o b se rv e th a t TP3(−3) ' (Ω1
P3)

∨ ⊗ KP3 ⊗OP3(1 ) ' Ω2
P3(1 ) so u sin g B o tt v a n ish in g o n

P3 a n d S e rre d u a lity o n e g e ts h1(TP3(−3)) = 0 a n d

h2(TP3(−6 )) = h2((Ω1
P3)

∨ ⊗ KP3 ⊗OP3(−2)) = h1(Ω2
P3(2)) = 0.

T h is y ie ld s h1(TP3(−3) ⊗OS0
) = 0.

T h is c o n c lu d e s th e p ro o f o f th e c o ro lla ry . �

It is im m e d ia te th a t C o ro lla ry 0.3 fo llo w s fro m T h e o re m 0.1 a n d C o ro lla ry 0.2.
A s w e a lre a d y n o te d in th e in tro d u c tio n , T h e o re m 0.1 is sh a rp b y th e fo llo w in g e x a m p le :
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Example 2.5. The bound of Theorem 0.1 is sharp. In fact consider X = P2 × P1 with
projections p and q respectively and let H := p∗OP2(2) ⊗ q∗OP1(a) for an integer a > 0.
We have n := h0(H) − 1 = h0(OP2(2)) · h0(OP1(a)) − 1 = 6(a + 1) − 1 and d := H3 =
(p∗O(2) ⊗ q∗O(a))3 = 3(p∗O(2))2 · q∗O(a) = 12a, whence d = 2n − 10.
If a ≥ 2, then clearly any curve C on X satisfies C · H = C · p∗OP2(2) + C · q∗OP1(a) ≥ 2,
with equality obtained for the lines in the P2-fibers, so that X is uniruled of H-degree two
and not uniruled of H-degree one.
If a = 1, then X is clearly uniruled of H-degree one, and since d = 12 and n = 11, this
also follows from R emark 2.3.

3. Terminal Veronese fibrations

In this section we will prove P ropositions 0.4 and 2.4.
Since we will have to study the threefolds as in (II) of Theorem 1.2(v) we find it convenient
to make the following definition:

D efi n itio n 3 .1 . Let (T,L) be a pair satisfying the following:

(i) T is a terminal Q-factorial threefold with a Mori fiber space structure p : T −→ B,
where B is a smooth curve.

(ii) L is a line bundle on T such that the system |L| contains a smooth surface and
has at most base points and L3 > 0.

(iii) The general fiber of p is (V,L|V ) ' (P2,OP2(2)) and the rest are at most finitely

many fibers (G ,L|G) ' (S4,OS4
(1)), where S4 ⊂ P5 is the cone over a normal

quartic curve.

Such a Mori fiber space will be called a (three-dimensional) terminal Veronese fibration.

The threefolds of type (II) in Theorem 1.2(v) are terminal V eronese fibrations.
The easiest examples of terminal V eronese fibrations are the smooth ones in Example 2.5.
But there are also singular such varieties and these were erroneously left out in both [M1,
P rop. 3.7 ] and [CF, P rop. 3.4], as remarked by Mella in [M2, R em. 5.4]: Take P2 × P1

and blow up a conic C in a fiber and contract the strict transform of C, thus producing a
V eronese cone singularity.
Although our main aim is to prove P roposition 2.4 we believe that terminal V eronese
fibrations are interesting in their own rights. In order to prove P roposition 2.4 we will
study “ hyperplane sections” of T , i.e. surfaces in |L|, and show that the desired bound on
the degree follows since the general such surface has to have a certain number of degenerate
fibers, i.e. unions of two conics (with respect to L). What we first prove in this section is
the following, which is part of the statement in P roposition 0.4:

P ro po sitio n 3 .2. L et (T,L) be a three-dimensional terminal Veronese fibration and set
n := h0(L) − 1 and d := L3.
T hen any smooth member of |L| is a su rface fibered over B w ith k ≥ n−5

2 fibers w hich are
u nions of tw o smooth rational cu rves intersecting in one point (the other fibers are smooth
rational cu rves).

P roof. Denote by V the numerical equivalence class of a fiber. Let S ∈ |L| be a smooth
surface. Then, since T is terminal, we have S ∩ Sing T = ∅ (cf. [M2, (2.3)]).
By property (iii) any fiber of S over B is either a smooth quartic, a union of two conics
intersecting in one point, or a double conic, all with respect to L. Denote by F the
numerical equivalence class in S of a fiber over B. Then F 2 = 0.
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If a fiber were a double conic, we could write F ≡ 2F0 in Num S. H owever, in this case
we would get the contradiction F0 · (F0 + KS) = −1, so this case does not occur.
In the case of a fiber which is a union of two conics intersecting in one point, we have
F ≡ F1 +F2 in Num S, whence by adjunction both Fi are (−1)-curves. Since S is smooth
its general fiber over B is a smooth quartic (with F · KS = −2 by adjunction), whence
S has a finite number k of degenerate fibers which are unions of two conics and since
these are all (−1)-curves we can blow down one of these curves in every fiber and reach a
minimal model R for S which is a ruled surface over B. Let g be the genus of B. Then

k = K2
R − K2

S = 8 (1 − g) − K2
S = 8 (1 − g) − (KT + L)2 · L,

which only depends on the numerical equivalence class of S. Therefore, any smooth surface
in |L| has the same number of degenerate fibers.
Now note that the fibers of S over the finitely many points of B over which T has singular
fibers are all smooth quartics, since S ∩ Sing T = ∅.
We now consider the birational map of T to a smooth projective bundle T̃ , as described
in [M2, p. 699].
Around one singular fiber S4 of T over a point p ∈ B this map is given by a succession of
blow ups νi and contractions µi:

(25) Y1

µ1

��
@@

@@
@@

@@
ν1

{{xx
xxx

xx
xx

· · ·
ν2

~~~~
~~

~~
~~ µs−1

!!
DD

DD
DD

DD
D Ys

νs

}}{{
{{

{{
{{ µs

##
FF

FF
FF

FF
F

T = T0 T1 Ts−1 Ts = T̃

where the procedure ends as soon as some Ts has a fiber over p ∈ B which is a smooth
Veronese surface.
For every νi the exceptional divisor Ei is either a smooth Veronese surface or a cone over
a rational normal quartic curve, and the strict transform of the singular fiber S4 of Ti−1

over p is Gi ' F4, the desingularization of S4. These two intersect along a smooth quartic
Ci. Then µi contracts Gi onto a smooth quartic curve C ′

i = µi(Ci) and Ti is smooth along
the exceptional locus of the contraction.
Following S throughout the procedure, we see that S stays out of the exceptional locus of
every νi and in the contraction it is mapped to a surface having C ′

i as fiber over p.
In other words the procedure of desingulariz ing one singular fiber of T maps every smooth
surface in |L| to a smooth surface passing through a unique smooth quartic over p.
Doing the same procedure for all the other singular fibers of T we therefore reach a
smooth projective bundle P(E) over B and under this process |L| is “mapped” to a (not
necessarily complete) linear system on P(E) having smooth quartics over the corresponding
points of B as base curves. Denote the corresponding line bundle on P(E) by L′. Since
we have not changed the number of degenerate fibers of any smooth surface in |L| over
B, we see that every smooth surface in |L′| still has k degenerate fibers over B. Since
clearly dim |L′| ≥ dim |L| it is now sufficient to show that any smooth surface in |L′| has

k ≥ h0(L′)−6
2 fibers which are unions of two conics (with respect to L′) intersecting in one

point. This is the content of the following proposition. �

Proposition 3.3. Let f : T ' P(E) −→ B be a three-dimensional projective bundle over
a smooth curve of genus g. A ssume L is a line bundle on T satisfying:

(i) L|V ' OP2(2) for every fiber V ' P2,
(ii) |L| is nonempty with general element a smooth irreducible surface,
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(iii) the only curves in the base locus of |L|, if any, are smooth quartics (with respect
to L) in the fibers.

Then any smooth surface in |L| is fibered over B with k fibers which are unions of two
conics (with respect to L) intersecting in one point, where

(26) k =
1

4
L3 ≥

h0(L) − 6

2
.

Proof. We only have to prove (26).
Denote by V the numerical equivalence class of a fiber. Since every fiber of T over B

is a P2 we have (KT )|P2 ' KP2 ' OP2(−3) so we can choose a very ample line bundle
G ∈ Pic T such that

(27) Num T ' ZG ⊕ ZV, G2 · V = 1, G · V2 = V3 = 0,

(28) KT ≡ bV − 3G, b ∈ Z

and

(29) L ≡ aV + 2G, a ∈ Z.

The general element G ∈ |G| is a smooth ruled surface over B; in particular

8(1 − g) = K2
G = (KT + G)2 · G = (bV − 2G)2 · G = 4G3 − 4b,

that is

(30) G3 = 2(1 − g) + b.

Let now S ∈ |L| be any smooth surface. Clearly (as discussed in the proof of the previous
proposition) K2

S = 8(1 − g) − k. We compute, using (27) and (30),

K2
S = (KT + L)2 · L = ((a + b)V − G)2 · (aV + 2G)

= 2G3 − 3a − 4b = 2(2(1 − g) + b) − 3a − 4b

= 4(1 − g) − 3a − 2b,

so that

(31) k = 4(1 − g) + 3a + 2b.

At the same time we have

L3 = (aV + 2G)3 = 12a + 8G3(32)

= 12a + 8b + 16(1 − g) = 4k,

proving the equality in (26).
The inequality in (26) we have left to prove is L3 ≥ 2h0(L)− 12. We therefore assume, to
get a contradiction, that

(33) L3 ≤ 2h0(L) − 13.

Since the 1-dimensional part of the base locus of |L| can only consist of smooth quartics
(with respect to L) in the fibers of f , we can write, on S,

L|S ∼ H0 + (f|S)∗v ≡ H0 + cF,

fo r so m e n o n n e g a tiv e in te g e r c, w h e re v is a n e ff e c tiv e d iv iso r o f d e g re e c o n B; F d e n o te s

th e n u m e ric a l e q u iv a le n c e c la ss o f a fi b e r o f f|S : S − → B; a n d |H0| is th e m o v in g p a rt o f

|L |S|. If th e g e n e ra l e le m e n t C0 ∈ |H0| w e re n o t re d u c e d a n d irre d u c ib le , th e n b y B e rtin i’s

th e o re m |H0| w o u ld b e c o m p o se d w ith a p e n c il, w h e n c e H0 ≡ m H ′
0
, fo r so m e H ′

0
∈ P ic S
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with H ′
0

2 = 0 and m ≥ 2. N ow 4 = F · L = F ·H0 = mF ·H ′
0 implies m ≤ 4. By (33) and

the short ex act sequence

(34) 0 −→ OT −→ OT (L) −→ OS(L) −→ 0

(using the fact that L3 ≥ 0 by (32)) we get the contradiction

5 ≥ m + 1 ≥ h0(H0) = h0(OS(L)) ≥ h0(L) − 1 ≥ 6.

T herefore C0 is a reduced and irreducible curve (possibly singular).
F rom

(35) 0 −→ OS(f∗
v) −→ OS(L) −→ OC0

(L) −→ 0.

and (34) we get, using (33):

h0(OC0
(L)) ≥ h0(OS(L)) − h0(OS(f∗

v))

≥ h0(OT (L)) − h0(B, v) − 1(36)

≥
1

2
(L3 + 13) − c − 2 =

1

2
L3 − c +

9

2
.

M oreover deg OC0
(L) = L2 · (L − cV) = L3 − cL2 · V = L3 − 4c, so that

deg OC0
(L) − 2(h0(OC0

(L)) − 1) ≤ L3 − 4c − (L3 − 2c + 7) = −2c − 7 < 0.

By C lifford’s theorem on singular curves (see the appendix of [E K S ]) we must therefore
have

(37) h1(OC0
(L)) = 0.

A lso note that since T is a projective bundle over a smooth curve of genus g, we have

(38 ) h0(OT ) = 1, h1(OT ) = g, h2(OT ) = h3(OT ) = 0.

F rom R iemann-R och on S and the fact that h2(OS(f∗
v)) = h0(KS − f∗

|Sv) = 0 (since F

is nef with F.(KS − f∗
v) = F.(KS − cF ) = −2) we find

h1(OS(f∗
v)) = −χ(OS(f∗

v)) + h0(OS(f∗
v)) + h2(OS(f∗

v))(39)

= −
1

2
cF · (cF − KS) + g − 1 + h0(OS(f∗

v))

≤ −c + g − 1 + c + 1 = g.

C ombining all (34)-(39) we find

h1(L) ≤ h1(OT ) + h1(OS(L))(40)

≤ h1(OT ) + h1(OS(f∗
v)) + h1(OC0

(L))

≤ g + g + 0 = 2g,

together with

(41) h2(L) = h3(L) = 0.

F rom (28 )-(30), (34), (38 ) and R iemann-R och on S, we get

χ(L) = χ(OS(L)) + χ(OT ) =
1

2
OS(L) ·

(

OS(L) − KS

)

+ χ(OS) + χ(OT )

=
1

2

(

L3 − L2 · (KT + L)
)

+ χ(OS) + χ(OT ) = −
1

2
L2 · KT + 2(1 − g)

= −
1

2
(aV + 2G)2 · (bV − 3G) + 2(1 − g) = 14(1 − g) + 6a + 4b.



66 A. L. KNUTSEN, C. NOVELLI, A. SARTI

Comparing with (32) we see that

L3 = 2χ(L) − 12(1 − g),

whence, using (40) and (41),

L3 = 2
(

h0(L) − h1(L) + h2(L) − h3(L)
)

− 12(1 − g)

≥ 2
(

h0(L) − 2g
)

− 12(1 − g) = 2h0(L) − 12 + 8g ≥ 2h0(L) − 12,

contradicting (33).
This shows that (33) cannot hold, proving (26). �

Example 3.4. As in Example 2.5 tak e X = P2×P1 and H := p∗OP2(2)⊗q∗OP1(a). Then
we have an embedding given by |H|:

P2 × P1 −→ P6(a+ 1)−1

A hyperplane section of X in P6(a+ 1)−1 has equation
∑

i,j= 0,1,2,0≤k≤a

lijkxixjy
k
0ya−k

1 = 0,

where (x0 : x1 : x2) are the coordinates on P2 and (y0 : y1) are the coordinates on P1

and lijk are coeffi cients. The section is degenerate on some V eronese surface (P2,OP2(2))
if the determinant of the matrix of the coeffi cients of the xixj is zero. This determinant
is a polynomial of degree 3a in y0, y1, hence in general we find 3a distinct zeros. This

means that a general hyperplane section has 3a = 6(a+ 1)−1−5
2 degenerate fibers, which

is the smallest possible number of degenerate fibers for a terminal V eronese fibration as
stated in Proposition 3.2.

P ro o fs o f P ro po sitio n s 0 .4 an d 2 .4. W e note that by Proposition 3.2 the only state-
ment left to prove in Proposition 0.4 is a special case of Proposition 2.4.
As in Proposition 2.4 let (X,H) be a pair consisting of a terminal Q-factorial threefold X

and a globally generated, big line bundle H on X, with d := d(X,H) and n := n(X,H).
Assume that a ]-minimal model (X],H]) is of type (II) in Theorem 1.2(v), i.e. a terminal
V eronese fibration over a smooth curve B of genus g.
L et f : S −→ S] be as in Theorem 1.2(iii). W e have n] := dim |H]| ≥ dim |H| = n

by L emma 1.5(a). By Proposition 3.2, S] is fibered over B with general fiber a smooth

quartic and k ≥ n]−5
2 fibers being a union of two rational curves intersecting in one point,

which are both (−1)-curves. Therefore

(42) K2
S] = 8(1 − g) − k ≤ 8(1 − g) −

n] − 5

2
≤ 8(1 − g) −

n − 5

2
.

W e want to show that d ≥ 2n − 10. Assume, to get a contradiction, that

(43) d ≤ 2n − 11.

Note that ρ := ρ(X,H) = 2
3 , so we can apply L emma 1.5(b). L et l be the total number

of irreducible curves contracted by f . Then K2
S = K2

S] − l. Pick any smooth irreducible
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curve D ∈ |OS(H)|. Then by (3), (10) and (42) we have

0 ≤ 4l + (D + 2KS)2 = 4l + 4K2
S + 4KS · D + D2

≤ 4l + 4
(

8(1 − g) −
n − 5

2
− l

)

+ 4
(

d − 2n + 2
)

+ d

= 32(1 − g) − 2(n − 5) + 4d − 8n + 8 + d

= 32(1 − g) + 5d − 10n + 18 ≤ 5d − 10n + 50 = 5(d − 2n + 10),

contradicting (43).
We have therefore proved that d ≥ 2n− 10 and this finishes the proofs of Propositions 0.4
and 2.4. �

4. Final Remarks

To conclude, we remark that a closer look at the proofs of of Propositions 0.4 and 2.4 shows
that if we assume only d < 2n − 4 instead of (43), we get g = 0 as the only possibility.
This shows that:
A three-dimensional terminal Veronese fibration over a smooth cu rve of genu s g > 0 mu st
satisfy d ≥ 2n − 4.
Consequently:
If a pair (X,H) consisting of a terminal Q-factorial threefold X and a g lobally generated,
big line bu ndle H on X has a ]-minimal model being of ty pe (II) in T heorem 1 .2 (v) over
a smooth cu rve of genu s g > 0, then d ≥ 2n − 4.
If now (X],H]) is a ]-minimal model of a pair (X,H) consisting of a terminal Q-factorial
threefold X and a globally generated big line bundle H, then H] is still big and nef by
Lemma 1.5(a), so that h1(OX) = h1(OS) = h1(OS]) = h1(OX]). We have seen that this
is zero if X] is of type (I) in Theorem 1.2(v) and equal to g, the genus of B, if X] is of
type (II) in Theorem 1.2(v).
We have therefore obtained an improvement of [M2, Thm. 5.8] (cf. Theorem 1.2(v)):

Proposition 4.1. L et (X,H) be a pair consisting of a terminal Q-factorial threefold X

and a g lobally generated big line bu ndle H on X. S et d := H3 and n := h0(X,H) − 1.
If d < 2n − 10 (resp . d < 2n − 4 and h1(OX) > 0), then (X],H]) is of one of the ty pes
(i)-(iv) (resp . (ii)-(iv)) below :

(i) (P3,OP3(3)) (w ith (d, n) = (27, 19)),
(ii) a qu adric bu ndle w ith at most cA 1 singu larities of ty pe f = x2 + y2 + z2 + tk, for

k ≥ 2, and H]
|F ∼ OF (1) for every fiber F ,

(iii) (P(E),O(1)) w here E is a rank 3 vector bu ndle over a smooth cu rve,
(iv) (P(E),O(1)) w here E is a rank 2 vector bu ndle over a su rface of negative K odaira

dimension.

Consequently we have the following slight improvement of Theorem 0.1 and Corollary 0.2:

C orollary 4.2. L et (X,H) be a pair consisting of a redu ced and irredu c ible k-dimensional
variety X, k ≥ 3, and a g lobally generated line bu ndle H on X. S et d := Hk and n =
h0(X,H) − 1.

If h1(OX̃) > 0 for a resolu tion of singu larities X̃ of X and d < 2(n − k) + 2, then X is
u niru led of H-degree one.

P roof. In the proof of Theorem 0.1, use Proposition 4.1 in place of Theorem 1.2(v). Then,
in the proof of Corollary 0.2, note that h1(OXi

) = h1(OXi−1
) as Hi is big and nef. �
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POLYHEDRAL GROUPS AND PENCILS OF K3-SURFACES WITH

M AX IM AL PICARD NUM B ER

W. BARTH AND A. SARTI

Abstract. A K 3 -su rfac e is a (sm o o th ) sim p ly -c o n n e c te d su rfac e w ith triv ial can o n ical
b u n d le . In th is n o te w e in v e stig ate th re e p artic u lar p e n c ils o f K 3 -su rfac e s w ith m ax im al
P icard n u m b e r. To b e p re c ise : Th e g e n e ral m e m b e r in each p e n c il h as P icard n u m b e r 1 9 .
An d each p e n c il c o n tain s p re c ise ly fi v e su rfac e s w ith sin g u laritie s. F o u r o f th e m are also
sin g u lar in th e se n se th at th e ir P icard n u m b e r is 2 0 . O u r su rfac e s are m in im al re so lu tio n s
o f q u o tie n ts X/G, w h e re G ⊂ S O (4 , IR) is a fi n ite g ro u p an d X a G-in v arian t su rfac e .
Th e sin g u laritie s o f X/G c o m e fro m fi x -p o in ts o f G o n X o r fro m d o u b le p o in ts o f X.
In an y case th e se sin g u laritite s are A-D-E . Th e ratio n al c u rv e s re so lv in g th e m to g e th e r
w ith so m e e v e n , re sp . 3 -d iv isib le se ts o f ratio n al c u rv e s g e n e rate th e Nero n -Se v e ri g ro u p .

1. In tro d u ctio n

T h e a im o f th is n o te is to p re se n t th re e p a rtic u la r p e n c ils o f K 3 -su rfa c e s w ith P ic a rd-
n u m b e r ≥ 19 . T h e se th re e p e n c ils a re re la ted to th e th re e p o ly h edra l g ro u p s T, O, re sp .
I, (th e ro ta tio n g ro u p s o f th e p la to n ic so lids te tra h edro n , o c ta h edro n a n d ic o sa h edro n ) a s
fo llo w s: It is c la ssic a l th a t th e g ro u p S O(4 , IR ) c o n ta in s c e n tra l e x te n sio n s

G6 G8 G12

o f T × T O × O I × I

b y ±1. E a ch g ro u p Gn, n = 6 , 8, 12 , h a s th e o b v io u s in v a ria n t q := x2

0
+ x2

1
+ x2

2
+ x2

3
. In

[S ] it is sh o w n th a t e a ch g ro u p Gn a dm its a se c o n d n o n -triv ia l in v a ria n t sn o f deg re e n.
(T h e e x iste n c e o f th e se in v a ria n ts se e m s to h a v e b e e n k n o w n b e fo re [R a ,C ], b u t n o t th e ir
e x p lic it fo rm a s c o m p u ted in [S ].) T h e p e n c il

Xλ ⊂ IP 3(C ) : sn + λ qn/ 2 = 0

th e re fo re c o n sists o f deg re e -n su rfa c e s a dm ittin g th e sy m m e try g ro u p Gn. W e c o n sider
h e re th e p e n c il o f q u o tie n t su rfa c e s

Y ′

λ := Xλ/Gn ⊂ IP 3/Gn.

It is - fo r u s - q u ite u n e x p e c ted th a t th e se (sin g u la r) su rfa c e s h a v e m in im a l re so lu tio n s Yλ,
w h ich a re K 3 -su rfa c e s w ith P ic a rd-n u m b e r ≥ 19 .
In [S ] it is sh o w n th a t th e g e n e ra l su rfa c e Xλ is sm o o th a n d th a t fo r e a ch n = 6 , 8, 12
th e re a re p re c ise ly fo u r sin g u la r su rfa c e s Xλ, λ ∈ C . T h e sin g u la ritie s o f th e se su rfa c e s
a re o rdin a ry n o des (do u b le p o in ts A1) fo rm in g o n e o rb it u n der Gn.
F o r a sm o o th su rfa c e Xλ th e sin g u la ritie s o n th e q u o tie n t su rfa c e Y ′

λ o rig in a te fro m fi x -
p o in ts o f su b g ro u p s o f Gn. U sin g [S , se c t. 7 ] it is e a sy to e n u m e ra te th e se fi x -p o in ts a n d
to dete rm in e th e c o rre sp o n din g q u o tie n t sin g u la ritie s. O n th e m in im a l re so lu tio n Yλ o f Y ′

λ
w e fi n d en o u g h ra tio n a l c u rv e s to g e n e ra te a la ttic e in N S (Yλ) o f ra n k 19 . In se c t. 5 w e

Su p p o rte d b y th e Sch w e rp u n k tp ro g ram m ” G lo b al m e th o d s in c o m p le x g e o m e try ” o f th e Deu tsch e
F o rsch u n g sg e m e in sch aft

69
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show that the minimal desingularisation Yλ is K3 and that the structure of this surface
varies with λ. This implies that the general surface Yλ has Picard number 19. Then in
sect. 6.1 we use even sets [N ], resp. 3-divisible sets [B , T] of rational curves to determine
completely the Picard-lattice of these surfaces Yλ.
If Xλ is one of the four nodal surfaces in the pencil, there is an additional rational curve
on Yλ. This surface then has Picard-number 20. (Such K3-surfaces usually are called
singular [SI].) We compute the Picard-lattice for the surfaces Yλ in all twelve cases (sect.
6.2).

2. Notations and conventions

The base field always is C. We abbreviate complex roots of unity as follows:

ω = e2π i/3 =
1

2
(−1 +

√
−3), ε := e2π i/5, γ := e2π i/8 =

1√
2
(1 + i).

B y G ⊂ SO(3) we always denote one of the (ternary) polyhedral groups T, O or I, and

by G̃ ⊂ SU (2) the corresponding binary group. B y

σ : SU (2) × SU (2) → SO(4)

we denote the classical 2 : 1 covering. The group Gn ⊂ SO(4), n = 6, 8, 12, is the image

σ(G̃ × G̃) for G̃ = T̃ , Õ, Ĩ. Usually we are interested more in the group

P Gn = Gn/{ ±1} ⊂ P GL(4).

For n = 6, 8, 12 it is isomorphic with T ×T,O×O, I × I having the order 122 = 144, 242 =
576, resp. 602 = 3600.

Definition 2.1. a) Let id 6= g ∈ P Gn. A fix-line fo r g is a lin e L ⊂ IP3 w ith gx = x fo r
all x ∈ L. T h e fix-group FL ⊂ P Gn is th e su bgro u p co n sistin g o f all h ∈ P Gn w ith hx = x
fo r all x ∈ L. T h e order o(L) o f L is th e o rd er o f th is gro u p FL.
b) T h e stabilizer group HL ⊂ P Gn is th e su bgro u p co n sistin g o f all h ∈ P Gn w ith hL = L.
T h e length `(L) is th e len gth

|P Gn|/|HL|
o f th e Gn-o rbit o f L.
c) W e sh all en co u n ter fi x-lin es o f o rd ers 2, 3, 4 an d 5. W e d efi n e th eir types by

o rd er 2 3 4 5
ty pe M N R S

We shall denote by Xλ : sn + λqn/2 = 0 the symmetric surface with parameter λ ∈ C. A ll
these surfaces are smooth, but for four parameters λi. These four singular parameters in
the normalization of [S, p.445, p.449] are

n = 6 n = 8 n = 12
λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

−1 −2

3
− 7

12
−1

4
−1 −3

4
− 9

16
−5

9
− 3

32
− 22

243
− 2

25
0

Sometimes we call the surface Xλ of degree n and parameter λi just Xn,i, or refer to it as
the case n,i.
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3. Fixpoints

In this section we determine the fix-points for elements id 6= g ∈ PGn.
Recall that each ±1 6= p ∈ G̃ has precisely two eigen-spaces in C2 with the product of its
eigen-values = det(p) = 1.

In coordinates x0, ..., x3 on IR4 the morphism σ : G̃×G̃ → SO(4, IR) is defined by σ(p1, p2) :
(xk) 7→ (yk) with

(

y0 + iy1 y2 + iy3

−y2 + iy3 y0 − iy1

)

= p1 ·
(

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)

· p−1

2
.

The quadratic invariant

q = x2
0 + x2

1 + x2
2 + x2

3 = det

(

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)

vanishes on tensor-product matrices
(

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)

=

(

v0w0 v0w1

v1w0 v1w1

)

= v ⊗ w.

The action of G̃ × G̃ on the quadric

Q := {q = 0} = IP1 × IP1

is induced by the actions of the group G̃ on the tensor factors v and w ∈ C2

σ(p1, p2) : v ⊗ w 7→ (p1v) ⊗ (p̄2w).

The fix-points for ±1 6= σ(p1, p2) ∈ Gn on IP3 come in three kinds:

1) Fix-points on the quadric: ±1 6= p1 ∈ G̃ has two independent eigenvectors v, v′. The
spaces v ⊗ C2 and v′ ⊗ C2 determine on the quadric two fix-lines for σ(p1,±1) belonging

to the same ruling. In this way G̃-orbits of fix-points for elements p1 ∈ G̃ determine
Gn-orbits of fix-lines in the same ruling of the following lengths:

order of p 4 6 8 10
G6 6 4, 4 − −
G8 12 8 6 −
G12 30 20 − 12

In the same way fix-points for p2 ∈ G̃ determine fix-lines for σ(±1, p2) ∈ Gn in the other
ruling. In [S, p.439] it is shown that the base locus of the pencil Xλ consists of 2n such
fix-lines, n lines in each ruling, say Λk,Λ

′

k, k = 1, ..., n. The fix-group FΛk
for the general

point on each line Λk,Λ
′

k then is cyclic of order s := |G|/n:

n 6 8 12
s 2 3 5

Where a fix-line for σ(p1,±1) meets a fix-line for σ(±1, p2) we obviously have an isolated
fix-point x for the group generated by these two symmetries. We denote by t the order of
the (cyclic) subgroup of P (σ(±1, G̃)) fixing x. The number of HΛk

-orbits on each line Λk
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of such points is

t
n s 2 3 4 5
6 2 1 2 − −
8 3 1 1 1 −

12 5 1 1 − 1

2) Fix-lines off the quadric: L et L ⊂ IP3 be a fix-line for σ(p1, p2) ∈ Gn with p1, p2 6= ±1.
It meets the quadric in at least one fix-point defined by a tensor product v ⊗ w with v,w
eigenvectors for p1, p2 respectively. The group < σ(p1,±1) >⊂ HL centralizes σ(p1, p2).
Therefore there is a second fix-point on L for this group. Necessarily it lies on the quadric,
being determined by a tensor-product v′⊗w′ with v′, w′ eigenvectors for p1, p2 respectively.
L et α,α′ be the eigen-values for p1 on v, v′ and β, β′ those for p2 on w,w′ respectively.
Then

α · α′ = β · β′ = 1.

Since all points on L have the same eigen-value under σ(p1, p2) we find

α · β = α′ · β′ = (α · β)−1.

So α · β = ±1 and g := σ(p1, p2) acts on this line by an eigen-value ±1. In particular p1

and ±p2 ∈ G̃ have the same order.
We reproduce from [S, p. 443] the table of Gn-orbits of fix-lines off the quadric by specifying
a generator g ∈ Gn of FL. For this generator we use the notation of [S]. There it is also
given the length `(L). This length determines the order |HL| = |PGn|/`(L) of the stabilizer
group and the length |HL|/|FL| of the general HL-orbit on L:

n 6 8 12
g σ24 π3π

′

3
π2

3
π′

3
π3π4π

′

3
π′

4
π3π4σ4 σ2π

′

3
π′

4
π3π

′

3
π4π

′

4
σ24 π3π

′

3
π5π

′

5

FL ZZ2 ZZ3 ZZ3 ZZ2 ZZ2 ZZ2 ZZ3 ZZ4 ZZ2 ZZ3 ZZ5

type M N N ′ M M ′ M ′′ N R M N S
`(L) 18 16 16 72 36 36 32 18 450 200 72

|HL|/|FL| 4 3 3 4 8 8 6 8 4 6 10

3) Intersections of fix-lines off the quadric: From [S, p.450] one can read off the Gn-orbits
of intersections of these lines outside of the quadric and the value of the parameter λ for
the surface Xλ passing through this intersection point. An intersection point is a fix-point
for the group generated by the transformations leaving fixed the intersecting lines. In the
following table we give these (projective) groups (Dn denoting the dihedral group of order
2n), the orders of the fix-group of intersecting lines, the generators of these groups, as well



POLYHEDRAL GROUPS AND PENCILS OF K3-SURFACES WITH MAXIMAL PICARD NUMBER 73

as the numbers of lines meeting:

n λ group orders generators numbers
6 λ1 T 2, 3 σ24, π3π

′

3 3, 4
λ4 T 2, 3 σ24, π2

3π
′

3 3, 4
8 λ1 O 2, 3, 4 π3π4π

′

3π
′

4, π3π
′

3, π4π
′

4 6, 4, 3
λ2 D4 2, 2, 4 π3π4σ4, σ2π

′

3π
′

4, π4π
′

4 2, 2, 1
λ3 ZZ2 × ZZ2 2, 2, 2 π3π4σ4, σ2π

′

3π
′

4, π3π4π
′

3π
′

4 1, 1, 1
λ4 D3 2, 3 π3π4π

′

3π
′

4, π3π
′

3 3, 1
12 λ1 T 2, 3 σ24, π3π

′

3 3, 4
λ2 D3 2, 3 σ24, π3π

′

3 3, 1
λ3 D5 2, 5 σ24, π5π

′

5 5, 1
λ4 I 2, 3, 5 σ24, π3π

′

3, π5π
′

5 15, 10, 6

4. Quotient singularities

Singularities in the quotient surface Y ′ = Y ′

λ originate from fix-points of the group action
(or from singularities on X, but the latter are included in the fix-points, see [S, (6.4)]).
We distinguish four types of fix-points on X = Xλ for elements of Gn:

1) Points of the base locus Λ of the pencil, n lines in each of the two rulings of the
invariant quadric Q, the (projective) fix-group being ZZs from section 1;

2) points on a line Λk or Λ′

k in the base locus, fixed by the group ZZs =< σ(p, 1) >

from section 1 and by some non-trivial subgroup ZZt ⊂ P (σ(1, G̃));
3) isolated fixed points on the intersection of a fix-line and a smooth surface Xλ;
4) nodes of a surface Xλ.

1) All points of Λi are fixed by the cyclic group ZZs from section 1. The quotient map
here is a cyclic covering of order s. The quotient by ZZs is smooth.

2) Since Gn acts on Λi as the ternary polyhedral group G, there are orbits of points on
Λi, fixed under some none-trivial subgroup of G. We have to disinguish two cases:
Case 1: The n points, where the line Λi m eets som e line Λ′

k ⊂ Λ. H ere the stabilizer
group is ZZs × ZZs acting on X by refl ections in the two lines Λi,Λ

′

k. In such points the
quotient surface Y ′ is smooth.
Case 2 : The fix-points of other non-triv ial subgroups of G. The lengths of these orbits
and their stabilizer subgroups ZZt ⊂ G are given in section 1:

t 2 3 4
G6 − 4, 4 −
G8 12 − 6
G12 30 20 −

The total stabilizer is the direct product ZZs × ZZt. Let v, v′ be eigen-vectors for ZZs and
w,w′ eigen-vectors for ZZt. Let v⊗w determine the fix-point in question. The surface X is
smooth there, containing the line IP(v⊗C2), and intersecting the quadric Q transversally.
This implies that the tangent space of X is the plane

y0 · v ⊗ w + y1 · v ⊗ w′ + y2 · v′ ⊗ w′, y0, y1, y2 ∈ C.

Let σ(p1,±1) ∈ ZZs and σ(±1, p2) ∈ ZZt be generators. Let them act by

σ(p1, 1)v = αv, σ(p1, 1)v
′ = α−1v′, σ(1, p2)w = βw, σ(1, p2)w

′ = β−1w′.
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These transformations act on the coordinates yν of the tangent plane as

y0 y1 y2 z1 := y1/y0 z2 := y2/y0

σ(p1, 1) α α α−1 1 α−2

σ(1, p2) β β−1 β−1 β−2 β−2

We introduce local coordinates on X in which the group acts as on z1, z2, and in fact
use again z1, z2 to denote these local coordinates on X. We locally form the quotient
X/(ZZs × ZZt) dividing first by the action of ZZs

(z1, z2) 7→ (zs
1, z2).

Then we trace the action of ZZt on zs
1

and z2. A generator σ(1, p2) of ZZt acts by

y0 y1 y2 z1 z2

ω ω2 ω2 ω ω
i −i −i −1 −1
γ γ7 γ7 −i −i

The resulting singularities on Y ′ are

n s z1 z2 zs
1

z2 quotient singularity
6 2 ω ω ω2 ω A2

8 3 −1 −1 −1 −1 A1

−i −i i −i A3

12 5 −1 −1 −1 −1 A1

5 ω ω ω2 ω A2

3) Let L ⊂ IP3 be a fix-line for σ(p1, p2) ∈ Gn, not lying on the quadric. Assume that
σ(p1, p2) is chosen as a generator for the group FL. By sect. 1 there are eigen-vectors v, v′

for p1 with eigen-values α,α−1 and w,w′ for p2 with eigen-values β, β−1 satisfying

αβ = ±1, αβ = α−1β−1 = ±1,

such that L is spanned by v ⊗ w and v′ ⊗ w′. The general surface X meets this line in n
distinct points. If the line has order s, two of these points lie on the base locus Λ. So the
number of points not in the quadric Q cut out on L by X is

n 6 8 12
o(L) 2 3 2 3 4 2 3 5

number 4 6 8 6 8 12 12 10

These points fall into orbits under the stabilizer group HL. The lengths of these orbits
are given in sect. 1.
To identify the quotient singularity we have to trace the action of σ(p1, p2) on the tangent
plane Tx(X). For general X this plane will be transversal to L. So it must be the plane
spanned by x, v ⊗ w′, v′ ⊗ w. By continuity this then is the case also for all smooth X.
In particular, all smooth X meet L in n distinct points, i.e., the intersections always are
transversal. And by continuity again, the numbers and lengths of HL-orbits in X ∩L are
the same for all smooth X. Since σ(p1, p2) acts

on v ⊗ w′ v′ ⊗ w
by αβ−1 α−1β,

the eigen-values for σ(p1, p2) on Tx(X) are

α−1β

αβ
= α−2 and

αβ−1

αβ
= β−2 = (± 1

α
)2 = α2.
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The resulting quotient singularity on Y ′ therefore is of type Ar, where r is the order of L.
We collect the results in the following table. It shows in each case length and number of
HL-orbits, the number and type(s) of the quotient singularity(ies).

n 6 8 12
o(L) 2 3 3 2 2 2 3 4 2 3 5
type M N ′ N ′′ M ′ M ′′ M N R M N S

length 4 3 3 8 8 4 6 8 4 6 10
number 1 2 2 1 1 2 1 1 3 2 1

singularities A1 2A2 2A2 A1 A1 2A1 A2 A3 3A1 2A2 A4

4) Finally we consider the nodal surfaces X. All the intersections of fix-lines considered in
sect. 2 are nodes on the surfaces X. There are just two invariant surfaces with nodes not
given there, because through their nodes passes just one fix-line. They are G6-invariants.
Their parameters are as follows:

λ group generator
λ2 ZZ3 π3π

′

3

λ3 ZZ3 π3π
′2
3

We use this to collect the data for the twelve singular surfaces X in the next table. We
include the number ns of nodes on the surface and specify the group F ⊂ PSL(4) fixing
the node. For each type we give the number of lines meeting in the node. So e.g. 3M
means that there are three lines of type M meeting at the node.

n 6 8 12
λ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

ns 12 48 48 12 24 72 144 96 300 600 360 60
F T ZZ3 ZZ3 T O D4 ZZ2 × ZZ2 D3 T D3 D5 I

3M 1N ′ 1N ′′ 3M 6M 2M ′ 1M ′ 3M 3M 3M 5M 15M
4N ′ 4N ′′ 4N 2M ′′ 1M ′′ 1N 4N 1N 1S 10N

3R 1R 1M 6S

Lem m a 4.1. Let G ⊂ SO(3) be a finite subgroup of order ≥ 3.
a) U p to G-equivariant linear coordinate change, there is a unique G-invariant quadratic
polynomial defining a non-degenerate cone with top at the origin.
b) If X is a G-invariant surface, having a node at the origin, then there is a G-equivariant
change of local (analytic) coordinates, such that X is given in the new coordinates by
x2 + y2 + z2 = 0.

Proof. a) We distinguish two cases:
i) G = ZZ2 × ZZ2 generated by the symmetries

(x, y, z) 7→ (x,−y,−z) and (x, y, z) 7→ (−x, y,−z).

The quadratic G-invariants are generated by the squares x2, y2 and z2. The invariant
polynomial then is of the form a x2 + by2 + cz2 with a , b , c 6= 0. The coordinate change

x′ :=
√

a x, y′ :=
√

by, z′ =
√

cz

is G-equivariant and transforms the polynomial into x′2 + y′2 + z′2.
ii) G contains an element g of order ≥ 3. Let it act by

(x, y, z) 7→ (cx − sy, sx + cy, z)
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with c = cos(α), s = sin(α) and α 6= 0, π. The quadratic invariants of g are generated
by x2 + y2 and z2. The invariant polynomial must be of the form a(x2 + y2) + bz2 with

a, b 6= 0. The G-equivariant transformation x′ :=
√

ax, y′ :=
√

ay, z′ :=
√

bz transforms
it into the same normal form as in i). This proves the assertion if G =< g > is cyclic or
if G is dihedral.
In the three other cases G = T,O or I, it is well-known that x2 +y2 + z2, up to a constant
factor, is the unique quadratic G-invariant.
b) Let X be given locally at the origin by an equation f(x, y, z) = 0 with f some power
series. Since X is G-invariant, so is the tangent cone of X at the origin. By a) we therefore
may assume

f = x2 + y2 + z2 + f3(x, y, z)

with a power series f3 containing monomials of degrees ≥ 3 only. It is well-known that
there is a local biholomorphic map ϕ : (x, y, z) 7→ (x′, y′, z′) mapping X to its tangent
cone, i.e., with the property ϕ∗(x′2 + y′2 + z′2) = f . For the derivative ϕ′(0) this implies
ϕ′(0)∗(x′2 +y′2 +z′2) = x2 +y2 +z2. After replacing ϕ by ϕ′(0)−1 ◦ϕ we even may assume
ϕ′(0) = id.
Now consider the local G-equivariant holomorphic map

Φ : (x, y, z) 7→ 1

|G|
∑

h∈G

h ◦ ϕ ◦ h−1.

Using the G-invariance of f and x′2 + y′2 + z′2 one easily checks Φ∗(x′2 + y′2 + z′2) = f .
It remains to show, that Φ locally at the origin is biholomorphic. But this follows from

Φ′(0) =
1

|G|
∑

h∈G

h ◦ ϕ′(0) ◦ h−1 = id.

Now consider the automorphism

C2 → C2, v = (v0, v1) 7→ v⊥ := (v1,−v0).

For q ∈ SU(2) it is easy to check that (qv)⊥ = q̄v⊥. M ap C2 → C3 via v 7→ v ⊗ v⊥.
Consider C3 as the space of traceless complex matrices

(

ix y + iz
−y + iz −ix

)

.

Then

v ⊗ v⊥ =

(

v0v1 −v2
0

v2
1 −v0v1

)

is a matrix of determinant x2 + y2 + z2 = 0. One easily checks that the map v 7→ v ⊗ v⊥

is 2 : 1 onto the cone of equation x2 + y2 + z2 = 0, identifying this cone with the quotient
C2/ < −id >. And this map is SU(2)-equivariant with respect to the 2 : 1 cover SU(2) →
SO(3). If G̃ ⊂ SU(2) is some finite group, then the quotient C2/G̃ via this map is
identified with the quotient of the cone by the corresponding ternary group G ⊂ SO(3).
Together with lemma 3.1 this shows:

Proposition 4.1. Let X = Xλ be a nodal surface with G the fix-group G of the node.
Then the image of this node on X/Gn is a quotient singularity locally isomorphic with

C2/G̃.
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5. Rational curves

We denote by X = Xλ → Y ′ = Y ′
λ the quotient map for Gn acting on X and by Y =

Yλ → Y ′ the minimal resolution of the quotient singularities on Y coming from the orbits
of isolated fixed points in sect. 2. The n lines Λi,Λ

′
i ⊂ Q in each ruling map to one smooth

rational curve in Y ′. We denote those by L,L′. Both these curves meet transversally in a
smooth point of Y ′. All quotient singularities are rational double points. Resolving them
introduces more rational curves in Y . For each singularity Ak we get a chain of k smooth
rational (-2)-curves. Since the group ZZt from sect. 3 acts on X with Λi, resp. Λ′

i defining
an eigen-space in the tangent space of X, the curves L,L′ meet the At−1-string in an end
curve of this string, avoiding the other curves of the string.
All lines L of the types M,M ′,M ′′, N,N ′, N ′′, R, S form one orbit under Gn. We denote
by Mi etc. the rational curves resolving the Ar-singularity on the image of L∩X. If L∩X
consists of more than one HL-orbit we get in this way more than one Ar-configuration of
rational curves coming from L ∩ X.

5.1. The general case. First we consider the quotients of the smooth surfaces X: The
striking fact is that the number of the additional rational curves is 17. We give the dual
graphs of the collections of 19 rational curves on Y , changing the notation L,L′ to L3, L

′
3

for n = 6, 12 and to L4, L
′
4 for n = 8:

s s s s s

s s s s s

s

s s s s

s s s s

L1 L2 L3 L4 L5

L′
1 L′

2 L′
3 L′

4 L′
5

M1

N1 N2 N3 N4

N5 N6 N7 N8

n=6: M1 coming from M , N1, ..., N4 from N ′, N5, ..., N8 from N ′′

s s s s s

s s s s s

s s

s s

s s

s s s

L1 L2 L3 L4 L5

L′
1

L′
2

L′
3

L′
4

L′
5

M1 M2

M3 M4

N1 N2

R1 R2 R3

n=8: M1 from M ′, M2 from M ′′, M3,M4 from M , Ni from N , Ri from R

s s s s s s s s s s

s s s s s s s s s

L1 L2 L3 L4

L′
1

L′
2

L′
3

L′
4

M1 M2 N1 N2 N3 N4

M3 S1 S2 S3 S4

n=12: Mi from M , Ni from N , Si from S

Proposition 5 .1. In each case the 19 rational curves specified generate a sub-lattice of
NS(Y ) of rank 19.

Proof. We compute the discriminant d of the lattice. The connected components of the
dual graph define sub-lattices, the direct sum of which is the lattice in question. We
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compute the discriminant block-wise using the sub-lattices

L :=< Li, L
′
i >, M :=< Mi >, N :=< Ni >, R :=< Ri >, S :=< Si >

and find
n d(L) d(M) d(N) d(R) d(S) d
6 −45 −2 34 2 · 36 · 5
8 −28 24 3 −4 28 · 3 · 7

12 −11 −23 32 5 23 · 32 · 5 · 11

5.2. The special cases. Here we consider the desingularized quotients Y for the twelve
singular surfaces X. The image of the nodes on X will be on Y a quotient singularity for
the binary group corresponding to the ternary group F from sect. 3. There we also gave
the lines passing through this node on X. The nodes of X on such a line fall into orbits
under the group H fixing the line. If there is just one H-orbit of intersection points of the
general surface X with this line, it is clear that this orbit converges to the orbit of nodes.
We say: The quotient singularity swallows the orbit. If however there are more than one
H-orbits, we have to analyze the situation more carefully. We use the map onto IP1 of
this line induced by the parameter λ. Nodes of X on the given line will be branch points
of this map.

D egree 6 : On lines of type M there ist just one orbit of four points. On lines of type
N ′, N ′′ there are two orbits of length 3. The parameter λ induces on each N ′- or N ′′-line
some 6 : 1 cover over IP1. Each fibre of six points decomposes into two orbits of three
points. The total ramification degree is −2 − 6 · (−2) = 10. The intersection with Q
consists of two points of ramification order 2. So outside of the quadric Q we will have
total ramification order six, hence it will happen twice, that two orbits of three points are
swallowed by a quotient singularity. This must happen on the surfaces X6,1 and X6,2 for
N ′, and for N ′′ on X6,3 and X6,4. We give the rational curves from 4.1 disappearing in Y ,
being replaced by rational curves in the minimal resolution of the quotient surface. Here
we do not mean that e.g. the curve N1 indeed converges to the curve denoted by N1 in
the dual graph of the resolution. We just mean that all the curves denoted by letters in
the dual graph disappear:

6, 1 : s s s s s

s

N1 N2 N3 N4

M1

6, 2 : s s s s s

N1 N2 N3 N4

6, 3 : s s s s s
N5 N6 N7 N8

6, 4 : s s s s s

s

N5 N6 N7 N8

M1

D egree 8 : The only lines with two H-orbits are those of type M . The map to IP1 there
has degree eight and total ramification order 14. The intersection with Q counts for two
points with ramification order three each. So there will be total ramification of order eight
off the quadric. The surface X8,1 has 24 ·6/72 = 2 nodes on such a line, it swallows at least
one orbit. The surface X8,3 has 144/72 = 2 nodes too and swallows at least one orbit too.
The surface X8,4 has 96 · 3/72 = 4 nodes and swallows at least two orbits. Since the total
branching order adds up to at least 2+ 2+ 4 = 8, the bounds for the numbers of orders in
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fact are exact numbers. The dual graphs for the resolution of quotient singularities and
the curves swallowed are as follows:

8, 1 : s s s s s s

s

R1 R2 R3 N1 N2

M3

8, 2 : �
�

@
@

s s s s

s

s

R1 R2 R3

M1

M2

8, 3 : s s s

s

M1 M2

M3

8, 4 : �
�

@
@

s s s

s

s

N1 N2

M3

M4

Notice, that it is not necessary here to distinguish between M3 and M4. In fact it is
even impossible, since the two corresponding orbits of intersections of the line M with the
surface Xλ are interchanged by monodromy.

Degree 12: Now a line of type M contains three H-orb its of leng th fou r. T he total

b ranching ord er for the λ-m ap is 22 on su ch a line. T he intersection with Q consists

of two six -fold points and d ecreases the b ranching ord er b y 10 . S o the total b ranching

ord er off the q u ad ric is 12. O n su ch a line there are

on the su rface nod es orb its swallowed

X12,1 30 0 · 3/450 = 2 ≥ 1

X12,2 6 0 0 · 3/450 = 4 ≥ 2

X12,3 36 0 · 5/450 = 4 ≥ 2

X12,4 6 0 · 15/450 = 2 ≥ 1

S ince the total b ranching ord er m u st ad d u p to twelv e, the nu m b er g iv en is ind eed the

nu m b er of swallowed orb its.

A line of type N contains two H-orb its of leng th six . J u st as in the preced ing case one

com pu tes the following nu m b ers

on the su rface nod es orb its swallowed

X12,1 30 0 · 4/20 0 = 6 ≥ 2

X12,2 6 0 0 · 1/20 0 = 3 ≥ 1

X12,4 6 0 · 10 /20 0 = 3 ≥ 1

A g ain the total b ranching ord er ad d s u p to twelv e. T herefore the estim ates g iv e the precise

nu m b er of orb its swallowed .

12, 1 : s s s s s

s

N1 N2 N3 N4

M1

12, 2 : �
�

@
@

s s s

s

s

N1 N2

M1

M2
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12, 3 : �
�

@
@

s s s s s

s

s

S1 S2 S3 S4

M1

M2

12, 4 : s s s s s s s

s

S1 S2 S3 S4 N1 N2

M1

Again, by monodromy it is impossible to distinguish between the curves M1,M2 and M3,
and lik ewise between the pairs {N1, N2} and {N3, N4}.

6. K3-surfaces

In this section we show that the desingularized quotient surfaces Yλ are K 3 and that their
structure is not constant in λ. W e start with a crude but effective blow-up of IP 3. L et

Ξ := {(x, λ) ∈ IP 3 × C : sn(x) + λqn/ 2(x) = 0}.

In addition we put:

• Ξ̄ ⊂ IP 3 × IP 1 the closure of Ξ. It is a divisor of bidegree (n,1).
• τ : Ξ → IP 3 the natural projection onto the fi rst factor;
• f : Ξ → C the projection onto the second factor. It is given by the function λ.
• Λ̃ := τ−1Λ. This pull-back of the base-locus is the zero-set of τ∗q on Ξ;
• Ξ0 ⊂ Ξ the complement of the fi nitely many points in Ξ lying over the nodes of

the four nodal surfaces Xλ.
• Υ′ := Ξ/Gn the quotient threefold. Notice that the action of Gn on IP 3 lifts

naturally to an action on Ξ.
• h : Υ′ → C the map induced by f ;
• Υ0 the image of Ξ0.

Lemma 6.1. a) The threefold Ξ ⊂ IP 3 × C is sm ooth.

b) If M ⊂ IP 3, M 6⊂ Q, is a fi x-lin e for an elem en t ±1 6= g ∈ Gn an d M̃ ⊂ Ξ is its p roper

tran sform , then M̃ does n ot m eet Λ̃ in Ξ.

P roof. a) B y ∂λ(sn + λqn/ 2) = qn/ 2 singularities of Ξ can lie only on τ−1Λ. B ut there

∂xi
(sn + λqn/ 2) = ∂xi

sn.

Since sn = 0 is smooth along Λ, this proves that Ξ is smooth.
b) The assertion is obvious, if M does not meet the base locus Λ. If however M ∩ Λ =
{x1, x2} is nonempty, we use the fact, observed in sect. 3, that the polynomial sn+tqn/ 2|M

vanishes in xi to the fi rst order for all smooth surfaces X : sn + tqn/ 2 = 0. On M̃ however
we have sn = −λqn/ 2 with n /2 > 1. So M̃ will not meet τ−1{x1, x2} in Ξ.

The Gn-action on Ξ has the following k inds of fi x-points:

1) F ix-points on Λ̃ for the group ZZs;
2) F ix-points for the group ZZs×ZZs on the fi bre τ−1(x) over some intersection of lines

Λi,Λ
′

j in the base locus Λ;

3) F ix-points for a group ZZs × ZZt on the fi bre τ−1(x) over a point x, where a line in
the base locus meets some line M of fi x-points not in the base locus. B y lemma
5.1 b) τ−1(x) and M̃ do not intersect in Ξ.

4) F ix-curves L̃ away from Λ̃ lying over fi x-lines L not contained in the base-locus.
All these curves are disjoint, when considered in Ξ0.
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The quotient three-fold Υ′ = Ξ/Gn is smooth in the image points of fix-points of types
1) or 2). It has quotient singularities At in the image curves of the curves τ−1(x) of type
3). To be precise: The singularities there locally are products of an At surface singularity
with a copy of the complex unit disc. Additional such cyclic quotient singularities Ak

occur on the image curves of curves L̃ of type 4). Where two such curves meet we have
higher singularities. But such points are removed in Υ0. So Υ0 is singular along finitely
many smooth irreducible rational curves. The singularities along each curve are products
with some cyclic surface quotient Ak.
Let Υ → Υ0 be the minimal desingularisation of Υ0 along these singular curves. Locally
this is the product of the unit disc with a minimal resolution of the surface singularity
Ak. Since the surfaces Y ′

λ intersect the singular curves transversally, the proper transforms
Yλ ⊂ Υ are smooth, minimally desingularized. They are the fibres of the map induced by
h. For λi, i = 1, ..., 4, we denote by Yλi

the minimal resolutions of the quotient surfaces
Xλi

/Gn. We do not (and cannot) consider them as surfaces in Υ.

Proposition 6.1. The surfaces Yλ are (minimal) K 3 -surfaces.

Proof. All cyclic quotient singularities on Υ0 are gorenstein. So there is a dualizing sheaf
ωΥ0 pulling back to the canonical bundle KΥ on Υ. U nder the quotient map Ξ0 → Υ0

it pulls back to the canonical bundle KΞ, except for points on the divisor Λ̃. There we
form the quotient in two steps, as in sect. 3, first dividing by ZZs and then by ZZt. The
pull-back via the quotient by ZZt is the canonical bundle of Ξ/ZZs. The quotient map for

ZZs is branched along Λ̃ to the order s. So the adjunction formula shows: The dualizing
sheaf ωΥ0 pulls back to

KΞ0 ⊗OΞ0((1 − s)Λ̃) = KΞ0 ⊗ τ∗(OIP3
(2 − 2s)).

The divisor Ξ̄ ⊂ IP3 × IP1 is a divisor of bi-degree (n, 1). H ence Ξ̄ has a dualizing sheaf

ωΞ̄ = OIP3×IP1
(n − 4,−2).

Now the miracle happens:
n − 4 = 2s − 2.

This implies: The pull-back of ωΥ0 to Ξ0 equals the restriction of OIP3×IP1
(0,−2), i.e. it

is trivial on Ξ0.
We distinguish two cases:
a) λ 6= λi, i = 1, ..., 4: The adjunction formula for Y ′ = Y ′

λ = Xλ/Gn shows

ωY ′ = ωΥ0 |Y ′.

So the pull-back of ωY ′ to X is trivial. This implies: d e g(ωY ′)|C = 0 for all irreducible
curves C ⊂ Y ′ and then d e g(KY |C) = 0 for all irreducible curves C ⊂ Y . The surfaces
Y have canonical bundles, which are numerically trivial. In particular those surfaces are
all minimal. By the classification of algebraic surfaces [BPV p. 168 ] they are abelian, K3,
hyper-elliptic or E nriques. Since we specified in sect. 6.1 rational curves on Y spanning a
lattice of rank 19 in NS(Y ) the only possibility is K3.
b) λ = λi, i = 1, ..., 4: The proof of a) shows d e g(KY |C) = 0 for all irreducible curves
C ⊂ Y not passing through the exceptional locus of the minimal desingularization Y → Y ′.
In particular this holds for all curves C which are proper transforms of ample curves
D ⊂ Y ′. Now an arbitrary curve C ⊂ Y is linearly equivalent to E + C1 − C2 with E
exceptional and Ci proper transforms of ample curves Di ⊂ Y ′. Since all singularities on
Y ′ are rational double points of type A,D ,E , we have KY .E = 0. The method from a)
then applies here too.
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Proposition 6.2. The structure of the K3-surfaces Yλ varies w ith λ.

Proof. We restrict to surfaces near some surface Y , with Y ′ the quotient of a smooth
surface X. Here we may assume that the total space Υ is smooth. If all surfaces near Y
were isomorphic, locally near Y the fibration would be trivial [FG ]. I.e., there would be
an isomorphism Φ : Y × D → Υ respecting the fibre structure. Here D is a copy of the
complex unit disc. By the continuity of the induced map

Y = Y × λ → Yλ

there is an isomorphism Y → Yλ mapping the 19 rational curves from sect. 4.1 on Y to
the corresponding curves on Yλ, λ ∈ D. The covering X → Y ′ is defined by a subgroup in
the fundamental group of the complement in Y of these rational curves. This implies that
the isomorphism Y → Yλ induces an isomorphism of the coverings X → Xλ equivariant
with respect to the Gn-action.
Now this isomorphism must map the canonical bundle OX(n− 4) to the canonical bundle
OXλ

(n − 4). Since the surfaces Xλ are simply-connected, the isomorphism maps OX(1)
to OXλ

(1), i.e., it is given by a projectivity. This is in confl ict with the following.

Lemma 6.2. F or general λ 6= µ there is no projectiv ity ϕ : IP3 → IP3 inducing some
Gn-equivariant isomorphism Xλ → Xµ.

Proof. Assume that such an isomorphism ϕ exists. Equivariance means for each g ∈ Gn

and x ∈ Xλ that ϕg(x) = gϕ(x) or ϕ−1g−1ϕg(x) = x. Since Xλ spans IP3 this implies the
same property for all x ∈ IP3, i.e., the map ϕ is Gn-equivariant on all of IP3. In particular,
if L ⊂ IP3 is a fixline for g ∈ Gn, then so is ϕ(L). Then we may as well assume ϕ(L) = L.
We obtain a contradiction by showing that the point sets Xλ ∩ L and Xµ ∩ L in general
are not projectively equivalent.
The cases n= 6 and 1 2 : We use the fix-line L := {x0 = x1 = 0} of type M , fixed under
σ1,3 = σ(q1, q1) (notation of [S, p. 432]). The group HL has order 8, containing in addition
the symmetries σ(q1, 1) and σ(q1q2, q1q2) sending a point x = (0 : 0 : x2 : x3) ∈ L to

σ(q1, 1)(x) = (0 : 0 : x2 : −x3), σ(q1q2, q1q2)(x) = (0 : 0 : −x3 : x2).

Omitting the first two coordinates and putting x2 = 1, x3 = u, we find that a general
HL-orbit on L consists of points

(1 : u), (1 : 1/u), (1 : −u), (1 : −1/u).

The cross-ratio of these four points

CR =
2u

u + 1/u
:

1/u + u

2/u
=

4u2

(1 + u2)2

varies with u. The intersection of X6,λ with L consists of one such orbit, the intersection
of X12,λ of three orbits. This implies the assertion for n = 6 and 12.
The case n= 8 : Here we use the fix-line L := {x1 = x3, x2 = 0} of type M for π3π4π

′

3π
′

4.
Again HL has order 8 containing in addition π3π4 and σ(q1q2, q1q2). They send a point
x = (u : 1 : 0 : 1) ∈ L to

π3π4(x) = (−2 : u : 0 : u), σ(q1q2, q1q2)(x) = (u : −1 : 0 : −1).

Omitting the coordinates x3 and x4 we find that a general HL-orbit consists of

(u : 1), (−u : 1), (2/u : 1), (−2/u : 1).
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Their cross-ratio

CR =
u − 2/u

u + 2/u
:
−u − 2/u

−u + 2/u
=

(u2 − 2)2

(u2 + 2)2

varies with u. The intersection of X8,λ consists of two such orbits.

Corollary 6.1. The general K3-surface Yλ has P icard-number 19 .

7. Picard-Lattices

Here we compute the Picard lattices of our quotient K3-surfaces Y .

7.1. T h e g eneral case. Denote by V ⊂ H2(Y,ZZ) the rank-19 lattice spanned (over ZZ)
by the rational curves from sect. 4.1. For n = 6 and 8 this lattice V is not the total Picard
lattice:

Proposition 7 .1. a) (n=6) A fter perhaps interchanging curves N2i−1 and N2i the two
divisor-classes

L := L1 − L2 + L4 − L5 + N1 − N2 + N3 − N4 + N5 − N6 + N7 − N8,

L′ := L′

1 − L′

2 + L′

4 − L′

5 + N1 − N2 + N3 − N4 − N5 + N6 − N7 + N8

are divisible by 3 in N S (Y ). Together with V the classes L/3 and L′/3 span a rank-19
lattice with discriminant 2 · 32 · 5.
b) (n=8) A fter perhaps interchanging M1 and M2 the two classes

L := L1 + L3 + L5 + M1 + M3 + M4 + R1 + R3,

L′ := L′

1 + L′

3 + L′

5 + M2 + M3 + M4 + R1 + R3

are divisible by 2 in N S (Y ). Together with V the classes L/2 and L′/2 span a rank-19
lattice with discriminant 24 · 3 · 7.

Proof. a) Consider reduction modulo 3

ϕ3 : ZZ
22 = H2(Y,ZZ) → H2(Y, IF3) = IF22

3 .

Because of

M2
1 = −2, M1.L

′

i = 0, det(L′

i, L
′

j)i,j= 1,..,4 = 5,

the images of M1, L
′

1, L
′

2, L
′

3, L
′

4 span a subspace of H2(Y, IF3) on which the intersection
form has rank 5. The orthogonal complement C of this lattice in H2(Y, IF3) has dimension
17 and the form is non-degenerate there. This C contains the classes m o d 3 of the twelve
curves

L1, L2, L4, L5, N1, ..., N8

Assume that

D1 := ϕ3 < L1, L2, L4, L5, N1, ..., N8 >

has IF3-dimension 12. Then

D2 := ϕ3 < L1 − L2, L4 − L5, N1 − N2, N3 − N4, N5 − N6, N7 − N8 >

has dimension six. Since D1 ⊥ D2, this is a contradiction. We have shown: A non-trivial
linear combination of the twelve classes L1, L2, L4, L5, N1, ..., N8 lies in the kernel of ϕ3.
By [T] such a 3-divisible class contains at least 12 curves. Hence we may assume the class
is

L := λ1(L1 − L2) + λ4(L4 − L5) +
∑

νi(N2i−1 − N2i)
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with λj , νi = ±1 modulo 3. W.l.o.g. we put λ1 = 1. Intersecting with L3 we find
λ4 = 1 too. And after perhaps interchanging curves N2i−1 with N2i we may assume
ν1 = ... = ν4 = 1.
Exactly in the same way we find a class

L′ := L′

1 − L′

2 + L′

4 − L′

5 +
∑

ν ′

i(N2i−1 − N2i), ν ′

i = ±1mod 3,

which is 3-divisible in NS(Y ). Then L+L′ is 3-divisible too, and by [T] contains precisely
12 curves. This implies that precisely two coeffi cients ν ′

i cancel against the corresponding
coeffi cients of L. If these are the coeffi cients ν ′

3 and ν ′
4, we are done. If this should not

be the case, after perhaps interchanging {N1, N2} with {N3, N4}, {N5, N6} with {N7, N8}
we may assume ν ′

1 = ν ′
3 = 1 and ν ′

2 = ν ′
4 = −1. Denote by T2 : H2(X,ZZ) → H2(X,ZZ),

resp. H2(Y,ZZ) → H2(Y,ZZ) the monodromy about X6,2 (circling the parameter λ2 in the
parameter space) and by T3 the monodromy about X6,3. So T2 interchanges {N1, N2}
with {N3, N4}, leaving fixed {N5, N6}, {N7, N8} with T3 doing just the opposite. NS(Y )
contains the classes (coeffi cients modulo 3)

L1−L2+L4−L5

3

L′

1
−L′

2
+L′

4
−L′

5

3

N1−N2

3

N3−N4

3

N5−N6

3

N7−N8

3

L 1 0 1 1 1 1
L′ 0 1 1 −1 1 −1

L + L′ 1 1 −1 0 −1 0
T2(L + L′) 1 1 0 ±1 −1 0
T3(L + L′) 1 1 −1 0 0 ±1

These classes would span in NS(Y )/V a subgroup of order 34, in conflict with d(V ) =
2 · 36 · 5, contradiction.
b) Here we consider reduction modulo 2

ϕ2 : ZZ
22 = H2(Y,ZZ) → H2(Y, IF2) = IF22

2 .

The subspace

C := ϕ2 < L1, L3, L5,M1,M2,M3,M4, R1, R3 > ⊂ H2(Y, IF2)

is totally isotropic. It is orthogonal to D := ϕ2 < L′
1, L

′
2, L

′
3, L

′
4, N1, N2 >. Because of

det(L′

i.L
′

j)i,j=1,...,4 = 5, det(Ni.Nj)i,j=1,2 = 3,

the intersection form on D is non-degenerate, and D⊥ is non-degenerate of rank 16. This
implies dim C ≤ 8. So there is a class

L :=
∑

λiLi + µiMi + ρiRi

in the kernel of ϕ2. By [N] it has precisely eight coeffi cients = 1. Intersecting

with we find
L2, L4 λ1 = λ3 = λ5 =: λ
R2 ρ1 = ρ3 =: ρ

This implies that precisely one coeffi cient µi will vanish and λ = ρ = 1. In the same way
one finds a class

L′ := L′

1 + L′

3 + L′

5 +
∑

µ′

iMi + R1 + R3

in the kernel of ϕ2 with precisely one µ′
1 vanishing. The class

L + L′ = L1 + L3 + L5 + L′

1 + L′

3 + L′

5 +
∑

(µi + µ′

i)Mi
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also is divisible by 2 and has precisely eight non-zero coefficients. It follows that precisely
two of the non-zero coefficients from µi and µ′

i coincide. If µ3 = µ4 = µ′
3 = µ′

4 = 1 we
are done (perhaps after interchanging M1 and M2). If this is not the case, assume e.g.
µ1 = µ2 = µ4 = 1, µ3 = 0. Denote by T the monodromy about the surface X8,4 (circling
the parameter λ4 in the parameter space). It interchanges M3 and M4. So the two classes

L

2
=

1

2
(L1 + L3 + L5 + M1 + M2 + M4 + R1 + R3)

T (L)

2
=

1

2
(L1 + L3 + L5 + M1 + M2 + M3 + R1 + R3)

would belong to NS(Y ). However this contradicts

L

2
·
T (L)

2
= −

7

2
6∈ ZZ.

Theorem 7.1. If the Neron-Severi group of Y has rank 19, it is generated by V and

n
6 L/3, L′/3,
8 L/2, L′/2,

12 no other classes.

Proof. Denote by W ⊂ NS(Y ) the lattice spanned by the 19 rational curves from sect.
4.1 and by L/3, L′/3 from prop. 6.1 a) (if n = 6) resp. L/2, L′/2 from prop. 6.1 b) (if
n = 8). If NS(Y ) 6= W there would be an integral lattice W ′ with W ⊂ W ′ ⊂ NS(Y )
and p := [W ′ : W ] a prime such that p2 divides d(W ). The only possibilities are p = 2
or = 3. The following table gives in each case generators for the p-subgroup (W∨/W )p of
W∨/W :

n p generators for (W∨/W )p

6 3 (N1 − N2 − N3 + N4)/3, (N5 − N6 − N7 + N8)/3
8 2 (M1 + M2 + M3)/2, (M1 + M2 + M4)/2, (M1 + M2)/2 + (R1 + 2R2 + 3R3)/4

12 2 M1/2, M2/2, M3/2
12 3 (N1 − N2)/3, (N3 − N4)/3

By [N] a divisor consisting of m disjoint rational curves on Y can be divisible by 2 only if
m = 8 or = 16. For n = 12, p = 2 there are only three such curves, while for n = 8, p = 2
there are only the six curves M1,M2,M3,M4, R1, R3. These cases are excluded. By [T] a
divisor consisting of m disjoint pairs of rational curves, each pair meeting in one point, is
divisible by 3 only if m = 6 or = 9. This excludes the cases p = 3 and n = 6 or = 12.

7.2. The special cases. Just as before we denote by V ⊂ NS(Y ) the sub-lattice spanned
by the rational curves from sect. 4.1. Now it has rank 20. In the same way, as in sect.
6.1 we check, that for n = 6 the classes L/3, L′/3 and for n = 8 the classes L/2, L′/2 in
NS(Y ) exist. Intersecting with the twentieth rational curve we find, that the curves can
be labelled as in the diagrams of sect. 4.2.

Theorem 7.2. In all cases NS(Y ) is spanned by the classes from sect. 6.1 and the
twentieth rational curve. The discriminants of the lattices are

case 6, 1 6, 2 6, 3 6, 4 8, 1 8, 2 8, 3 8, 4 12, 1 12, 2 12, 3 12, 4
d −15 −60 −60 −15 −28 −84 −168 −112 −660 −1320 −792 −132
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Proof. Denote by C the twentieth rational curve and by W the lattice spanned by V
and C. The discriminants in the table above are those of the lattice W . We have to
show W = NS(Y ). If this would be not the case, there would be a lattice W ′ with
W ⊂ W ′ ⊂ NS(Y ) such that p := [W ′ : W ] is a prime with p2 dividing d(W ). In
the following table we collect the possibilities and give in each case generators for the
p-subgroup (W∨/W )p of W∨/W . (The cases 6,2 and 6,3 are essentially the same.)

case p generators
6, 2 2 M1/2, (N1 + C + N4)/2
8, 1 2 (M1 + M2 + M4)/2, (M3 + M4 + R1 + R3)/2
8, 2 2 (M1 + M2 + M3)/2, (M1 + M2 + M4)/2
8, 3 2 (M1 + M2 + M4)/2, (M1 + M2)/2 + (R1 + 2R2 + 3R4)/4
8, 4 2 (M1 + M2)/2 + (2N1 + 2C + M3 + 3M4)/4, (M1 + M2)/2 + (R1 + 2R2 + 3R3)/4

12, 1 2 M2/2, M3/2
12, 2 2 M3/2, (2N1 + 2C + M1 + 3M2)/4
12, 3 2 M3/2, (2S1 + 2S3 + 2C + M1 + 3M2)/4

3 (N1 − N2)/3, (N3 − N4)/3
12, 4 2 M2/2, M3/2

In each single case there are not enough rational curves to meet the conditions [N] for a
divisor divisible by 2 or [T] for a divisor divisible by 3.

8. Comments

1) Denote by Mk the moduli-space of abelian surfaces with level-(1,k) structure In [Mu] the
quotients IP3/G6, resp. IP3/G8 are identified with the Satake-compactification of M3, resp
M4, and IP3/G12 is shown to be birationally equivalent with the Satake-compactification
of M5. However the proof there is not very explicit. It is desirable to have an explicit
identification of the quotient IP3/Gn with the corresponding moduli space. The pencil Y ′

λ
on IP3/Gn might be useful.
2) We did not consider the quotient threefold IP3/Gn. We just identified the minimal
non-singular model Yλ for each quotient Y ′

λ. Of course it would be desirable to have
a global resolution of IP3/Gn and to view our K3-surfaces as a pencil on this smooth
threefold. One would need a particular crepant resolution of the singularities of Υ. Such
resolutions are given e.g. in [I, IR , R o]. We would need a resolution, where the behaviour
of the K3-surfaces can be controlled, to identify the partial resolutions of the four special
surfaces.
3) Our quotient surfaces admit a natural involution induced by the symmetry C from [S,
p. 433] normalizing Gn, but not belonging to SL(4,C). It would be interesting to identify
the quotients.
4) By [Mo] each K3-surface with Picard number 19 admits a Nikulin-involution, an invo-
lution with eight isolated fix-points. We do not know how to identify it in our cases. It
cannot be the involution from 3), because this has a curve of fix-points. It is also not clear
to us, whether this Nikulin-involution exists globally, i.e. on the total space Υ of our fibra-
tion. This Nikulin-involution is related to the existence of a sub-lattice E8 ⊥ E8 ⊂ NS(Y ).
We did not manage to identify such a sub-lattice.
5) It seems remarkable that the Picard group of the general surface in a pencil of K3-
surfaces can be identified so explicitly, as it is done in sect. 6. It is also remarkable that
the quotient K3-surfaces have Picard number ≥ 19. Such pencils have been studied in
[Mo] and [STZ ]. We expect our surfaces to have some arithmetical meaning. In particular
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the prime factor n− 1 = 5, 7, 11 in the discriminant of the Picard lattices draws attention.
In fact, the same prime factor appears in each polynomial sn, n = 6, 8, 12 from [S]. It can
be found too in the cross-ratio CR(λ1, ..., λ4) of the four special parameters in each pencil
Xλ and together with strange prime factors in the absolute invariant j:

n 6 8 12

CR
52

32

72

24 · 3

112

25 · 3

j
133 · 373

28 · 34 · 54

133 · 1813

28 · 32 · 74

12 2413

210 · 32 · 54 · 114
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GROUP ACTIONS, CYCLIC COVERINGS AND FAMILIES OF

K 3 -SURFACES

ALESSANDRA SARTI

Abstract. In th is p a p e r w e d e sc rib e six p e n c ils o f K3 -su rfa c e s w h ich h a v e la rg e P ic a rd -
n u m b e r (ρ = 1 9 , 2 0 ) a n d c o n ta in e a ch p re c ise ly fi v e sp e c ia l fi b e rs: fo u r h a v e A-D-E
sin g u la ritie s a n d o n e is n o n -re d u c e d . In p a rtic u la r w e d e sc rib e th e se su rfa c e s a s c y c lic
c o v e rin g s o f th e K3 -su rfa c e s o f [B S]. In m a n y c a se s u sin g 3 -d iv isib le se ts, re sp . 2 -d iv isib le
se ts o f ra tio n a l c u rv e s a n d la ttic e th e o ry w e d e sc rib e e x p lic itly th e P ic a rd -la ttic e s.

0. In tro d u ctio n

In th e la st y e a rs u sin g v a rio u s m e th o d s (to ric g e o m e try , m irro r sy m m e try , e tc .), m a n y
fa m ilie s o f K3 -su rfa c e s w ith la rg e P ic a rd -N u m b e r a n d sm a ll n u m b e r o f sp e c ia l fi b e rs h a v e
b e e n c o n stru c te d a n d stu d ie d (se e e .g . [D ], [V Y ] a n d [B e ]). In th e se n o te s u sin g g ro u p
a c tio n s a n d c y c lic c o v e rin g s w e d e sc rib e six n e w fa m ilie s w h e re th e g e n e ric su rfa c e h a s
P ic a rd -n u m b e r 1 9 a n d w e id e n tifi e s fo u r su rfa c e s w ith P ic a rd -n u m b e r 2 0. T h e se six p e n -
c ils a re re la te d to th re e fa m ilie s o f K 3 -su rfa c e s stu d ie d b y B a rth a n d th e a u th o r in [B S ],
th e g e n e ric su rfa c e h a s P ic a rd -n u m b e r 1 9 a n d th e p e n c ils c o n ta in fo u r su rfa c e s w ith sin -
g u la ritie s o f A−D − E ty p e a n d ρ = 2 0 a n d o n e n o n -re d u c e d fi b e r. T h e fa m ilie s a rise a s
m in im a l re so lu tio n s o f q u o tie n ts Xn

λ
/Gn w e re Gn is a sp e c ia l fi n ite su b g ro u p o f S O(4 , R)

c o n ta in in g th e H e ise n b e rg g ro u p a n d {Xn

λ
}λ∈P1

is a Gn-in v a ria n t p e n c il o f su rfa c e s in P3,
th e la tte r a re d e sc rib e d in [S 1 ] (w e re c a ll so m e fa c ts in se c tio n 1 ). In se c tio n 1 a n d se c tio n
2 w e d e sc rib e six n o rm a l su b g ro u p s H o f Gn w h ich c o n ta in th e H e ise n b e rg g ro u p , w e
d e sc rib e th e fi x p o in ts o f H o n Xn

λ
a n d w e sh o w th a t th e m in im a l re so lu tio n s a re p e n c ils

o f K 3 -su rfa c e s w h ich c o n ta in fi v e sp e c ia l su rfa c e s. T h e n in se c tio n 3 w e sh o w th a t th e n e w
fa m ilie s a re c e rta in c y c lic c o v e rin g s o f th e su rfa c e s o f [B S ]. T h e n , b y a c la ssic a l re su lt o f
In o se , [I, C o r. 1 .2 ], th e y h a v e th e sa m e P ic a rd -n u m b e r, h e n c e th e g e n e ra l su rfa c e in e a ch
o f th e six p e n c ils h a s P ic a rd n u m b e r 1 9 a n d w e h a v e fo u r su rfa c e s w ith P ic a rd -n u m b e r
2 0. In se c tio n 4 b y u sin g th e ra tio n a l c u rv e s o n th e m in im a l re so lu tio n s a n d 2 -d iv isib le
a n d 3 -d iv isib le se ts o f ra tio n a l c u rv e s, w e d e sc rib e c o m p le te ly th e P ic a rd -la ttic e o f m a n y
o f th e su rfa c e s.
I th a n k W o lf B a rth fo r in tro d u c in g m e to c y c lic c o v e rin g s a n d fo r m a n y u se fu l d isc u s-
sio n s, a n d th e re fe re e fo r p o in tin g m e o u t th e p a p e r [I] o f In o se a n d fo r m a n y su g g e stio n s
im p ro v in g th e p re se n ta tio n o f th e p a p e r.

1 . N o tatio n s an d p re l im in arie s

T h e re a re tw o c la ssic a l 2 : 1 c o v e rin g s:

S U (2 ) → S O(3 , R) a n d σ : S U (2 ) × S U (2 ) → S O(4 , R).

D e n o te b y T,O ⊂ S O(3 , R), th e ro ta tio n g ro u p o f te tra h e d ro n a n d o c ta h e d ro n , b y T̃ , Õ

th e c o rre sp o n d in g b in a ry su b g ro u p s o f S U (2 ) a n d le t G6 := σ(T̃ × T̃ ), G8 := σ(Õ × Õ).
W e d e n o te a n e le m e n t o f S U (2 ) × S U (2 ) a n d its im a g e in S O(4 , R) b y (p1, p2). L e t

89
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X6
λ

= s6 + λ q3 and X8
λ

= s8 + λ q4 denote the pencils of G6- and of G8-invariant surfaces
in P3, which are described in [S1], s6 denotes a G6-invariant homogeneous polynomial
of degree six and s8 denotes a G8-invariant homogeneous polynomial of degree eight,
q := x2

0 + x2
1 + x2

2 + x2
3 is the equation of the quadric P1 × P1 in P3. The base locus of the

pencils Xn

λ
are 2n lines on the quadric, n in each ruling and each pencil contains exactly

four nodal surfaces (cf. [S1]). Now recall the matrix:

C :=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 ∈ O(4, R),

which operates on an element (p1, p2) ∈ G1 × G2 by:

C−1(p1, p2)C = (p2, p1).

M oreover we specify the following matrices of SO(4, R):

(q1, 1) =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 , (q2, 1) =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 ,

(p3, 1) = 1

2




1 −1 1 −1
1 1 −1 −1

−1 1 1 −1
1 1 1 1


 , (p4, 1) = 1√

2




1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1


 .

U sing these matrices the groups have the following generators:

G roup G enerators

G6 (q2, 1), (1, q2), (p3, 1), (1, p3)

G8 (q2, 1), (1, q2), (p3, 1), (1, p3), (p4, 1), (1, p4)

Denote by P G the image of a subgroup G ⊂ SO(4, R) in PGL (4, R). We define the types

of lines in P3 which are fixed by elements (p1, p2) ∈ P G of order 2, 3 or 4 in the following
way:

or d e r 2 3 4
ty pe M N R

1.1. Normal subgroups. In [S2] the author classifies all the subgroups of SO(4, R) which
contain the Heisenberg group V × V . Here we consider all the normal subgroups of G6

and of G8 which contain the subgroup V × V , resp. G6. We denote by H such a normal
subgroup, by o(H) its order and by i(H) = [Gn : H] the index of H in Gn. We list below
all the groups H and their generators, following the notation of [S2]. M oreover we do not
consider separately the groups H and C−1HC or, in general, groups which are conjugate
in O(4, R). The group T × T is in fact the same as G6, but to avoid confusion we use this
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notation when we consider it as subgroup of G8.

H ⊂ G6 generators o(H) i(H) H ⊂ G8 generators o(H) i(H)
T × V (q1, 1), (1, q1) 96 3 O × T (q1, 1), (1, q1) 5 7 6 2

(p3, 1) (p3, 1), (1, p3)
(p4, 1)

(TT )′ (q1, 1), (1, q1) 96 3 (OO)′′ (q1, 1), (1, q1) 5 7 6 2
(q2, 1), (1, q2) (p3, 1), (1, p3)
(p3, p3) (p4q2, p4q2)

V × V (q1, 1), (1, q1) 32 9 T × T (q1, 1), (1, q1) 28 8 4
(q2, 1), (1, q2) (p3, 1), (1, p3)

1.2. Fix-points. We analyze the diff erent kind of fix-points for elements of the subgroups
PH ⊂ PG in the same way as in [BS]. R ecall that the elements of the form (p, 1) or (1, p)
have each two disjoint lines of fix points contained in one ruling, respectively in the other
ruling of the quadric (cf. [S1, 5 .4 p. 439)]).
1) Fix-points on the quadric. The subgroups G1 × 1 and 1 × G2 of PH operate on the
two rulings of the quadric and determine orbits of lines. We give the lengths of the orbits
in the following tables. In the first row we write the order of the element which fixes two
lines of the orbit:

order of (p, 1) 2 3 4
T × V 6 4, 4 −
O × T 12 8 6
(TT )′ 6 − −
(OO)′′ 6 8 −
V × V 2, 2, 2 − −
T × T 6 4, 4 −

order of (1, p) 2 3 4
T × V 2, 2, 2 − −
O × T 6 4, 4 −
(TT )′ 6 − −
(OO)′′ 6 8 −
V × V 2, 2, 2 − −
T × T 6 4, 4 −

In particular observe that in the case of the groups (TT )′ and (OO)′′ the meeting points
of the fix-lines of the two rulings of P1 × P1 split into three orbits of length 12 and two
orbits of length 32, in the other cases these meeting-points form just one orbit.
2) Fix-points off the quadric. We denote by FL the fix-group of a line L of P3 in PH and
by HL the stabilizer group of L in PH, i.e.

FL := {h ∈ PH s.t. hx = x f or a ll x ∈ L}
HL := {h ∈ PH s.t. hL = L}.

Moreover denote by `(L) the length of the H-orbit of the line L and by g a representative
of a conjugacy class in H:

group T × V (TT )′ V × V
g (q1, q1) (q1, q2) (q1, q3) (q1, q1) (q1, q2) (q1, q3) (p3, p3) (qi, qj)

FL Z2 Z2 Z2 Z2 Z2 Z2 Z3 Z2

type M1 M2 M3 M1 M2 M3 N Mij

`(L) 6 6 6 6 6 6 16 2
|HL|/|FL| 4 4 4 4 4 4 1 4

Here we denote by q3 ∈ SU(2) the product of q1 and q2. In the last column of the table
the sum runs over i, j = 1, 2, 3. In this case we have nine distinct conjugacy classes with
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just one element.

group O × T (OO)′′ T × T
g (q1, q1) (p3, p3) (p4q2, q2) (p4, p4) (p3, p3) (p2

3, p3) (p4q2, p4q2) (q2, q2) (p3, p3) (p2
3, p3)

FL Z2 Z3 Z2 Z4 Z3 Z3 Z2 Z2 Z3 Z3

type M N M ′ R N N ′ M M N N ′

`(L) 18 32 36 18 16 16 72 18 16 16
|HL|/|FL| 8 3 3 4 8 8 2 4 3 3

Remark 1.1. By taking the generator (p2
3, p3) for (TT )′ instead of (p3, p3) w e fi nd a group

(TT )′′ w hich is conjugate in O(4, R) to (TT )′. T he description of the fi x points is sim ilar

as in the case of (TT )′.

2. Quotient surfaces

2.1. Q uotient singularities. We consider now the projections:

πH : X6
λ −→ X6

λ/H, πH′ : X8
λ −→ X8

λ/H ′

with H = T × V , (TT )′ or V × V ; H ′ = O × T , (OO)′′ or T × T . In this section we run
the same program as in [BS], section 3 and describe the singularities of the quotients (for
the details cf. [BS]) .
1) Fix-lines on q. The image in the quotient of the lines of the base locus of the pencils X6

λ

and X8
λ and of the intersection points of the lines of the base locus are smooth. O bserve

that the points of intersection of the lines of the base locus of the pencils form one orbit
under the action of T × V , V × V , O × T and T × T . In the case of the groups (TT )′ we
have three orbits and in the case of the group (OO)′′ we have two orbits, as described in
1.2, this means that the lines in the quotient will meet three times and two times. Now
we consider the points of intersection of the lines of the base locus with the other fix-lines
on q. In the table below we do not write the groups (TT )′ and V ×V because they do not
have other fix-points on q other than the lines of the base locus. We denote by F ix(P ) the
fix-group in PG of a point P . In the next table we write the length and the number of
orbits of fix-points, and we describe which kind of singularities do we have in the quotient:

group T × V O × T (OO)′′ T × T
F ix(P ) Z3 × Z2 Z3 × Z2 Z4 × Z3 Z2 × Z3 Z2 × Z3 Z3 × Z2 Z3 × Z2 Z2 × Z3

length 8 48 24 48 48 48 24 24
number 6 1 2 2 1 1 2 2
sing. 6A2 1A1 2A3 2A1 1A1 1A1 2A1 2A1

2)Fix-lines off q. Denote by o(L) the order of the fix-group FL of L. The number of points
not on q cut out on Xn

λ by L is:

group T × V (TT )′ V × V O × T (OO)′′ T × T
o(L) 2 2 3 2 2 3 4 3 2 3

number 4 4 6 4 8 6 8 6 8 6
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In the next table we show in each case length and number of HL-orbits, the number and
type(s) of the quotient singularity(ies):

group T × V (TT )′ V × V
o(L) 2 2 2 2 2 2 3 2
type M1 M2 M3 M1 M2 M3 N Mij

length 4 4 4 4 4 4 1 4
number 1 1 1 1 1 1 6 1

singularities A1 A1 A1 A1 A1 A1 6A2 A1

group O × T (OO)′′ T × T
o(L) 2 3 2 4 3 3 2 2 3 3
type M N M ′ R N N ′ M M N N ′

length 8 3 3 4 6 6 2 4 3 3
number 1 2 2 2 1 1 4 2 2 2

singularities A1 2A2 2A1 2A3 A2 A2 4A1 2A1 2A2 2A2

3) The singular surfaces. We denote by ns the number of nodes on the surfaces and by F
the fix-group of a node in H. In the table below, we give the number of orbits of nodes
and their fix-groups in PH, PH ′ and we describe the singularities in the quotient. We
recall [BS, proposition 3.1]:

Proposition 2.1. L et X be a nodal surface with F ⊂ SO(3) the fix-group of the node.

Then the image of this node on X/H is a quotient singularity locally isomorphic with

C
2/F̃ , where F̃ ⊂ SU(2) is the binary group which corresponds to F .

group T × V (TT )′ V × V
λ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

ns 12 48 48 12 12 48 48 12 12 48 48 12
orbit 1 1 1 1 3 3 1 1 3 3 3 3

F Z2 × Z2 id id Z2 × Z2 T Z3 id Z2 × Z2 Z2 × Z2 id id Z2 × Z2

lines 1M1 − − 1M1 3Mi 1N − 1M1 3Mij − − 3Mij

meeting 1M2 1M2 4N 1M2

1M3 1M3 1M3

sing. D4 A1 A1 D4 3E6 3A5 A1 D4 3D4 3A1 3A1 3D4

group O × T (OO)′′ T × T
λ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

ns 24 72 144 96 24 72 144 96 24 72 144 96
orbit 1 1 1 1 2 1 1 2 2 1 1 2

F T Z2 × Z2 Z2 Z3 O Z4 Z2 D3 T Z2 id Z3

lines 3M 1M 1M ′ 1N 3R 1R 1M 1N(N ′) 3M 1M − 1N(N ′)
meeting 4N 2M ′ 4N(N ′) 3M 4N(N ′)

6M
sing. E6 D4 A3 A5 2E7 A7 A3 2D5 2E6 A3 A1 2A5

2.2. Rational curv es. Let

µ : Yλ,H −→ Xn
λ/H

be the minimal resolution of the singularities of Xn
λ/H. In the following table we give

the number of rational curves coming from the curves of the base locus of Xn
λ (denote it
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by ν1) and from the resolution of the singularities. The latter are of three kinds: those
coming from the intersection points of the lines of the base locus with other fix-lines on
q, those coming from fix-points which are off q and do not come from nodes of Xn

λ , and
those coming from the nodes. We denote their numbers by ν2, ν3 and ν4, then the total
number of rational curves is ν := ν1 + ν2 + ν3 + ν4. The configurations of some of the
curves are then given in the figures in section 6. In the table we write the discriminant,
d, of the intersection matrix too, this is easy to compute since we know the configurations
of the rational curves. Since in each case d 6= 0 the classes of the curves are independent
in NS(Yλ,H).
1. The smooth Xn

λ .

group T × V (TT )′ V × V O × T (OO)′′ T × T
ν1 4 2 6 3 2 4
ν2 12 − − 9 2 4
ν3 3 15 9 7 14 10
ν 19 17 15 19 18 18
d 25 · 33 · 5 23 · 36 · 5 213 · 5 25 · 33 · 7 −28 · 32 · 7 −22 · 36 · 7

2 . The singular Xn
λ . In this case the surfaces Xn

λ do not have extra singularities on q,
hence the number ν1 and ν2 remain the same as above and we do not write them again.

group T × V (TT )′

λ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

ν3 − 3 3 − − 3 15 12
ν4 4 1 1 4 18 15 1 4
ν 20 20 20 20 20 20 18 18
d −24 · 33 · 5 −26 · 33 · 5 −26 · 33 · 5 −24 · 33 · 5 −33 · 5 −26 · 33 · 5 −24 · 36 · 5 −22 · 36 · 5

group V × V O × T
λ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

ν3 − 9 9 − 2 4 5 3
ν4 12 3 3 12 6 4 3 5
ν 18 18 18 18 20 20 20 20
d −210 · 5 −216 · 5 −216 · 5 −210 · 5 −24 · 32 · 7 −24 · 33 · 7 −25 · 33 · 7 −26 · 32 · 7

group (OO)′′ T × T
λ λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

ν3 − 8 12 6 − 8 10 2
ν4 16 7 3 10 12 3 1 10
ν 20 19 19 20 20 19 19 20
d −24 · 7 27 · 32 · 7 28 · 32 · 7 −28 · 7 −34 · 7 22 · 36 · 7 23 · 36 · 7 −24 · 34 · 7

2.3. K3-surfaces. Since the groups H and H ′ contain the subgroups V × V of G6 resp.
T × T of G8 the projections πH and πH′ are ramified on the lines of the base locus of the
families Xn

λ with ramification index two and three. By using Hurwitz-formula and the
fact that in each case the previous rational curves are independent in the Neron-Severi
group, the same computation as in [BS, section 5] shows that the minimal resolutions of
the quotients are K3-surfaces, a direct proof of this fact is given in the next section.
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3. Cyclic Coverings

We give another description of the pencils of K3-surfaces by using cyclic coverings.
We consider the pairs Gn and H so that Gn/H is cyclic, in our cases either |Gn/H| = 3
or |Gn/H| = 2, and we consider the map:

π : Xn
λ/H −→ Xn

λ /Gn

3.1. The general case. For the moment assume that Xn
λ is smooth. The group Gn/H

acts on the points of the fiber π−1(P ). If the point P is not fixed by Gn/H then the map
is 3 : 1 or 2 : 1 there. If P is fixed by Gn/H then we have a singularity on Xn

λ/H, more
precisely an A2 or an A1, now the fiber π−1(P ) is one point and the map has multiplicity
2 or 3 there (cf. [M2, Lemma 3.6 p. 80]). We have a rational map between the minimal
resolutions of Xn

λ/H and Xn
λ/Gn:

γ : Yλ,H −−− → Yλ,G n

which is 3 : 1 or 2 : 1. Observe that this map is not defined over the (−2)-rational curves
in the blow up of the singular points of Xn

λ/Gn which comes from fix-points of Gn/H on
Xn

λ/H. The surfaces Yλ,H are K3-surfaces as well and by [I, Cor. 1.2] these have the same
Picard-number ρ(Yλ,H) = ρ(Yλ,G n

)= 19.
In this section we describe the map γ by using cyclic coverings. For the general theory
about 2-cyclic coverings and 3-cyclic coverings we send back to the article [N] of Nikulin
and to the articles [M1] of Miranda and [T] of Tan. For the convenience of the reader
in Figure 1, section 6, we recall the configurations of (-2)-rational curves on the smooth
surfaces Yλ,G 6

and on Yλ,G 8
given in [BS].

By [BS, proposition 6.1] the following classes are 3-divisible in NS(Yλ,G 6
):

L := L1 − L2 + L4 − L5 + N1 − N2 + N3 − N4 + N5 − N6 + N7 − N8,

L′ := L′
1 − L′

2 + L′
4 − L′

5 + N1 − N2 + N3 − N4 − N5 + N6 − N7 + N8,

and also:

L − L′ = L1 − L2 + L4 − L5 − L′
1 + L′

2 − L′
4 + L′

5 + 2(N5 − N6 + N7 − N8),

L + L′ = L1 − L2 + L4 − L5 + L′
1 − L′

2 + L′
4 − L′

5 + 2(N1 − N2 + N3 − N4).

Making reduction modulo three we find the classes:

M := L1 − L2 + L4 − L5 − L′
1 + L′

2 − L′
4 + L′

5 − (N5 − N6 + N7 − N8),

M′ := L1 − L2 + L4 − L5 + L′
1 − L′

2 + L′
4 − L′

5 − (N1 − N2 + N3 − N4).

In NS(Yλ,G 8
) the following classes are 2-divisible:

L := L1 + L3 + L5 + M1 + M3 + M4 + R1 + R3,

L′ := L′
1 + L′

3 + L′
5 + M2 + M3 + M4 + R1 + R3.

Consider also the classes L + L′ and L − L′, which after reduction modulo two are the
same as:

M := L1 + L3 + L5 + L′
1 + L′

3 + L′
5 + M1 + M2.

These classes consist of six disjoint A2-configurations of curves and of eight disjoint A1-
configurations of curves (according to [T] and [N]). These are the resolutions of A2 and A1

singularities of Xn
λ /Gn which arise by doing the quotient of Xn

λ /H by Gn/H. We construct
the 3-cyclic coverings and the 2-cyclic coverings by using the divisors L,L′,M,M′. We
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recall briefly the construction in the case of 3-cyclic coverings, then in the case of 2-
cyclic coverings it is similar. First to avoid to produce singularities, we have to blow
up the meeting points of the A2-configurations. Call Y 0

λ,G6
the surface which we obtain

after these blow-ups. The meeting points are replaced by (−1)-curves and the two (−2)-
curves become now (−3)-curves. Denote by φ : Y 1

λ,G6
−→ Y 0

λ,G6
the 3-cyclic covering with

branching divisor L, L′ or M, M′ then

Proposition 3.1. A configuration of curves on Y 0
λ,G6

:

−3−3 −1

becomes a configuration:

−3 −1−1

on Y 1
λ,G6

.

P roof. We do the computation for one configuration of curves L1 −L2, this is the same in
the other cases. Denote again by L1 and L2 the curves on Y 0

λ,G6
which now are (−3)-curves

and denote by E the exceptional (−1)-curve. By the properties of cyclic coverings we have

φ∗Li = 3L̃i, where L̃i is the strict transform of Li. Then:

9(L̃i)
2 = (φ∗Li)

2 = (degφ)L2
i = −9.

Hence (L̃i)
2 = −1. Since E·(L1−L2) = 0 the map φ is not ramified on E and the restriction

φ|Ẽ is 3 : 1 onto E. Hence we have φ∗E = Ẽ and Ẽ2 = (φ∗E)2 = (degφ)E2 = 3E2 = −3.

�

Our surface Y 1
λ,G6

is now no more minimal. By blowing down the (−1)-curves, the curve

Ẽ becomes also a (−1)-curve so we blow it down too. By construction the surfaces which
we obtain are minimal K3-surfaces and are exactly the surfaces Yλ,H which are obtained
as the minimal resolutions of X6

λ/H, in fact we have a commutative diagram:

Y 1
λ,G6

φ
−→ Y 0

λ,G6

↙ ↘

Yλ,H −
γ
−→ Yλ,G6

↘ ↙

X6
λ/H

π
−→ X6

λ/G6

The construction is similar in the case of 2-cyclic coverings of the surfaces Yλ,G8
. This gives

another description of the families of K3-surfaces Yλ,T ×V , Yλ,(T T )′ and Yλ,O×T , Yλ,(OO)′′

as fi nite c o v e ring s o f th e fam ilie s Yλ,G 6
and Yλ,G 8

.

Remark 3.1. By using the divisors L′ a nd M′ on Yλ,G 6
for the coverings w e obta in the

surfa ces Yλ,V ×T a nd Yλ,(TT )′′ a nd by ta k ing the divisor L′ on Yλ,G 8
w e obta in the surfa ce

Yλ,T×O. W e do not discuss these surfa ces sepa ra tely in the sequel.



GROUP ACTIONS, CYCLIC COVERINGS AND FAMILIES OF K3-SURFACES 9 7

3.2. The special cases. In these cases, the situ ation is a little more comp licated. N ow
in the cou nterimage π−1(P ) of some singu lar p oint P of Xn

λ /Gn coming from the A1-
singu larities of Xn

λ w e have singu larities on Xn
λ / H too. In the follow ing tab le w e give the

singu larities in the q u otient Xn
λ /Gn, n = 6, 8 and the ty p e and the nu mb er of singu larities

in the cou nterimage on Xn
λ / H . A s in [B S ] w e donte b y 6, 1, . . . , 8, 4 the sp ecial su rfaces in

the families.

6, 1 6, 2 6, 3 6, 4 8, 1 8, 2 8, 3 8, 4
G6 E6 A5 A5 E6 G8 E7 D6 D4 D5

T × V D4 A1 A1 D4 O × T E6 D4 A3 A5

(TT )′ 3E6 3A5 A1 D4 (OO)′′ 2E7 A7 A3 2D5

V × V 3D4 3A1 3A1 3D4 T × T 2E6 A3 A1 2A5

B y resolving the q u otients w e get a map lik e γ as b efore and so again b y the resu lt of Inose
the minimal resolu tions of the sp ecial K 3-su rfaces are K 3-su rfaces too w ith P icard-nu mb er
20 . W e can describ e this map as b efore b y u sing cy clic coverings. In the case of the sp ecial
su rfaces in the family Yλ,G6

w e constru ct 3-cy clic covering as in the general case b y u sing
the divisors L, L′, M, M′, w hich are in the case of the sp ecial su rfaces 3-divisib le too, cf.
[B S , 6.2]. B y tak ing L and L′ w e ob tain the sp ecial K3-su rfaces in the families Yλ,T×V ,
resp . Yλ,V ×T , b y tak ing M and M′ w e ob tain the sp ecial K3-su rfaces in the covering
Yλ,(TT )′ and Yλ,(TT )′′ . In the case of the sp ecial su rfaces in the family Yλ,G8

w e tak e the
divisors L, L′, M and w e do 2-cy clic coverings. B y tak ing L or L′ w e find the singu lar
su rfaces in the family Yλ,O×T resp . Yλ,T×O and b y tak ing M w e find the singu lar su rfaces
in the family Yλ,(OO)′′ .

4. Picard-lattices

W e comp u te the P icard-lattices of the general K 3-su rface in the families Yλ,T×V , Yλ,O×V

and of the sp ecial su rfaces w ith ρ = 20 in each p encil. F irst w e recall some facts. D enote b y
W the lattice sp anned b y the cu rves of section 2, 2.2. If W is not the total P icard-lattice,
w hich w e call N S there is an integral lattice W ′ s.t. W ⊂ W ′ ⊂ N S w ith p := [W ′ : W ]
a p rime nu mb er. D enote b y d(W ), d(W ′) the discriminant of the lattices W,W ′. S ince
[W ′ : W ]2 = d(W ) · d(W ′)−1 (cf. [B P V , L emma 2.1, p . 12]) w e find that p2 divides
the discriminant of W . D enote b y (W∨/W )p the p-su b grou p of (W∨/W )⊂N S ∨/ N S
and denote b y T the transcendental lattice orthogonal to the P icard-lattice. S ince the
discriminant grou p s T∨/ T and N S ∨/ N S are isomorp hic (cf. e.g. [B P V , p . 13 L emma
2.5 ]), they have the same rank w hich is ≤ rk (T ). It follow s that also rk (W∨/W )p ≤ rk (T ).

P ro po sitio n 4 .1. The Picard-lattices of the generic surface Yλ,T×V and Yλ,O×T are gen-

erated by the 19 rational curves of section 2 , 2 .2 and the classes:

L̄′

3 :=
L1 − L2 + L4 − L5 + L′

1 − L′

2 + L′

4 − L′

5 + L′′

1 − L′′

2 + L′′

4 − L′′

5
3

h1
2 :=

L1 + L3 + L5 + L′

1 + L′

3 + L′

5 + M1 + M2
2 ,

h2
2 :=

L1 + L3 + L5 + L′′

1 + L′′

3 + L′′

5 + M1 + M3
2
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of NS(Yλ,T×V ), then the lattice has discrim inant 2 · 3 · 5; resp. the classes

L̄′′

2 :=
L1 + L3 + L5 + L′

1 + L′

3 + L′

5 + M1 + M2
2

k1
3 :=

L1 − L2 + L4 − L5 − L′

1 + L′

2 − L′

4 + L′

5 + N1 − N2 + N3 − N4
3

of NS(Yλ,O×T ), then the lattice has discrim inant 23 · 3 · 7.

Proof. 1. The discriminant of the lattice generated by the 19 curves is 25 ·33 ·5 hence we can
have 2-divisible classes or 3-divisible classes. The divisor L̄′ is 3-divisible since it is the pull
back of the divisor L′ on Yλ,G6

which is 3-divisible too. And we cannot have more 3-divisible
classes. If there are no 2-divisible classes then the group (W∨/W )2 would contain the
classes M1/2, M2/2, M3/2, (L1+L3+L5+L′

1+L′

3+L′

5)/2, (L1+L3+L5+L′′

1 +L′′

3+L′′

5)/2,
(L′

1+L′

3+L′

5+L′′

1+L′′

3+L′′

5)/2 which are independent classes with respect to the intersection
form. Since the rank of (W∨/W )2 is less or equal as the rank of T∨/T which is at most
three, it can not happen that we find five classes as before. H ence some combination of
them must be contained in the Neron-Severi group. So we have

1

2
(λ(L1 + L3 + L5) + λ′(L′

1 + L′

3 + L′

5) + λ′′(L′′

1 + L′′

2 + L′′

3) + µ1M1 + µ2M2 + µ3M3) ∈ NS

for some parameters λ, λ′, λ′′, µ1, µ2, µ3 ∈ Z2.
By Nikulin [N] such a 2-divisible set contains 8 curves. So putting λ′′ = 0 and µ3 = 0 we
get the divisor h1/2, putting λ′ = 0 and µ2 = 0 we get the divisor h2/2. The discriminant
of the lattice W together with these three classes now change into 2 ·3 ·5, hence we cannot
have more torsion classes.
2. Again the class L̄′′ is the pull back of the class M′ on Yλ,G8

hence it is 2-divisible. If there
are no 3-divisible classes then the group (W∨/W )3 would contain the classes N1 − N2/3,
N3 − N4/3 and (L1 − L2 + L4 − L5 + L′

1 − L′

2 + L′

4 − L′

5)/3 which are independent. By

specializ ing to the surfaces Y
(8,2)
λ,O×O

and Y
(8,3)
λ,O×O

we find also here these three independent

classes and so rk(W∨/W )3 ≥ 3. This is not possible in fact on these surfaces we have
rk(W )=20 which implies rk(W∨/W )3 ≤ 2. This means that the three classes fit together

giving a 3-divisible class in NS(Y
(8,2)
λ,O×O) and NS(Y

(8,3)
λ,O×T ) and so in NS(Yλ,O×T ) (cf. [vG T,

Lemma 2.3]). �

In the same way as before we can compute the Picard-lattices of the special surfaces in
the families. We give the results leaving the proofs to the reader.

Proposition 4.2. 1 . The Picard-lattice of the special surfaces in Yλ,T×V and Yλ,O×T is

generated in all the cases but Y
(8,4)
λ,O×T by the curves of section 2, 2.2 and by the classes

L̄′/3, h1/2, h2/2, resp. L̄′′/2, k1/3 of proposition 4 .1 . In the case of Y
(8,4)
λ,O×T

the class:

L1 + L3 + L5 + N1 + C + N4 + R2 + M1

2

is a generator too, and they span the 20 -dim ensional Picard-lattice.

2. In the case of Y
(6,1)
λ,(TT )′ and of Y

(6,2)
λ,(TT )′ the class:

L̄

3
:=

N1 − N2 + N3 − N4 + N5 − N6 + N7 − N8 + N9 − N10 + N11 − N12

3
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is in the Neron-Severi group and in the case of Y
(6,2)
λ,(TT )′ the classes:

N1 + C1 + N4 + N5 + C2 + N8 + M1 + M2

2
,

N1 + C1 + N4 + N9 + C3 + N12 + M1 + M3

2

are in the Neron-Severi group too. These together with the 20 curves of section 2, 2.2 span

the 20-dimensional Picard-lattice.

3 . In the case of Y
(8,1)
λ,(OO)′′ and Y

(8,4)
λ,(OO)′′, the class:

L̄

2
:=

M1 + M2 + M3 + M4 + R1 + R3 + R′

1 + R′

3

2

is in the Neron-Severi group and in the case of Y
(8,4)
λ,(OO)′′ the class:

W

4
:=

R1 + 2R2 + 3R3 + R′

1 + 2R′

2 + 3R′

3 + 2N1 + 2C1 + 3M1 + M2 + 2N3 + 2C2 + 3M3 + M4

4

is in the Neron-Severi group too.

A gain these classes together with the 20 curves of section 2, 2.2 span the 20-dimensional

Picard-lattice.

The discriminants of the Picard-lattices then are:

Yλ,T×V Yλ,(TT )′

6, 1 6, 2 6, 3 6, 4 6, 1 6, 2
d −3 · 5 −22 · 3 · 5 −22 · 3 · 5 −3 · 5 −3 · 5 −22 · 3 · 5

Yλ,O×T Yλ,(OO)′′

8, 1 8, 2 8, 3 8, 4 8, 1 8, 4
d −22 · 7 −22 · 3 · 7 −23 · 3 · 7 −22 · 7 −22 · 7 −24 · 7

4.1. More cyclic coverings. Now we can construct the 3-cyclic covering of Yλ,T×V , by
using the 3-divisible classes L̄′ and the 2-cyclic coverings of Yλ,O×T , by using the 2-divisible
class L̄′′. We can do this for the general surface in the pencil and for the special surfaces
too, in this case we obtain another description of the families Yλ,V ×V and Yλ,T×T . In
particular also in these cases the general surface in the family has Picard-number 19 and
we have four surfaces with Picard-number 20. The description of the Picard-lattices of
the surfaces with ρ = 20 is given in the following proposition (again, we leave the proof to
the reader):

Proposition 4.3. The classes

L2 − L4 + L′

3 − L′

1 + N1 − N2 + N3 − N4 + N5 − N6 + N7 − N8

3
,

L′

2 − L′

4 + L3 − L1 + N1 − N2 − N3 + N4 + N5 − N6 − N7 + N8

3

are in NS(Y
(8,1)
λ,T×T

) and in NS(Y
(8,4)
λ,T×T

). M oreover the class

N1 + C1 + N4 + N5 + C2 + N8 + M1 + M2

2
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is in NS(Y
(8,4)
λ,T×T

) too. These classes together with the rational curves of section 2, 2.2 span

the 20-dimensional Picard-lattices of the surfaces Y
(8,1)
λ,T×T and Y

(8,4)
λ,T×T . Then the lattices

have discriminant −7, resp. −22 · 7.

5. Final remarks

1. In the section 4 we identify ex plicitly the Picard-lattice of some K3-surfaces. It is
our nex t aim to compute the transcendental lattices orthogonal to the Picard-lattices to
classify the K3-surfaces. In particular by a result of Shioda and Inose, cf. [SI], K3-surfaces
with ρ = 20 are classified by means of their transcendental lattice.
2. By a result of M orrison, cf. [M o], each K3-surface with ρ = 19 or 20 admits a so called
Shioda-Inose structure. This means that there is a Nikulin-involution, an involution with
eight isolated fix -points and the quotient is birational to a Kummer-surface. It would be
desirable to have an ex plicit description of this structure for our surfaces.
3. We do not describe the quotients 3-folds P3/Gn, P3/H, H a normal subgroup of Gn. It
would be interesting to have a global resolution of these spaces and to see our K3-surfaces
as smooth pencils on the smooth 3-folds.

6. Fig u res: C o nf ig u ratio ns o f ratio nal cu rv es

In this section we give the configurations of rational curves on the surfaces with Picard-
number 19 and 20. In the case of the singular surfaces of the families Yλ,T×V and Yλ,O×T

also the curves Li, L′

i and L′′

i are contained on the surfaces, but we do not draw again the

picture. M oreover the configurations of curves on the surfaces Y
(6,4)
λ,T×V

and Y
(6,3)
λ,T×V

are the

same as on the surfaces Y
(6,1)
λ,T×V resp Y

(6,2)
λ,T×V so again we draw only one picture.

Yλ,G6
Yλ,G8

L1L1 L2L2 L3L3 L4L4 L5L5

L′

1L′

1 L′

2L′

2 L′

3L′

3 L′

4L′

4 L′

5L′

5

M1

M1

M2

M3 M4

N1N1 N2N2 N3 N4

N5 N6 N7 N8 R1 R2 R3

Fig. 1
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TRANSCENDENTAL LATTICES OF SOME K3-SURFACES

ALESSANDRA SARTI

Abstract. In a p re v io u s p a p e r, [S2 ], w e d e sc rib e d six fa m ilie s o f K3 -su rfa c e s w ith P ic a rd -
n u m b e r 1 9 , a n d w e id e n tifi e d su rfa c e s w ith P ic a rd -n u m b e r 2 0 . In th e se n o te s w e c la ssify
so m e o f th e su rfa c e s b y c o m p u tin g th e ir tra n sc e n d e n ta l la ttic e s. M o re o v e r w e sh o w th a t th e
su rfa c e s w ith P ic a rd -n u m b e r 1 9 a re b ira tio n a l to a K u m m e r su rfa c e w h ich is th e q u o tie n t o f
a n o n -p ro d u c t ty p e a b e lia n su rfa c e b y a n in v o lu tio n .

0. In tro d u ctio n

G iv e n a K 3-su rfa c e a n im p o rta n t ste p to w a rd its c la ssifi c a tio n in v ie w o f th e T o re lli th e o -
re m is to c o m p u te th e P ic a rd la ttic e a n d th e tra n sc e n d e n ta l la ttic e . W h e n th e ra n k o f th e
P ic a rd la ttic e (i.e . th e Picard-number, w h ich w e d e n o te b y ρ) o f th e K 3-su rfa c e is 2 0, th e
m a x im a l p o ssib le , th e tra n sc e n d e n ta l la ttic e h a s ra n k tw o . T h e se K3-su rfa c e s a re c a lle d b y
S h io d a a n d In o se singular. In [S I], S h io d a a n d In o se c la ssifi e d su ch su rfa c e s in te rm s o f th e ir
tra n sc e n d e n ta l la ttic e , m o re p re c ise ly th e y sh o w th e fo llo w in g :

Th e o re m 0 .1 . [S I, T h e o re m 4 , §4 ] T h ere is a natural o ne-to -o ne co rrespo ndence from th e

set o f singular K3-surfaces to th e set o f equivalence classes o f po sitive-defi nite even integral

binary quadratic fo rms w ith respect to S L 2(Z).

W h e n th e P ic a rd -n u m b e r is 1 9 th e tra n sc e n d e n ta l la ttic e h a s ra n k th re e a n d b y re su lts o f
M o rriso n , [M ], a n d N ik u lin , [N ], th e e m b e d d in g in th e K 3 -lattice Λ := −E8⊕−E8⊕U⊕U⊕U

is u n iq u e , h e n c e it id e n tifi e s th e m o d u li c u rv e c la ssify in g th e K 3-su rfa c e s. In g e n e ra l h o w e v e r
it se e m s to b e d iffi c u lt to c o m p u te e x p lic itly th e tra n sc e n d e n ta l la ttic e . In [S 2 ] w e d e sc rib e
six fa m ilie s o f K 3-su rfa c e s w ith P ic a rd -n u m b e r 1 9 a n d w e id e n tify in e a ch fa m ily fo u r su rfa c e s
w ith P ic a rd -n u m b e r 2 0. T h e a im o f th e se n o te s is to c o m p u te th e ir tra n sc e n d e n ta l la ttic e
a n d to c la ssify th e m . In [S 2 ] w e d e sc rib e c o m p le te ly th e P ic a rd la ttic e o f th e g e n e ra l su rfa c e
in tw o o f th e fa m ilie s a n d o f th e sp e c ia l su rfa c e s a n d w e d e sc rib e th e P ic a rd la ttic e o f six
su rfa c e s w ith P ic a rd -n u m b e r 2 0 in th e o th e r fa m ilie s. H e re b y u sin g la ttic e -th e o ry a n d re su lts
o n q u a d ra tic fo rm s w e c o m p u te th e tra n sc e n d e n ta l la ttic e s o f th e se su rfa c e s. T h e m e th o d s
a re sim ila r a s th e m e th o d s u se d b y B a rth in [B ] fo r d e sc rib in g th e K 3-su rfa c e s o f [B S ].
B y a re su lt o f M o rriso n , [M , C o r. 6 .4 ], K 3-su rfa c e s w ith ρ = 1 9 a n d 2 0 h a v e a S h io d a -In o se
stru c tu re , in p a rtic u la r th is m e a n s th a t th e re is a b ira tio n a l m a p fro m th e K 3-su rfa c e to a
K u m m e r su rfa c e . It is w e ll k n o w n (c f. [S I]) th a t if ρ = 2 0, th e n th e K u m m e r su rfa c e is th e
q u o tie n t b y a n in v o lu tio n o f a p ro d u c t-ty p e a b e lia n v a rie ty . W h e n ρ = 1 9 th is is n o t a lw a y s
th e c a se . In fa c t w e u se th e tra n sc e n d e n ta l la ttic e s to sh o w th a t in o u r c a se s th e a b e lia n
v a rie ty is n o t a p ro d u c t o f tw o e llip tic c u rv e s. In th is c a se w e c a ll th e S h io d a -In o se stru c tu re
simp le.
T h e p a p e r is o rg a n iz e d a s fo llo w s: in se c tio n 1 w e re c a ll so m e b a sic fa c ts a b o u t la ttic e s
a n d q u a d ra tic fo rm s a n d th e c o n stru c tio n o f th e fa m ilie s o f K 3-su rfa c e s. T h e n se c tio n 2

1 9 9 1 Mathematics Subject Classification. 1 4 J 2 8 , 1 4 C 2 2 .
K ey w ord s and p hrases. K 3 -su rfa c e s, P ic a rd -la ttic e s.

1 0 5
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is entirely devoted to the computations of the transcendental lattices of the K3-surfaces of
[S2]. In section 3 we show that the Shioda-Inose structure of the surfaces with ρ = 19 is
simple. In section 4 we compare our singular K3-surfaces with already known surfaces, more
precisely with the Hessians surfaces which are described in [D vG]: we see that all our singular
K3-surfaces are Hessians of some cubic surface and we see that some of them are extremal
elliptic K3-surfaces in the meaning of [SZ ]. F inally in section 5 we recall the rational curves
generating the Neron-Severi group of the K3-surfaces over Q.
I would like to thank Wolf Barth for letting me know about his paper [B] and for many
discussions and S lawomir R ams and Bert van G eemen for many useful comments.

1. Notations and preliminaries

1.1. Lattices and quadratic forms. A lattice L is a free Z-module of finite rank with a
Z-valued symmetric bilinear form:

b : L × L −→ Z.

An isomorphism of lattices preserving the bilinear form is called an isometry, L is said to be
even if the associate quadratic form to b takes only even values, otherwise it is called odd.
The discriminant d(L) of L is the determinant of the matrix of b, L is said to be unimodular
if d(L) = ±1. If L is non-degenerate, i.e. d(L) 6= 0, then the signature of L is a pair (s+,s−)
where s± denotes the multiplicity of the eigenvalue ±1 for the quadratic form on L ⊗ R, L
is called positive-definite (negative-definite) if the quadratic form associate to b takes just
positive (negative) values. We will denote by U the hyperbolic plane i.e. a free Z-module of
rank 2 with bilinear form with matrix:

(

0 1
1 0

)

Moreover we denote by E8 the unique even unimodular positive definite lattice of rank 8 ,
with bilinear form with matrix:

























2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

























L et L∨ = H o m Z(L,Z) = {v ∈ L ⊗Z Q | b(v,x) ∈ Z for all x ∈ L} denotes the dual of the
lattice L, then there is a natural embedding of L in L∨ via c 7→ b(c,−), and we have:

Lemma 1.1. (cf. [BPV , L emma 2.1, p. 12]) If L is a non-degenerate lattice with bilinear
form b. Then
1 . [L∨ : L] = |d(L)|.
2 . If M is a submodule of L with rank M = rank L, then

[L : M ]2 = d(M)d(L)−1.

L et A be a finite abelian group. A quadratic form on A is a map:

q : A −→ Q/2Z
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together with a symmetric bilinear form:

b : A × A −→ Q/Z

such that:
1. q(na) = n2q(a) for all n ∈ Z and a ∈ A
2. q(a + a′) − q(a) − q(a′) ≡ 2b(a, a′) (mod 2Z)
Let L be a non-degenerate even lattice then the Q-valued quadratic form on L∨ induces a
quadratic form

qL : L∨/L −→ Q/2Z

called discriminant-form of L. By a result of Nikulin [N, Cor. 1.9.4], the signature and the
discriminant form of an even lattice determines its genus (we do not need the exact definition
here, cf. e.g. [CS]).
An embedding of lattices M ↪→ L is primitive if L/M is free.

Lemma 1.2. (cf. [N, Prop. 1.6.1]) L et M ↪→ L be a primitive embedding of non-degenerate
even lattices and suppose L unimodular then:
1. There is an isomorphism M∨/M ∼= (M⊥)∨/M⊥.
2. qM⊥ = −qM .

Let now X be an algebraic K3-surface, the group H2(X, Z) with the intersection pairing has
the structure of a lattice and by Poincaré duality it is unimodular. This is isometric to the
K3-lattice:

Λ := −E8 ⊕−E8 ⊕ U ⊕ U ⊕ U

(cf. [BPV, Prop.3.2, p. 241]). The N eron-Severi group N S(X) = H2(X, Z)∩H1,1(X) and its
orthogonal complement TX in H2(X, Z) (the transcendental lattice) are primitive sublattice
of H2(X, Z) and have signature (1, ρ − 1) and (2, 20 − ρ), ρ =rank(N S(X)). By the Lemma
1.2 we have

N S(X)∨/N S(X) ∼= (TX)∨/TX

and the discriminat-forms diff er just by their sign. Moreover by the Lemma 1.1 we have
|N S(X)∨/N S(X)| = |(TX)∨/TX | = d(N S(X)).

We recall some more facts about K3-surfaces X with ρ = 20 (singular K3-surfaces, cf. [SI,
p. 128]). Denote by Q the set of 2 × 2 positive-definite even integral matrices:

Q :=

(

2a c
c 2b

)

, a, b, c ∈ Z(1)

with d := 4ab − c2 > 0 and a, b > 0. We define Q1 ∼ Q2 if and only if Q1 = tγQ2γ for
some γ ∈ SL2(Z). Let [Q] be the equivalence class of Q and by Q/SL2(Z) the set of these
equivalence classes. Then:

Theorem 1.1. (cf. [SI, Thm. 4]). The map X 7→ [TX ] estabilishes a bijective correspondence
from the set of singular K3-surfaces onto Q/SL2(Z).

In particular K3-surfaces with ρ = 20 are classified in terms of their transcendental lattice.
By [Bu, Thm. 2.3, p. 14], we can assume that Q is reduced, i.e. −a ≤ c ≤ a ≤ b, and so
c2 ≤ ab ≤ d/3. R ecall the following:
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Theorem 1.2. ([Bu, Theorem 2.4, p. 15]) With the exception of

1.

(
2a a
a 2b

)
∼

(
2a −a
−a 2b

)
; 2.

(
2a b
b 2a

)
∼

(
2a −b
−b 2a

)

no distinct reduced quadratic forms are equivalent.

Here the relation “∼” is conjugation with a matrix of SL2(Z).
It is well known that the number of equivalence classes of forms of a given discriminat d,
i.e. the class number of d, is finite. If there is only one class we say that d has class number
one. In some other cases we have one class per genus. In [Bu, pp.81– 82] with the assumption
g .c.d(a, c, b) = 1 all the discriminants of class number one and of one class per genus are
listed. If g .c.d(a, c, b) 6= 1 then the form is a multiple of a primitive form.

1.2. Families of K3-surfaces. Let G ⊂ SO(3) denotes the polyhedral group T , O or I,

and let G̃ ⊂ SU(2) be the corresponding binary groups. Let

σ : SU(2) × SU(2) → SO(4, R)

denotes the classical 2 : 1 covering. The images σ(T̃ × T̃ ) := G6, σ(Õ × Õ) := G8 and

σ(Ĩ × Ĩ) := G12 in SO(4, R) are studied in [S1], where we show that there are 1-dimensional
families in P3(C) of Gn-invariant surfaces of degree n, which we denote by Xn

λ , λ a parameter
in P1. In [BS] it is shown that the quotients Yλ,G n

, n = 6, 8, 12 are families of K3-surfaces
where the general surface has Picard-number 19 and there are four surfaces with Picard-
number 20. Then in [S2] by taking special normal subgroups of Gn (n = 6, 8) and making the
quotient of X6

λ resp. X8
λ by these subgroups we find six more pencils of K3-surfaces, using

the notations there the subgroups are

G : T × V (TT )′ V × V O × T (OO)′′ T × T

and the families of K3-surfaces are denoted by Yλ,G. Here V denotes the Klein four group
in SO(3, R) and the groups (TT )′, (OO)′′ are described in [S2], the others are the images
in SO(4, R) of the direct product of binary subgroups of SU(2). Moreover T × V , (TT )′

are subgroups of index 3 of G6 and V × V has index 3 in T × V , (TT )′; O × T , (OO)′′ are
subgroups of index 2 of G8 and T × T has index 2 in O × T , (OO)′′. In the families Yλ,T×V

and Yλ,O ×T the general surface has Picard-number 19 and we could identify four surfaces

with Picard-number 20. We denote them by Y
(n,j )
λ,G , where n = 6, G = T ×V and j = 1, 2, 3, 4

or n = 8, G = O × T and j = 1, 2, 3, 4. In the other families we identify the Picard lattice of
the following surfaces with ρ = 20:

Y
(6,1)
λ,(TT )′ , T

(6,2)
λ,(TT )′ , Y

(8,1)
λ,(O O )′′ , Y

(8,4 )
λ,(O O )′′ , Y

(8,1)
λ,T×T , Y

(8,4 )
λ,T×T .

We denote by NS the Picard-lattice, by T the transcendental lattice. We denote by Zm(α)
the cyclic group Zm with the quadratic form taking the value α ∈ Q/2Z on the generator of
the group.

2. Transcendental Lattices

In this section we identify first the transcendental lattice of the singular K3-surfaces then of
the surfaces with ρ = 19. In each case we proceed as follows:
1. We determine generators for NS∨/NS with the help of the intersection pairing (−,−),
which is defined on NS (recall that NS∨ = {v ∈ NS ⊗Z Q | (v, x) ∈ Z for all x ∈ NS}).
2. We determine the discriminant-form of NS.
3. We use Lemma 1.2 to determine the discriminant-form of T .
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4. We list all the reduced quadratic forms which have the discriminant d(T ) = d(NS) (we
will see that in each case the matrices have form 1 or 2 as in the Theorem 1.2).
5. We use the discriminant form to determine T , in fact we see that when the rank is two
the discriminants have class number one or one class per genus. When the rank is three in
our cases the discriminants are small, Def. 2.1, and these have one class per genus.

2.1. The singular cases. The family Yλ,T×V . We recall the following 3-divisible class of
NS

L̄′ = L1 − L2 + L4 − L5 + L′
1 − L′

2 + L′
4 − L′

5 + L′′
1 − L′′

2 + L′′
4 − L′′

5

and the following 2-divisible classes of NS

h1 = L1 + L3 + L5 + L′
1 + L′

3 + L′
5 + M1 + M2,

h2 = L1 + L3 + L5 + L′′
1 + L′′

3 + L′′
5 + M1 + M3.

The general K3-surface in the family has ρ = 19 and the family contains four singular K3-
surfaces. The discriminant of the general K3-surface in the pencil is 2 ·3 ·5 which is the order
of NS∨/NS by the Lemma 1.1. We specify the following generators:

M := M1 + M2 + M3/2,
N := L1 − L2 + L4 − L5 − L′

1 + L′
2 − L′

4 + L′
5/3,

L := (3L0 − L1 − L′
1 − L′′

1 − 2L2 − 2L′
2 − 2L′′

2 − 3L3 − 3L′
3 − 3L′′

3

−2L4 − 2L′
4 − 2L′′

4 − L5 − L′
5 − L′′

5)/5

where

M2 = −3/2 = 1/2 mod 2Z,

N2 = −8/3 = 4/3 mod 2Z,

L2 = −18/5 = 2/5 mod 2Z.

Hence the dicriminant form of the Picard lattice is

Z2(1/2) ⊕ Z3(4/3) ⊕ Z5(2/5) ∼= Z30(7 /30)

The singular case 6, 1(6, 4). Here the discriminant is −3 · 5 = −15 and the generators of
NS∨/NS are N and L. The dicriminant form is

Z3(4/3) ⊕ Z5(2/5) = Z15(26/15)

The singular case 6, 2(6, 3). Here the discriminant is −22 ·3 ·5 = −60, and the generators are
M,N,L and another class M ′ = M4/2 with M ′2 = −1/2 = 3/2 mod 2Z. The discriminant
form is

Z2(1/2) ⊕ Z2(3/2) ⊕ Z3(4/3) ⊕ Z5(2/5) ∼= Z2(1/2) ⊕ Z30(97 /30).

The discriminant form of the transcendental lattice differs by the previous form just by the
sign, hence in the general case is

Z30(53/30)

and in the special cases is

6, 1 (6, 4) : Z15(4/15),
6, 2 (6, 3) : Z2(3/2) ⊕ Z30(23/30).

Here we identify the transcendental lattices of these four singular K3-surfaces, and in the
next section of the general K3-surface.
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The singular case 6, 1 (6, 4). We classify all the reduced matrices with discriminant 15 (one
representant per class, cf. [Bu, pp.19–20]). We have just the following possibilities

(
2 1
1 8

)
, A :=

(
4 1
1 4

)
.

By taking the generator (4/15,−1/15) and the bilinear form defined by A, we find a lattice
Z15(4/15) which is exactly the lattice T∨/T hence T = A.
The singular case 6, 2 (6, 3). We classify all the reduced matrices with discriminant 60( cf.
[Bu, pp.19–20]). We have just the following possibilities

(
2 0
0 30

)
, B :=

(
6 0
0 10

)
,

(
4 2
2 16

)
,

(
8 2
2 8

)
.

By taking the generators (1/2, 0) and (1/3, 1/10) and the quadratic form B we find a lattice
Z2(3/2) ⊕ Z30(23/30) which is exactly the lattice T∨/T , hence T = B.

The family Yλ,(TT )′ . We recall the following 3-divisible class in NS:

L̄ = N1 − N2 + N3 − N4 + N5 − N6 + N7 − N8 + N9 − N10 + N11 − N12.

Now we identify the transcendental lattice of Y
(6,1)
λ,(TT )′ and of Y

(6,2)
λ,(TT )′ .

The singular case 6, 1. In this case the discriminant is −3 ·5 = −15 and we have the following
generators of NS∨/NS:

N := (N1 − N2 + N3 − N4 − N5 + N6 − N7 + N8)/3,
L := (3L3 − 3L′

3)/5,

where

N2 = −8/3 = 4/3 mod 2Z,

L2 = −18/5 = 2/5 mod 2Z.

Hence the transcendental lattice is the same as in the case of Y
(6,1)
λ,T×V .

The singular case 6, 2. Recall the following 2-divisible classes in NS:

N1 + C1 + N4 + N5 + C2 + N8 + M1 + M2,

N1 + C1 + N4 + N9 + C3 + N12 + M1 + M3.

The discriminant is −22 · 3 · 5 = −60 and the classes

N, M = M1 + M2 + M3/2, M ′ = N5 + C2 + N8 + M1 + M3/2, L

are generators for NS∨/NS. Where

N2 = −8/3 = 4/3 mod 2Z,
M2 = 1/2 mod 2Z,
M ′2 = 3/2 mod 2Z,
L2 = −18/5 = 2/5 mod 2Z.

Hence the transcendental lattice is the same as in the case of Y
(6,2)
λ,T×V .

The family Yλ,O×T . Recall the following 2-divisible class of NS:

L̄′ = L1 + L3 + L5 + L′
1 + L′

3 + L′
5 + M1 + M2,

and the following 3-divisible class of NS:

k1 = L1 − L2 + L4 − L5 − L′
1 + L′

2 − L′
4 + L′

5 + N1 − N2 + N3 − N4.
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The general surface in the pencil has ρ = 19 and we have four surfaces with ρ = 20. The
discriminant of the general K3-surface in the pencil is 23 ·3 ·7 = 168. We specify the following
generators of NS∨/NS:

M := L1 + L3 + L5 + M2/2,
M ′ := L1 + L3 + L5 + M3/2,
R := R2/2,
N := N1 − N2 − N3 + N4/3,
L := (2L′′

2 + 4L0 − 2L1 − 2L′
1 + 3L2 + 3L′

2 − 3L3 − 3L′
3 − 2L4 − 2L′

4 − L5 − L′
5)/7

where

M2 = −2 = 0 mod 2Z,
M ′2 = −2 = 0 mod 2Z,
R2 = −1/2 = 3/2 mod 2Z,
N2 = −4/3 = 2/3 mod 2Z,
L2 = −16/7 = 12/7 mod 2Z.

O bserve that the classes M , M ′ and L are not orthogonal to eachother in fact M ·M ′ = 1/2
mod 2Z and M ·L = M ′ ·L = 1 mod 2Z. Hence the discriminant form of the Picard lattice
is:

Z2(0) ⊕ Z2(0) ⊕ Z2(3/2) ⊕ Z3(2/3) ⊕ Z7(12/7)) ∼= Z2(0) ⊕ Z2(0) ⊕ Z42(79/42).

The singular case 8, 1. Here the discriminant is −22 ·7 = −28 and the generators for NS∨/NS
are M , M ′ and L. The discriminant form is

Z2(0) ⊕ Z2(0) ⊕ Z7(12/7)) ∼= Z2(0) ⊕ Z14(12/7).

The singular case 8, 2. The discriminant is −22 · 3 · 7 = −84 and the generators for NS∨/NS
are M + R, M ′ + R, N and L. The discriminant form is

Z2(3/2) ⊕ Z2(3/2) ⊕ Z3(2/3)) ⊕ Z7(12/7) ∼= Z2(3/2) ⊕ Z42(163/42) = Z2(3/2) ⊕ Z42(79/42).

The singular case 8, 3. Here the discriminant is −23 · 3 · 7 = −168 and the generators for
NS∨/NS are R,

R′ = M1 + 2C + 3M2/4,

N and L, where R′2 = 1/4 mod 2Z. The discriminant form is

Z2(3/2) ⊕ Z4(1/4) ⊕ Z3(2/3) ⊕ Z7(12/7)) ∼= Z2(3/2) ⊕ Z84(221/84) = Z2(3/2) ⊕ Z84(53/84).

The singular case 8, 4. Recall the 2-divisible class in NS

L1 + L3 + L5 + N1 + C + N4 + R2 + M1

The discriminant is −22 · 7 = −28 and the generators for NS∨/NS are L′ + R,

M ′′ = M1 + M2 + R2/2,

and L, where M ′′2 = 1/2 mod 2Z.
The discriminant form is

Z2(3/2) ⊕ Z2(1/2) ⊕ Z7(12/7)) ∼= Z2(3/2) ⊕ Z14(31/14) ∼= Z2(3/2) ⊕ Z14(3/14)(mod 2Z).

The discriminant of the transcendental lattice differs by the previous form just by the sign,
hence in the general case is

Z2(0) ⊕ Z2(0) ⊕ Z42(5/42)
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and in the special cases is

8, 1 : Z2(0) ⊕ Z14(2/7),
8, 2 : Z2(1/2) ⊕ Z42(5/42),
8, 3 : Z2(1/2) ⊕ Z84(115/84),
8, 4 : Z2(1/2) ⊕ Z14(25/14).

Here we identify the transcendental lattice for this four singular cases, and in the next section
for the general K3-surface.
The singular case 8, 1. We classify all the reduced matrices with discriminant 28 ([Bu, pp.19–
20]). We have just the following possibilities:

A :=

(
2 0
0 14

)
, B :=

(
4 2
2 8

)
.

Now take the form B and the generators (0, 1/2) and (3/14, 1/14). These span exactly the
lattice we were looking for.
The singular case 8, 2.We classify all the reduced matrices with discriminant 84 ([Bu, pp.19–
20]). We have the following four cases:

(
2 0
0 42

)
,

(
6 0
0 14

)
,

(
4 2
2 22

)
, C :=

(
10 4
4 10

)
.

Now we take the form C and the generators (1/2, 0) and (8/21,−19/42) and we are done.
The singular case 8, 3.We classify all the reduced matrices with discriminant 168 ([Bu, pp.19–
20]). We have the following four cases

(
2 0
0 84

)
,

(
6 0
0 28

)
, E :=

(
12 0
0 14

)
,

(
4 0
0 42

)
.

Now we take the form E and the generators (1/2, 1/2) and (1/12, 1/7). These span exactly
the lattice we were looking for.
The singular case 8, 4. The discriminant is 28 like in the case of 8, 1. Now by taking the form
A and the generators (1/2, 0) and (0, 5/14) we are done.
The family Yλ,(OO)′′. Recall the following 2-divisible class of NS

L̄ = M1 + M2 + M3 + M4 + R1 + R3 + R′
1 + R′

3

We identify the transcendental lattices of the surfaces Y
(8,1)
λ,(OO)′′

and Y
(8,4)
λ,(OO)′′

.

The singular case 8, 1. In this case the the discriminant is −22 · 7 = −28 and we have the
following generators in NS∨/NS

L := 2L2 + 4L4 − 2L′
2 − 4L′

4/7,
M := R1 + R3 + M1 + M3/2,
M ′ := R1 + R3 + M1 + M4/2,

where

L2 = 12/7 mod 2Z,
M2 = M ′2 = 0 mod 2Z.

Hence the transcendental lattice is the same as in the case Y
(8,1)
λ,O×T .

The singular case 8, 4. Recall the following 4-divisible class in NS

W := R1 + 2R2 + 3R3 + R′
1 + 2R′

2 + 3R′
3 + 2N1 + 2C1 + 3M1 + M2 + 2N3 + 2C2 + 3M3 + M4.
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Moreover specify the classes:

v1 := R1 + 2R2 + 3R3/4,
v2 := R′

1 + 2R′
2 + 3R′

3/4,
v3 := 2N1 + 2C1 + 3M1 + M2/4,
v4 := 2N3 + 2C2 + 3M3 + M4/4, .

The discriminant is −24 · 7 = −112 and the generators of NS∨/NS are

v1 + v3/4, v2 + v4/4, L

with

(v1 + v3/4)
2 = (v2 + v4/4)

2 = 0 mod 2Z.

The discriminant form of the Picard lattice is

Z4(0) ⊕ Z4(0) ⊕ Z7(12/7) = Z4(0) ⊕ Z28(12/7).

Hence the discriminant form of the transcendental lattice is

Z4(0) ⊕ Z28(2/7)

We classify all the reduced matrices with discriminant 112, these are
(

2 0
0 56

)
,

(
4 0
0 28

)
, F :=

(
8 0
0 14

)
,

(
8 4
4 16

)
.

We take the matrix F and the generators (1/4, 1/2) and (1/4, 9/14), so we are done.
The family Yλ,T×T . A similar computation as before shows that in the singular case 8, 1,
resp. 8, 4 the transcendental lattice has bilinear form with intersection matrix:

(
2 1
1 4

)
, resp

(
4 2
2 8

)
.

Remark 2.1. O bserve that if the reduced matrices had not been as in case 1 or 2 of Theorem
1.2 we would find two diff erent isomorphism classes of K3-surfaces with the same discriminant
and the same discriminant form (cf. [SZ] p. 3).

2.2. The general cases. Here we identify the transcendental lattice of the general surfaces,
ρ = 19 in the families Yλ,T×V and Yλ,O×T . In the last section we have identified the discrim-
inant form of the transcendental lattice, we use it to determine T . We need the following:

Defi nition 2.1. (cf.[B, Def. 1.1]) The discriminant d = dN S = −dT is small if 4 · d is not
divisible by k3 for any non square natural number k congruent to 0 or 1 modulo 4 .

Then if dT is small , the lattice T is uniquely determined by its genus (cf. [CS, Thm. 21, p.
395]), hence by signature and discriminant form.
The family Yλ,T×V . The candidate lattice is

T0 :=




4 1 0
1 4 0
0 0 −2




this has discriminant -30, and taking the generator

f1 :=




4/15
−1/15

1/2
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Table 1. Transcendental Lattices

Family g e n e ral su rfac e sin g u lar su rfac e s

Yλ,G6

0

@

2 1 0

1 8 0

0 0 −6

1

A

„

2 1

1 8

« „

2 0

0 3 0

« „

2 0

0 3 0

« „

2 1

1 8

«

d −9 0 1 5 60 60 1 5

Yλ,G8

0

@

6 0 0

0 28 0

0 0 −2

1

A

„

2 0

0 1 4

« „

6 0

0 1 4

« „

6 0

0 28

« „

4 0

0 28

«

d −3 3 6 28 8 4 1 68 1 1 2

Yλ,G1 2

0

@

4 2 0

2 3 4 0

0 0 −3 0

1

A

„

1 2 6

6 5 8

« „

6 0

0 220

« „

6 0

0 1 3 2

« „

4 2

2 3 4

«

d −3 9 60 660 1 3 20 7 9 2 1 3 2

Yλ,T×V

0

@

4 1 0

1 4 0

0 0 −2

1

A

„

4 1

1 4

« „

6 0

0 1 0

« „

6 0

0 1 0

« „

4 1

1 4

«

d −3 0 1 5 60 60 1 5

Yλ,O ×T

0

@

1 0 4 0

4 1 0 0

0 0 −2

1

A

„

4 2

2 8

« „

1 0 4

4 1 0

« „

1 2 0

0 1 4

« „

2 0

0 1 4

«

d −1 68 28 8 4 1 68 28

Yλ,(TT )′ -

„

4 1

1 4

« „

6 0

0 1 0

«

- -

d - 1 5 60 - -

Yλ,(O O )′′ -

„

2 0

0 1 4

«

- -

„

8 0

0 1 4

«

d - 28 - - 1 1 2

Yλ,T×T -

„

2 1

1 4

«

- -

„

4 2

2 8

«

d - 7 - - 28

one computes qT0(f1) = −7/3 0 = 5 3 /3 0 mod 2Z, h ence th e d iscrimina nt form is Z30(5 3 /3 0).
S ince dT = −3 0 is sma ll th e tra nscend enta l la ttice of th e g enera l K 3 -surfa ce is T0.
The family Yλ ,O ×T . T h e ca nd id a te la ttice is

T1 :=





10 4 0
4 10 0
0 0 −2





th is h a s d iscrimina nt -16 8, a nd ta k ing th e g enera tors

f1 :=





1/2
0

1/2



 , f2 :=





1/2
0

−1/2



 , f3 :=





8/21
−19 /4 2

0





w e fi nd qT1(fi) = 0 mod 2Z, i = 1, 2 a nd qT1(f3) = 5 /4 2 mod 2Z, h ence th e d iscrimina nt
form is Z2(0) ⊕ Z2(0) ⊕ Z4 2(5 /4 2). S ince dT = −16 8 is sma ll w e h a v e T = T1.
W e collect th e results in th e ta b le 1. W e reca ll a lso th e results of [B ] a b out th e g enera l
surfa ces of th e families Y6(λ), Y8(λ), Y12(λ) a nd a lso a b out th e sing ula r surfa ces in th ese
pencils, B a rth computed th e tra nscend enta l la ttices of th e sing ula r surfa ces too, b ut h e d id
not pub lish ed h is result. In th e ta b le w e w rite a lso th e d iscrimina nts of th e la ttices.
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2.3. Moduli curve. L et

Ω = {[ω] ∈ P(Λ ⊗ C)|(ω, ω) = 0;(ω, ω̄) > 0},

this is an open subset in a q uadric in P
21. If X is a K3-surface and ωX ∈ H2,0(X), then it is

well known that ωX ∈ Ω and it is called a period point. M oreover also the converse is true:
each point of Ω occurs as period point of some K3-surface, this is the so called su rjectiv ity of
the period map (cf. [BP V , Thm. 14.2]). N ow let M ⊂ Λ be a sublattice of signature (1, ρ−1)
and define:

ΩM = {[ω] ∈ Ω|(ω, µ) = 0 for all µ ∈ M}.

This has dimension 20 − ρ = 20−rank M . If rank M=19 then this space is a curve. L et X
be a K3-surface with ρ = 19 since in this case the embedding of TX in Λ is uniq ue up to
isometry of Λ (cf. [M , C or. 2.10]), TX determines ΩM , with M = T⊥

X = N S (X) and so the
moduli curve, which classify the K3-surfaces. H ence in our cases the transcendental lattices
given in the table 1 identify the moduli curve of the K3-surfaces in the families Yλ,T×V and
Yλ,O×T (in the case ρ = 19).

3. Shioda-Inose structure

By a result of M orrison K3-surfaces with ρ = 19 or ρ = 20 admit a Shioda-Inose structure.
Before discussing our cases we recall some facts.

D efi n ition 3 .1 . (c f. [M , D ef. 6.1]) A K 3 -su rface X admits a S hioda-Inose stru c tu re if there
is a N iku lin Involu tion ι on X w ith rational qu otient map π : X − − → Y su ch that Y is a
K u mmer su rface, and π∗ indu ces an H odge isometry TX(2) ∼= TY .

H ence we have the following diagram:

(2) A

~~||
||

||
||

��
>

>
>

> X

!!
CC

CC
CC

CC

���
�

�
�

A/i oo Y // X/ι

where A is the co m p lex to ru s who se K u m m er-su rfa ce is Y , ι is a N ik u lin in v o lu tio n , i.e. a n
in v o lu tio n with 8 fi x -p o in ts o n X, i is a n in v o lu tio n o n A with 1 6 fi x -p o in ts a n d the ra tio n a l
m a p s fro m A to Y a n d fro m X to Y a re 2:1 . B y d efi n itio n we ha v e TX(2) ∼= TY a n d b y [M ,
P ro p . 4 .3 ], we ha v e TA(2) ∼= TY hen ce the d ia g ra m in d u ces a n H o d g e iso m etry TX

∼= TA.
In o u r c a ses the K3 -su rfa ce which we co n sid er a re a lg eb ra ic hen ce A is a n a b elia n v a riety (c f.
[M , T hm . 6 .3 , (ii)]). M o reo v er when ev er X is a n a lg eb ra ic K3 -su rfa ce a n d ρ(X) = 1 9 o r 20
then X a d m its a lwa y s a S hio d a -In o se stru c tu re (c f. [M , C o r. 6 .4 ]). W hen ev er ρ = 20 S hio d a
a n d In o se show tha t A = C1 × C2 where C1 a n d C2 a re ellip tic c u rv es

Ci = C/Z + Z · τi, i = 1 , 2

whith

τ1 = (−c +
√
−d)/2a , τ2 = (c +

√
−d)/2, (d = 4 a b − c2)

W e show tha t in the ca se o f the g en era l K3 -su rfa ces o f the fa m ilies Yλ,T×V a n d o f Yλ,O ×T

the a b elia n su rfa ce A(λ) is simple, i.e. it is n o t a p ro d u c t o f ellip tic c u rv es, in this c a se we
sa y tha t the S hio d a -In o se stru c tu re is simple.
T he tra n scen d en ta l la ttice TA(λ) ha s ra n k 3 hen ce its o rtho g o n a l c o m p lem en t N S A(λ) in U3

ha s ra n k 3 to o a n d we ha v e N S (A(λ)) ∼= T (Y (λ))(−1 ) b ec a u se b y [C S , T hm . 21 , p . 3 9 5 ],
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the lattices are uniquely determined. We use this fact to show:

Theorem 3.1. For general λ, A = A(λ) is not a prod u ct of elliptic cu rves.

P roof. (cf.[B, Thm. 5.1]) We show that A does not contain any elliptic curve C, i.e. a curve
with C2 = 0.
T h e general su rface in Yλ,T×V : We have intersection form on the transcendental lattice with
matrix

T0 :=





4 1 0
1 4 0
0 0 −2





hence the form on NSA is




−4 −1 0
−1 −4 0

0 0 2



 .

The associated quadratic form is

−4x2 − 2xy − 4y2 + 2z2, x, y, z ∈ Z.

If A contains an elliptic curve, then there are x, y, z ∈ Z with

2z2 = 4x2 + 2xy + 4y2

hence

8z2 = 16x2 + 8xy + 16y2

Put u = 4x + y, then

8z2 = u2 + 15y2.(3)

Hence we have u2 = 3z2 mod 5Z, since 3 is not a square modulo 5 we have u = z = 0
mod 5Z, hence u = 5u1, z = 5z1, so

3y2 = 5(8z2 − u2)(4)

hence y = 5y1 and substituting in (4) and dividing by 5 we find

15y2
1 = 8z2 − u2

which is the same as (3).
T h e general su rface in Yλ,O×T : We have intersection form on the transcendental lattice with
matrix:

T1 :=





10 4 0
4 10 0
0 0 −2



 .

Hence the form on NSA is




−10 −4 0
−4 −10 0

0 0 2



 .

The quadratic form is

−10x2 − 8xy − 10y2 = 2z2, x, y, z ∈ Z
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If A contains an elliptic curve, then there are x, y, z ∈ Z with

2z2 = 10x2 + 8xy + 10y2

hence dividing by 2 and multiplying by 5 we find

5z2 = 25x2 + 20xy + 25y2 = (5x + 2y)2 + 21y2.

Put u = 5x + 2y, then

5z2 = u2 + 21y2.(5)

Hence we have u2 = 5z2 mod 7 Z. Since 5 is not a square modulo 7 we have u = 7u1,
z = 7 z1, so we obtain

3y2 = 7 (5z2
1 − u2

1)(6)

hence 3y2 = 0 mod 7 Z. Since 3 is not a square modulo 7 we have y = 7 y1 and substituting
in (6) and dividing by 7 we find

21y2
1 = 5z2

1 − u2
1

which is again (5). �

4. Hessians and extremal elliptic K3-surfaces

Many of the singular K3-surfaces of this article appear already in other realizations.
In [D vG ] D ardanelli and van G eemen give a criteria to estabilish if a singular K3-surface is
the desingularization of the Hessian of a cubic surface:

Proposition 4.1. (cf. [D vG , Prop. 2.4.1]) L et T be an even lattice of rank 2 ,

T =

(

2n a
a 2m

)

.

There is a primitive embedding T ↪→ THess if and only if at least one among a, n and m is
even. In this case T embeds in U ⊕ U(2).

Here THess = U⊕U(2)⊕A2(−2). If we look in table 1 we see that all our singular K3-surfaces
are desingularizations of Hessians of cubic surfaces. In particular D ardanelli and van G eemen
study explicitely the singular K3-surfaces with

T =

(

4 1
1 4

)

.

They call the surface X10 and show that it is the desingularization of the Hessian of the cubic
surface with 10 E ckardt points. The latter has e.g. the following equation in P

4

4
∑

i= 0

x3
i = 0,

4
∑

i= 0

xi = 0.

F inally observe that the singular surfaces of the families Yλ,G 6
, Yλ,T×V and Yλ,(TT )′ are ex-

tremal elliptic K 3 -surfaces, in the sense of Shimada and Z hang (cf. [SZ ]), in fact these are
the numbers: 322, 17 3, 102, 148, 27 6 in their list in [SZ , Table 2, pp. 15-24].
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5. Figures: Configurations of rational curves

In this section we recall the configurations of (−2)-rational curves generating the Neron-
Severi group over Q. In the case of the families Yλ,T×V and Yλ,O×T the curves Li, L′

i and L′′

i

on the general K3-surface are also contained in the Neron-Severi group of the singular K3-
surfaces, but we do not draw their configuration again. Moreover since the singular surfaces

Y
(6,1)
λ,T×V and Y

(6,4)
λ,T×V , as the surfaces Y

(6,2)
λ,T×V and Y

(6,3)
λ,T×V have the same graph, we draw just

one picture.
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NIKULIN INVOLUTIONS ON K3 SURFACES

BERT VAN GEEMEN AND ALESSANDRA SARTI

Abstract. W e stu d y th e m a p s in d u c e d o n c o h o m o lo g y b y a Nik u lin (i.e . a sy m p le c tic ) in v o lu tio n
o n a K 3 su rfa c e . W e p a ra m e triz e th e e le v e n d im e n sio n a l irre d u c ib le c o m p o n e n ts o f th e m o d u li sp a c e
o f a lg e b ra ic K 3 su rfa c e s w ith a Nik u lin in v o lu tio n a n d w e g iv e e x a m p le s o f th e g e n e ra l K 3 su rfa c e
in v a rio u s c o m p o n e n ts. W e c o n c lu d e w ith so m e re m a rk s o n Mo rriso n -Nik u lin in v o lu tio n s, th e se a re
Nik u lin in v o lu tio n s w h ich in te rch a n g e tw o c o p ie s o f E8(−1 ) in th e Né ro n Se v e ri g ro u p .

In his paper [Ni1] Nikulin started the study of finite groups of autom orphism s on K 3 surfaces, in
particular those leav ing the holom orphic tw o form inv ariant, these are called symplectic. H e prov es
that w hen the group G is cyc lic and acts sym plectically, then G ∼= Z/nZ, 1 ≤ n ≤ 8 . S ym plectic
autom orphism s of K 3 surfaces of orders three, fiv e and sev en are inv estigated in the paper [G S ]. H ere
w e consider the case of G ∼= Z/2Z, generated b y a sym plectic inv olution ι. S uch inv olutions are called
N iku lin in vo lu tio n s (c f.[M o, D efinition 5 .1]). A Nikulin inv olution on the K 3 surface X has eight fix ed
points, hence the q uotient Ȳ = X/ι has eight nodes, b y b low ing them up one ob tains a K 3 surface Y .
In the paper [M o] M orrison studies such inv olutions on algeb raic K 3 surfaces w ith P icard num b er
ρ ≥ 17 and in particular on those surfaces w hose Néron S ev eri group contains tw o copies of E8(−1).
T hese K 3 surfaces alw ays adm it a Nikulin inv olution w hich interchanges the tw o copies of E8(−1).
W e call such inv olutions M o rriso n -N iku lin in vo lu tio n s.
T he paper of M orrison m otiv ated us to inv estigate Nikulin inv olutions in general. A fter a study of
the m aps on the cohom ology induced b y the q uotient m ap, in the second section w e show that an
algeb raic K 3 surface w ith a Nikulin inv olution has ρ ≥ 9 and that the Néron S ev eri group contains
a prim itiv e sub lattice isom orphic w ith E8(−2). M oreov er if ρ = 9 (the m inim al possib le) then the
follow ing tw o propositions are the central results in the paper:

P ro p o sitio n 2 .2 . L et X b e a K 3 surface w ith a Nikulin inv olution ι and assum e that the Néron
S ev eri group N S (X) of X has rank nine. L et L b e a generator of E8(−2)⊥ ⊂ N S (X) w ith L2 = 2d > 0
and let

Λ2d := ZL ⊕ E8(−2) (⊂ N S (X)).

T hen w e m ay assum e that L is am ple and:

(1) in case L2 ≡ 2 m od 4 w e hav e Λ2d = N S (X);
(2) in case L2 ≡ 0 m od 4 w e hav e that either N S (X) ∼= Λ2d or N S (X) ∼= Λf2d

w here Λf2d
is the

uniq ue ev en lattice containing Λ2d w ith Λf2d
/Λ2d

∼= Z/2Z and such that E8(−2) is a prim itiv e
sub lattice of Λf2d

.

P ro p o sitio n 2 .3. L et Γ = Λ2d, d ∈ Z>0 or Γ = Λf2d
, d ∈ 2Z>0. T hen there ex ists a K 3 surface X

w ith a Nikulin inv olution ι such that N S (X) ∼= Γ and (H2(X,Z)ι)⊥ ∼= E8(−2).

Th e se c o n d a u th o r is su p p o rte d b y DF G Rese a rch Gra n t SA 1 3 8 0 / 1 -1 .
2000 Mathematics Subject Classification: 1 4 J 2 8 , 1 4 J 1 0 .
K ey w ord s: K 3 su rfa c e s, a u to m o rp h ism s, m o d u li.
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The coarse moduli space of Γ-polarized K3 surfaces has dimension 11 and will be denoted by M2d

if Γ = Λ2d and by Mf2d
if Γ = Λf2d

.

Thus we classified all the algebraic K3 surfaces with Picard number nine with a Nikulin involution.
F or the proofs we use lattice theory and the surjectivity of the period map for K3 surfaces. We also
study the ι∗-invariant line bundle L on the general member of each family, for example in Proposition
2.7 we decompose the space PH0(X,L)∗ into ι∗-eigenspaces. This result is fundamental for the
description of the ι-equivariant map X −→ PH0(X,L)∗. In section three we discuss various examples
of the general K3 surface in these moduli spaces, recovering well-known classical geometry in a few
cases. We also describe the quotient surface Ȳ .

In the last section we give examples of K3 surfaces with an elliptic fibration and a Nikulin involution
which is induced by translation by a section of order two in the Mordell-Weil group of the fibration.
Such a family has only ten moduli, and the minimal resolution of the quotient K3 surface Y is again
a member of the same family. B y using elliptic fibrations we also give an example of K3 surfaces with
a Morrison-Nikulin involution. These surfaces with involution are parametrized by three dimensional
moduli spaces. The Morrison-Nikulin involutions have interesting applications towards the Hodge
conjecture for products of K3 surfaces (cf. [Mo], [GL]). In section 2.4 we briefl y discuss possible
applications of the more general Nikulin involutions.

1. General results on Nikulin Involutions

1.1. Nik u lin’s u niq u ene ss re su lt. A Nikulin involution ι of a K3 surface X is an automorphism
of order two such that ι∗ω = ω for all ω ∈ H2,0(X). That is, ι preserves the holomorphic two form
and thus it is a symplectic involution. Nikulin, [Ni1, Theorem 4.7], proved that any abelian group G
which acts symplectically on a K3 surface, has a unique, up to isometry, action on H2(X,Z).

1.2. Action on coh om olog y . D. Morrison ([Mo, proof of Theorem 5.7],) observed that there exist
K3 surfaces with a Nikulin involution which acts in the following way on the second cohomology group:

ι∗ : H2(X,Z) ∼= U3 ⊕ E8(−1) ⊕ E8(−1) −→ H2(X,Z), (u , x, y ) 7−→ (u , y , x).

Thus for any K3 surface X with a Nikulin involution ι there is an isomorphism H2(X,Z) ∼= U3 ⊕
E8(−1) ⊕ E8(−1) such that ι∗ acts as above.

Given a free Z-module M with an involution g, there is an isomorphism

(M,g) ∼= M s
1 ⊕ M t

−1 ⊕ M r
p ,

for unique integers r, s , t (cf. [R ]), where:

M1 := (Z, ι1 = 1), M−1 := (Z, ι−1 = −1), Mp :=

(

Z2, ιp =

(

0 1
1 0

) )

.

Thus for a Nikulin involution acting on H2(X,Z) the invariants are (s , t, r ) = (6 , 0, 8).

1.3. Th e inv a ria nt la ttic e . The invariant sublattice is:

H2(X,Z)ι ∼= {(u , x, x) ∈ U3 ⊕ E8(−1) ⊕ E8(−1) } ∼= U3 ⊕ E8(−2).

The anti-invariant lattice is the lattice perpendicular to the invariant sublattice:

(H2(X,Z)ι)⊥ ∼= {(0, x,−x) ∈ U3 ⊕ E8(−1) ⊕ E8(−1) } ∼= E8(−2).

The sublattices H2(X,Z)ι and (H2(X,Z)ι)⊥ are obviously primitive sublattices of H2(X,Z).
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1.4. The standard diagram. The fixed point set of a Nikulin involution consists of exactly eight
points ([Ni1, section 5]). Let β : X̃ → X be the blow-up of X in the eight fixed points of ι. We denote

by ι̃ the involution on X̃ induced by ι. Moreover, let Ȳ = X/ι be the eight-nodal quotient of X, and

let Y = X̃/ι̃ be the minimal model of Ȳ , so Y is a K3 surface. This gives the ‘standard diagram’:

X
β
← − X̃

↓ ↓ π
Ȳ ← − Y.

We denote by Ei, i = 1, . . . , 8 the exceptional divisors in X̃ over the fixed points of ι in X, and by
Ni = π(Ei) their images in Y , these are (−2)-curves.

1.5. The Nikulin lattice. The minimal primitive sublattice of H2(Y,Z) containing the Ni is called
the Nikulin lattice N (cf. [Mo, section 5]). As N2

i = −2, NiNj = 0 for i 6= j, the Nikulin lattice

contains the lattice < −2 >8. The lattice N has rank eight and is spanned by the Ni and a class N̂ :

N = 〈N1, . . . , N8, N̂〉, N̂ := (N1 + . . . + N8)/2.

A set of 8 rational curves on a K3 surface whose sum is divisible by 2 in the Néron Severi group is
called an even set, see [B] and section 3 for examples.

1.6. The cohomology of X̃. It is well-known that

H2(X̃,Z) ∼= H2(X,Z) ⊕ (⊕8
i= 1ZEi) ∼= U3 ⊕ E8(−1)2⊕ < −1 >8 .

For a smooth surface S with torsion free H2(S,Z), the intersection pairing, given by the cup product
to H4(S,Z) = Z, gives an isomorphism H2(S,Z)→ Ho m Z(H2(S,Z),Z).

The map β∗ is:

β∗ : H2(X,Z) −→ H2(X̃,Z) = H2(Y,Z)⊕ (⊕8
i= 1ZEi), x 7−→ (x, 0),

and its dual β∗ : H2(X̃,Z)→ H2(X,Z) is (x, e ) 7→ x.

Let π : X̃ → Y be the quotient map, let π∗ : H2(Y,Z) → H2(X̃,Z) be the induced map on the

cohomology and let π∗ : H2(X̃,Z)→ H2(Y,Z) be its dual, so:

π∗a · b = a · π∗b (a ∈ H2(X̃,Z), b ∈ H2(Y,Z)).

Moreover, as π∗ is compatible with cup product we have:

π∗b · π∗c = 2(b · c) (b, c ∈ H2(Y,Z)).

1.7. Lattices. For a lattice M := (M, b), where b is a Z-valued bilinear form on a free Z-module
M , and an integer n we let M(n) := (M,nb). In particular, M and M(n) have the same underlying
Z-module, but the identity map M →M(n) is not an isometry unless n = 1 or M = 0.

1.8. Proposition. U sing the notations and conventions as above, the map π∗ : H2(X̃,Z) −→
H2(Y,Z) is given by

π∗ : U3 ⊕ E8(−1)⊕ E8(−1)⊕ < −1 >8−→ U(2)3 ⊕N ⊕ E8(−1) ↪→ H2(Y,Z),

π∗ : (u, x, y, z ) 7−→ (u, z , x + y).

The map π∗, on the sublattice U(2)3 ⊕N ⊕ E8(−1) of H2(Y,Z) is given by:

π∗ : U(2)3 ⊕N ⊕E8(−1) ↪→ H2(X̃,Z) ∼= U3 ⊕E8(−1)⊕ E8(−1)⊕ < −1 >8,

π∗ : (u, n, x) 7−→ (2u, x, x, 2ñ),
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here if n =
∑

niNi, ñ =
∑

niEi.

Proof. This follows easily from the results of Morrison. In the proof of [Mo, Theorem 5.7], it is shown
that the image of each copy of E8(−1) under π∗ is isomorphic to E8(−1). As E8(−1) is unimodular, it is
a direct summand of the image of π∗. As π∗ι

∗ = π∗, we get that π∗(0, x, 0, 0) = π∗(0, 0, y, 0) ∈ E8(−1).
The < −1 >8 maps into N (the image has index two). As U3 is a direct summand of H2(X,Z)ι, [Mo,
Proposition 3.2] gives the first component.

As π∗ and π∗ are dual maps, π∗a = b if for all c ∈ H2(X̃,Z) one has (b · c)X̃ = (a · π∗c)Y . In

particular, if a ∈ U(2)3 and c ∈ U3 we get (π∗a · c)X̃ = (a · π∗c)Y = 2(a · c)X̃ since we compute in

U(2)3, hence π∗a = 2a. Similarly, (π∗Ni ·Ej)X̃ = (Ni ·π∗Ej)Y = −2δij , so π∗Ni = 2Ei (this also follows

from the fact that the Ni are classes of the branch curves, so π∗Ni is twice the class of π−1(Ni) = Ei).
Finally for x ∈ E8(−1) and (y, 0) ∈ E8(−1)2 we have (π∗x · (y, 0))X̃ = (x · π∗(y, 0))Y = (x · y)Y and

also (π∗x · (0, y))X̃ = (x · y)Y , so π∗x = (x, x) ∈ E8(−1)2. �

1.9. Ex tending π∗. To determine the homomorphism π∗ : H2(Y,Z)→ H2(X̃,Z) on all of H2(Y,Z),
and not just on the sublattice of finite index U(2)3 ⊕ N ⊕ E8(−1) we need to study the embedding
U(2)3 ⊕N ↪→ U3 ⊕ E8(−1). This is done below. For any x ∈ U3 ⊕ E8(−1), one has 2x ∈ U(2)3 ⊕N
and π∗(2x) determined as in Proposition 1.8. As π∗ is a homomorphism and lattices are torsion free,
one finds π∗x as π∗x = (π∗(2x))/2.

1.10. Lemma. The sublattice of (U(2)3 ⊕ N) ⊗ Q generated by U(2)3 ⊕ N and the following six
elements, each divided by two, is isomorphic to U3 ⊕ E8(−1):

e1 + (N1 + N2 + N3 + N8), e2 + (N1 + N5 + N6 + N8), e3 + (N2 + N6 + N7 + N8),
f1 + (N1 + N2 + N4 + N8), f2 + (N1 + N5 + N7 + N8), f3 + (N3 + N4 + N5 + N8),

here ei, fi are the standard basis of the i-th copy of U(2) in U(2)3. Any embedding of U(2)3 ⊕N into
U3 ⊕E8(−1) such that the image of N is primitive in U3 ⊕ E8(−1) is isometric to this embedding.

Proof. The theory of embeddings of lattices can be found in [Ni2, section 1]. The dual lattice M∗ of
a lattice M = (M, b) is

M∗ = Hom(M,Z) = {x ∈M ⊗Q : b(x,m) ∈ Z ∀m ∈M}.

Note that M ↪→ M∗, intrinsically by m 7→ b(m,−) and concretely by m 7→ m ⊗ 1. If (M, bM ) and
(L, bL) are lattices such that M ↪→ L, that is bM (m,m′) = bL(m,m′) for m,m′ ∈M , then we have a
map L→M∗ by l 7→ bL(l,−). In case M has finite index in L, so M ⊗Q ∼= L⊗Q, we get inclusions:

M ↪→ L ↪→ L∗ ↪→M∗.

Therefore L is determined by the image of L/M in the finite group AM := M∗/M , the discriminant
group of M .

Since b = bM extends to a Z-valued bilinear form on L ⊂ M∗ we get q(l) := bL(l, l) ∈ Z for l ∈ L.
If L is an even lattice, the discriminant form

qM : AM −→ Q/2Z, m∗ 7−→ bL(m∗,m∗)

is identically zero on the subgroup L/M ⊂ AM . In this way one gets a bijection between even
overlattices of M and isotropic subgroups of AM . In our case M = K ⊕ N , with K = U(2)3, so
AM = AK ⊕ AN and an isotropic subgroup of AM is the direct sum of an isotropic subgroup of
AK and one isotropic subgroup of AN . We will see that (AK , qK) ∼= (AN ,−qN ), hence the even
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unimodular overlattices L of M , with N primitive in L, correspond to isomorphisms γ : AN → AK

with qN = −qK ◦ γ. Then one has that

L/M = {(γ(n̄), n̄) ∈ AM = AK ⊕AN : n̄ ∈ AN}.

The overlattice Lγ corresponding to γ is:

Lγ := {(u, n) ∈ K∗ ⊕N∗ : γ(n̄) = ū }.

We will show that the isomorphism γ is unique up to isometries of K and N .
Let e, f be the standard basis of U , so e2 = f2 = 0, ef = 1, then U(2) has the same basis with
e2 = f2 = 0, ef = 2. Thus U(2)∗ has basis e/2, f/2 with (e/2)2 = (f/2)2 = 0, (e/2)(f/2) = 2/4 = 1/2.
Thus AK = (U(2)∗/U(2))3 ∼= (Z/2Z)6, and the discriminant form qK on AK is given by

qK : AK = (Z/2Z)6 −→ Z/2Z, qK(x) = x1x2 + x3x4 + x5x6.

The Nikulin lattice N contains ⊕ZNi with N2
i = −2, hence N∗ ⊂ Z(Ni/2). As N =<

Ni, (
∑

Ni)/2 > we find that n∗ ∈ Z(Ni/2) is in N∗ iff n∗ · (
∑

Ni)/2 ∈ Z, that is, n∗ =
∑

xi(Ni/2)
with

∑

xi ≡ 0 mod 2. Thus we obtain an identification:

AN = N∗/N = {(x1, . . . , x8) ∈ (Z/2Z)8 :
∑

xi = 0}/ < (1, . . . , 1) >∼= (Z/2Z)6,

where (1, . . . , 1) is the image of (
∑

Ni)/2. Any element in AN has a unique representative which
is either 0, (Ni + Nj)/2, with i 6= j and ((Ni + Nj)/2)

2 = 1 mod 2Z, or (N1 + Ni + Nj + Nk)/2
(= (Nl + Nm + Nn + Nr)/2), with distinct indices and with {i, . . . , r} = {2, . . . , 8} and ((N1 + Ni +
Nj +Nk)/2)

2 = 0 mod 2. The quadratic spaces, over the field Z/2Z, ((Z/2Z)6, qK) and ((Z/2Z)6, qN )
are isomorphic, an explicit isomorphism is defined by

γ : AN −→ AK , γ((N1 + N2 + N3 + N8)/2) = e1/2,

etc. where we use the six elements listed in the lemma.
The orthogonal group of the quadratic space ((Z/2Z)6, qN ) obviously contains S8, induced by

permutations of the basis vectors in (Z/2Z)8, and these groups are actually equal cf. [C o]. Thus any
two isomorphisms AN → AK preserving the quadratic forms diff er by an isometry of AN which is
induced by a permutation of the nodal classes N1, . . . , N8. A permutation of the 8 nodal curves Ni in
N obviously extends to an isometry of N .

This shows that such an even unimodular overlattice of U(2)3 ⊕N is essentially unique. As these
are classified by their rank and signature, the only possible one is U3⊕E8(−1). Using the isomorphism
γ, one obtains the lattice Lγ , which is described in the lemma. �

1.11. The lattices N ⊕ N and Γ16. Using the methods of the proof of Lemma 1.10 we show that
any even unimodular overlattice L of N ⊕ N such that N ⊕ {0} is primitive in L, is isomorphic to
the Barnes-Wall lattice Γ16(−1) (cf. [Se, C hapter V , 1.4.3] ). The lattice Γ16(−1) is the unique even
unimodular negative definite lattice which is not generated by its roots, i.e. by vectors v with v2 = −2.

The discriminant form qN of the lattice N has values in Z/2Z, hence qN = −qN . Therefore
isomorphisms γ : N → N correspond to the even unimodular overlattices Lγ of N ⊕N with N ⊕ {0}
primitive in Lγ . Since N ⊕N is negative definite, so is Lγ . The uniqueness of the overlattice follows,
as before, from the fact O(qN ) ∼= S8. To see that this overlattice is Γ16(−1), recall that

Γ16 = {x = (x1, . . . , x16) ∈ Q16 : 2xi ∈ Z, xi − xj ∈ Z,
∑

xi ∈ 2Z },

and the bilinear form on Γ16 is given by
∑

xiyi. Let ei be the standard basis vectors of Q16. As

N ⊕N ↪→ Γ16(−1), (Ni, 0) 7−→ ei + ei+ 8, (0, Ni) 7−→ ei − ei+ 8,
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is a primitive embedding N ⊕N into Γ16(−1) (note (N̂ , 0) 7→ (
∑

ei)/2 ∈ Γ16, (0, N̂ ) 7→ ((
∑8

i=1 ei)−

(
∑16

i=9 ei))/2 ∈ Γ16) the claim follows.

2. Eleven dimensional families of K3 surfaces with a Nikulin involution

2.1. Néron Severi groups. As X is a K3 surface it has H1,0(X) = 0 and

P ic(X) = NS(X) = H1,1(X) ∩H2(X,Z) = {x ∈ H2(X,Z) : x · ω = 0 ∀ω ∈ H2,0(X) }.

For x ∈ (H2(X,Z)ι)⊥ we have ι∗x = −x. As ι∗ω = ω for ω ∈ H2,0(X) we get:

ω · x = ι∗ω · ι∗x = −ω · x hence (H2(X,Z)ι)⊥ ⊂ NS(X).

As we assume X to be algebraic, there is a very ample line bundle M on X, so M ∈ NS(X) and
M2 > 0. Therefore the Néron Severi group of X contains E8(−2) ∼= (H2(X,Z)ι)⊥ as a primitive
sublattice and has rank at least 9.

The following proposition gives all even, rank 9, lattices of signature (1+, 8−) which contain E8(−2)
as a primitive sublattice. We will show in Proposition 2.3 that any of these lattices is the Néron Severi
group of a K3 surface with a Nikulin involution. Moreover, the moduli space of K3 surfaces, which
contain such a lattice in the Néron Severi group, is an 11-dimensional complex variety.

2.2. Proposition. Let X be a K3 surface with a Nikulin involution ι and assume that the Néron
Severi group of X has rank 9. Let L be a generator of E8(−2)⊥ ⊂ NS(X) with L2 = 2d > 0 and let

Λ = Λ2d := ZL⊕ E8(−2) (⊂ NS(X)).

Then we may assume that L is ample and:

(1) in case L2 ≡ 2 mod 4 we have Λ = NS(X);

(2) in case L2 ≡ 0 mod 4 we have that either NS(X) = Λ or NS(X) ∼= Λ̃ where Λ̃ = Λf2d
is

the unique even lattice containing Λ with Λ̃/Λ ∼= Z/2Z and such that E8(−2) is a primitive

sublattice of Λ̃.

Proof. As L2 > 0, either L or −L is effective, so may assume that L is effective. As there are no
(−2)-curves in L⊥ = E8(−2), any (−2)-curve N has class aL + e with a ∈ Z>0 and e ∈ E8(−2). Thus
NL = aL2 > 0 and therefore L is ample.

From the definition of L and the description of the action of ι on H2(X,Z) it follows that ZL
and E8(−2) respectively are primitive sublattices of NS(X). The discriminant group of < L > is
AL :=< L >∗ / < L >∼= Z/2dZ with generator (1/2d)L where L2 = 2d and thus qL((1/2d)L) = 1/2d.
The discriminant group of E8(−2) is AE

∼= (1/2)E8(−2)/E8(−2) ∼= (Z/2Z)8, as the quadratic form
on E8(−2) takes values in 4Z, the discriminant form qE takes values in Z/2Z.

The even lattices Λ̃ which have Λ as sublattice of finite index correspond to isotropic subgroups
H of AL ⊕ AE where AL :=< L >∗ / < L >∼= Z/2dZ. If E8(−2) is a primitive sublattice of Λ̃, H
must have trivial intersection with both AL and AE . Since AE is two-torsion, it follows that H is
generated by ((1/2)L, v/2) for some v ∈ E8(−2). As ((1/2)L)2 = d/2 mod 2Z and (v/2)2 ∈ Z/2Z,
for H to be isotropic, d must be even. Moreover, if d = 4m + 2 we must have v2 = 8k + 4 for
some k and if d = 4m we must have v2 = 8k. Conversely, such a v ∈ E8(−2) defines an isotropic

subgroup < (L/2, v/2) >⊂ AL ⊕ AE which corresponds to an overlattice Λ̃. The group O(E8(−2))
contains W (E8) (cf. [Co]) which maps onto O(qE). As O(qE) has three orbits on AE, they are {0},
{v/2 : (v/2)2 ≡ 0 (2)} and {v/2 : (v/2)2 ≡ 1 (2)}, the overlattice is unique up to isometry. �
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2.3. Proposition. Let Γ = Λ2d, d ∈ Z>0 or Γ = Λf2d
, d ∈ 2Z>0. Then there exists a K3 surface X

with a Nikulin involution ι such that NS(X) ∼= Γ and (H2(X,Z)ι)⊥ ∼= E8(−2).
The coarse moduli space of Γ-polarized K3 surfaces has dimension 11 and will be denoted byM2d

if Γ = Λ2d and byMf2d
if Γ = Λf2d

.

Proof. We show that there exists a K3 surface X with a Nikulin involution ι such that NS(X) ∼= Λf2d

and under this isomorphism (H2(X,Z)ι)⊥ ∼= E8(−2). The case NS(X) ∼= Λ2d is similar but easier
and is left to the reader.

The primitive embedding of Λf2d
in the unimodular lattice U3 ⊕ E8(−1)2 is unique up to isometry

by [Ni2, Theorem 1.14.1], and we will identify Λf2d
with a primitive sublattice of U3 ⊕ E8(−1)2 from

now on. We choose an ω ∈ Λ⊥

f2d
⊗Z C with ω2 = 0, ωω̄ > 0 and general with these properties, hence

ω⊥ ∩ (U3⊕E8(−1)2) = Λf2d
. By the ‘surjectivity of the period map’, there exists a K3 surface X with

an isomorphism H2(X,Z) ∼= U3 ⊕ E8(−1)2 such that NS(X) ∼= Λf2d
.

The involution of Λ = ZL ⊕ E8(−2) which is trivial on L and −1 on E8(−2), extends to an
involution of Λf2d

= Λ + Z(L/2, v/2). The involution is trivial on the discriminant group of Λf2d
which

is isomorphic to (Z/2Z)6. Therefore it extends to an involution ι0 of U3⊕E8(−1)2 which is trivial on
Λ⊥

f2d
. As ((U3 ⊕E8(−1)2)ι0)⊥ = E8(−2) is negative definite, contains no (−2)-classes and is contained

in NS(X), results of Nikulin ([Ni1, Theorems 4.3, 4.7, 4.15]) show that X has a Nikulin involution
ι such that ι∗ = ι0 up to conjugation by an element of the Weyl group of X. Since we assume L to
be ample and the ample cone is a fundamental domain for the Weyl group action, we do get ι∗ = ι0,
hence (H2(X,Z)ι)⊥ ∼= E8(−2).

For the precise definition of Γ-polarized K3 surfaces we refer to [Do]. We just observe that each
point of the moduli space corresponds to a K3 surface X with a primitive embedding Γ ↪→ NS(X).
The moduli space is a quotient of the 11-dimensional domain

DΓ = {ω ∈ P(Γ⊥ ⊗Z C) : ω2 = 0, ωω̄ > 0 }

by an arithmetic subgroup of O(Γ). �

2.4. Note on the H odge conjecture. For a smooth projective surface S with torsion free H2(S,Z),
let TS := NS(S)⊥ ⊂ H2(S,Z) and let TS,Q = TS ⊗Z Q. Then TS, the transcendental lattice of S, is
an (integral, polarized) weight two Hodge structure.

The results in section 1 show that π∗ ◦ β∗ induces an isomorphism of rational Hodge structures:

φι : TX,Q

∼=
−→ TY,Q,

in fact, both are isomorphic to TX̃,Q. Any homomorphism of rational Hodge structures φ : TX,Q →

TY,Q defines, using projection and inclusion, a map of Hodge structures H2(X,Q)→ TX,Q → TY,Q ↪→
H2(Y,Q) and thus it gives a Hodge (2,2)-class

φ ∈ H2(X,Q)∗ ⊗H2(Y,Q) ∼= H2(X,Q)⊗H2(Y,Q) ↪→ H4(X × Y,Q),

where we use Poincaré duality and the Künneth formula. O bviously, the isomorphism φι : TX,Q →

TY,Q corresponds to the class of the codimension two cycle which is the image of X̃ in X × Y under
(β, π).

Mukai showed that any homomorphism between TS,Q and TZ ,Q where S and Z are K3 surfaces which
is moreover an isometry (w.r.t. the quadratic forms induced by the intersection forms) is induced by
an algebraic cycle if dim TS,Q ≤ 11 ([Mu, Corollary 1.10]). Nikulin, [Ni3, Theorem 3], strengthened
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this result and showed that it suffices that NS(X) c o n ta in s a c la ss e w ith e2 = 0 . In p a rtic u la r, th is
im p lies th a t a n y H o d g e iso m e try TS,Q → TZ ,Q is in d u c e d b y a n a lg e b ra ic c y c le if d im TS,Q ≤ 1 8 (c f.
[N i3 , p ro o f o f T h e o re m 3 ]).

T h e H o d g e c o n je c tu re p re d ic ts th a t a n y h o m o m o rp h ism o f H o d g e stru c tu res b e tw e e n TS,Q a n d TZ ,Q

is in d u c e d b y a n a lg e b ra ic c y c le , without re q u irin g th a t it is a n iso m e try . T h e re a re fe w resu lts in th is
d ire c tio n , it is th e re fo re m a y b e w o rth n o tic in g th a t φι is n o t a n iso m e try if TX h a s o d d ra n k , se e th e
p ro p o sitio n b e lo w . In [G L ] a sim ila r resu lt o f D . M o rriso n in a m o re sp e c ia l c a se is u se d to o b ta in n e w
resu lts o n th e H o d g e c o n je c tu re . In P ro p o sitio n 4.2 w e sh o w th a t th e re e x ists a K 3 su rfa c e X w ith
N ik u lin in v o lu tio n w h e re TX,Q h a s e v e n ra n k a n d TX,Q is iso m e tric to TY,Q.

2 .5 . Proposition. L e t φι : TX,Q

∼=
−→ TY,Q b e th e iso m o rp h ism o f H o d g e stru c tu res in d u c e d b y th e

N ik u lin in v o lu tio n ι o n X a n d a ssu m e th a t d im TX,Q is a n o d d in te g e r. T h e n φι is n o t a n iso m e try .

Proof. L e t Q : Qn → Q b e a q u a d ra tic fo rm , th e n Q is d e fi n e d b y a n n×n sy m m e tric m a trix , w h ich
w e a lso d e n o te b y Q: Q(x) := txQx. A n iso m o rp h ism A : Qn → Qn g iv es a n iso m e try b e tw e e n (Qn, Q)
a n d (Qn, Q′) iff Q′ = tA−1QA−1). In p a rtic u la r, if (Qn, Q) ∼= (Qn, Q′) th e q u o tie n t d e t(Q)/ d e t(Q′)
m u st b e a sq u a re in Q∗.

F o r a Z-m o d u le M w e le t MQ := M ⊗Z Q. L e t VX b e th e o rth o g o n a l c o m p le m e n t o f E8(−2 )Q ⊂
NS(X)Q, th e n d e t(NS(X)Q) = 2 8 d e t(VX) u p to sq u a res. L e t VY b e th e o rth o g o n a l c o m p le m e n t o f
NQ ⊂ NS(Y )Q th e n d e t(NS(Y )Q) = 2 6 d e t(VY ) u p to sq u a res. N o w β∗π

∗ : H2(Y,Q) → H2(X,Q)
in d u c es a n iso m o rp h ism VX → VY w h ich sa tisfi es (β∗π

∗x)(β∗π
∗y) = 2xy fo r x, y ∈ VY , h e n c e

d e t(VX) = 2 d d e t(VY ) w h e re d = d im VX = 2 2 − 8 − d im TX,Q, so d is o d d b y a ssu m p tio n .

F o r a K 3 su rfa c e S, d e t(TS,Q) = − d e t(NS(S)Q) a n d th u s d e t(TX,Q)/ d e t(TY,Q) = 2 d+ 2 u p to
sq u a res. A s d is o d d a n d 2 is n o t a sq u a re in th e m u ltip lic a tiv e g ro u p o f Q, it fo llo w s th a t th e re e x ists
n o iso m e try b e tw e e n TX,Q a n d TY,Q. �

2 .6 . T h e b u nd le L. In c a se NS(X) h a s ra n k 9 , th e a m p le g e n e ra to r L o f E8(−2 )⊥ ⊂ NS(X) d e fi n es
a n a tu ra l m a p

φL : X −→ Pg, g = h0(L) − 1 = L2/2 + 1

w h ich w e w ill u se to stu d y X a n d Y . A s ι∗L ∼= L, th e in v o lu tio n ι a c ts a s a n in v o lu tio n o n Pg = |L|∗

a n d th u s it h a s tw o fi x e d sp a c es Pa,Pb w ith (a+ 1 )+ (b+ 1 ) = g + 1 . T h e fi x e d p o in ts o f ι m a p to th ese

fi x e d sp a c es. E v e n th o u g h L is ι-in v a ria n t, it is n o t th e c a se in g e n e ra l th a t o n X̃ w e h a v e β∗L = π∗M
fo r so m e lin e b u n d le M ∈ NS(Y ). In fa c t, β∗L = π∗M im p lies L2 = (β∗L)2 = (π∗M)2 = 2M2 a n d
a s M2 is e v e n w e g e t L2 ∈ 4Z. T h u s if L2 6∈ 4Z, th e ι-in v a ria n t lin e b u n d le L c a n n o t b e o b ta in e d
b y p u ll-b a ck fro m Y . O n th e o th e r h a n d , if fo r e x a m p le |L| c o n ta in s a re d u c e d ι-in v a ria n t d iv iso r D

w h ich d o es n o t p a ss th ro u g h th e fi x e d p o in ts, th e n β∗D = β−1D is in v a ria n t u n d e r ι̃ o n X̃ a n d d o es
n o t c o n ta in a n y o f th e Ei a s a c o m p o n e n t. T h e n β∗D = π∗D′ w h e re D′ ⊂ Y is th e re d u c e d d iv iso r
w ith su p p o rt π(β−1D).

T h e fo llo w in g le m m a c o lle c ts th e b a sic fa c ts o n L a n d th e sp littin g o f Pg = PH0(X,L)∗.

2 .7 . Proposition.

(1 ) A ssu m e th a t NS(X) = ZL ⊕ E8(−2 ). L e t E1, . . . , E8 b e th e e x c e p tio n a l d iv iso rs o n X̃.
In c a se L2 = 4n + 2 , th e re e x ist lin e b u n d les M1,M2 ∈ NS(Y ) su ch th a t fo r a su ita b le

n u m b e rin g o f th ese Ei w e h a v e :

β∗L − E1 − E2 = π∗M1, β∗L − E3 − . . . − E8 = π∗M2.
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The decomposition of H0(X,L) into ι∗-eigenspaces is:

H0(X,L) ∼= π∗H0(Y,M1) ⊕ π∗H0(Y,M2), (h0(M1) = n + 2, h0(M2) = n + 1).

and the eigenspaces Pn+1,Pn contain six, respectively two, fixed points.
In case L2 = 4n, for a suitable numbering of the Ei we have:

β∗L − E1 − E2 − E3 − E4 = π∗M1, β∗L − E5 − E6 − E7 − E8 = π∗M2

with M1,M2 ∈ NS(Y ). The decomposition of H0(X,L) into ι∗-eigenspaces is:

H0(X,L) ∼= π∗H0(Y,M1) ⊕ π∗H0(Y,M2), (h0(M1) = h0(M2) = n + 1).

and each of the eigenspaces Pn contains four fixed points.
(2) Assume that ZL⊕E8(−2) has index two in NS(X). Then there is a line bundle M ∈ NS(Y )

such that:

β∗L ∼= π∗M, H0(X,L) ∼= H0(Y,M) ⊕ H0(Y,M − N̂),

where N̂ = (
∑8

i=1 Ni)/2 ∈ NS(Y ) and this is the decomposition of H0(X,L) into ι∗-

eigenspaces. One has h0(M) = n + 2, h0(M − N̂) = n, and all fixed points map to the
eigenspace Pn+1 ⊂ P2n+1 = Pg.

Proof. The primitive embedding of ZL ⊕ E8(−2) in the unimodular lattice U3 ⊕ E8(−1)2 is unique
up to isometry by [Ni2, Theorem 1.14.1]. Therefore if L2 = 2r we may assume that L = e1 + rf1 ∈
U ⊂ U3 ⊕ E8(−1)3 where e1, f1 are the standard basis of the first copy of U .

In case r = 2n + 1, it follows from Lemma 1.10 that (e1 + (2n + 1)f1 + N3 + N4)/2 ∈ NS(Y ). B y
Proposition 1.8, M1 := (e1+(2n+1)f1+N3+N4)/2−N3−N4 satisfies π∗M1 = β∗L−E3−E4. S imilarly,

let M2 = (e1 + (2n + 1)f1 + N3 + N4)/2− N̂ ∈ NS(Y ), then π∗M2 = β∗L− (E1 + E2 + E5 + . . .+ E8).
Any two sections s , t ∈ H0(X,L) lie in the same ι∗-eigenspace iff the rational function f = s /t

is ι-invariant. Thus s , t ∈ π∗H0(Y,Mi) are ι∗-invariant, hence each of these two spaces is contained
in an eigenspace of ι∗ in H0(X,L). If both are in the same eigenspace, then this eigenspace would
have a section with no zeroes in the 8 fixed points of ι. B ut a ι-invariant divisor on X which doesn’t
pass through any fixed point is the pull back of divisor on Y , which contradicts that L2 is not a
multiple of 4. Thus the π∗H0(Y,Mi) are in distinct eigenspaces. A dimension count shows that
h0(L) = h0(M1) + h0(M2), hence the π∗H0(Y,Mi) are the eigenspaces.

In case r = 2n, again by Lemma 1.10 we have (e1 + N1 + N2 + N3 + N8)/2 ∈ NS(Y ). Let
M1 := nf1+(e1+N1+N2+N3+N8)/2−(N1 +N2+N3+N8) then π∗M1 = β∗L−(E1+E2+E3+E8).

Put M2 = M1 + N̂ − (N4 + N5 + N6 + N7), then π∗M2 = β∗L − (E4 + E5 + E6 + E7). As above, the
π∗H0(Y,Mi), i = 1, 2, are contained in distinct eigenspaces and a dimension count again shows that
h0(L) = h0(M1) + h0(M2).

If ZL ⊕ E8(−2) has index two in NS(X), the (primitive) embedding of NS(X) into U3 ⊕ E8(−1)
is still unique up to isometry. Let L2 = 4n. C hoose an α ∈ E8(−1) with α2 = −2 if n is odd,
and α2 = −4 if n is even. Let v = (0, α,−α) ∈ E8(−2) ⊂ U3 ⊕ E8(−1)2 and let L = (2u, α, α) ∈
U3 ⊕E8(−1)2 where u = e1 + (n + 1)/2f1 if n is odd and u = e1 + (n/2 + 1)f1 if n is even. Note that
L2 = 4u2+2α2 = 4n and that (L+v)/2 = (u, α, 0) ∈ U3⊕E8(−1)2. Thus we get a primitive embedding
of NS(X) ↪→ U3 ⊕ E8(−1)2 which extends the standard one of E8(−2) ⊂ NS(X). Proposition 1.8
shows that β∗L = π∗M with M = (u, 0, α) ∈ U3(2) ⊕ N ⊕ E8(−1) ⊂ H2(Y,Z). For the double cover

π : X̃ → Y branched along 2N̂ =
∑

Ni we have as usual: π∗OX̃ = OY ⊕ OY (−N̂) hence, using the
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projection formula:

H0(X̃, π∗M) ∼= H0(Y, π∗(π
∗M ⊗OX̃) ∼= H0(Y,M) ⊕ H0(Y,M − N̂).

Note that the sections in π∗H0(Y,M−N̂) vanish on all the exceptional divisors, hence the fixed points
of ι map to a Pn+1. �

3. Examples

3 .1 . In Proposition 2.3 we showed that K3 surfaces with a Nikulin involution are parametrized by
eleven dimensional moduli spaces M2d and M e4e

with d, e ∈ Z>0. For some values of d, e we will now
work out the geometry of the corresponding K3 surfaces. W e will also indicate how to verify that the
moduli spaces are indeed eleven dimensional.

3 .2 . The ca se M2. Let X be a K3 surface with Nikulin involution ι and NS(X) ∼= ZL ⊕ E8(−2)
with L2 = 2 and ι∗L ∼= L (cf. Proposition 2.3). The map φL : X → P2 is a double cover of P2

branched over a sextic curve C, which is smooth since there are no (−2)-curves in L⊥. The covering
involution will be denoted by i : X → X. The fixed point locus of i is isomorphic to C.

As i∗ is +1 on ZL, −1 on E8(−2) and −1 on TX , whereas ι∗ is +1 on ZL, −1 on E8(−2) and +1
on TX , these two involutions commute. Thus ι induces an involution ῑP2 on P2 (which is ι∗ acting on
PH0(X,L)∗) and in suitable coordinates:

ῑP2 : (x0 : x1 : x2) 7−→ (−x0 : x1 : x2).

W e have a commutative diagram

C ↪→ X
ι

−→ X
∼=↓ ↓ φ ↓ φ

C ↪→ P2
ῑ
P2

−→ P2 = X/i.

The fixed points of ῑP2 are:

(P2)ῑP2 = l0 ∪ { p}, l0 : x0 = 0, p = (1 : 0 : 0).

The line l0 intersects the curve C in six points, which are the images of six fixed points x3, . . . , x8 of
ι on X. Thus the involution ι induces an involution on C ⊂ X with six fixed points. The other two
fixed points x1, x2 of ι map to the point p, so i permutes these two fixed points of ι. In particular,
these two points are not contained in C so p 6∈ C (⊂ P2), which will be important in the moduli count
below. The inverse image C2 = φ−1(l0) is a genus two curve in the system |L|. Both ι and i induce
the hyperelliptic involution on C2. By doing then the quotient by ι, since this has six fixed points on
C2 we obtain a rational curve C0.

To describe the eight nodal surface Ȳ = X/ι, we use the involution īȲ of Ȳ which is induced by
i ∈ Aut(X). Then we have:

Q := Ȳ /̄iȲ
∼= X/ < ι, i > ∼= P2/ῑP2 .
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This leads to the following diagrams of double covers and fixed point sets:

X

~~||
||

||
||

�� ��
??

??
??

??

P2

  
AA

AA
AA

AA
Ȳ

��

S

����
��

��
��

Q

{x1, x2} ∪ C ∪ C2

vvlllllllllllll

�� ))SSSSSSSSSSSSSS

{p} ∪ C ∪ l0

))RRRRRRRRRRRRR
{y1, y2} ∪ C4 ∪ C0

��

{p9} ∪ C4 ∪ D0

uukkkkkkkkkkkkkk

{q} ∪ C4 ∪ H0

The quotient of P2 = X/i by ῑP2 is isomorphic to a quadric cone Q in P3 whose vertex q is the
image of the fixed point (1 : 0 : 0). In coordinates, the quotient map is:

P2 −→ Q = P2/ῑP2 ⊂ P3, (x0 : x1 : x2) 7−→ (y0 : . . . : y3) = (x2
0 : x2

1 : x1x2 : x2
2)

and Q is defined by y1y3 − y2
2 = 0.

The sextic curve C ⊂ P2, which has genus 10, is mapped 2:1 to a curve C4 on the cone. The double
cover C → C4 ramifies in the six points where C intersects the line x0 = 0. Thus the curve C4 is
smooth, has genus four and degree six (the plane sections of C4 are the images of certain conic sections
of the branch sextic) and does not lie in a plane (so C4 spans P3). The only divisor class D of degree
2g − 2 with h0(D) ≥ g on a smooth curve of genus g is the canonical class, hence C4 is a canonically
embedded curve. The image of the line l0 is the plane section H0 ⊂ Q defined by y0 = 0.

The branch locus in Q of the double cover

Ȳ −→ Q = Ȳ /̄iȲ

is the union of two curves, C4 and the plane section H0, these curves intersect in six points, and the
vertex q of Q.

To complete the diagram, we consider the involution

j := ι ◦ i : X −→ X, S := X/j.

The fixed point set of j is the (smooth) genus two curve C2 lying over the line l0 in P2 (use j(p) = p
iff ι(p) = i(p) and consider the image of p in P2). Thus the quotient surface S is a smooth surface.
The R iemann-Hurwitz formula implies that the image of C2 in S is a curve D0 ∈ | − 2KS |, note that
D0

∼= C2.
The double cover S → Q branches over the curve C4 ⊂ Q and the vertex q ∈ Q. It is well-known

that such a double cover is a Del Pezzo surface of degree 1 ([Dem], [DoO]) and the map S → Q ⊂ P3

is given by φ−2K , which verifies that the image of D0 is a plane section.
On the other hand, any Del Pezzo surface of degree 1 is isomorphic to the blow up of P2 in eight

points. The linear system | − KS | corresponds to the pencil of elliptic curves on the eight points, the
ninth base point in P2 corresponds to the unique base point p9 of | − KS | in S. The point p9 maps
to the vertex q ∈ Q under the 2:1 map φ−2K ([DoO, p. 125]). The Néron Severi group of S is thus
isomorphic to

NS(S) ∼= Ze0 ⊕ Ze1 ⊕ . . . ⊕ Ze8, e2
0 = 1, e2

i = −1 (1 ≤ i ≤ 8)

and eiej = 0 if i 6= j. The canonical class is KS = −3e0 + e1 + . . . + e8. Since K2
S = 1, we get a direct

sum decomposition:

NS(S) ∼= ZKS ⊕ K⊥

S
∼= ZKS ⊕ E8(−1)
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(cf. [DoO, VII.5]). The surface S has 240 exceptional curves (smooth rational curves E with E2 = −1),
cf. [DoO, p.125]. The adjunction formula shows that EKS = −1 and the map E 7→ E + K gives a
bijection between these exceptional curves and the roots of E8(−1), i.e. the x ∈ E8(−1) with x2 = −2.
An exceptional divisor E ⊂ S meets the branch curve D0 (∈ | − 2KS |) of X → S in two points, hence
the inverse image of E in X is a (−2)-curve. Thus we get 240 such (−2)-curves. Actually,

j∗ : NS(S) = ZKS ⊕ E8(−1) −→ NS(X) = ZL ⊕ E8(−2)

is the identity on the Z-modules and NS(X) ∼= NS(S)(2). The class of such a (−2)-curve is L + x,
with x ∈ L⊥ = E8(−2), x2 = −2. As i∗(L + x) = L − x 6= L + x, these (−2)-curves map pairwise
to conics in P2, which must thus be tangent to the sextic C. As also ι(L + x) = L − x, these conics
are invariant under ῑP2 and thus they correspond to plane sections of Q ⊂ P3, tangent to C4, that is
tritangent planes. This last incarnation of exceptional curves in S as tritangent planes (or equivalently,
odd theta characteristics of C4) is of course very classical.

Finally we compute the moduli. A ῑP2 -invariant plane sextic which does not pass through p = (1 :
0 : 0) has equation ∑

aijkx
2i
0 xj

1x
k
2 (2i + j + k = 6, a000 6= 0).

The vector space spanned by such polynomials is 16-dimensional. The subgroup of G L(3) of elements
commuting with ῑP2 (which thus preserve the eigenspaces) is isomorphic to C∗ × G L(2), hence the
number of moduli is 16 − (1 + 4) = 11 as expected.

Alternatively, the genus four curves whose canonical image lies on a cone have 9 − 1 = 8 moduli
(they have one vanishing even theta characteristic), next one has to specify a plane in P3, this gives
again 8 + 3 = 11 moduli.

3.3. The case M6. The map φL identifies X with a complete intersection of a cubic and a quadric
in P4. According to Proposition 2.7, in suitable coordinates the Nikulin involution is induced by

ιP4 : P4 −→ P4, (x0 : x1 : x2 : x3 : x4) 7−→ (−x0 : −x1 : x2 : x3 : x4).

The fixed locus in P4 is:

(P4)ιP4 = l ∪ H, l : x2 = x3 = x4 = 0, H : x0 = x1 = 0.

The points X ∩ l and X ∩ H are fixed points of ι on X and Proposition 2.7 shows that ](X ∩ l) = 2,
](X ∩ H) = 6. In particular, the plane H meets the quadric and cubic defining X in a conic and a
cubic curve which intersect transversely. Moreover, the quadric is unique, so must be invariant under
ιP4 , and, by considering the action of ιP4 on the cubics in the ideal of X, we may assume that the
cubic is invariant as well.

l00(x2, x3, x4)x
2
0 + l11(x2, x3, x4)x

2
1 + l01(x2, x3, x4)x0x1 + f3(x2, x3, x4) = 0

α00x
2
0 + α11x

2
1 + α01x0x1 + f2(x2, x3, x4) = 0

where the αij are constants, the lij are linear forms, and f2, f3 are homogeneous polynomials of degree
two and three respectively. Note that the cubic contains the line l : x2 = x3 = x4 = 0.

The projection from P4 to the product of the eigenspaces P1×P2 maps X to a surface defined by an
equation of bidegree (2, 3). In fact, the equations imply that (

∑
lijxixj)/f3 = (

∑
αijxixj)/f2 hence

the image of X is defined by the polynomial: (
∑

lijxixj)f2 − (
∑

αijxixj)f3. Adjunction shows that
a smooth surface of bidegree (2,3) is a K3 surface, so the equation defines Ȳ . The space of invariant
quadrics is 3 + 6 = 9 dimensional and the space of cubics is 3 · 3 + 10 = 19 dimensional. Multiplying
the quadric by a linear form a2x2 + a3x3 + a4x4 gives an invariant cubic. The automorphisms of P4
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commuting with ι form a subgroup which is isomorphic with GL(2) × GL(3) which has dimension
4 + 9 = 13. So the moduli space of such K3 surfaces has dimension:

(9 − 1) + (19 − 1) − 3 − (13 − 1) = 11

as expected.

3.4. The case M4. The map φL : X → P3 is an embedding whose image is a smooth quartic surface.
From Proposition 2.7 the Nikulin involution ι on X ⊂ P3 ∼= P(C4) is induced by

ι̃ : C4 −→ C4, (x0, x1, x2, x3) 7−→ (−x0,−x1, x2, x3)

for suitable coordinates. The eight fixed points of the involution are the points of intersection of these
lines x0 = x1 = 0 and x2 = x3 = 0 with the quartic surface X.

A quartic surface which is invariant under ι̃ and which does not contain the lines has an equation
which is a sum of monomials xa

0x
b
1x

c
2x

d
3 with a + b = 0, 2, 4 and c + d = 4 − a − b.

The quadratic polynomials invariant under ι̃ define a map:

P3 −→ P5, (x0 : . . . : x3) 7−→ (z0 : z1 : . . . : z5) = (x2
0 : x2

1 : x2
2 : x2

3 : x0x1 : x2x3)

which factors over P3/ι̃. Note that any quartic invariant monomial is a monomial of degree two in
the zi. Thus if f = 0 is the equation of X, then f(x0, . . . , x3) = q(z0, . . . , z5) for a quadratic form q.
This implies that

Ȳ : q(z0, . . . , z5) = 0, z0z1 − z2
4 = 0, z2z3 − z2

5 = 0

is the intersection of three quadrics.
The invariant quartics span a 5 + 9 + 5 = 19-dimensional vector space. On this space the subgroup

H of GL(4) of elements which commute with ιP3 acts, it is easy to see that H ∼= GL(2) × GL(2) (in
block form). Thus dimH = 8 and we get an 19− 8 = 11 dimensional family of quartic surfaces in P3,
as desired. See [I] for some interesting sub-families.

3.5 . The case Me4
. In this case ZL ⊕ E8(−2) has index two in NS(X). Choose a v ∈ E8(−2) with

v2 = −4. Then we may assume that NS(X) is generated by L,E8(−2) and E1 := (L + v)/2, cf. (the
proof of) Proposition 2.2. Let E2 := (L−v)/2, then E2

i = L2/4+v2/4 = 1−1 = 0. By Riemann-Roch
we have:

χ(±Ei) = E2
i /2 + 2 = 2

and so h0(±Ei) ≥ 2 so Ei or −Ei is effective. Now L · Ei = L2/2 + v/2 · L = 2, hence Ei is effective.
As pa(Ei) = 1 and EiN ≥ 0 for all (−2)-curves N , each Ei is the class of an elliptic fibration. As
L = E1 + E2, by [SD, Theorem 5.2] the map φL is a 2:1 map to a quadric Q in P3 and it is ramified
on a curve B of bi-degree (4, 4). The quadric is smooth, hence isomorphic to P1 × P1, because there
are no (−2)-curves in NS(X) perpendicular to L.

Let i : X → X be the covering involution of X → Q. Then i and the Nikulin-involution ι commute.
The elliptic pencils E1 and E2 are permuted by ι because ι∗L = L, ι∗v = −v. This means that the
involution ῑQ on Q = P1 ×P1 induced by ι acts as ((s : t), (u : v)) 7→ ((u : v), (s : t)). The quotient of
Q/ῑQ is well known to be isomorphic to P2.

The fixed point set of ῑQ in P1×P1 is the diagonal ∆ . Thus ∆ intersects the branch curve B in eight
points. The inverse image of these points in X are the eight fixed points of the Nikulin involution.

The diagonal maps to a conic C0 in P2 = Q/ῑQ, which gives the representation of a smooth quadric
as double cover of P2 branched along a conic (in equations: t2 = q(x, y, z)). The curve B maps to a
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plane curve isomorphic to B̄ = B/ι. As ι has 8 fixed points on the genus 9 curve B, the genus of B̄
is 3 and B̄ ⊂ P2 is a quartic curve.

Let j = iι = ιi ∈ Aut(X). The fixed point set of j is easily seen to be the inverse image C3 of the
diagonal ∆ ⊂ Q. As C3 → ∆ branches over the 8 points in B ∩ ∆, C3 is a smooth (hyperelliptic)
genus three curve. Thus the surface S := X/j is smooth and the image of C3 in S lies in the linear
system | − 2KS |. The double cover S → P2 is branched over the plane quartic B̄ ⊂ P2. This implies
that S is a Del Pezzo surface of degree 2, cf. [Dem], [DoO].

This leads to the following diagrams of double covers and fixed point sets:

X

xxrrrrrrrrrrr

�� ��
@@

@@
@@

@@

Q ∼= P1 × P1

&&LLLLLLLLLLL
Ȳ

��

S

����
��

��
��

P2

B ∪ C3

yytttttttttt

�� %%KKKKKKKKK

B ∪ ∆

$$
JJJJJJ

JJJJ B̄ ∪ C0

��

B̄ ∪ C3

yyttttttttt

B̄ ∪ C0

In particular the eight nodal surface Ȳ is the double cover of P2 branched over the reducible sextic
with components the conic C0 and the quartic B̄. The nodes of Ȳ map to the intersection points of
C0 and B̄.

To count the moduli we note that the homogeneous polynomials of degree two and four in three
variables span vector spaces of dimension 6 and 15, as dimGL(3) = 9 we get: (6−1)+(15−1)−(9−1) =
11 moduli.

3.6 . The case M8. We have H0(X,L) ∼= π∗H0(Y,M1) ⊕ π∗H0(Y,M2) and L2 = 8, M2
i = 2 so

h0(L) = 6, h0(Mi) = 3 for i = 1, 2. The image of X under φL is the intersection of three quadrics in
P5 and ι is induced by

ι̃ : C6 −→ C6, (x0, x1, x2, y0, y1, y2) 7−→ (x0, x1, x2,−y0,−y1,−y2).

The multiplication map maps the 21-dimensional space S2H0(X,L) onto the 18-dimensional space
H0(X, 2L). U sing ι we can get some more information on the kernel of this map, which are the
quadrics defining X ⊂ P5. We have:

S2H0(X,L) ∼=
(

S2H0(Y,M1) ⊕ S2H0(Y,M2)
)

⊕
(

H0(Y,M1) ⊗ H0(Y,M2)
)

,

Moreover, as

β∗(2L) = π∗M, with M = 2M1 + N1 + . . . + N4 = 2M2 + N5 + . . . + N8,

(cf. Proposition 2.7) we have the decomposition

H0(X, 2L) ∼= π∗H0(Y,M) ⊕ π∗H0(Y,M − N̂), (h0(M) = (M2)/2 + 2 = 10, h0(M − N̂) = 8).

In particular, the multiplication maps splits as:

H0(M1) ⊗ H0(M2) −→ H0(Y,M − N̂)

(vector spaces with dimensions with 3 · 3 = 9 and 8 resp.) and

S2H0(Y,M1) ⊕ S2H0(Y,M2) −→ H0(Y,M)
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(with dimensions 6+6 = 12 and 10 resp.). Each of these two maps is surjective, and as S2H0(Y,M1) →
H0(Y,M) is injective (φM1

maps Y onto P2), the quadrics in the ideal of X can be written as:

Q1(x) − Q2(y) = 0, Q3(x) − Q4(y) = 0, B(x, y) = 0

with Qi homogeneous of degree two in three variables, and B of bidegree (1, 1). Note that each
eigenspace intersects X in 2 · 2 = 4 points.

The surface Ȳ maps to P2 × P2 with the map φM1
× φM2

, its image is the image of X under the
projections to the eigenspaces P5 → P2 ×P2. As (x0 : . . . : y2) 7→ Q1(x)/Q2(y) is a constant rational
function on X and similarly for Q3(x)/Q4(y), there is a c ∈ C such that the image of X is contained
in the complete intersection of type (2, 2), (1, 1) in P2 × P2 defined by

Q1(x)Q4(y) − cQ3(x)Q2(y) = 0, B(x, y) = 0.

By adjunction, smooth complete intersections of this type are K3 surfaces.
To count the moduli, note that the first two equations come from a 6 + 6 = 12-dimensional vector

space and the third comes from a 3 · 3 = 9-dimensional space. The Grassmanian of 2-dimensional
subspaces of a 12 dimensional space has dimension 2(12 − 2) = 20. The subgroup of GL(6) which
commutes with ιP5 is isomorphic to GL(3) × GL(3) and has dimension 9 + 9 = 18. Thus we get
20 + (9 − 1) − (18 − 1) = 11 moduli, as expected.

3.7 . The case Me8
. We have H0(X,L) ∼= π∗H0(Y,M) ⊕ π∗H0(Y,M − N̂) and L2 = 8, M2 = 4 so

h0(M) = 4, h0(M − N) = 2. The image of X under φL is is the intersection of three quadrics in P5

and ι is induced by

ι̃ : C6 −→ C6, (x0, x1, x2, x3, y0, y1) 7−→ (x0, x1, x2, x3,−y0,−y1).

To study the quadrics defining X, that is the kernel of the multiplication map S2H0(X,L) →
H0(X, 2L) we again split these spaces into ι∗-eigenspaces:

S2H0(X,L) ∼=
(

S2H0(Y,M) ⊕ S2H0(Y,M − N̂)
)

⊕
(

H0(Y,M) ⊗ H0(Y,M − N̂)
)

,

(with dimensions 21 = (10 + 3) + 8) and

H0(X, 2L) ∼= π∗H0(Y, 2M) ⊕ π∗H0(Y, 2M − N̂)

(with dimensions h0(2M) = 10, h0(2M − N̂) = 8).
This implies that there are no quadratic relations in the 8 dimensional space H0(Y,M)⊗H0(Y,M−

N̂). As φM maps Y onto a quartic surface in P3 and M − N̂ is a map of Y onto P1, the quadrics in
the ideal of X are of the form:

y2
0 = Q1(x), y0y1 = Q2(x), y2

1 = Q3(x).

The fixed points of the involution are the eight points in the intersection of X with the P3 defined by
y0 = y1 = 0.

The image of Y by φM is the image of the projection of X from the invariant line to the invariant
P3, which is defined by y0 = y1 = 0. The image is the quartic surface defined by Q1Q3 − Q2

2 = 0
which can be identified with Ȳ . The equation is the determinant of a symmetric 2 × 2 matrix, which
also implies that this surface has 8 nodes, (cf. [Ca, Theorem 2.2], [B, section 3]), the nodes form an
even set (cf. [Ca, Proposition 2.6]).

We compute the number of moduli. Q uadrics of this type span a space U of dimension 3+10 = 13.
The dimension of the Grassmanian of three dimensional subspaces of U is 3(13−3) = 30. The group of
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automorphisms of C6 which commute with ιP5 is GL(2)×GL(4). So we have a 30− (4+16− 1) = 11
dimensional space of such K3-surfaces in P5, as expected.

3.8 . The case M12. We have H0(X,L) ∼= π∗H0(Y,M1) ⊕ π∗H0(Y,M2) a n d L2 = 12, M2

i = 4 so
h0(L) = 8 , h0(Mi) = 4 fo r i = 1, 2. T h e im a g e o f X u n d e r φL is th e in te rse c tio n o f te n q u a d ric s in P

7.
F o llo w in g E x a m p le 3.6 , w e u se ι∗ to sp lit th e m u ltip lic a tio n m a p fro m th e 36 = (10 + 10 ) + 16 -

d im e n sio n a l sp a c e S2H0(X,L) o n to th e 26 = 14 + 12-d im e n sio n a l sp a c e H0(X, 2L), a g a in β∗(2L) =
π∗M fo r a n M ∈ NS(Y ) w ith M2 = 24 . T h u s w e fi n d 20 − 14 = 6 q u a d ric s o f th e ty p e Q1(x)−Q2(y)
w ith Qi q u a d ra tic fo rm s in 4 v a ria b le s, a n d 16 − 12 = 4 q u a d ra tic fo rm s Bi(x, y), i = 1, . . . , 4 w h e re
x, y a re c o o rd in a te s o n th e tw o e ig e n sp a c e s in H0(X,L).

In p a rtic u la r, th e p ro je c tio n fro m P
7 to th e p ro d u c t o f th e e ig e n sp a c e s P

3 × P
3 m a p s X o n to a

su rfa c e d e fi n e d b y 4 e q u a tio n s o f b id e g re e (1, 1). A d ju n c tio n sh o w s th a t a c o m p le te in te rse c tio n o f
th is ty p e is a K 3 su rfa c e , so th e fo u r Bi’s d e fi n e Ȳ ⊂ P

3 × P
3.

E a ch Bi c a n b e w ritte n a s: Bi(x, y) =
∑

j lij(x)yj w ith lin e a r fo rm s lij in x = (x0, . . . , x3). T h e

im a g e o f Ȳ ⊂ P
3 × P

3 u n d e r th e p ro je c tio n to th e fi rst fa c to r is th e n d e fi n e d b y d e t(lij(x)) = 0 ,
w h ich is a q u a rtic su rfa c e in P

3 a s e x p e c te d . In fa c t, a p o in t x ∈ P
3 h a s a n o n -triv ia l c o u n te r im a g e

(x, y) ∈ X ⊂ P
3 × P

3 iff th e m a trix e q u a tio n (lij)y = 0 h a s a n o n -triv ia l so lu tio n .
A s X is n o t a c o m p le te in te rse c tio n , w e o m it th e m o d u li c o u n t.

3 .9 . T h e c a se Mf12
. In th is c a se β∗L ∼= π∗M , h0(L) = 8 = 5 + 3 = h0(M) + h0(M − N̂). W e

c o n sid e r a g a in th e q u a d ric s in th e id e a l o f X in E x a m p le 3.7 . T h e sp a c e S2H0(X,L) o f q u a d ric s o n
P

7 d e c o m p o se s a s:

S2H0(X,L) ∼=
(

S2H0(Y,M) + S2H0(Y,M − N̂)
)

⊕

(

H0(Y,M) ⊗ H0(Y,M − N̂)
)

,

w ith d im e n sio n s 36 = (15 + 6 ) + 15 , w h e re a s th e se c tio n s o f 2L d e c o m p o se a s:

h0(2L) = (4L2)/2 + 2 = 26 = 14 + 12 = h0(2M) ⊕ h0(2M − N̂).

T h u s th e re a re (15 + 6 )− 14 = 7 in d e p e n d e n t q u a d ric s in th e id e a l o f X ⊂ P
7 w h ich a re in v a ria n t a n d

th e re a re 15 − 12 = 3 q u a d ric s w h ich a re a n ti-in v a ria n t u n d e r th e m a p

ι̃ : C8
−→ C

8, (x0, . . . , x4, y0, y1, y2) 7−→ (x0, . . . , x4,−y0,−y1,−y2).

A n in v a ria n t q u a d ra tic p o ly n o m ia l lo o k s lik e q0(x0, . . . , x4) + q1(y0, y1, y2), a n d sin c e th e sp a c e o f
q u a d ric s in th re e v a ria b le s is o n ly 6 d im e n sio n a l, th e re is o n e n o n -z e ro q u a d ric q in th e id e a l o f th e
fo rm q = q(x0, . . . , x4). A n a n ti-in v a ria n t q u a d ra tic p o ly n o m ia l is o f b id e g re e (1, 1) in x a n d y. In
p a rtic u la r, th e im a g e o f th e p ro je c tio n o f X to th e p ro d u c t o f th e e ig e n sp a c e s P

4×P
2 is c o n ta in e d in o n e

h y p e rsu rfa c e o f b id e g re e (2, 0 ) a n d in th re e h y p e rsu rfa c e s o f b id e g re e (1, 1). T h e c o m p le te in te rse c tio n
o f fo u r g e n e ra l su ch h y p e rsu rfa c e s is a K 3 su rfa c e (u se a d ju n c tio n a n d (2 + 3 · 1, 3 · 1) = (5 , 3)).

T h e th re e a n ti-in v a ria n t q u a d ra tic fo rm s c a n b e w ritte n a s
∑

j lij(x)yj , i = 1, 2, 3. T h e d e te rm in a n t

o f th e 3 × 3 m a trix o f lin e a r fo rm s (lij(x)), d e fi n e s a c u b ic fo rm w h ich is a n e q u a tio n fo r th e im a g e
o f X in P

4 (c f. E x a m p le 3.8 ). T h u s th e p ro je c tio n Ȳ o f X to P
4 is th e in te rse c tio n o f th e q u a d ric

d e fi n e d b y q(x) = 0 a n d a c u b ic .
T h e p ro je c tio n to P

2 is 2:1, a s it sh o u ld b e , sin c e fo r g e n e ra l y ∈ P
2 th e th re e lin e a r fo rm s in x

g iv e n b y
∑

j lij(x)yj d e fi n e a lin e in P
4 w h ich c u ts th e q u a d ric q(x) = 0 in tw o p o in ts.
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4. Elliptic fibrations with a section of order two

4.1 . E llip tic fi b ratio n s an d N ik u lin in v o lu tio n s. Let X be a K3 surface which has an elliptic
fibration f : X → P1 with a section σ. The set of sections of f is a group, the M ordell-Weil group
MW f , with identity element σ. This group acts on X by translations and these translations preserve
the holomorphic two form on X. In particular, if there is an element τ ∈ MW f of order two, then
translation by τ defines a N ikulin involution ι.

In that case the Weierstrass equation of X can be put in the form:

X : y2 = x(x2 + a(t)x + b(t))

the sections σ, τ are given by the section at infinity and τ(t) = (x(t), y(t)) = (0, 0). For the general
fibration on a K3 surface X, the degrees of a and b are 4 and 8 respectively.

4.2 . Pro p o sitio n . Let X → P1 be a general elliptic fibration with sections σ, τ as above in section
4.1. and let ι be the corresponding N ikulin involution on X. These fibrations form a 10-dimensional
family.

The quotient K3 surface Y also has an elliptic fibration:

Y : y2 = x(x2
− 2a(t)x + (a(t)2 − 4b(t)),

We have:

NS(X) ∼= NS(Y ) ∼= U ⊕ N, TX
∼= TY

∼= U2
⊕ N.

The bad fibers of X → P1 are eight fibers of type I1 (which are rational curves wit a node) over
the zeroes of a2 − 4b and eight fibers of type I2 (these fibers are the union of two P1’s meeting in two
points) over the zeroes of b. The bad fibers of Y → P1 are eight fibers of type I2 over the zeroes of
a2 − 4b and eight fibers of type I1 over the zeroes of b.

Pro o f. S ince X has an elliptic fibration with a section, NS(X) contains a copy of the hyperbolic
plane U (with standard basis the class of a fiber f and f + σ). The discriminant of the Weierstrass
model of X is ∆ X = b2(a2 − 4b) and the fibers of the Weierstrass model over the zeroes of ∆ X are
nodal curves. Thus f : X → P1 has eight fibers of type I1 (which are rational curves with a node)
over the zeroes of a2 − 4b and 8 fibers of type I2 (these fibers are the union of two P1’s meeting in
two points) over the zeroes of b.

The components of the singular fibers which do not meet the zero section σ, give a sublattice
< −2 >8 perpendicular to U . If there are no sections of infinite order, the lattice U⊕ < −2 >8 has
finite index in the N éron S everi group of X. H ence X has 22 − 2 − 10 = 10 moduli. O ne can also
appeal to [S him] where the N éron S everi group of the general elliptic K3 fibration with a section of
order two is determined. To find the moduli from the Weierstrass model, note that a and b depend
on 5 + 9 = 14 parameters. U sing transformations of the type (x, y) 7→ (λ2x, λ3y) (and dividing the
equation by λ6) and the automorphism group PGL(2) of P1 we get 14 − 1 − 3 = 10 moduli.

The S hioda-Tate formula (cf. e.g. [S hio, C orollary 1.7]) shows that the discriminant of the N éron
S everi group is 28/n2 where n is the order of the torsion subgroup of MW f . The curve defined by
x2 + a(t)x + b(t) = 0 cuts out the remaining pair of points of order two on each smooth fiber. As
it is irreducible in general, MW f must be cyclic. If there were a section σ of order four, it would
have to satisfy 2σ = τ . B ut in a fiber of type I2 the complement of the singular points is the group
G = C∗× (Z/2Z) and the specialization MW f → G is an injective homomorphism. N ow τ specializes
to (±1, 1̄) (the sign doesn’t matter) since τ specializes to the node in the Weierstrass model. B ut
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there is no g ∈ G with 2g = (±1, 1̄). We conclude that for general X we have MWf = {σ, τ} ∼= Z/2Z
and that the discriminant of the Néron Severi group of X is 26.

The Néron Severi group has Q basis σ, f,N1, . . . , N8 where the Ni are the components of the I2

fibers not meeting σ. As τ · σ = 0, τ · f = 1 and τ · Ni = 1, we get:

τ = σ + 2f − N̂ , N̂ = (N1 + . . . + N8)/2.

Thus the smallest primitive sublattice containing the Ni is the Nikulin lattice. Comparing discrimi-
nants we conclude that:

NS(X) = 〈s , f〉 ⊕ 〈N1, . . . , N8, N̂ 〉 ∼= U ⊕ N.

The transcendental lattice TX of X can be determined as follows. It is a lattice of signature
(2+, 10−) and its discriminant form is the opposite of the one of N , but note that qN = −qN since qN

takes values in Z/2Z. Moreover, T ∗

X/TX
∼= N∗/N ∼= (Z/2Z)6. Using [Ni2, Corollary 1.13.3], we find

that TX is uniquely determined by the signature and the discriminant form. The lattice U2 ⊕ N has
these invariants, so

TX
∼= U2 ⊕ N.

As the Nikulin involution preserves the fibers of the elliptic fibration on X, the desingularisation Y
of the quotient X/ι has an elliptic fibration g : Y → P1, with a section σ̄, (the image of σ). Observe
that given any elliptic curve in Weierstrass form, as explained in [ST, Section 4, p.76 and P roposition
p.79] there is a straightforward way to write down the Weierstrass form of its quotient by a translation
by a point of order two, and so one can immediately write down the Weierstrass equation of Y .

The discriminant of the Weierstrass model of Y is ∆Y = 4b(a2 − 4b)2 and, reasoning as before,
we find the bad fibers of g : Y → P1. In particular, the I1 and I2 fibers of X and Y are indeed
‘interchanged’.

G eometrically, the reason for this is as follows. The fixed points of translation by τ are the eight
nodes in the I1-fibers, blowing them up gives I2-type fibers which map to I2-type fibers in Y . The
exceptional curves lie in the ramification locus of the quotient map, the other components, which meet
σ, map 2:1 to components of the I2-fibers which meet σ̄. The two components of an I2-fiber in X are
interchanged and also the two singular points of the fiber are permuted, so in the quotient this gives
an I1-type fiber. �

4.3. R em ark. Note that NS(X) ⊕ TX
∼= U3 ⊕ N2, however, there is no embedding of N2 into

E8(−1)2, such that N ⊕ {0} (⊂ NS(X)) is primitive in E8(−1)2. However, N2 ⊂ Γ16(−1) (cf. section
1.11), an even, negative definite, unimodular lattice of rank 16 and U3 ⊕ Γ16(−1) ∼= U3 ⊕E8(−1)2 by
the classification of even indefinite unimodular quadratic forms.

4.4. M orrison-Nikulin involutions. D . Morrison observed that a K3 surface X having two per-
pendicular copies of E8(−1) in the Néron Severi group has a Nikulin involution which exchanges the
two copies of E8(−1), cf. [Mo, Theorem 5.7]. We will call such an involution a Morrison-Nikulin
involution. This involution then has the further property that TY

∼= TX(2) where Y is the quotient
K3 surface and we have a Shioda-Inose structure on Y (cf. [Mo, Theorem 6.3])

4.5 . M oduli. As E8(−1) has rank eight and is negative definite, a projective K3 surface with a
Morrison-Nikulin involution has a Néron Severi group of rank at least 17 and hence has at most three
moduli. In case the Néron Severi group has rank exactly 17, we get

NS(X) ∼= 〈2n〉 ⊕ E8(−1) ⊕ E8(−1)
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since the sublattice E8(−1)2 is unimodular. R esults of Kneser and Nikulin, [Ni2, Corollary 1.13.3],
guarantee that the transcendental lattice TX := NS(X)⊥ is uniquely determined by its signature and
discriminant form. As the discriminant form of TX is the opposite of the one on NS(X) we get

TX
∼= 〈−2n〉 ⊕ U2.

In case n = 1 such a three dimensional family can be obtained from the double covers of P2 branched
along a sextic curve with two singularities which are locally isomorphic to y3 = x5. The double cover
then has two singular points of type E8, that is, each of these can be resolved by eight rational curves
with incidence graph E8. As the explicit computations are somewhat lengthy and involved, we omit
the details. See [GL, Appendix], [P] and [Deg] for more on double covers of P2 along singular sextics.

4.6 . Morrison-Nikulin involutions on elliptic fibrations. We consider a family of K3 surfaces
with an elliptic fibration with a Morrison-Nikulin involution induced by translation by a section of
order two. It corresponds to the family with n = 2 from section 4.5.

Note that in the proposition below we describe a K3 surface Y with a Nikulin involution and
quotient K3 surface X such that TY = TX(2), which is the ‘opposite’ of what would happen if the
involution of Y was a Morrison-Nikulin involution. It is not hard to see that there is no primitive
embedding TY ↪→ U3, so Y does not have a Morrison-Nikulin involution at all (cf. [Mo, Theorem
6.3]).

4.7 . Proposition. Let X → P1 be a general elliptic fibration defined by the Weierstrass equation

X : y2 = x(x2 + a(t)x + 1), a(t) = a0 + a1t + a2t
2 + t4 ∈ C[t].

The K3 surface X has a Morrison-Nikulin involution defined by translation by the section, of order
two, t 7→ (x(t), y(t)) = (0, 0). Then:

NS(X) = 〈4〉 ⊕ E8(−1) ⊕ E8(−1), TX = 〈−4〉 ⊕ U2.

The bad fibers of the fibration are nodal cubics (type I1) over the eight zeroes of a2(t) − 4 and one
fiber of type I16 over t = ∞.

The quotient K3 surface Y has an elliptic fibration defined by the Weierstrass model:

Y : y2 = x(x2 − 2a(t)x + (a(t)2 − 4)), TY
∼= 〈−8〉 ⊕ U(2)2.

This K3 surface has a Nikulin involution defined by translation by the section t 7→ (x(t), y(t)) = (0, 0)
and the quotient surface is X. For general X, the bad fibers of Y are 8 fibers of type I2 over the same
points in P1 where X has fibers of type I1 and at infinity Y has a fiber of type I8.

Proof. As we observed in section 4.1, translation by the section of order two defines a Nikulin
involution.

Let â(s) := s4a(s−1), it is a polynomial of degree at most four and â(0) 6= 0. Then on P1 − {0},
with coordinate s = t−1, the Weierstrass model is

v2 = u(u2 + â(s)u + s8), ∆ = s16(â(s)2 − 4s8), u = s4x, v = s6y,

where ∆ is the discriminant. The fiber over s = 0 is a stable (nodal) curve, so the corresponding fiber
X∞ is of type Im where m is the order of vanishing of the discriminant in s = 0 (equivalently, it is
the order of the pole of the j-invariant in s = 0). Thus X∞ is an I16 fiber. As the section of order
two specializes to the singular point (u, v, s) = (0, 0, 0), after blow up it will not meet the component
of the fiber which meets the zero section.
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The group structure of the elliptic fibration induces a Lie group structure on the smooth part of
the I16 fiber. Taking out the 16 singular points in this fiber, we get the group C∗ × Z/16Z. The zero
section meets the component C0, where

Cn := P1 × {n̄} ↪→ X∞,

and the section of order two must meet C8. Translation by the section of order two induces the
permutation Cn 7→ Cn+ 8 of the 16 components of the fiber. The classes of the components Cn, with
n = −2, . . . , 4, generate a lattice of type A7(−1) which together with the zero section gives an E8(−1).
The Nikulin involution maps this E8(−1) to the one whose components are the Cn, n = 6, . . . , 12, and
the section of order two. Thus the Nikulin involution permutes two perpendicular copies of E8(−1)
and hence it is a Morrison-Nikulin involution.

The bad fibers over P1 −{∞} correspond to the zeroes of ∆ = a2(t)−4. For general a, ∆ has eight
simple zeroes and the fibers are nodal, so we have eight fibers of type I1 in P1 − {∞}.

By considering the points on P1 where there are bad fibers it is not hard to see that we do get a
three dimensional family of elliptic K3 surfaces with a Morrison-Nikulin involution. Thus the general
member of this three dimensional family has a Néron Severi group S of rank 17.

As we constructed a unimodular sublattice E8(−1)2 ⊂ S, we get S ∼=< −d > ⊕E8(−1)2 and d (> 0)
is the discriminant of S. The Shioda-Tate formula (cf. e.g. [Shio, Corollary 1.7]) gives that d = 16/n2

where n is the order of the group of torsion sections. As n is a multiple of 2 and d must be even it
follows that d = 4. As the embedding of NS(X) into U3 ⊕E8(−1)2 is unique up to isometry it is easy
to determine TX = NS(X)⊥. Finally TY

∼= TX(2) by the results of [Mo].
The Weierstrass model of the quotient elliptic fibration Y can be computed with the standard

formula cf. [ST, p.79], the bad fibers can be found from the discriminant ∆ = −4(a2 − 4)2 (and
j-invariant). Alternatively, fixed points of the involution on X are the nodes in the I1-fibers. Since
these are blown up, we get 8 fibers of type I2 over the same points in P1 where X has fibers of type
I1. At infinity Y has a fiber of type I8 because the involution on X permutes of the 16 components
of the I16-fiber (Cn ↔ Cn+ 8). Now the minimal model of the quotient surface of Y by the translation
of order two is again X, cf. [ST, Section 4, p.76]. Indeed consider the generic fiber, this is an elliptic
curve C in Weierstrass form, its quotient by a point of order two is an elliptic curve C. The kernel of
the multiplication by two:

[2] : C −→ C

contains all points of order two. Hence this map factorizes as

C
2:1

// C
2:1

// C.

�

4.8 . Remark. The Weierstrass model we used to define X, y2 = x(x2 + a(t)x + 1), exhibits X as
the minimal model of the double cover of P1 ×P1, with affi ne coordinates x and t. The branch curve
consists of the the lines x = 0, x = ∞ and the curve of bidegree (2, 4) defined by x2 + a(t)x + 1 = 0.
Special examples of such double covers are studied in section V .23 of [BPV ]. In particular, on p.185
the 16-gon appears with the two sections attached and the E8’s are pointed out in the text. Note
however that our involution is not among those studied there.

4.9. Remark. Note that if X −→ P1 is an elliptic fibration with a section, multiplication by n on
each smooth fiber gives a fiber preserving rational map X −− → X of degree n2. In the Proposition
4.7 we give an example with n = 2 (such self-maps are rather rare for non-rational surfaces).
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SYMPLECTIC AUTOMORPHISMS OF PRIME ORDER ON

K 3 SURFACES

ALICE GARBAGNATI AND ALESSANDRA SARTI

Abstract. W e stu d y a lg e b ra ic K 3 su rfa c e s (d e fi n e d o v e r th e c o m p le x n u m b e r fi e ld ) w ith
a sy m p le c tic a u to m o rp h ism o f p rim e o rd e r. In p a rtic u la r w e c o n sid e r th e a c tio n o f th e
a u to m o rp h ism o n th e se c o n d c o h o m o lo g y w ith in te g e r c o e ffi c ie n ts (b y a re su lt o f Nik u lin
th is a c tio n is in d e p e n d e n t o n th e ch o ic e o f th e K 3 su rfa c e ). W ith th e h e lp o f e llip tic
fi b ra tio n s w e d e te rm in e th e in v a ria n t su b la ttic e a n d its p e rp e n d ic u la r c o m p le m e n t, a n d
sh o w th a t th e la tte r c o in c id e s w ith th e Co x e te r-To d d la ttic e in th e c a se o f a u to m o rp h ism
o f o rd e r th re e .

0. In tro d u ctio n

In th e p a p e r [N i1 ] N ik u lin stu d ie s fi n ite a b e lia n g ro u p s G a c tin g sy m p le c tic a lly (i.e .
G|H2,0(X ,C) = id |H2,0(X ,C)) o n K 3 su rfa c e s (d e fi n e d o v e r C). O n e o f h is m a in re su lt is th a t

th e a c tio n in d u c e d b y G o n th e c o h o m o lo g y g ro u p H2(X, Z) is u n iq u e u p to iso m e try .
In [N i1 ] a ll a b e lia n fi n ite g ro u p s o f a u to m o rp h ism s o f a K 3 su rfa c e a c tin g sy m p le c tic a lly
a re c la ssifi e d . L a te r M u k a i in [M u ] e x te n d s th e stu d y to th e n o n a b e lia n c a se . H e re w e
c o n sid e r o n ly a b e lia n g ro u p s o f p rim e o rd e r p w h ich , b y N ik u lin , a re iso m o rp h ic to Z/ pZ

fo r p = 2 , 3, 5, 7 .
In th e c a se o f p = 2 th e g ro u p is g e n e ra te d b y a n in v o lu tio n , w h ich is c a lle d b y M o rriso n
in [M o , D e f. 5.1 ] N ik u lin in v o lu tio n . T h is w a s v e ry m u ch stu d ie d in th e la st y e a rs, in p a r-
tic u la r b e c a u se o f its re la tio n w ith th e S h io d a -In o se stru c tu re (c f. e .g . [C D ], [G L ], [v G T ],
[L ], [M o ]). In [M o ] M o rriso n p ro v e s th a t th e iso m e try in d u c e d b y a N ik u lin in v o lu tio n
ι o n th e la ttic e Λ K3 ' U ⊕ U ⊕ U ⊕ E8(−1 ) ⊕ E8(−1 ), w h ich is iso m e tric to H2(X, Z),
sw itch e s th e tw o c o p ie s o f E8(−1 ) a n d a c ts a s th e id e n tity o n th e su b la ttic e U ⊕ U ⊕ U .
A s a c o n se q u e n c e o n e se e s th a t (H2(X, Z)ι

∗

)⊥ is th e la ttic e E8(−2 ). T h is im p lie s th a t
th e P ic a rd n u m b e r ρ o f a n a lg e b ra ic K 3 su rfa c e a d m ittin g a N ik u lin in v o lu tio n is a t le a st
n in e . In [v G S ] v a n G e e m e n a n d S a rti sh o w th a t if ρ ≥ 9 a n d E8(−2 ) ⊂ N S (X) th e n th e
a lg e b ra ic K3 su rfa c e X a d m its a N ik u lin in v o lu tio n a n d th e y c la ssify c o m p le te ly th e se K3
su rfa c e s. M o re o v e r th e y d isc u ss m a n y e x a m p le s a n d in p a rtic u la r th o se su rfa c e s a d m ittin g
a n e llip tic fi b ra tio n w ith a se c tio n o f o rd e r tw o . T h is se c tio n o p e ra te s b y tra n sla tio n o n
th e fi b e rs a n d d e fi n e s a N ik u lin in v o lu tio n o n th e K 3 su rfa c e .
T h e a im o f th is p a p e r is to id e n tify th e a c tio n o f a sy m p le c tic a u to m o rp h ism σp o f th e
re m a in in g p o ssib le p rim e o rd e rs p = 3, 5, 7 o n th e K 3 la ttic e Λ K3 a n d to d e sc rib e su ch
a lg e b ra ic K 3 su rfa c e s w ith m in im a l p o ssib le P ic a rd n u m b e r. T h a n k s to N ik u lin ’s re su lt
([N i1 , T h e o re m 4 .7 ]), to fi n d th e a c tio n o n Λ K3, it su ffi c e s to id e n tify th e a c tio n in o n e
sp e c ia l c a se . F o r th is p u rp o se it se e m e d to b e c o n v e n ie n t to stu d y a lg e b ra ic K 3 su rfa c e s
w ith a n e llip tic fi b ra tio n w ith a se c tio n o f o rd e r th re e , fi v e , re sp . se v e n . T h e n th e tra n s-
la tio n b y th is se c tio n is a sy m p le c tic a u to m o rp h ism o f th e su rfa c e o f th e sa m e o rd e r. A

Th e se c o n d a u th o r w a s p a rtia lly su p p o rte d b y DF G Rese a rch Gra n t SA 1 3 8 0 / 1 -2 .
2000 Mathematics Subject Classification: 1 4 J 2 8 , 1 4 J 1 0 .
K ey w ord s: K 3 su rfa c e s, a u to m o rp h ism s, m o d u li.
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concrete analysis leads us to the main result of the paper which is the description of the
lattices H2(X, Z)σ

∗

p and Ωp = (H2(X, Z)σ
∗

p )⊥ given in the Theorem 4.1. The proof of the
main theorem consists in the Propositions 4.2, 4.4, 4.6 . W e describe the lattice Ωp also as
Z[ωp]-lattices, where ωp is a primitive p root of the unity. This kind of lattices are studied
e.g. in [B a], [B S] and [E ]. In particular in the case p = 3 the lattice Ω3 is the Coxeter-Todd
lattice with the form multiplied by −2, K12(−2), which is described in [CT] and in [CS].
The elliptic surfaces we used to find the lattices Ωp do not have the minimal possible
Picard number. W e prove in Proposition 5.1 that for K3 surfaces, X, with minimal Picard
number and symplectic automorphism, if L is a class in NS(X) which is invariant for
the automorphisms, with L2 = 2d > 0, then either NS(X) = ZL ⊕ Ωp or the latter is
a sublattice of index p in NS(X). U sing this result and the one of the Proposition 5.2
we describe the coarse moduli space of the algebraic K3 surfaces admitting a symplectic
automorphism of prime order.
The structure of the paper is the following: in section 1 we compute the number of moduli
of algebraic K3 surfaces admitting a symplectic automorphism of order p and their min-
imal Picard number. In section 2 we give the definition of Z[ωp]-lattice and we associate
to it a module with a bilinear form, which in some cases is a Z-lattice (we use this con-
struction in section 4 to describe the lattices Ωp as Z[ωp]-lattices). In section 3 we recall
some results about elliptic fibrations and elliptic K3 surfaces (see e.g. [Mi1], [Mi2], [Shim],
[Shio] for more on elliptic K3 surfaces). In particular we introduce the three elliptic fi-
brations which we use in section 4 and give also their W eierstrass form. In section 4 we
state and proof the main result, Theorem 4.1: we identify the lattices Ωp and we describe
them as Z[ωp]-lattices. In section 5 we describe the Néron-Severi group of K3 surfaces ad-
mitting a symplectic automorphism and having minimal Picard number (Proposition 5.1).
In section 5 we describe the coarse moduli space of the algebraic K3 surfaces admitting
a symplectic automorphism and the Néron-Severi group of those having minimal Picard
number.
We would like to express our deep thanks to Bert van Geemen for suggesting us the prob lem

and for his invaluab le help during the preparation of this paper.

1. Preliminary results

Definition 1.1. A symplectic automorphism σp of order p on a K 3 surface X is an

automorphism such that:

1 . the group G generated by σp is isomorphic to Z/pZ,

2 . σ∗
p(δ) = δ, for all δ in H2,0(X).

W e recall that by [Ni1] an automorphism on a K3 surface is symplectic if and only if it
acts as the identity on the transcendental lattice TX . In local coordinates at a fixed point
σp has the form diag(ωp, ω

p−1
p ) where ωp is a primitive p-root of unity. B y a result of

Nikulin the only possible values for p are 2,3,5,7 see [Ni1, Theorem 4.5] and [Ni1, §5]. The
automorphism σ3 has six fixed points on X, σ5 has four fixed points and σ7 has three fixed
points. The automorphism σp induces a σ∗

p isometry on H2(X, Z) ∼= ΛK3. Nikulin proved
[Ni1, Theorem 4.7] that if σp is symplectic, then the action of σ∗

p is unique up to isometry
of ΛK3.
Let ωp be a primitive p-root of the unity. The vector space H2(X, C) can be decomposed
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in eigenspaces of the eigenvalues 1 and ωi
p:

H2(X, C) = H2(X, C)σ
∗

p ⊕ (
⊕

i= 1,...,p−1

H2(X, C)ωi
p
).

We observe that the non rational eigenvalues ωi
p have all the same multiplicity. So we put:

ap := multiplicity of the eigenvalue 1, bp :=multiplicity of the eigenvalues ωi
p.

In the following we find ap and bp by using the Lefschetz fixed point formula:

µp =
∑

r

(−1)rtrace(σ∗
p|H

r(X, C))(1)

where µp denotes the number of fixed points. For K3 surfaces we obtain

µp = 1 + 0 + trace(σ∗
p|H

2(X, C)) + 0 + 1.

Proposition 1.1. Let X, σp, ap, bp be as above, p = 3, 5, 7. Let ρp be the P icard number of

X, and let mp be the dimension of the moduli space of the algebraic K3 surfaces admitting

a symplectic automorphism of order p. T hen

a3 = 10 b3 = 6 ρ3 ≥ 13 m3 ≤ 7
a5 = 6 b5 = 4 ρ5 ≥ 17 m5 ≤ 3
a7 = 4 b7 = 3 ρ7 ≥ 19 m7 ≤ 1.

P roof. The proof is similar in all the cases, here we give the details only in the case p = 5.
A symplectic automorphism of order five on a K3 surface has exactly four fixed points.
Applying the Lefschetz fixed points formula (1), we have a5 + b5(ω5 + ω2

5 + ω3
5 + ω4

5) = 2.

Since ωp−1
p = −(

∑p−2
i= 0 ωi

p), the equation becomes a5 − b5 = 2.

Since dim H2(X, C) = 22, a5 and b5 have to satisfy:

{

a5 − b5 = 2
a5 + 4b5 = 22.

(2)

We have

dim H2(X, C)σ
∗

5 = 6 = a5 and
dim H2(X, C)ω5

= dimH2(X, C)ω2

5

= dim H2(X, C)ω3

5

= dim H2(X, C)ω4

5

= 4 = b5.

Since TX ⊗C ⊂ H2(X, C)σ
∗

5 , (H2(X, C)σ
∗

5 )⊥ = H2(X, C)ω5
⊕H2(X, C)ω2

5

⊕H2(X, C)ω3

5

⊕

H2(X, C)ω4

5

⊂ NS(X) ⊗ C. We consider only algebraic K3 surfaces and so we have an

ample class h on X , by taking h + σ∗
5h + σ∗2

5 h + σ∗3
5 h + σ∗4

5 h we get a σ5-invariant class,
hence in H2(X, C)σ

∗

5 . From here it follows that ρp =rank NS(X) ≥ 16 + 1 = 17, whence
rank TX ≤ 22 − 17 = 5. The number of moduli is at most 20 − 17 = 3. �

Rem a rk . In [Ni1, §10] Nikulin computes rank(H2(X, Z)σ
∗

p )⊥ = (p − 1)bp and

rank(H2(X, Z)σ
∗

p ) = ap. In [Ni1, Lemma 4.2] he also proves that there are no classes

with self intersection −2 in the lattices (H2(X, Z)σ
∗

p )⊥; we describe these lattices in the
sections 4.1, 4.4, 4.6 and we find again the result of Nikulin.
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2. The Z[ω]-lattices

In the sections 4.2, 4.5, 4.7 our purpose is to describe (H2(X, Z)σ
∗

p )⊥ as Z[ωp]-lattice. We
recall now some useful results on these lattices.

Definition 2.1. Let p be an odd prime and ω := ωp be a primitive p-root of the unity. A
Z[ω]-lattice is a free Z[ω]-module with an hermitian form (with values in Z[ω]). Its rank
is its rank as Z[ω]-module.

Let {L, hL} be a Z[ω]-lattice of rank n. The Z[ω]-module L is also a Z-module of rank
(p − 1)n. In fact if ei, i = 1, . . . , n is a basis of L as Z[ω]-module, ωjei, i = 1, . . . , n,
j = 0, . . . , p−2 is a basis for L as Z-module (recall that ωp−1 = −(ωp−2 +ωp−3 + . . .+1)).
The Z-module L will be called LZ.
Let Γ p := Gal(Q(ω)/Q) be the group of the automorphisms of Q(ω) which fix Q. We
recall that the group Γ p has order p − 1 and its elements are automorphisms ρi such that
ρi(1) = 1, ρi(ω) = ωi where i = 1, . . . , p − 1. We define a bilinear form on LZ

bL(α, β) = −
1

p

∑

ρ∈Γp

ρ(hL(α, β)).(3)

Note that bL takes values in 1
pZ[ω], so in general {LZ, bL} is not a Z-lattice. We call it

the associated module (resp. lattice) of the Z[ω]-lattice L.

Remark. R emark. By the definition of the bilinear form is clear that

bL(α, β) = −
1

p
T rQ(ω)/Q(hL(α, β)).

For a precise definition of the Trace see [E, page 128 ]

2.1. Th e Z-lattice Fp. We consider a K3 surface admitting an elliptic fibration. Let p
be an odd prime number. Let Ip be a semistable fiber of a minimal elliptic fibration, i.e.
(cf. section 3) Ip is a fiber which is a reducible curve, whose irreducible components are
the edges of a p-polygon, as described in [Mi1, Table I.4.1], we denote the p-irreducible
components by Ci, i = 0, . . . , p − 1, then

Ci · Cj =







−2 if i ≡ j mod p
1 if |i − j| ≡ 1 mod p
0 otherwise.

We consider now the free Z-module Fp with basis the elements of the form Ci − Ci+ 1,
i = 1, . . . , p− 1 and with bilinear form bFp

which is the restriction of the intersection form
to the basis Ci − Ci+ 1, then {Fp, bFp

} is a Z-lattice.

2.2. Th e Z[ωp]-lattice Gp. Let Gp be the Z[ω]-lattice Gp := (1 − ω)2Z[ω], with the
standard hermitian form: h(α, β) = αβ̄. A basis for the Z-module Gp,Z is (1 − ω)2ωi,
i = 0, . . . , p − 2.

On Z[ω] we consider the bilinear form bL defined in (3), with values in 1
pZ,

b(α, β) = −
1

p

∑

ρ∈Γp

ρ(αβ̄), α, β ∈ Z[ω],

then we have
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Lemma 2.1. The bilinear form b restricted to Gp (denoted by bG) has values in Z and
coincides with the intersection form on Fp by using the map Fp → Gp defi ned by Ci −
Ci+1 7→ ωi(1 − ω)2, i = 1, . . . , p − 1, Cp = C0.

Proof. An easy computation shows that we have for p > 3:

bG(ωk(1 − ω)2, ωh(1 − ω)2) =















−6 if k ≡ h mod p,
4 if |k − h| ≡ 1 mod p,
−1 if |k − h| ≡ 2 mod p,
0 otherwise,

and for p = 3:

bG(ωk(1 − ω)2, ωh(1 − ω)2) =

{

−6 if k ≡ h mod p,
3 if |k − h| ≡ 1 mod p.

The intersection form on Fp is easy to compute (cf. section 2.1) and this computation
proves that the map Fp → Gp defined in the lemma is an isometry. �

In section 4 we apply the results of this section and we find a Z[ω]-lattice {Lp, hLp
} such

that

• {Lp, hLp
} contains Gp as sublattice;

• {Lp,Z, bLp
} is a Z-lattice;

• the Z-lattice {Lp,Z, bLp
} is isometric to the Z-lattice (H2(X, Z)σ

∗

p )⊥ for p = 3, 5, 7.

3. Some general facts on elliptic fibrations

In the next section we give explicit examples of K3 surfaces admitting a symplectic auto-
morphism σp by using elliptic fibrations. Here we recall some general results about these
fibrations.
Let X be an elliptic K3 surface, this means that we have a morphism

f : X −→ P1

such that the generic fiber is a (smooth) elliptic curve. We assume moreover that we have
a section s : P1 −→ X. The sections of X generate the Mordell-Weil group M W f of X
and we take s as zero section. This group acts on X by translation (on each fiber), hence
it leaves the two form invariant. We assume that the singular fibers of the fibration are

all of type Im, m ∈ N. Let Fj be a fiber of type Imj
, we denote by C

(j)
0 the irreducible

components of the fibers meeting the zero section. After choosing an orientation, we

denote the other irreducible components of the fibers by C
(j)
1 , . . . , C

(j)
mj−1. In the sequel we

always consider mj a prime number, and the notation C
(j)
i means i ∈ Z/mjZ. For each

section r we define the number k := kj(r) by

r · C
(k)
j = 1 and r · C

(i)
j = 0 if i = 0, . . . ,mj − 1 i 6= k.

If the section r is a torsion section and h is the number of reducible fibers of type Imj
,

then by [Mi2, Proposition 3.1] we have

h
∑

j=1

kj(r)

(

1 −
kj(r)

mj

)

= 4.(4)
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Moreover we recall the Shioda-Tate formula (cf.[Shio, Corollary 5.3] or [Mi1, p.70])

rank(NS(X)) = 2 +

h
∑

j=1

(mj − 1 ) + ra n k (M W f ).(5)

T h e ra n k (M W f ) is th e n u m b er o f g en era to rs o f th e free p a rt. If th ere a re n o sectio n s o f
in fi n ite o rd er th en ra n k (M W f ) = 0 . A ssu m e th a t X h a s h fi b ers o f ty p e Im, m ∈ N,
m > 1 , a n d th e rem a in in g sin g u la r fi b ers a re o f ty p e I1, w h ich a re ra tio n a l cu rv es w ith
o n e n o d e. L et U ⊕ (Am−1)

h d en o te th e la ttice g en era ted b y th e zero sectio n , th e g en eric
fi b er a n d b y th e co m p o n en ts o f th e red u cib le fi b ers n o t m eetin g s. If th ere a re n o sectio n s
o f in fi n ite o rd er th en it h a s fi n ite in d ex in N S (X) eq u a l to n, th e o rd er o f th e to rsio n p a rt
o f th e g ro u p M W f . U sin g th is rem a rk w e fi n d th a t

| d et(N S (X))| =
d et(Am−1)

h

n2
=

mh

n2
.(6 )

3 .1 . Elliptic fibrations with a symplectic automorphism. N o w w e d escrib e th ree
p a rticu la r ellip tic fi b ra tio n s w h ich a d m it a sy m p lectic a u to m o rp h ism σ3, σ5 o r σ7. A ssu m e
th a t w e h a v e a sectio n o f p rim e o rd er p = 3 , 5, 7 . B y [S h im , N o . 56 0 , 2 3 4 6 , 3 2 56 ] th ere
ex ist ellip tic fi b ra tio n s w ith o n e o f th e fo llo w in g co n fi g u ra tio n s o f co m p o n en ts o f sin g u la r
fi b ers Ip n o t m eetin g s su ch th a t a ll th e sin g u la r fi b ers o f th e fi b ra tio n s a re sem ista b le (i.e.
th ey a re a ll o f ty p e In fo r a certa in n ∈ N) a n d th e o rd er o f th e to rsio n su b g ro u p o f th e
M o rd ell-W eil g ro u p o(M W f ) = p :

p = 3 : 6A2 o(M W f ) = 3 ,
p = 5 : 4A4 o(M W f ) = 5,
p = 7 : 3A6 o(M W f ) = 7 .

(7 )

W e ca n a ssu m e th a t th e rem a in in g sin g u la r fi b ers a re o f ty p e I1. S in ce th e su m o f th e
E u ler ch a ra cteristic o f th e fi b ers m u st a d d u p to 2 4 , th ese a re six , fo u r, resp . th ree
fi b ers. O b serv e th a t ea ch sectio n o f fi n ite o rd er in d u ces a sy m p lectic a u to m o rp h ism o f
th e sa m e o rd er w h ich co rresp o n d s to a tra n sla tio n b y th e sectio n o n ea ch fi b er, w e d en o te
it b y σp. T h e n o d es o f th e I1 fi b ers a re th en th e fi x ed p o in ts o f th ese a u to m o rp h ism s,
w h en ce σp p erm u tes th e p co m p o n en ts o f th e Ip fi b ers. F o r th ese fi b ra tio n s w e h a v e ra n k
N S (X) = 1 4 , 1 8 , 2 0 a n d d im en sio n s o f th e m o d u li sp a ces six , tw o a n d zero , w h ich is
o n e less th en th e m a x im a l p o ssib le d im en sio n o f th e m o d u li sp a ce w e h a v e g iv en in th e
P ro p o sitio n 1 .1 .

3 .1 .1 . Weierstrass forms. W e co m p u te th e W eierstra ss fo rm fo r th e ellip tic fi b ra tio n d e-
scrib ed in (7 ). W h en X is a K 3 su rfa ce th en th is fo rm is

y2 = x3 + A(t)x + B(t), t ∈ P
1(8 )

o r in h o m o g en eo u s co o rd in a tes

x3x
2

2 = x3

1 + A(t)x1x
2

3 + B(t)x3

3(9 )

w h ere A(t) a n d B(t) a re p o ly n o m ia ls o f d eg rees eig h t a n d tw elv e resp ectiv ely , x3 = 0 is
th e lin e a t in fi n ity a n d a lso th e ta n g en t to th e in fl ectio n a l p o in t (0 : 1 : 0 ).
F ibration w ith a section of ord er 3 . In th is ca se th e p o in t o f o rd er th ree m u st b e a n
in fl ectio n a l p o in t (cf. [C , E x . 5, p .3 8 ]), w e w a n t to d eterm in e A(t) a n d B(t) in th e
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equation (8). We start by imposing to a general line y = l(t)x + m(t) to be an inflectional
tangent so the equation of the elliptic fibration is

y2 = x3 + A(t)x + B(t), t ∈ P
1, with A(t) =

2l(t)m(t) + l(t)4

3 , B(t) =
m(t)2 − l(t)6

33
.

Since A(t) and B(t) are of degrees eight and twelve, we have deg l(t) = 2 and deg m(t) = 6.
The section of order three is

t 7→

(

l(t)2

3
,
l(t)3

3
+ m(t)

)

.

The discriminant ∆ = 4A3 + 27B2 of the fibration is

∆ =
(5l(t)3 + 27m(t))(l(t)3 + 3m(t))3

27
hence in general it vanishes to the order three on six values of t and to the order one on
other six values. Since A and B in general do not vanish on these values, this equation
parametrizes an elliptic fibration with six fibers I3 (so we have six curves A2 not meeting
the zero section) and six fibers I1 (cf. [Mi1, Table IV .3.1 pag.41]).
Fibration with a section of order 5. In the same way we can compute the Weierstrass form
of the elliptic fibration described in (7) with a section of order five.
In [BM] a geometrical condition for the existence of a point of order five on an elliptic
curve is given. For fixed t let the cubic curve be in the form (9) then take two arbitrary
distinct lines through O which meet the cubic in two other distinct points each. Call 1, 4
the points on the first line and 2, 3 the points on the second line, then 1 (or any of the
other point) has order five if:
-the tangent through 1 meets the cubic in 3,
-the tangent through 4 meets the cubic in 2,
-the tangent through 3 meets the cubic in 4,
-the tangent through 2 meets the cubic in 1.
These conditions give the Weierstrass form:

y2 = x3 + A(t)x + B(t), t ∈ P
1, with

A(t) =
(−b(t)4 + b(t)2a(t)2 − a(t)4 − 3a(t)b(t)3 + 3a(t)3b(t))

3 ,

B(t) =
(b(t)2 + a(t)2)(19b(t)4 − 34b(t)2a(t)2 + 19a(t)4 + 18a(t)b(t)3 − 18a(t)3b(t))

108

where deg a(t) = 2, deg b(t) = 2. The section of order five is

t 7→ ((2b(t)2 − a(t)2)2 : 3(a(t) + b(t))(a(t) − b(t))2 : 6)

and the discriminant is

∆ =
1

16
(b(t)2 − a(t)2)5(11(b(t)2 − a(t)2) + 4a(t)b(t)).

By a careful analysis of the zeros of the discriminant we can see that the fibration has four
fibers I5 and four fibers I1 (cf. [Mi1, Table IV .3.1 pag.41]).
Fibration with a section of order 7 . To find the Weierstrass form we use also in this case
the results of [BM]. We explain briefly the idea to find a set of points of order seven on
an elliptic curve. One takes points 0, 3, 4 and 1, 2, 4 on two lines in the plane. Then the
intersections of a line through 3 diff erent from the lines {3, 2}, {3, 4}, {3, 1} with the lines
{1, 0} and {2, 0} give two new points −1 and −2. By using the conditions that the tangent
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through 1 goes through −2 and the tangent through 2 goes through 3 one can determine
a cubic having a point of order seven which is e.g. 1. By using these conditions one can
find the equation, but since the computations are quite involved, we recall the Weierstrass
form given in [T, p.195]

y2 + (1 + t − t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2.

By a direct check one sees that the point of order seven is (0(t), 0(t)). This elliptic fibration
has three fibers I7 and three fibers I1.

4. Elliptic K3 surfaces with an automorphism of prime order

In this section we prove the main theorem:

Theorem 4.1. For any K3 surface X with a symp lectic automorp hism σp of order p =
2, 3, 5, 7 the action on H2(X, Z) decomposes in the following way:

p = 2 : H2(X, Z)σ
∗

2 = E8(−2) ⊕ U ⊕ U ⊕ U, (H2(X, Z)σ
∗

2 )⊥ = E8(−2).

p = 3 : H2(X, Z)σ
∗

3 = U ⊕ U(3) ⊕ U(3) ⊕ A2 ⊕ A2

(H2(X, Z)σ
∗

3 )⊥ =







xi ≡ xj mod (1 − ω3),
(x1, . . . , x6) ∈ (Z[ω3])

⊕6 :
∑

6

i=1
xi ≡ 0 mod (1 − ω3)

2







= K12(−2)

with hermitian form h(α, β) =
∑

6

i=1
(αiβi).

p = 5 : H2(X, Z)σ
∗

5 = U ⊕ U(5) ⊕ U(5)

(H2(X, Z)σ
∗

5 )⊥ =







x1 ≡ x2 ≡ 2x3 ≡ 2x4 mod (1 − ω5),
(x1, . . . , x4) ∈ (Z[ω5])

⊕4 :
(3 − ω5)(x1 + x2) + x3 + x4 ≡ 0 mod (1 − ω5)

2







with hermitian form h(α, β) =
∑

2

i=1
αiβi +

∑

4

j=3
fαjfβj where f = 1 − (ω2

5 + ω3
5).

p = 7 : H2(X, Z)σ
∗

7 = U(7) ⊕

(

4 1
1 2

)

(H2(X, Z)σ
∗

7 )⊥ =







x1 ≡ x2 ≡ 6x3 mod (1 − ω7),
(x1, x2, x3) ∈ (Z[ω7])

⊕3 :
(1 + 5ω7)x1 + 3x2 + 2x3 ≡ 0 mod (1 − ω7)

2







with hermitian form h(α, β) = α1β1 + f1α2f1β2 + f2α3f2β3

where f1 = 3 + 2(ω7 + ω6
7
) + (ω2

7
+ ω5

7
) and f2 = 2 + (ω7 + ω6

7
).

In the case p = 3, K12(−2) denotes the Coxeter-Todd lattice with the bilinear form mul-
tiplied by −2.
This theorem gives a complete description of the invariant sublattice H2(X, Z)σ

∗

p and its
orthogonal complement in H2(X, Z) for the symplectic automorphisms σp of all possible
prime order p = 2, 3, 5, 7 acting on a K3 surface. The results about the order two auto-
morphism is proven by Morrison in [Mo, Theorem 5.7].
We describe the lattices of the theorem and their hermitian forms in the sections from 4.1
to 4.7. The proof is the following: we identify the action of σ∗

p on H2(X, Z) in the case
of X an elliptic K3 surface, this is done in several propositions in these sections, then we
apply [Ni1, Theorem 4.7] which assure the uniqueness of this action.
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4.1. A section of order three. Let X be a K3 surface with an elliptic fibration which
admits a section of order three described in (7) of section 3. We recall that X has six
reducible fibres of type I3 and six singular irreducible fibres of type I1. In the preceding
section we have seen that the rank of the Néron-Severi group is 14. We determine now
NS(X) and TX .
Let t1 denote the section of order three and t2 = t1 + t1. Let σ3 be the automorphism of
X which corresponds to the translation by t1. It leaves each fiber invariant and σ∗

3(s) =

t1, σ∗
3(t1) = t2, σ∗

3(t2) = s. D enoted by C
(i)
0 , C

(i)
1 , C

(i)
2 the components of the i − th

reducible fiber (i = 1, . . . , 6), we can assume that C
(i)
1 · t1 = C

(i)
2 · t2 = C

(i)
0 · s = 1.

P roposition 4.1. A Z-basis for the lattice NS(X) is given by

s, t1, t2, F, C
(1)
1 , C

(1)
2 , C

(2)
1 , C

(2)
2 , C

(3)
1 , C

(3)
2 , C

(4)
1 , C

(4)
2 , C

(5)
1 , C

(5)
2 .

L et U ⊕A6
2 be the lattice generated by the section, the fi ber and the irreducible components

of the six fi bers I3 which do not intersect the zero section s. It has index three in the N éron-

S everi group of X, NS(X). T he lattice NS(X) has discriminant −34 and its discriminant

form is

Z3(
2

3
) ⊕ Z3(

2

3
) ⊕ Z3(

2

3
) ⊕ Z3(−

2

3
).

T he transcendental lattice TX is

TX = U ⊕ U(3) ⊕ A2 ⊕ A2

and has a unique primitive embedding in the lattice ΛK3.

P roof. It is clear that a Q-basis for NS(X) is given by s, F,C
(i)
1 , C

(i)
2 , i = 1, . . . , 6. This

basis generates the lattice U ⊕ A6
2. It has discriminant d(U ⊕ A6

2) = −36. We denote by

ci = 2C
(i)
1 + C

(i)
2 , C =

∑

ci,

di = C
(i)
1 + 2C

(i)
2 , D =

∑

di.

Since we know that t1 ∈ NS(X) we can write

t1 = αs + βF +
∑

γiC
(i)
1 +

∑

δiC
(i)
2 , α, β, γi, δi ∈ Q.

Then by using the fact that t1 · s = t1 ·C
(i)
2 = 0 and t1 ·C

(i)
1 = t1 · F = 1 one obtains that

α = 1, β = 2 and γ1 = −2/3, δ1 = −1/3 hence 1
3C ∈ NS(X). A similar computation with

t2 shows that 1
3D ∈ NS(X). So one obtains that

t1 = s + 2F − 1
3C ∈ NS(X),

t2 = s + 2F − 1
3D ∈ NS(X).

(10)

and so

3(t2 − t1) =
6

∑

i=1

(C
(i)
1 − C

(i)
2 ) = C − D.

We consider now the Q-basis for the Néron-Severi group

s, t1, t2, F, C
(1)
1 , C

(1)
2 , C

(2)
1 , C

(2)
2 , C

(3)
1 , C

(3)
2 , C

(4)
1 , C

(4)
2 , C

(5)
1 , C

(5)
2 .

By computing the matrix of the intersection form respect to this basis one finds that the
determinant is −34. By the Shioda-Tate formula we have |det(NS(X))| = 34. H ence this
is a Z-basis for the Néron-Severi group. We add to the classes which generate U ⊕A6

2 the
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classes t1 and σ∗
3(t1) = t2 given in the formula (10). Since d(U⊕A6

2) = 36 and d(NS(X)) =
−34 the index of U⊕A6

2 in NS(X) is 3. Observe that this is also a consequence of a general
result given at the end of section 3.
The classes

vi =
C

(i)
1 − C

(i)
2 − (C

(5)
1 − C

(5)
2 )

3
, i = 1, . . . , 4

generate the discriminant group, which is NS(X)∨/NS(X)∼= (Z/3Z)⊕4.
These classes are not orthogonal to each other with respect to the bilinear form, so we
take

w1 = v1 − v2, w2 = v3 − v4, w3 = v1 + v2 + v3 + v4, w4 = v1 + v2 − (v3 + v4)

which form an orthogonal basis with respect to the bilinear form with values in Q/Z. And
it is easy to compute that w2

1 = w2
2 = w2

3 = 2/3, w2
4 = −2/3. The discriminant form of

the lattice NS(X) is then

Z3(
2

3
) ⊕ Z3(

2

3
) ⊕ Z3(

2

3
) ⊕ Z3(−

2

3
).(11)

The transcendental lattice TX orthogonal to NS(X) has rank eight. Since NS(X) has
signature (1, 13), the transcendental lattice has signature (2, 6). The discriminant form
of the transcendental lattice is the opposite of the discriminant form of the Néron-Severi
lattice. So the transcendental lattice has signature (2, 6), discriminant 34, discriminant
group T∨

X/TX
∼= (Z/3Z)⊕4 and discriminant form Z3(−

2
3 )⊕Z3(−

2
3)⊕Z(−2

3)⊕Z3(
2
3). By

[Ni2, Cor. 1.13.5] we have T = U ⊕ T ′ where T ′ has rank six, signature (1, 5) and T ′

has discriminant form as before. These data identify T ′ uniquely ([Ni2, Corollary 1.13.3]).
Hence it is isomorphic to U(3) ⊕ A2 ⊕ A2 with generators for the discriminant form

(e − f)/3, (e + f)/3, (A − B)/3, (A′ − B′)/3,

where e, f,A,B,A′, B′ are the usual bases of the lattices.
The transcendental lattice

TX = U ⊕ U(3) ⊕ A2 ⊕ A2

has a unique embedding in the lattice ΛK3 by [Ni2, Theorem 1.14.4] or [Mo, Corollary
2.10]. �

4.1.1. The invariant lattice and its orthogonal complement.

Proposition 4.2. The invariant sublattice of the Néron-Severi group is isometric to U(3)
and it is generated by the classes F and s + t1 + t2.
The invariant sublattice H2(X, Z)σ

∗

3 is isometric to U ⊕ U(3) ⊕ U(3) ⊕ A2 ⊕ A2.

Its orthogonal complement Ω3 := (H2(X, Z)σ
∗

3 )⊥ is the negative definite twelve dimensional
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lattice {Z12,M} where M is the bilinear form






































−4 2 −3 −2 0 −2 0 −2 0 −2 0 −2
2 −4 3 1 0 1 0 1 0 1 0 1

−3 3 −18 0 0 0 0 0 0 0 3 −9
−2 1 0 −6 −3 0 0 0 0 0 0 0

0 0 0 −3 −4 3 2 0 0 0 0 0
−2 1 0 0 3 −6 −3 0 0 0 0 0

0 0 0 0 2 −3 −4 3 2 0 0 0
−2 1 0 0 0 0 3 −6 −3 0 0 0

0 0 0 0 0 0 2 −3 −4 3 2 0
−2 1 0 0 0 0 0 0 3 −6 −3 0

0 0 3 0 0 0 0 0 2 −3 −4 3
−2 1 −9 0 0 0 0 0 0 0 3 −6







































and it is equal to the lattice (NS(X)σ
∗

3 )⊥.

The lattice Ω3 admits a unique primitive embedding in the lattice ΛK3.

The discriminant of Ω3 is 36 and its discriminant form is (Z3(
2
3 ))⊕6.

The isometry σ∗
3 acts on the discriminant group Ω∨

3 /Ω3 as the identity.

Proof. It is clear that the isometry σ∗
3 fixes the classes F and s + t1 + t2. These generate

a lattice U(3) (with basis F and F + s + t1 + t2).
The invariant sublattice H2(X, Z)σ

∗

3 contains TX and the invariant sublattice of the Néron-
Severi group. So (H2(X, Z)σ

∗

3 )⊥ = (NS(X)σ
∗

3 )⊥, this lattice has signature (0, 12) and
by [Ni1, p. 133] the discriminant group is (Z/3Z)⊕6. Hence by [Ni2, Theorem 1.14.4]
there is a unique primitive embedding of (H2(X, Z)σ

∗

3 )⊥ in the K3-lattice. By using the
orthogonality conditions one finds the following basis of Ω3 = (NS(X)σ

∗

3 )⊥:

b1 = t2 − t1, b2 = s − t2, b3 = F − 3C
(5)
2 , b2(i+ 1) = C

(i)
1 − C

(i)
2 , i = 1, . . . , 5

b2j+ 3 = C
(j)
1 − C

(j+ 1)
1 , j = 1, . . . , 4.

An easy computation shows that the G ram matrix of this basis is exactly the matrix M
which indeed has determinant 36.
Since H2(X, Z)σ

∗

3 ⊇ TX⊕NS(X)σ
∗

3 = U⊕U(3)⊕U(3)⊕A2⊕A2 and these lattices have the
same rank, to prove that the inclusion is an equality we compare their discriminants. The
lattice (H2(X, Z)σ

∗

3 )⊥ has determinant 36. So the lattice (H2(X, Z)σ
∗

3 ) has determinant
−36 (because these are primitive sublattices of H2(X, Z)). The lattice U ⊕U(3)⊕U(3)⊕
A2 ⊕ A2 has determinant exactly −36, so

H2(X, Z)σ
∗

3 = U ⊕ U(3) ⊕ U(3) ⊕ A2 ⊕ A2.

Since NS(X)∨/NS(X) ⊂ Ω∨
3 /Ω3 the generators of the discriminant form of the lattice Ω3

are classes w1, . . . , w6 with w1, . . . , w4 the classes which generate the discriminant form of
NS(X) (cf. the proof of the Proposition 4.1) and

w5 =
1

3
(b1 +2b2) =

1

3
(2s− t1− t2) w6 =

1

3
(b1 +2b2−2b3) =

1

3
(2s− t1− t2−2F +6C

(5)
2 ).

These six classes are orthogonal, with respect to the bilinear form taking values in Q/Z,
and generate the discriminant form. Their squares are w2

1 = w2
2 = w2

3 = w2
5 ≡ 2

3

mod 2Z, w2
4 = w2

6 ≡ −2
3 mod 2Z. By replacing w4, w6 by w4 − w6, w4 + w6 we obtain

the discriminant form (Z3(
2
3 ))⊕6.

By computing the image of wi, i = 1, . . . , 6 under σ∗
3 one finds that σ∗

3(wi)−wi ∈ Ω3. For
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example: σ∗
3(w5) − w5 = 1

3(2t1 − t2 − s) − 1
3 (2s − t1 − t2) = t1 − s which is an element of

Ω3 (in fact it is orthogonal to F and to s + t1 + t2). Hence the action of σ∗
3 is trivial on

Ω∨
3 /Ω3 as claimed. �

In the next two subsections we apply the results of section 2 about the Z[ω]-lattices to
describe the lattice {Ω3,M} and to prove that Ω3 is isomorphic to the lattice K12(−2),
where K12 is the Coxeter-Todd lattice (cf. e.g. [CT], [CS] for a description of this lattice).

4.2. The lattice Ω3. Let ω3 be a primitive third root of the unity. In this section we
prove the following result (we use the same notations of section 2):

Theorem 4.2. The lattice Ω3 is isometric to the Z-lattice associated to the Z[ω3]-lattice
{L3, hL3

} where

L3 =







xi ≡ xj mod (1 − ω3),
(x1, . . . , x6) ∈ (Z[ω3])

⊕6 :
∑6

i=1 xi ≡ 0 mod (1 − ω3)
2







and hL3
is the restriction of the standard hermitian form on Z[ω3]

⊕6.

Proof. Let F = F 6
3 be the Z-sublattice of NS(X) generated by

C
(j)
i − C

(j)
i+1, i = 0, 1, 2, j = 1, . . . , 6

with bilinear form induced by the intersection form on NS(X).
Let G = G6

3 denote the Z[ω3]-lattice (1 − ω3)
2Z[ω3]

⊕6 with the standard hermitian form.
This is a sublattice of Z[ω3]

⊕6. Applying to each component of G the Lemma 2.1 we know
that {GZ, bG} is a Z-lattice isometric to the lattice F . The explicit isometry is given by

C
(1)
i − C

(1)
i+1 7→ (1 − ω3)

2(ωi−1
3 , 0, 0, 0, 0, 0)

C
(2)
i − C

(2)
i+1 7→ (1 − ω3)

2(0, ωi−1
3 , 0, 0, 0, 0)

...

C
(6)
i − C

(6)
i+1 7→ (1 − ω3)

2(0, 0, 0, 0, 0, ωi−1
3 ).

The multiplication by ω3 of an element (1 − ω3)
2ej (where ej is the canonical basis)

corresponds to a translation by t1 on a singular fiber, which sends the curve C
(j)
i to the

curve C
(j)
i+1. Hence we have a commutative diagram:

F −→ G
σ∗

3 ↓ ↓ ·ω3

F −→ G.

The elements C
(j)
i − C

(j)
k , i, k = 0, 1, 2, j = 1, . . . , 6 are all contained in the lattice Ω3 =

(NS(X)σ
∗

3 )⊥, but they do not generate this lattice. A set of generators for Ω3 is

s − t1, t1 − t2, C
(j)
i − C

(k)
h i, h = 0, 1, 2, j, k = 1, . . . , 6.

From the formula (10) we obtain that

s − t1 =

6
∑

j=1

[
1

3
(C

(j)
1 − C

(j)
2 ) +

1

3
σ∗

3(C
(j)
1 − C

(j)
2 )].
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After the identification of F with GZ we have

s − t1 = (1 − ω3)
2(

1

3
(1 + ω3))(1, 1, 1, 1, 1, 1) = (1, 1, 1, 1, 1, 1).

The divisor t1 − t2, which is the image of s − t1 under the action of σ∗
3 , corresponds

to the vector (ω3, ω3, ω3, ω3, ω3, ω3). Similarly one can see that the element C
(1)
1 − C

(2)
1

corresponds to the vector (1− ω3)(1,−1, 0, 0, 0, 0, 0) and more in general C
(j)
i −C

(k)
i with

j 6= k corresponds to the vector (1 − ω3)(ω
i−1
3 ej − ωi−1

3 ek) where ei is the standard basis.
The lattice L3 generated by the vectors of GZ and by

ωi
3(1, 1, 1, 1, 1, 1) (1 − ω3)ω

i−1
3 (−ej + ω3ek) i = 0, 1, 2, j, k = 1, . . . 6,

is thus isometric to Ω3.
In conclusion a basis for L3 is

l1 = −ω3(1, 1, 1, 1, 1, 1) l2 = −ω2
3(1, 1, 1, 1, 1, 1) = (1 + ω3)(1, 1, 1, 1, 1, 1)

l3 = (1 − ω3)
2(0, 0, 0, 0, 1 − ω3, 0) l4 = (1 − ω3)

2(1, 0, 0, 0, 0, 0)
l5 = (1 − ω3)(1,−1, 0, 0, 0, 0) l6 = (1 − ω3)

2(0, 1, 0, 0, 0, 0)
l7 = (1 − ω3)(0, 1,−1, 0, 0, 0) l8 = (1 − ω3)

2(0, 0, 1, 0, 0, 0)
l9 = (1 − ω3)(0, 0, 1,−1, 0, 0) l10 = (1 − ω3)

2(0, 0, 0, 1, 0, 0)
l11 = (1 − ω3)(0, 0, 0, 1,−1, 0) l12 = (1 − ω3)

2(0, 0, 0, 0, 1, 0).

The identification between Ω3 and L3 is given by the map bi 7→ li.
After this identification the intersection form on Ω3 is exactly the form b|L3

on L3.
The basis li of L3 satisfies the condition given in the theorem, and so

L3 ⊆ {(x1, . . . , x6) ∈ (Z[ω3])
⊕6 : xi ≡ xj mod (1 − ω3),

∑6
i=1 xi ≡ 0 mod (1 − ω3)

2}.

Since the vectors (1−ω3)
2ej , (1−ω3)(ei−ej) and (1, 1, 1, 1, 1, 1) generate the Z[ω3]-lattice

{(x1, . . . , x6) ∈ (Z[ω3])
⊕6 : xi ≡ xj mod (1 − ω3),

∑6
i=1 xi ≡ 0 mod (1 − ω3)

2} and
since they are all vectors contained in L3, the equality holds. �

4.3. The Coxeter-Todd lattice K12.

Theorem 4.3. The lattice Ω3 is isometric to the lattice K12(−2).

Proof. The lattice K12 is described by Coxeter and Todd in [CT] and by Conway and
Sloane in [CS]. The lattice K12 is the twelve dimensional Z-module associated to a six
dimensional Z[ω3]-lattice Λω3

6 .
The Z[ω3]-lattice Λω3

6 is described in [CS] in four different ways. We recall one of them

denoted by Λ(3) in [CS, Definition 2.3], which is convenient for us. Let θ = ω3 − ω̄3, then
Λω3

6 is the Z[ω3]-lattice

Λω3

6 = {(x1, . . . , x6) : xi ∈ Z[ω3], xi ≡ xj mod θ,
6

∑

i=1

xi ≡ 0 mod 3}

with hermitian form 1
3

t
xȳ. We observe that θ = ω3(1 − ω3). The element ω3 is a unit

in Z[ω3] so the congruence modulo θ is the same as the congruence modulo (1 − ω3).
Observing that −3 = θ2 it is then clear that the Z[ω3]-module Λω3

6 is the Z[ω3]-module
L3. The Z-modules K12 and L3,Z are isomorphic since they are the twelve dimensional
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Z-lattices associated to the same Z[ω3]-lattice. The bilinear form on the Z-module K12 is
given by

bK12
(x, y) =

1

3
xȳ =

1

6
T r (xȳ)

and the bilinear form on L3,Z is given by

b|L3
(x, y) = −

1

3
T r (xȳ).

So the Z-lattice {L3,Z, b|L3
} is isometric to K12(−2). �

Remark. 1) In [CT] Coxeter and Todd give an explicit basis of the Z-lattice K12. By a
direct computation one can find the change of basis between the basis described in [CT]
and the basis {bi} given in the proof of Proposition 4.2.
2) The lattice Ω3 does not contain vectors of norm −2 (cf. [Ni1, Lemma 4.2]), but has
756 vectors of norm −4, 4032 of norm −6 and 20412 of norm −8. Since these properties
define the lattice K12(−2), (cf. [CS, Theorem 1]), this is another way to prove the equality
between Ω3 and K12(−2).
3) The lattice K12(−2) is generated by vectors of norm −4, [PP, Section 3].

4.4. S ection of order fiv e. Let X be a K3 surface with an elliptic fibration which admits
a section of order five as described in section 3. We recall that X has four reducible fibres
of type I5 and four singular irreducible fibres of type I1. We have seen that the rank of
the Néron-Severi group is 18. We determine now NS(X) and TX .
We label the fibers and their components as described in the section 3. Let t1 denote the

section of order five which meets the first singular fiber in C
(1)
1 . By the formula (4) of

section 3 up to permutation of the fibers only the following situations are possible:

t1 · C
(1)
1 = t1 · C

(2)
1 = t1 · C

(3)
2 = t1 · C

(4)
2 = 1 and t1 · C

(j)
i = 0 otherwise;

or t1 · C
(1)
1 = t1 · C

(2)
4 = t1 · C

(3)
2 = t1 · C

(4)
3 = 1 and t1 · C

(j)
i = 0 otherwise.

Observe that these two cases describe the same situation if we change the ” orientation”
on the last two fibers, so we assume to be in the first case. Let σ5 be the automorphism
of order five which leaves each fiber invariant and is the translation by t1, so σ∗

5(s) =
t1, σ∗

5(t1) = t2, σ∗
5(t2) = t3, σ∗

5(t3) = t4, σ∗
5(t4) = s.

Proposition 4.3. A Z-basis for the lattice NS(X) is given by

s, t1, t2, t3, t4, F, C
(1)
1 , C

(1)
2 , C

(1)
3 , C

(1)
4 , C

(2)
1 , C

(2)
2 , C

(2)
3 , C

(2)
4 , C

(3)
1 , C

(3)
2 , C

(3)
3 , C

(3)
4 .

Let U ⊕A4
4 be the lattice generated by the section, the fiber and the irreducible components

of the four fibers I5 which do not intersect the zero section s. It has index five in the

Néron-Severi group of X, NS(X).
The lattice NS(X) has discriminant −52 and its discriminant form is

Z5(
2

5
) ⊕ Z5(−

2

5
).

The transcendental lattice is

TX = U ⊕ U(5)

and has a unique primitive embedding in the lattice ΛK3.
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Proof. The proof is similar to the proof of Proposition 4.1. So we sketch it briefly. The

classes s, F,C
(j)
i , i = 1, . . . , 4, j = 1, . . . , 4, generate U ⊕ A4

4. By using the intersection
form, or by the result of [Mi2, p. 299], we find

t1 = s + 2F − 1
5

[

∑2
i=1(4C

(i)
1 + 3C

(i)
2 + 2C

(i)
3 + C

(i)
4 )+

+
∑4

j=3(3C
(j)
1 + 6C

(j)
2 + 4C

(j)
3 + 2C

(j)
4 )

]

.
(12)

A Z-basis is s, t1, t2, t3, t4, F, C
(1)
1 , C

(1)
2 ,C

(1)
3 ,C

(1)
4 ,C

(2)
1 , C

(2)
2 , C

(2)
3 , C

(2)
4 , C

(3)
1 , C

(3)
2 ,C

(3)
3 ,C

(3)
4 .

Since d(NS(X)) = −52 and d(U ⊕A4
4) = −54, the index of U ⊕A4

4 in NS(X) is five. Let
w1 and w2 be

w1 = 1
5(2C

(1)
1 + 4C

(1)
2 + C

(1)
3 + 3C

(1)
4 + 4C

(3)
1 + 3C

(3)
2 + 2C

(3)
3 + C

(3)
4 );

w2 = 1
5(3C

(2)
1 + C

(2)
2 + 4C

(2)
3 + 2C

(2)
4 + C

(3)
1 + 2C

(3)
2 + 3C

(3)
3 + 4C

(3)
4 ).

The classes v1 = w1−w2, v2 = w1+w2 are orthogonal classes and generate the discriminant
group of NS(X), the discriminant form is

Z5(
2

5
) ⊕ Z5(−

2

5
).

The transcendental lattice TX has rank four, signature (2, 2) and discriminant form
Z5(−

2
5) ⊕ Z5(

2
5 ). Since in this case TX is uniquely determined by signature and dis-

criminant form (cf. [Ni2, Corollary 1.13.3]) this is the lattice

TX = U ⊕ U(5).

The transcendental lattice has a unique embedding in the lattice ΛK3 by [Ni2, Theorem
1.14.4] or [Mo, Corollary 2.10]. �

4.4.1. The invariant lattice and its orthogonal complement.

Proposition 4.4. The invariant sublattice of the Néron-Severi lattice is isometric to the

lattice U(5) and it is generated by the classes F and s + t1 + t2 + t3 + t4.
The invariant lattice H2(X, Z)σ

∗

5 is isometric to U ⊕U(5)⊕U(5) and its orthogonal com-

plement Ω5 = (H2(X, Z)σ
∗

5 )⊥ is the negative definite sixteen dimensional lattice {Z16,M}
where M is the bilinear form























































−4 2 0 0 0 −1 0 0 0 −1 0 0 −1 1 −1 0
2 −4 2 0 5 2 −1 0 0 2 −1 0 1 −1 1 1
0 2 −4 2 −5 −1 2 −1 0 −1 2 −1 1 −1 0 −1
0 0 2 −4 0 0 −1 2 0 0 −1 2 −1 1 1 −1
0 5 −5 0 −50 0 0 0 0 0 0 0 0 0 5 −15

−1 2 −1 0 0 −6 4 −1 −3 0 0 0 0 0 0 0
0 −1 2 −1 0 4 −6 4 1 0 0 0 0 0 0 0
0 0 −1 2 0 −1 4 −6 0 0 0 0 0 0 0 0
0 0 0 0 0 −3 1 0 −4 3 −1 0 2 0 0 0

−1 2 −1 0 0 0 0 0 3 −6 4 −1 −3 0 0 0
0 −1 2 −1 0 0 0 0 −1 4 −6 4 1 0 0 0
0 0 −1 2 0 0 0 0 0 −1 4 −6 0 0 0 0

−1 1 1 −1 0 0 0 0 2 −3 1 0 −4 3 −1 0
1 −1 −1 1 0 0 0 0 0 0 0 0 3 −6 4 −1

−1 1 0 1 5 0 0 0 0 0 0 0 −1 4 −6 4
0 1 −1 −1 −15 0 0 0 0 0 0 0 0 −1 4 −6
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and it is equal to the lattice (NS(X)σ
∗

5 )⊥.

The lattice Ω5 admits a unique primitive embedding in the lattice ΛK3.

The discriminant of Ω5 is 54 and its discriminant form is (Z5(
2
5 ))⊕4.

The isometry σ∗
5 acts on the discriminant group Ω∨

5 /Ω5 as the identity.

Proof. As in the case of an elliptic fibration with a section of order three, it is clear
that σ∗

5 fixes the classes F and s + t1 + t2 + t3 + t4. These classes generate the lattice
U(5), and so H2(X, Z)σ

∗

5 ⊇ U(5) ⊕ TX = U(5) ⊕ U(5) ⊕ U . Using Nikulin’s result in
[Ni1, p. 133] we find that the lattice H2(X, Z)σ

∗

5 has determinant −54, which is exactly
the determinant of U(5) ⊕ U(5) ⊕ U . Since these have the same rank, we conclude that
H2(X, Z)σ

∗

5 = U(5) ⊕ U(5) ⊕ U .
The orthogonal complement (H2(X, Z)σ

∗

5 )⊥ is equal to (NS(X)σ
∗

5 )⊥ as in Proposition
4.2. It has signature (0, 16) and by [Ni1, p. 133] the discriminant group is (Z/5Z)⊕4.
Hence by [Ni2, Theorem 1.14.4] there is a unique primitive embedding of (H2(X, Z)σ

∗

5 )⊥

in the K3-lattice. By using the orthogonality conditions one finds the following basis of
Ω5 = (NS(X)σ

∗

5 )⊥:

b1 = s − t1, b2 = t1 − t2, b3 = t2 − t3, b4 = t3 − t4, b5 = F − 5C
(3)
4 ,

bi = C
(1)
i−5 − C

(1)
i−4, i = 6, 7, 8, b9 = C

(1)
1 − C

(2)
1 ,

bi = C
(2)
i−9 − C

(2)
i−8, i = 10, 11, 12, b13 = C

(2)
1 − C

(3)
1 ,

bi = C
(3)
i−13 − C

(3)
i−12, i = 14, 15, 16.

The Gram matrix of this basis is exactly the matrix M .
The generators of the discriminant group of Ω5 are the classes v1, v2 of the discriminant
form of NS(X) and the classes

v3 = 1
5(b3 + 2b1 + 3b4 + 4b2),

v4 = 1
5(b3 + 2b1 + 3b4 + 4b2 − b5).

These have v2
3 = −2/5 mod 2Z, v2

4 = 2/5 mod 2Z. The generators v1, 2v2 − 4v3 − v4,
2v3, v4 are orthogonal to each other and have self-intersection 2/5. �

4.5. The lattice Ω5. Let ω5 be a primitive fifth root of the unity. In this section we prove
the following result

Theorem 4.4. The lattice Ω5 is isometric to the Z-lattice associated to the Z[ω5]-lattice
{L5, hL5

} where

L5 =







x1 ≡ x2 ≡ 2x3 ≡ 2x4 m o d (1 − ω5)
(x1, . . . , x4) ∈ (Z[ω5])

⊕4 :
(3 − ω5)x1 + (3 − ω5)x2 + x3 + x4 ≡ 0 m o d (1 − ω5)

2







with the hermitian form

hL5
(α, β) =

2
∑

i= 1

αiβ̄i +
4

∑

j= 3

fαjfβj =
2

∑

i= 1

αiβ̄i + τ

4
∑

j= 3

αjβj ,(1 3 )

where α, β ∈ L5 ⊂ Z[ω5]
⊕4, f = 1 − (ω2

5
+ ω3

5
) and τ = ff = 2 − 3 (ω2

5
+ ω3

5
).

P roof. T h e stra te g y o f th e p ro o f is th e sa m e a s in th e c a se w ith a n a u to m o rp h ism o f o rd e r
th re e , b u t th e situ a tio n is m o re c o m p lic a te d b e c a u se th e se c tio n t1 d o e s n o t m e e t a ll th e
fi b e rs I5 in th e sa m e c o m p o n e n t. F o r th is re a so n th e h e rm itia n fo rm o f th e Z[ω5]-la ttic e
L5 is n o t th e sta n d a rd h e rm itia n fo rm o n a ll th e c o m p o n e n ts. It is p o ssib le to re p e a t th e
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construction used in the case of order three, but with the hermitian form (13). W e ex plain
now how we find this hermitian form.
L et F := F 4

5 be the lattice generated by the elements C
(j)
i −C

(j)
i+ 1, i = 0, . . . , 4, j = 1, . . . , 4.

This is a sublattice of (N S (X)σ5∗)⊥. A basis is

d1+ i = (σ∗
5)

i(C
(1)
1 − C

(1)
2 ), d5+ i = (σ∗

5)
i(C

(2)
1 − C

(2)
2 ), d9+ i = (σ∗

5)
i(C

(3)
1 − C

(3)
2 ),

d13+ i = (σ∗
5)

i(C
(4)
1 − C

(4)
2 ), i = 0, . . . , 3

and the bilinear form is thus the diagonal block matrix Q = diag(A,A, B , B )

A =









−6 4 −1 −1
4 −6 4 −1

−1 4 −6 4
−1 −1 4 −6









, B =









−6 −1 4 4
−1 −6 −1 4

4 −1 −6 −1
4 4 −1 −6









.

W e want to identify the multiplication by ω5 in the lattice G with the action of the isometry
σ∗

5 on the lattice F . W e consider the Z[ω5]-module G = (1− ω)2Z[ω]⊕4. N ow we consider
the Z-module GZ. The map

φ : (σ∗
5)

i(C
(1)
1 − C

(1)
2 ) 7→ (1 − ω5)

2ωi
5(1, 0, 0, 0)

(σ∗
5)

i(C
(2)
1 − C

(2)
2 ) 7→ (1 − ω5)

2ωi
5(0, 1, 0, 0)

(σ∗
5)

i(C
(3)
1 − C

(3)
2 ) 7→ (1 − ω5)

2ωi
5(0, 0, 1, 0)

(σ∗
5)

i(C
(4)
1 − C

(4)
2 ) 7→ (1 − ω5)

2ωi
5(0, 0, 0, 1)

is an isomorphism between the Z-modules GZ and F .
N ow we hav e to find a bilinear form bG on G such that {GZ, bG} is isometric to {F,Q}.

O n the first and second fiber the action of σ∗
5 is σ∗

5(C
(j)
i ) = C

(j)
i+ 1, j = 1, 2, i = 0, . . . 4, so

(σ∗
5)

i(C
(j)
1 −C

(j)
2 ) = C

(j)
i+ 1 −C

(j)
i+ 2. H ence the map φ operates on the first two fibers in the

following way:

φ : C
(1)
i+ 1 − C

(1)
i+ 2 7→ (1 − ω5)

2ωi
5(1, 0, 0, 0)

C
(2)
i+ 1 − C

(2)
i+ 2 7→ (1 − ω5)

2ωi
5(0, 1, 0, 0).

This identification is ex actly the identification described in L emma 2.1, so on these gen-
erators of the lattices F and G we can choose ex actly the form described in the lemma.
O n the third and fourth fiber the action of σ∗

5 is diff erent (because σ∗
5 is the translation

by t1 and it meets the first and second fiber in the component C1 and the third and

fourth fiber in the component C2 ). In fact (σ∗
5)

i(C
(j)
1 − C

(j)
2 ) = C

(j)
2i+ 1 − C

(j)
2i+ 2, j = 3, 4,

i = 0, . . . , 4 and so

φ : C
(3)
2i+ 1 − C

(3)
2i+ 2 7→ (1 − ω5)

2ωi
5(0, 0, 1, 0)

C
(4)
2i+ 1 − C

(4)
2i+ 2 7→ (1 − ω5)

2ωi
5(0, 0, 0, 1).

(14)

A direct v erification shows that the map φ defines an isometry between the module gen-

erated by (σ∗
p)

i(C
(j)
1 − C

(j)
2 ), i = 0, . . . , 4 and (1 − ω5)

2
Z[ω5], (j = 3, 4) if one considers

on (1−ω5)
2
Z[ω5] the bilinear form associated to the hermitian form h(α, β) = ταβ where

τ = (2−3(ω2
5 +ω3

5)). The real number τ is the sq uare of f = 1−(ω2
5 +ω3

5), so the hermitian

form abov e is also h(α, β) = ταβ = fαfβ. S o now we consider the Z[ω5]-lattice Z[ω5]
⊕4

with the hermitian form h giv en in (13) and G as a sublattice of {Z[ω5]
⊕4, h}. W e show

that L5 = Ω 5. W e hav e to add to the lattice F some classes to obtain the lattice Ω 5, and
so we hav e to add some v ectors to the lattice G to obtain the lattice L5. It is suffi cient to
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add to F the classes s − t1, C
(1)
1 − C

(2)
1 , C

(2)
1 − C

(3)
1 , C

(3)
1 − C

(4)
1 and their images under

σ∗
5. These classes correspond to the following vectors in Z[ω5]

⊕4:

s − t1 = (1, 1, c, c),

C
(1)
1 − C

(2)
1 = (1 − ω5)(1,−1, 0, 0),

C
(2)
1 − C

(3)
1 = (1 − ω5)(0, 1,−(1 + ω3

5), 0),

C
(3)
1 − C

(4)
1 = (1 − ω5)(0, 0, (1 + ω3

5),−(1 + ω3
5))

where c = ω5(2ω
2
5 − ω5 + 2). A basis for the lattice L5 is then

l1 = (1, 1, c, c) l2 = ω5l1
l3 = ω2

5l1 l4 = ω3
5l1

l5 = (1 − ω5)
2(0, 0, 2 + 4ω5 + ω2

5 + 3ω3
5, 0) l6 = (1 − ω5)

2(1, 0, 0, 0)
l7 = ω5l6 l8 = ω2

5l6
l9 = (1 − ω5)(1,−1, 0, 0) l10 = (1 − ω5)

2(0, 1, 0, 0)
l11 = ω5l10 l12 = ω2

5l10
l13 = (1 − ω5)(0, 1,−(1 + ω3

5), 0) l14 = (1 − ω5)
2(0, 0, 1, 0)

l15 = ω5l14 l16 = ω2
5l14.

The identification between Ω5 and L5 is given by the map bi 7→ li. After this identification
the intersection form on Ω5 is exactly the form b|L5

on L5. �

Remark. 1) We recall that the density of a lattice L of rank n is ∆ = Vn/
√

det L where
Vn is the volume of the n dimensional sphere of radius r (called packing radius of the

lattice), Vn = rnπn/ 2/(n/2)!, r =
√

µ/2 and µ is the minimal norm of a vector of the
lattice.
The density of Ω5 is ∆ = π8

8!
1
52 ≈ 0.009 4.

2) The lattice Ω5 does not admit vectors of norm −2 and can be generated by vectors of
norm −4, and a basis is b1, b2, b3, b4, b5 − b13 − 2b14 − 3b15 − 4b16, b6, b7, b8, b9, b10 + b11,
b11 + b12, b10 + b11 + b12, b13, b14 + b15, b15 + b16, b14 + b15 + b16.

4.6. S ec tio n o f o rd er sev en . Let X be a K 3 surface with an elliptic fibration which
admits a section of order seven as described in section 3. We recall that X has three
reducible fibres of type I7 and three singular irreducible fibres of type I1. We have seen
that the rank of the Néron-Severi group is 20. We determine now NS(X) and TX .
We label the fibers and their components as described in the section 3. Let t1 denote the

section of order seven which meets the first fiber in C
(1)
1 . Again by the formula (4) of

section 3 we have

t1 · C(1)
1 = 1, t1 · C(2)

2 = 1, t1 · C(3)
3 = 1, and t1 · C(j)

i = 0 otherwise.

Let σ7 denote the automorphism of order seven which leaves each fiber invariant and is
the translation by t1, so σ∗

7(s) = t1, σ∗
7(t1) = t2, σ∗

7(t2) = t3, σ∗
7(t3) = t4, σ∗

7(t4) = t5,
σ∗

7(t5) = t6, σ∗
7(t6) = s. The proofs of the next two propositions are very similar to those

of the similar propositions in the case of the automorphisms of order three and five, so we
omit them.

P ro p o sitio n 4 .5 . A Z-basis for the lattice NS(X) is given by

s, t1, t2, t3, t4, t5, t6, F, C
(1)
1 , C

(1)
2 , C

(1)
3 , C

(1)
4 , C

(1)
5 , C

(1)
6 , C

(2)
1 , C

(2)
2 , C

(2)
3 , C

(2)
4 , C

(2)
5 , C

(2)
6 .

L et U ⊕A3
6 be the lattice generated by the section, the fi ber and the irreducible components

of the three fi bers I7 which do not intersect the zero section s. It has index seven in the
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Néron-Severi group of X, NS(X).
T he lattice NS(X) has discriminant −7 and its discriminant form is Z7(−4

7).

T he transcendental lattice TX is the lattice {Z⊕2,Υ} where

Υ :=

(

4 1
1 2

)

and it has a unique primitive embedding in the lattice ΛK3.

4.6.1. T he invariant lattice and its orthogonal complement.

Proposition 4.6. T he invariant sublattice of the Néron-Severi lattice is isometric to the

lattice U(7) and it is generated by the classes F and s + t1 + t2 + t3 + t4 + t5 + t6.
T he invariant lattice H2(X, Z)σ

∗

7 is isometric to U(7) ⊕ TX . Its orthogonal complement

Ω7 := (H2(X, Z)σ
∗

7 )⊥ is the negative definite eighteen dimensional lattice {Z18,M} where

M is the bilinear form






























































−4 2 0 0 0 0 0 −1 0 0 0 0 0 1 −1 0 0 0
2 −4 2 0 0 0 0 2 −1 0 0 0 0 −1 1 1 −1 0
0 2 −4 2 0 0 7 −1 2 −1 0 0 0 0 0 −1 1 1
0 0 2 −4 2 0 −7 0 −1 2 −1 0 1 −1 0 0 0 −1
0 0 0 2 −4 2 0 0 0 −1 2 −1 −1 1 1 −1 0 0
0 0 0 0 2 −4 0 0 0 0 −1 2 −1 0 −1 1 1 −1
0 0 7 −7 0 0 −98 0 0 0 0 0 0 0 0 0 7 −21

−1 2 −1 0 0 0 0 −6 4 −1 0 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 4 −6 4 −1 0 0 0 0 0 0 0
0 0 −1 2 −1 0 0 −1 4 −6 4 −1 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 −1 4 −6 4 −1 0 0 0 0 0
0 0 0 0 −1 2 0 0 0 −1 4 −6 3 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 −1 3 −4 3 −1 0 0 0
1 −1 0 −1 1 0 0 0 0 0 0 0 3 −6 4 −1 0 0

−1 1 0 0 1 −1 0 0 0 0 0 0 −1 4 −6 4 −1 0
0 1 −1 0 −1 1 0 0 0 0 0 0 0 −1 4 −6 4 −1
0 −1 1 0 0 1 7 0 0 0 0 0 0 0 −1 4 −6 4
0 0 1 −1 0 −1 −21 0 0 0 0 0 0 0 0 −1 4 −6































































and it is equal to the lattice (NS(X)σ
∗

7 )⊥.

T he lattice Ω7 admits a unique primitive embedding in the lattice ΛK3.

T he discriminant of Ω7 is 73 and its discriminant form is (Z7(
4
7 ))⊕3.

T he isometry σ∗
7 acts on the discriminant group Ω∨

7 /Ω7 as the identity.

The basis of (NS(X)σ
∗

7 )⊥ associated to the matrix M is b1 = s−t1, b2 = t1−t2, b3 = t2−t3,

b4 = t3 − t4, b5 = t4 − t5, b6 = t5 − t6 b7 = F − 7C
(2)
6 , bi = C

(1)
i−7 − C

(1)
i−6, i = 8 , . . . , 12,

b13 = C
(1)
1 − C

(2)
1 , bi = C

(2)
i−13 − C

(2)
i−8, i = 14, . . . , 18 .

4.7. T h e lattice Ω7. Let ω7 be a primitive seventh root of the unity. In this section we
prove the following result

T h eorem 4.5. T he lattice Ω7 is isometric to the Z-lattice associated to the Z[ω7]-lattice
{L7, hL7

} where

L7 =







x1 ≡ x2 ≡ 6x3 mod (1 − ω7),
(x1, x2, x3) ∈ (Z[ω7])

⊕3 :
(1 + 5ω7)x1 + 3x2 + 2x3 ≡ 0 mod (1 − ω7)

2
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with the hermitian form

hL7
(α, β) = α1β̄1 + f1α2f1β2 + f2α3f2β3,(15)

where f1 = 3 + 2(ω7 + ω6
7) + (ω2

7 + ω5
7), f2 = 2 + (ω7 + ω6

7).

Proof. As in the previous cases we define the lattice F := F 3
7 . We consider the hermitian

form

h(α, β) = α1β̄1 + f1α2f1β2 + f2α3f2β3

on the lattice Z[ω7]
⊕3, and define G to be the sublattice G = (1 − ω7)

2
Z[ω7]

⊕3 of
{Z[ω7]

⊕3, h}.
The map φ : F → G

φ : (σ∗
7)

i(C
(1)
1 − C

(1)
2 ) 7→ (1 − ω7)

2ωi
7(1, 0, 0)

(σ∗
7)

i(C
(2)
1 − C

(2)
2 ) 7→ (1 − ω7)

2ωi
7(0, 1, 0)

(σ∗
7)

i(C
(3)
1 − C

(3)
2 ) 7→ (1 − ω7)

2ωi
7(0, 0, 1)

is an isomorphism between the Z-lattice GZ, with the bilinear form induced by the her-
mitian form, and F with the intersection form. We have to add to G some vectors to find
a lattice L7 isomorphic to Ω7. These vectors are

s − t1 = (1, c, k),

C
(1)
1 − C

(2)
1 = (1 − ω7)(1,−(1 + ω4

7), 0),

C
(2)
1 − C

(3)
1 = (1 − ω7)(0, (1 + ω4

7),−(1 + ω3
7 + ω5

7)),

where c = 1 + 3ω7 + 3ω4
7 + ω5

7 and k = −5 + ω7 − 5ω2
7 − 3ω4

7 − 3ω5
7 . A basis for the lattice

L7 is

l1 = (1, c, k) l2 = ω7l1
l3 = ω2

7l1 l4 = ω3
7l1

l5 = ω4
7l1 l6 = ω5

7l1
l7 = (1 − ω7)

2(0, 2 + 4ω7 + 6ω2
7 + ω3

7 + 3ω4
7 + 5ω5

7 , 0) l8 = (1 − ω7)
2(1, 0, 0)

l9 = ω7l8 l10 = ω2
7l8

l11 = ω3
7l8 l12 = ω4

7l8
l13 = (1 − ω7)(1,−(1 + ω4

7), 0) l14 = (1 − ω7)
2(0, 1, 0)

l15 = ω7l14 l16 = ω2
7l14

l17 = ω3
7l14 l18 = ω4

7l14

.

The identification between Ω7 and L7 is given by the map bi 7→ li. After this identification
the intersection form on Ω7 is exactly the form b|L7

on L7 induced by the hermitian form
(15). �

Remark. 1) The density of Ω7 is ∆ = π9

9!
1√
73

≈ 0.0044.

2) As in the previous cases the lattice Ω7 does not admit vectors of norm −2 and can be
generated by vectors of norm −4, and a basis is b1, b2, b3, b4, b5, b6, b7 − b13 − 2b14 −
3b15 − 4b16 − 5b17 − 6b18, b8 + b9, b9 + b10, b10 + b11, b11 + b12, b10 + b11 + b12, b13, b14 + b15,
b15 + b16, b16 + b17, b17 + b18, b16 + b17 + b18.
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5. Families of K3 surfaces with a symplectic automorphism of ord er p

In the previous sections we used elliptic K3 surfaces to describe some properties of the
automorphism σp. All these K3 surfaces have P icard number ρp + 1, where ρp is the
minimal P icard number found in the P roposition 1.1. In this section we want to describe
algebraic K3 surfaces with symplectic automorphism of order p and with the minimal
possible P icard number. R ecall that the values of ρp are

p 3 5 7
ρp 13 17 19,

and Ωp denote the lattices described in the sections 4.1, 4.4, 4.6.

Proposition 5.1. Let X be a K 3 surface with symplectic automorphism of order p = 3, 5, 7
and Picard number ρp as above. Let L be a generator of Ω⊥

p ⊂ NS(X), with L2 = 2d > 0
and let

Lp
2d := ZL ⊕ Ωp.

Then we may assume that L is ample and
(1 ) if L2 ≡ 2, 4, . . . , 2(p − 1) mod 2p, then Lp

2d = NS(X),

(2 ) if L2 ≡ 0 mod 2p, then either Lp
2d = NS(X) or NS(X) = L̃p

2d with L̃p
2d/L

p
2d ' Z/pZ

and in particular L̃p
2d is generated by an element (L/p, v/p) with v2 ≡ 0 mod 2p and

L2 + v2 ≡ 0 mod 2p2.

Proof. Since L2 > 0 by R iemann R och theorem we can assume L or −L effective. Hence
we assume L effective. Let N be an effective (−2) curve then N = αL + v′, with v′ ∈ Ωp

and α > 0 since Ωp do not contains (−2)-curves. We have L · N = αL2 > 0, and so L
is ample. M oreover recall that L and Ωp are primitive sublattices of NS(X). Since the
discriminant group of Lp

2d := ZL ⊕ Ωp is (Z/2dZ) ⊕ (Z/pZ)⊕np , with n3 = 6, n5 = 4,
n7 = 3 an element in NS(X) not in Lp

2d is of the form (αL/2d, v/p), v ∈ Ωp and satisfy
the following conditions:
(a) p · (αL/2d, v/p) ∈ NS(X),
(b) (αL/2d, v/p) · L ∈ Z,
(c) (αL/2d, v/p)2 ∈ Z.
B y using the condition (a) we obtain p · (αL/2d, v/p) − (0, v) ∈ NS(X) and so

pαL

2d
∈ NS(X).

Hence by the primitivity of L in NS(X) follows that d ≡ 0 mod p, d = pd′, d′ ∈ Z>0 and
so

αL

2d′
∈ NS(X)

which gives α = 2d′ and the class (if there is) is (L/p, v/p). Now condition (b) gives

(L/p, v/p) · L = L2/p ∈ Z

and so L2 = 2p · r, r ∈ Z>0, since the lattice is even. And so if NS(X) = L̃p
2d, then L2 ≡ 0

mod 2p. Finally condition (c) gives

(L/p, v/p)2 =
L2 + v2

p2

and so since a square is even L2 + v2 ≡ 0 mod 2p2. �
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In the sections 4.1, 4.4, 4.6 we defined a symplectic automorphism σp, p = 3, 5, 7 of order

p on some special K3 surfaces and we found the lattices Ωp = (Λ
σ∗

p

K3)
⊥. Now we consider

more in general an isometry on ΛK3 defined as σ∗
p (we call it again σ∗

p). In the next

theorem we prove that if X is a K3 surface such that NS(X) = Lp
2d or NS(X) = L̃p

2d,
then this isometry is induced by a symplectic automorphism of the surface X.

Proposition 5.2. Let Lp = Lp
2d or Lp = L̃p

2d if p = 3, 5 and let L7 = L̃7
2d. Then there

exists a K3 surface X with symplectic automorphism σp of order p such that NS(X) = Lp

(p = 3, 5, 7) and (H2(X, Z)σ
∗

p )⊥ = Ωp.
M oreover there are no K3 surfaces with Néron-Severi group isometric to L7

14d.

Proof. Let σ∗
p, p = 3, 5, 7, be an isometry as in the sections 4.1, 4.4, 4.6. We make the

proof in several steps.
Step 1: there exists a marked K3 surface X such that NS(X) is isometric to Lp, and
there are no K3 surfaces with Néron-Severi group isometric to L7

14d. By [Ni2, Theorem

1.14.4] the lattices Lp
2d L̃3

2d, L̃5
2d have a unique primitive embedding in the K3 lattice. The

lattice T5 = U(5)⊕U(5)⊕ 〈 −2d〉 has a unique primitive embedding in ΛK3, again by [Ni2,
Theorem 1.14.4]. Its signature is (2, 3) and its discriminant form is the opposite of the
discriminant form of L5

2d. Since, by [Ni2, C orollary 1.13.3], L5
2d is uniquely determined

by its signature and discriminant form, it is the orthogonal of T5 in ΛK3 and then L5
2d

admits a primitive embedding in ΛK3. The lattice L̃7
2d is a primitive sublattice of the

Néron-Severi group of the K3 surface described in the section 4.6, so it is a primitive

sublattice of ΛK3 (the same argument can be applied to the lattices L̃p
2d, p = 3, 5). Let

now ω ∈ L⊥
p ⊗ C ⊆ ΛK3 ⊗ C, with ωω = 0, ωω̄ > 0. We choose ω generic with these

properties. By the surjectivity of the period map of K3 surfaces, ω is the period of a K3
surface X with NS(X) = ω⊥ ∩ ΛK3 = Lp.
The rank of the lattice L7

14d is 19 and its discriminant group has four generators. If L7
14d

was the Néron-Severi group of a K3 surface, the transcendental lattice of this surface
should be a rank three lattice with a discriminant group generated by four elements. This
is clearly impossible.
Step 2: the isometry σ∗

p fixes the sublattice Lp. Since σ∗
p(Ωp) = Ωp and σ∗

p(L) = L (because

L ∈ Ω⊥
p which is the invariant sublattice of ΛK3), if Lp = Lp

2d = ZL ⊕ Ωp it is clear that

σ∗
p(Lp) = Lp. Now we consider the case Lp = L̃p

2d. The isometry σ∗
p acts trivially on

Ω∨
p /Ωp (cf. Propositions 4.2, 4.4, 4.6) and on (ZL)∨/ZL. Let 1

p(L, v′) ∈ Lp, with v′ ∈ Ωp.

This is also an element in (Ωp ⊕ LZ)∨/(Ωp ⊕ LZ). So we have σ∗
p(

1
p(L, v′)) ≡ 1

p(L, v′)
mod (Ωp ⊕ ZL), which means

σ∗
p(

1

p
(L, v′)) =

1

p
(L, v′) + (βL, v′′), β ∈ Z, v′′ ∈ Ωp.

Hence we have σ∗
p(Lp) = Lp.

Step 3: The isometry σ∗
p is induced by an automorphism of the surface X. The isometry

σ∗
p fixes the sublattice L⊥

p of ΛK3, so it is an Hodge isometry. By the Torelli theorem
an effective Hodge isometry of the lattice ΛK3 is induced by an automorphism of the
K3 surface (cf. [BPV , Theorem 11.1]). To apply this theorem we have to prove that
σ∗

p is an effective isometry. An effective isometry on a surface X is an isometry which
preserves the set of effective divisors. By [BPV , C orollary 3.11] σ∗

p preserves the set of the
effective divisors if and only if it preserves the ample cone. So if σ∗

p preserves the ample
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cone it is induced by an automorphism of the surface. This automorphism is symplectic
by construction (it is the identity on the transcendental lattice TX ⊂ Ω⊥

p ), and so if σ∗
p

preserves the ample cone, the theorem is proven.
Step 4: The isometry σ∗

p preserves the ample cone AX . Let C+
X be one of the two connected

components of the set {x ∈ H1,1(X, R) | (x, x) > 0}. The ample cone of a K3 surface
X can be described as the set AX = {x ∈ C+

X | (x, d) > 0 for each d such that (d, d) =
−2, d effective}. First we prove that σ∗

p fixes the set of the effective (−2)-curves. Since

there are no (−2)-curves in Ωp, if N ∈ Lp has N2 = −2 then N = 1
p(aL, v′), v′ ∈ Ωp,

for an integer a 6= 0. Since 1
paL2 = L · N > 0, because L and N are effective divisor, we

obtain a > 0. The curve N ′ = σ∗
p(N) is a (−2)-curve because σ∗

p is an isometry, hence N ′

or −N ′ is effective. Since N ′ = σ∗
p(N) = (aL, σ∗

p(v′)) we have −N ′ ·L = −aL2 < 0 and so
−N ′ is not effective. U sing the fact that σ∗

p has finite order it is clear that σ∗
p fixes the set

of the effective (−2)-curves.
Now let x ∈ AX then σ∗

p(x) ∈ AX , in fact (σ∗
p(x), σ∗

p(x)) = (x, x) > 0 and for each

effective (−2)-curve d there exists an effective (−2)-curve d′ with d = σ∗
p(d

′), so we have
(σ∗

p(x), d) = (σ∗
p(x), σ∗

p(d
′)) = (x, d′) > 0. Hence σ∗

p preserves AX as claimed. �

Corollary 5.1. The coarse moduli space of Lp-polarized K3 surfaces (cf. [D o] for the
definition) p = 3, 5, 7 has dimension seven, three, respectively one and is a quotient of

DLp
= {ω ∈ P(L⊥

p ⊗Z C) : ω2 = 0, ωω̄ > 0}
by an arithmetic group O(Lp).

Remark. In particular the moduli space of K3 surfaces admitting a symplectic automor-
phism of order p = 3, 5, 7 has dimension respectively seven, three and one.

6. Final remarks

1. In Proposition 5.2 it would be interesting to prove the unicity of the lattices L̃p
2d, this

requires some careful analysis of the automorphism group of the lattices Ωp, p = 3, 5, 7.
2. It is not difficult to give examples of K3 surfaces (not elliptic) in some projective space
with a symplectic automorphism of order three or five. Consider for example the surfaces
of P

3:

S1 : q4(x0, x1) + q2(x0, x1)x2x3 + l1(x0, x1)x
3
2 + l′1(x0, x1)x

3
3 + ax2

2x
2
3 = 0

S2 : a01x
2
0x

2
1 + a23x

2
2x

2
3 + a0123x0x1x2x3 + a02x

3
0x2 + a13x

3
1x3 + a12x1x

3
2 + a03x0x

3
3 = 0.

where qi is homogeneous of degree i, l1, l′1 are linear forms, and aij ∈ C. The surfaces
S1 resp. S2 admit symplectic automorphisms of order three resp. of order five induced
by the automorphisms of P

3 given by σ3 : (x0 : x1 : x2 : x3) −→ (x0 : x1 : ω3x2 : ω2
3x3)

and σ5 : (x0 : x1 : x2 : x3) −→ (ω5x0 : ω4
5x1 : ω2

5x2 : ω3
5x3). The automorphisms of

P
3 commuting with σ3 resp. σ5 form a space of dimension six, resp. four, since the

equations depend on 13, resp. seven parameters the dimension of the moduli space is
seven, resp. three as expected (this is the minimal possible dimension). In a similar way
one can costruct many more examples. In the case of order seven automorphisms it is
more difficult to give such examples. Already in the case of a polarization L2 = 2, the K3
surface is the minimal resolution of the double covering of P2 ramified on a sextic with
singular points and these are the fixed points of the automorphisms. One should resolve
the singularities and analyze the action on the resolution before doing the double cover.
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PROJECTIVE MODELS OF K3 SURFACES WITH AN EVEN SET

ALICE GARBAGNATI AND ALESSANDRA SARTI

Abstract. Th e a im o f th is p a p e r is to d e sc rib e a lg e b ra ic K 3 su rfa c e s w ith a n e v e n se t o f
ra tio n a l c u rv e s o r o f n o d e s. Th e ir m in im a l p o ssib le P ic a rd n u m b e r is n in e . W e c o m p le te ly
c la ssify th e se K 3 su rfa c e s a n d a fte r a c a re fu l a n a ly sis o f th e d iv iso rs c o n ta in e d in th e P ic a rd
la ttic e w e stu d y th e ir p ro je c tiv e m o d e ls, g iv in g n e c e ssa ry a n d su ffi c ie n t c o n d itio n s to h a v e a n
e v e n se t. M o re o v e r w e in v e stig a te th e ir re la tio n w ith K 3 su rfa c e s w ith a Nik u lin in v o lu tio n .

0. In tro d u ctio n

It is a c la ssic a l p ro b le m in a lg e b ra ic g e o m e try to d e te rm in e w h e n a se t o f (−2)-ra tio n a l c u rv e s
o n a su rfa c e is e v e n . T h is m e a n s th e fo llo w in g : le t L1, . . . ,LN b e ra tio n a l c u rv e s o n a su rfa c e
X th e n th e y fo rm a n even set if th e re is δ ∈ P ic(X) su ch th a t

L1 + . . . + Ln ∼ 2δ.

T h is is e q u iv a le n t to th e e x iste n c e o f a d o u b le c o v e r o f X b ra n ch e d o n L1 + . . . + Ln. T h is
p ro b le m is re la te d to th e stu d y o f e v e n se ts o f n o d e s, in fa c t a se t o f n o d e s is e v e n if th e
(−2)-ra tio n a l c u rv e s in th e m in im a l re so lu tio n a re a n e v e n se t. In p a rtic u la r th e stu d y o f
e v e n se ts o n su rfa c e s p la y s a n im p o rta n t ro le in d e te rm in in g th e m a x im a l n u m b e r o f n o d e s a
su rfa c e c a n h a v e (c f. e .g . [B e ], [J R ]). H e re w e re stric t o u r a tte n tio n to K 3 su rfa c e s.
In a fa m o u s p a p e r o f 1 9 7 5 [N 1 ] N ik u lin sh o w s th a t a n e v e n se t o f d isjo in t ra tio n a l c u rv e s
(re sp . o f d istin c t n o d e s) o n a K 3 su rfa c e c o n ta in s 0, 8 o r 1 6 ra tio n a l c u rv e s (n o d e s). If th e
e v e n se t o n th e K 3 su rfa c e X is m a d e u p b y six te e n ra tio n a l c u rv e s, th e su rfa c e c o v e rin g
X is b ira tio n a l to a c o m p le x to ru s A a n d X is th e K u m m e r su rfa c e o f A. T h is situ a tio n is
stu d ie d b y N ik u lin in [N 1 ]. If th e e v e n se t o n X is m a d e u p b y e ig h t ra tio n a l c u rv e s th e n th e
su rfa c e c o v e rin g X is a lso a K 3 su rfa c e . T h e re a re so m e m o re g e n e ra l re su lts a b o u t e v e n se ts
o f c u rv e s n o t n e c e ssa rily d isjo in t. M o re re c e n tly in [B 1 ] B a rth stu d ie s th e c a se o f e v e n se ts
o f ra tio n a l c u rv e s o n q u a rtic su rfa c e s (i.e . K 3 su rfa c e s in P

3) a lso in th e c a se th a t th e c u rv e s
m e e t e a ch o th e r a n d h e fi n d s se ts c o n ta in in g six o r te n lin e s to o .
In th e p a p e r [B 2] h e d isc u sse s so m e p a rtic u la r e v e n se ts o f d isjo in t lin e s a n d n o d e s o n K 3
su rfa c e s w h o se p ro je c tiv e m o d e ls a re a d o u b le c o v e r o f th e p la n e , a q u a rtic in P

3 o r a d o u b le
c o v e r o f th e q u a d ric P

1
×P

1, a n d h e g iv e s n e c e ssa ry a n d su ffi c ie n t c o n d itio n s to h a v e a n e v e n
se t.
O u r p u rp o se is to stu d y a lg e b ra ic K 3 su rfa c e s a d m ittin g a n e v e n se t o f e ig h t d isjo in t ra tio n a l
c u rv e s. W e in v e stig a te th e ir P ic a rd la ttic e s, m o d u li sp a c e s a n d p ro je c tiv e m o d e ls. T h e
m in im a l p o ssib le P ic a rd n u m b e r is n in e , a n d w e re stric t o u r stu d y to th e su rfa c e s w ith th is
P ic a rd n u m b e r. T h e te ch n iq u e s u se d b y B a rth in h is a rtic le a re m o stly g e o m e tric , h e re w e u se
la ttic e th e o ry : w e in v e stig a te fi rst th e P ic a rd la ttic e s o f th e K 3 su rfa c e s a n d th e a m p le n e ss
o f c e rta in d iv iso rs, th e n w e stu d y th e p ro je c tiv e m o d e ls. W e fi n d a g a in th e c a se s stu d ie d b y
B a rth a n d w e d isc u ss m a n y n e w c a se s, w ith a sp e c ia l a tte n tio n to c o m p le te in te rse c tio n s. W e

Th e se c o n d a u th o r w a s p a rtia lly su p p o rte d b y DF G Rese a rch Gra n t SA 1 3 8 0 / 1 -2 .
2000 Mathematics Subject Classification: 1 4 J 2 8 , 1 4 J 1 0 , 1 4 E2 0 .
K ey w ord s: K 3 su rfa c e s, e v e n se ts o f c u rv e s, m o d u li.
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give also an explicit relation between the Picard lattice of an algebraic K3 surface with an
even set and the Picard lattice of the K3 surface which is its double cover. More precisely if X
admits an even set of eight disjoint rational curves, then by [N1], it is the desingularization of
the quotient of a K3 surface by a Nikulin involution (i.e. a symplectic automorphism of order
two). The Nikulin involutions are well known and are studied by Morrison in [M] and by van
G eemen and S arti in [vG S ]. In [vG S ] the authors describe also some geometric properties of
the quotient by a Nikulin involution and so of K3 surfaces with an even set of eight nodes.
In [N1] Nikulin proves that a sufficient condition on a K3 surface to be a Kummer surface
(and so to have an even set made up by sixteen disjoint rational curves) is that a particular
lattice (the so called Kummer lattice) is primitively embedded in the Néron S everi group of
the surface. Here we prove a similar result: a sufficient condition on a K3 surface X to be
the desingularization of the quotient of another K3 surface with a Nikulin involution (and
so to have an even set made up by eight disjoint rational curves) is that a particular lattice
(the so called Nikulin lattice) is primitively embedded in the Néron S everi group of X. This
result is essential to describe the coarse moduli space of a K3 surface with an even set of
eight disjoint rational curves.
In the S ection 1 we recall some known results on even sets on surfaces, in particular on K3
surfaces. In the S ection 2 we study algebraic K3 surfaces X with Picard number nine. If
X admits an even set of eight disjoint rational curves, then its Néron S everi group has rank
at least nine (it has to contain the eight rational curves of the even set and a polarization,
because the K3 surface is algebraic). The main results of this section (and also two of the
main results of this paper) are the complete description of the possible Néron S everi groups
of rank nine of algebraic K3 surfaces admitting an even set and the complete description
of the coarse moduli space of the algebraic K3 surfaces with an even set of eight disjoint
rational curves. Moreover using the results of [vG S ] we describe the relation between the
Néron S everi group of an algebraic K3 surface Y admitting a Nikulin involution ι and the
Néron S everi group of a K3 surface admitting an even set, which is the desingularization of
Y/ ι (C orollary 2.2). In the S ection 3 we analyze the ampleness of some divisors (or more in
general the nefness). These classes are used in the S ection 4 to describe projective models
of algebraic K3 surfaces with an even set of eight disjoint rational curves. In particular we
describe the following projective models:
• double covers of P

2: these branch along a sextic with eight nodes (Paragraph 4 .1) or
along a smooth sextic (Paragraph 4 .4 , a)) (these two situations are studied also by Barth in
[B2], first and second cases), or along a sextic with four nodes (Paragraph 4 .7);
• q ua rtic surfa ces in P

3: these have an even set of nodes (Paragraph 4 .2) or an even set
of lines (Paragraph 4 .5, a)) (these two situations are studied also by Barth in [B2], third and
forth cases), or it has a mixed even set of nodes and conics (Paragraph 4 .8, b));
• double covers of a con e : these branch along a conic and a sextic on the cone, which
intersect in six points (Paragraph 4 .3);
• com p lete in tersection s of a h y p erq ua dric a n d a cubic h y p ersurfa ce in P

4: these
have an even set of nodes (Paragraph 4 .4 , b)) or an even set of lines (Paragraph 4 .7, a));
• com p lete in tersection s of th ree h y p erq ua drics in P

5: these have an even set of nodes
(Paragraph 4 .5, b) and Paragraph 4 .6, b)) or an even set of lines (Paragraph 4 .8, a) and
Paragraph 4 .9, a));
• double covers of a sm ooth q ua dric: these branch along a curve of bidegree (4 , 4 )
(Paragraph 4 .6) (this case is studied also by Barth in [B2], sixth case);
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• We study also the following complete intersections (c.i.) of hypersurfaces of bidegree (a, b)
in P

n × P
m:

space c.i. paragraph
P

1 × P
2 (2, 3) 4.9 b)

P
4 × P

2 (2, 0), (1, 1), (1, 1), (1, 1) 4.4 c)
P

2 × P
2 (1, 2), (2, 1) 4.10

P
3 × P

3 (1, 1), (1, 1), (1, 1), (1, 1) 4.11

In Section 4 we describe moreover geometric properties of these K3 surfaces with an even set.
In Section 5 we use these properties to give sufficient conditions for a K3 surface to have an
even set.
We would like to thank Bert van Geemen for his encouragements and for many useful and

very interesting discussions. T his work has been done during the second author’s stay at the

U niversity of M ilan, she would like to exp ress her thanks to E lisabetta C olombo and Bert van

Geemen for their warm hosp itality .

1. K3 surfaces with an even set of nodes and of rational curves

Definition 1.1. L et X be a surface. A set of m disjoint (−2)-rational smooth curves, N1,
. . .,Nm, on X, is an even set of rational curves if there is a divisor δ ∈ Pic(X) such that

N1 + . . . + Nm ∼ 2δ,

where ′′ ∼′′ denotes linear equivalence.

Definition 1.2 . L et X̄ be a surface and let N = {p1, . . . , pm} be a set of nodes on X̄. L et

β̃ : X −→ X̄ be the minimal resolution of the nodes of X and let Ni = β̃−1(pi), i = 1, . . . ,m.

T hese are (−2)-rational curves on X. T he set N is an even set of nodes if N1, . . . , Nm are

an even set of rational curves.

In the case of K3 surfaces linear equivalence is the same as algebraic equivalence (which we
denote by ≡) and Pic(X) = NS (X).
The existence of an even set N1, . . . , Nm on a surface X is equivalent to the existence of a

double cover π : Ỹ → X from a surface Ỹ to X branched on N1+. . .+Nm [BPV , L emma 17.1].

L et Y be a surface and ι be an involution on Y with exactly m distinct fixed points q1, . . . , qm

and let Ỹ be the blow up of Y at the points q1, . . . , qm. The involution ι induces an involution

ι̃ on Ỹ . L et X̄ be the quotient surface Y/ι and π′ : Y → X̄ be the projection. The surface X̄

has m nodes in π′(qi), i = 1, . . . ,m. L et β̃ : X → X̄ be the minimal resolution of X̄ . Then
the following diagram commutes

Ỹ
β

−→ Y
π ↓ ↓ π′

X
β̃

−→ X̄.

(1)

The double cover π : Ỹ → X is branched on N1 + . . . + Nm where Ni are the (−2)-curves

such that β̃(Ni) = π′(qi), i = 1, . . . ,m and these form an even set.

Conversely if π : Ỹ → X is a double cover of X branched on the divisor N1 + . . . +Nm where
Ni are (−2)-rational curves, then there is a diagram as (1).

We recall some facts about even sets on K3 surfaces:
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• If N1, . . . , Nm is an even set of disjoint curves on a K3 surface, by a result of Nikulin
[N1, Lemma 3] we have m = 0, 8 or 16.

• If m = 16 the surface Y in the diagram (1) is a torus of dimension two ([N1, Theorem
1]), the involution ι is defined on Y as y 7→ −y, y ∈ Y and has sixteen fixed points.
So X is the Kummer surface associated to the surface Y (a Kummer surface is by
definition the K3 surface obtained as the desingularization of the quotient of a torus
Y by the involution y 7→ −y, y ∈ Y ). If Y is an algebraic torus (so an A belian
surface), then X is an algebraic K3 surface and its Picard number is ρ ≥ 17.

• If m = 8 then the surface Y is a K3 surface and the cover involution has eight isolated
fixed points (it is a Nikulin involution, cf. D efinition 1.3 below). If Y is an algebraic
K3 surface, then X is algebraic and its Picard number is ρ ≥ 9.

Definition 1.3. Let Y be a K 3 surface. Let ι be an involution of Y . The involution ι is

called Nikulin involution if ι|H2,0(X ,C) = id |H2,0(X ,C).

We recall some facts about the Nikulin involutions:

• A n involution ι on a K3 surface is a Nikulin involution if and only if it has eight
isolated fixed points [N2, Section 5].

• The Nikulin involutions are the unique involutions on a K3 surface Y such that the

desingularization of Y/ι = X̄ is a K3 surface. In fact let Ỹ be the blow up of Y on the

fixed points of the involution ι. In this way we obtain more algebraic classes on Ỹ ,

but the transcendental classes are the same and so H2,0(Y )ι
∗

= H2,0(Ỹ )ι̃
∗

. Since an
automorphism of a K3 surface induces a Hodge isometry on the second cohomology

group we have ι∗(H2,0(Y )) = H2,0(Y ) ' C and since H2,0(Ỹ )ι̃
∗

= H2,0(X) ' C it
follows that ι∗ is the identity on H2,0(Y ), so ι is a symplectic automorphism.

2. Even sets and Nikulin involutions

Let N1, . . . , N8 be an even set of eight disjoint smooth rational curves on a K3 surface X, then
by adjunction N2

i = −2 and Morrison shows in [M, Lemma 5.4] that the minimal primitive
sublattice of H2(X, Z) containing these (−2)-curves is isomorphic to the Nikulin lattice:

Definition 2.1. [M, D efinition 5.3] The Nikulin lattice is an even lattice N of rank eight

generated by {Ni}
8
i= 1 and N̂ = 1

2

∑
Ni, with bilinear form induced by

Ni · Nj = −2δij .

Observe that N̂2 = −4 and N̂ · Ni = −1. This lattice is a negative definite lattice of
discriminant 26 and discriminant group (Z/2Z)⊕6.
F rom now on X is an algebraic K3 surface. A K3 surface has an even set of eight disjoint
rational curves if there are eight disjoint rational curves spanning a copy of N in NS(X) (then
rank NS(X) ≥ 8). Since X is algebraic the signature of the Néron Severi group NS(X) is
(1, ρ− 1), where ρ is the Picard number of X (i.e. the rank of NS(X)). So the Néron Severi
group of X has signature (1, ρ − 1) and has to contain the negative lattice N of rank eight,
so NS(X) contains also a class with positive self intersection. Clearly ρ ≥ 9 and we will see
that the generic algebraic K3 surface with an even set has ρ = 9 and that the number of
moduli is 20 − 9 = 11 (Corollary 2.3). Here we study the case of algebraic K3 surfaces with
Picard number nine.

Proposition 2.1. Let X be an algebraic K 3 surface with an even set of eight disjoint rational

curves and with P icard number nine, let L be a divisor generating N⊥ ⊂ NS(X), L2 > 0.
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Let d be a positive integer such that L2 = 2d and let

L2d = ZL ⊕ N.

Then
(1 ) if L2 ≡ 2 mod 4 then NS(X) = L2d,
(2 ) if L2 ≡ 0 mod 4 then either NS(X) = L2d or NS(X) = L′

2d, where L′
2d is generated by

L2d and by a class (L/2, v/2), with

• v2 ∈ 4Z,
• v · Ni ∈ 2Z (v ∈ N but v/2 /∈ N ),
• L2 ≡ −v2 mod 8.

Proof. The discriminant group of L2d = ZL ⊕ N is (Z/2dZ) ⊕ (Z/2Z)⊕6, hence an element
in the Néron Severi group of X but not in L2d is of the form (αL/2d, v/2) with α ∈ Z,
v ∈ N . Since 2 · (αL/2d, v/2) − v ∈ NS(X) we can assume that α = d and so the element is

(L/2, v/2). We can write v =
∑

αiNi + βN̂ , β ∈ {0, 1}, we have

(
L

2
,
v

2
) · Ni ∈ Z.

Hence by doing the computations it follows

1

2
(−2αi − β) ∈ Z,

hence β ∈ 2Z, and so we may assume β = 0. We have also

(
L

2
,
v

2
) · N̂ ∈ Z

so

−
1

2
(
∑

αi) ∈ Z

hence α1 + . . . + α8 ∈ 2Z and so α2
1 + . . . + α2

8 ∈ 2Z too. We have

v2 = −2
∑

α2
i − 4β2 − 2β

∑
αi

= −2(
∑

α2
i ).

It follows that v2 ∈ 4Z and v · Ni ∈ 2Z.
Since the Néron Severi lattice of a K3 surface is even we have

(
L

2
,
v

2
)2 =

L2 + v2

4
∈ 2Z

which gives L2 ∈ 4Z, so d must be even and L2 + v2 ≡ 0 mod 8.
Assume now that there is another class (L/2, v′/2)∈ NS(X), then the class (L/2, v/2) −
(L/2, v′/2) = (v − v′)/2 ∈ NS(X) too. Since N is primitive (v − v′)/2 ∈ N . So there is a
δ ∈ N s.t. v − v′ = 2δ. So (L/2, v′/2) ∈ NS(X) if and only if (L/2, v′/2) = (L/2, v/2) + δ
for certain δ ∈ N . This concludes the proof of the proposition. �

Proposition 2.2. Under the assumptions of the Proposition 2 .1 , L′
2d is the unique even

lattice (up to isometry) such that [L′
2d : L2d] = 2 and N is a primitive sublattice of L′

2d.

Proof. We describe briefl y the group O(N) of isometries of N . These must preserve the
intersection form, so the image of each (−2)-vector under an isometry is a (−2)-vector. The
only (−2)-vectors in the Nikulin lattice N up to the sign are the eight vectors Ni and so if
σ ∈ O(N) then σ(Ni) = ±Nj, i, j = 1, . . . , 8. In particular the group of permutation of eight

elements Σ 8 is contained in O(N). This group fixes the class N̂ .
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Each class v in N is v =
∑8

i=1 αiNi + aN̂ , αi, a ∈ Z. We consider two diff erent elements v
and v′ such that L2d together with the class (L/2, v/2) or with the class (L/2, v′/2) generate
an overlattice of L2d. We want to prove that there exists an isometry σ of N such that
σ(v) = v′. From the conditions given on v, or v′, (in particular from the fact that v ·Ni ∈ 2Z),

v =
∑8

i=1 αiNi, αi ∈ Z and v′ =
∑8

i=1 βiNi, βi ∈ Z, we may assume that αi, βi ∈ {0, 1}. The
only possibilities for v2 (or v′2) are −4,−8,−12, (by the condition on v2 given in the previous
proof) and this depends only on the number of α′

is (resp. β′
is) equal to one.

We distinguish two diff erent cases: v2 = v′2 and v2 6= v′2 but v2 ≡ v′2 mod 8 (since
−v′2 ≡ L2 ≡ −v2 mod 8).
The case v2 = v′2. This condition implies that there are the same number of αi and βi equal
to one. Hence there is a permutation σ ∈ Σ8 ⊂ O(N) of the Ni, s.t. σ(v) = v′.
Observe that if L2 ≡ 0 mod 8, then it is clear from the description above that v2 = v′2 = −8
and so we are in this case.
The case v2 6= v′2, v2 ≡ v′2 mod 8 and L2 ≡ 4 mod 8. If L2 ≡ 4 mod 8 then v2

and v′2 are −4 or −12. So we can assume v2 = −4 and v′2 = −12 and v = N1 + N2

v′ = N3+N4+N5+N6+N7+N8 (up to isometry of the lattice). Observe that v′/2 = N̂−v/2
hence the lattice generated by L2d and by (L/2, v/2) or by L2d and by (L/2, v′/2) are the
same. �

Corollary 2.1. Let L2 ≡ 0 mod 4 and NS(X) = L′
2d. Then there are two possibilities:

• L2 ≡ 4 mod 8. In this case one can assume that v = −N1 −N2 and (L−N3 − . . .−

N8)/2 = (L + v)/2 + N̂ − (N3 + · · · + N8) is in NS(X) too.
• L2 ≡ 0 mod 8. In this case one can assume that v = −(N1 + N2 + N3 + N4) and

(L − N5 − N6 − N7 − N8)/2 is in NS(X) too.

Proposition 2.3. Let Γ = L2d or L′
2d then there exists a K3 surface X with an even set of

eight disjoint rational (−2)-smooth curves, such that NS(X) = Γ .

In the proof of this proposition we will use the relations between the Néron Severi group of a
K3 surface Y with a Nikulin involution and the Néron Severi group of a K3 surface X which
is the desingularization of the quotient of Y by the Nikulin involution. Here we recall the
two following Propositions of [vGS] in which the properties of the Néron Severi group of a
K3 surface with a Nikulin involution are described (we use the notation of the Diagram 1).
Proposition [vGS, Proposition 2.2] Let Y be an algebraic K3 surface admitting a Nikulin
involution and with Picard number nine. Let M be a divisor generating E8(−2)⊥ ⊂ NS(Y ),
M2 = 2d′ > 0 and let

M2d′ = ZM ⊕ E8(−2).

Then M is ample, and
(1) if M2 ≡ 2 mod 4 then NS(Y ) = M2d′ ,
(2) if M2 ≡ 0 mod 4 then either NS(Y ) = M2d or NS(Y ) = M′

2d′ , where M′
2d′ is generated

by M2d′ and by a class (M/2, v/2), with v ∈ E8(−2).
Proposition [vGS, Proposition 2.7] (1) Assume that NS(Y ) = ZM ⊕ E8(−2) = M2d′ . Let

E1, . . . , E8 be the exceptional divisors on Ỹ . Then: (i) In case M2 = 4n + 2, there exist line
bundles L1, L2 ∈ NS(X) such that for a suitable numbering of these Ei we have:
β∗M − E1 − E2 = π∗L1, β∗M − E3 − . . . − E8 = π∗L2.
The decomposition of H0(Y,M) into ι∗-eigenspaces is:
H0(Y,M) ∼= π∗H0(X,L1) ⊕ π∗H0(X,L2), (h0(L1) = n + 2, h0(L2) = n + 1)
and the eigenspaces P

n+ 1, Pn contain six, respectively two, fi xed points.
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(ii) In case M2 = 4n, for a suitable numbering of the Ei we have:
β∗M−E1−E2−E3−E4 = π∗L1, β∗M−E5−E6−E7−E8 = π∗L2 with L1, L2 ∈ NS(X).
The decomposition of H0(Y,M) into ι∗-eigenspaces is:
H0(Y,M) ∼= π∗H0(X,L1) ⊕ π∗H0(X,L2), (h0(L1) = h0(L2) = n + 1).
and each of the eigenspaces P

n contains four fixed points.
(2) Assume NS(Y ) = M′

2d′ . Then there is a line bundle L ∈ NS(X) such that:
β∗M ∼= π∗L. The decomposition of H0(Y,M) into ι∗-eigenspaces is:

H0(Y,M) ∼= H0(X,L) ⊕ H0(X,L − N̂), (h0(L) = n + 2, h0(L − N̂) = n)
and all fixed points map to the eigenspace P

n+1 ⊂ P
2n+1.

Proof of Proposition 2.3. First observe that the lattices L2d and L′
2d are primitively embedded

in the K3 lattice by [N3, Theorem 1.14.1], so we can identify them with sublattices of U3 ⊕
E8(−1)2.
1) We consider first the case of Γ = L2d = ZL ⊕ N in this case L2 ≡ 2 mod 4 or L2 ≡ 0
mod 4. We show that there exists a K3 surface with an even set of (−2)-smooth curves s.t.
NS(X) = L2d. Let Y be a K3 surface with ρ(Y ) = 9, with Nikulin involution and Néron
Severi group containing the lattice ZM ⊕ E8(−2) with index two and with M2 ≡ 0 mod 4;
such a K3 surface exists by [vGS, Proposition 2.2, 2.3] (in this case its Néron-Severi group
is M′

2d′ , for some non-negative integer d′). We have a diagram like Diagram 1, and so a K3
surface X, which is the minimal resolution of the quotient of Y by the Nikulin involution.
Since ρ(Y ) = 9 then ρ(X) = 9 too. By [vGS, Proposition 2.7] there is a line bundle L,
L ∈ NS(X) with π∗L = β∗M . By the properties of the map π∗, 2L2 = (π∗L)2 = (β∗M)2 =
M2 ≡ 0 mod 4 and so L2 ≡ 2 mod 4 or L2 ≡ 0 mod 4. Moreover X has an even set made
up by the eight curves in the resolutions of the nodes of the quotient X̄.
If L2 ≡ 2 mod 4 then by the Proposition 2.1 NS(X) = L2d, where L2 = 2d, as required.
If L2 ≡ 0 mod 4 we must exclude that NS(X) = L′

2d. Assume that we have an element
L1 = (L − N1 − N2)/2 ∈ NS(X). If NS(Y ) = M′

2d′ the primitive embedding of NS(Y ) in
U3 ⊕ E8(−1)2 is unique up to isometry. Assume that M2 = 4n and choose an α ∈ E8(−1)
with α2 = −2 if n is odd and α2 = −4 if n is even. Let v ∈ E8(−2) ⊂ U3 ⊕ E8(−1)2 be

v = (0, α,−α) and let M be M = (2u, α, α) ∈ U3⊕E8(−1)2 where u = e1+ (n+1)
2 f1 if n is odd,

and u = e1+(n
2 +1)f1 if n is even (here e1, f1 denotes the standard basis of the first copy of U).

Then M2 = 4n and (M + v)/2 = (u, α, 0) ∈ U3 ⊕E8(−1)2. This gives a primitive embedding
of NS(Y ) in U3⊕E8(−1)2, which extends the standard one of E8(−2) ⊂ U3⊕E8(−1)2. Now
we can assume that L = (u, 0, α) ∈ U(2)⊕N ⊕E8(−1) ⊂ H2(X, Z), so by [vGS, Proposition
1.8] we have β∗M = π∗L. Now (L − N1 − N2)/2 = (u,−N1 − N2, α)/2 ∈ NS(X). By using

[vGS, Proposition 1.8] again we obtain π∗((L−N1 −N2)/2) = (u, α
2 , α

2 ,−E1 −E2) ∈ NS(Ỹ )
and so (u, α

2 , α
2 ) ∈ NS(Y ), this means that M/2 ∈ NS(Y ) which is not the case. Hence

(L−N1−N2)/2 /∈ NS(X), in a similar way one shows that (L−N1−N2−N3−N4)/2 /∈ NS(X)
and so we conclude that NS(X) = L2d.
2) Assume now that Γ = L′

2d. In this case we have either
a) L2 ≡ 4 mod 8 and so (L − N1 − N2)/2 and (L − N3 − . . . − N8)/2 are in Γ or
b) L2 ≡ 0 mod 8 and so (L−N1 −N2 −N3 −N4)/2 and (L−N5 −N6 −N7 −N8)/2 are in
Γ. We do the proof assuming that we are in case a), for the case b) the proof is very similar.
Let Y be a K3 surface with ρ(Y ) = 9, Nikulin involution, Néron Severi group NS(Y ) = ZM⊕
E8(−2)(which is M2d′ for a non-negative integer d′) and M2 = 4n+2, such a K3 surface exists
by [vGS, Proposition 2.2, 2.3]. Moreover by [vGS, Proposition 2.7] there are line bundles L1

and L2 in NS(X) with β∗M − E1 − E2 = π∗L1, β∗M − E3 − . . . − E8 = π∗L2. Since the
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embedding of ZL⊕E8(−2) in th e K 3 la ttice is u niq u e w e ma y a ssu me th a t M = e1+(2n+1)f1

a nd L1 = (e1 + (2n + 1)f1 + N1 + N2)/2 − N1 − N2 ∈ NS (X), by [v G S , P rop osition 1.8 ] w e
h a v e β∗M − E1 − E2 = π∗L1. T h e c la ss U(2) 3 (e1 + (2n + 1)f1) = 2L1 + N1 + N2 is in
NS (X), is orth ogona l to th e Ni a nd h a s self intersec tion 8n′ +4 , w e c a ll it L. B y P rop osition
2.1 w e h a v e NS (X) = L′

2d
w ith d = 4n + 2, so w e a re done. �

Remark. B y u sing th e surjectivity of the period map one ca n sh ow th e ex istence of a K 3
su rfa ce X w ith NS (X) = Γ , it is h ow ev er diffi c u lt to sh ow th a t th ere is a n embedding of
th e c la sses Ni a s irredu c ible (−2)-smooth c u rv es in NS (X). T h is is a ssu red by th e p rev iou s
p rop osition.
F rom th e P rop osition 2.3 follow s a rela tion betw een th e N éron S ev eri grou p of th e K 3 su rfa ce
Y a dmitting a N ik u lin inv olu tion a nd th e N éron S ev eri grou p of a K 3 su rfa ce X w h ich is th e
desingu la riz a tion of th e q u otient.

C o ro llary 2 .2 . L et Y be an algebraic K 3 surface w ith ρ(Y ) = 9 admittin g a N ikulin in volu-
tion , an d let X be the desin gularization of its quotien t.
(1 ) NS (Y ) = M2d if an d on ly if NS (X) = L′

4d
;

(2 ) NS (Y ) = M′

4d
if an d on ly if NS (X) = L2d.

P roof. T h e p roof follow s from [v G S , P rop osition 2.7 ] a nd P rop osition 2.3 . W e sk etch it briefl y .
T h e p roof of th e direc tion ⇐ of th e sta tement follow s immedia tely from th e p roof of P rop osi-
tion 2.3 . F or th e oth er direc tion w e distingu ish th ree c a ses (w e u se th e nota tion of loc. cit.):
(a ) C a se (1), (i). C lea rly (β∗M − E1 − E2)

2 = (π∗L1)
2 a nd in th e p roofs of P rop osition 2.3 ,

c a se (2), a nd of [v G S , P rop osition 2.7 ] it is p rov ed th a t

L1 = (L − N1 − N2)/2, L2 = (L − N3 − . . . − N8)/2.(2)

S ince π is a 2 : 1 ma p to X th e p rev iou s eq u a lity becomes 4n+2−1−1 = 1

2
(L−N1−N2)

2 =
1

2
(L2 − 4 ) a nd so L2 = 2(4n + 2). B y th e P rop osition 2.1, w h ere w e desc ribe th e p ossible

N éron-S ev eri grou p s of K 3 su rfa ces w ith a n ev en set, w e obta in th a t NS (X) = L′

2d
, d ≡ 2

mod 4 .
(b) C a se (1), (ii). A s before, in th e p roof of [v G S , P rop osition 2.7 ] it is p rov ed th a t:

L1 = (L − N1 − . . . − N4)/2, L2 = (L − N5 − . . . − N8)/2.(3 )

S o w e obta in 4n− 4 = (β∗M −E1 −E2 −E3 −E4)
2 = 2((L−N1 − . . .−N4)/2)

2 = 1

2
(L2 − 8 )

a nd so L2 = 2(4n). B y th e P rop osition 2.1 w e obta in th a t NS (X) = L′

2d
, d ≡ 0 mod 4 .

(c) C a se (2), M2 = 2L2, a nd so by a n a rgu menta tion a s in th e p roof of th e P rop osition 2.3 ,
c a se (1), w e h a v e NS (X) = L2d. �

S ome ex p lic it corresp ondence betw een th e K 3 su rfa ces Y a nd X a re sh ow n in th e T a ble 1.
Remark. L et X be a K 3 su rfa ce su ch th a t th e la ttice Γ = L2d or L′

2d
is p rimitiv ely embedded

in NS (X) a nd ρ(X) ≥ 9 . T h ere ex ists a deforma tion of th e K 3 su rfa ce {Xt} su ch th a t X
t
= X

a nd X0 is su ch th a t NS (X0) = Γ . L et Y0 be th e K 3 su rfa ce su ch th a t th e desingu la riz a tion
of its q u otient by a N ik u lin inv olu tion is X0. T h e N éron S ev eri grou p of Y0 is eith er M′

4d
or

Md. T h e deforma tion on X indu ces a deforma tion {Yt} of Y0 su ch th a t th e su rfa ce Y
t
a dmits

a N ik u lin inv olu tion a nd th e desingu la riz a tion of its q u otient by th e N ik u lin inv olu tion is X
t
.

T h is mea ns th a t X
t
a dmits a n ev en set of eigh t disjoint ra tiona l c u rv es.

In p a rtic u la r if X is a n a lgebra ic K 3 su rfa ce su ch th a t L2d (resp . L′

2d
) is p rimitiv ely embedded

in NS (X), th en X is th e minima l resolu tion of th e q u otient of a K 3 su rfa ce Y su ch th a t M′

4d

(resp . Md) is p rimitiv ely embedded in NS (Y ).
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Corollary 2.3. The coarse moduli space of Γ-polarized K3 surfaces (cf. [D , p.5 ] for the
defi nition) is the quotient of

DΓ = {ω ∈ P(Γ⊥ ⊗Z C) : ω2 = 0, ωω̄ > 0}

by an arithmetic group O(Γ) and has dimension eleven. The generic K3 surface with an even
set of eight disjoint rational curves has Picard number nine.

Proof. By Proposition 2.1, each K3 surface with an even set is contained in this space, on the
other hand, by Proposition 2.3 each point of this space corresponds to a K3 surface with an
even set of irreducible (−2)-curves. �

3. Ampleness and nefness of some divisors on X

O ur next aim (cf. Section 4) is to describe projective models of K3 surfaces with an even
set of eight disjoint rational curves. H ere we give some results on ampleness and on nefness
of divisors on such K3 surfaces. We prove moreover that the associated linear systems have
no base points. These properties guarantee that the maps induced by the linear systems are
regular (in fact birational) maps.

D efi n ition 3.1 . A divisor L on a surface S is:

• nef if L2 ≥ 0 and L · C ≥ 0 for each irreducible curve C on S,
• p seu d o a m p le if L2 > 0 and L · C ≥ 0 for each irreducible curve C on S,

(or big a nd nef)
• a m p le if L2 > 0 and L · C > 0 for each irreducible curve C on S.

If X is a K3 surface with a line bundle L such that L2 ≥ 0, the condition L · C ≥ 0 for
each irreducible curve C on X is equivalent to the condition L · δ ≥ 0 for each irreducible
(−2)-curve δ on X (cf. [BPV , Proposition 3.7]).

Let H be an eff ective divisor on a K3 surface. The intersection of H with each curve C
is non-negative except when C is a component of H and C is a (−2)-curve. If the linear
system |H| does not have fi xed components and if H2 > 0, then the generic element in |H|
is smooth and irreducible and H is a pseudo ample divisor (cf. [SD , Proposition 2.6 ]). The
fi xed components of a linear system on a K3 surface are always (−2)-curves [SD , Paragraph
2.7.1]. R ecall that by [R , Theorem p.79] if H is pseudo ample (or ample) then either |H|
has no fi xed components or H = a E + Γ where |E| is a free pencil and Γ is an irreducible
(−2)-curve such that EΓ = 1. Finally in [SD , Corollary 3.2] Saint-D onat proves that a linear
system on a K3 surface has no base points outside its fi xed components.

Let now H be a pseudo ample divisor on X. If |H| has a fi xed component B, then H = B+M ,
where M is the moving part of the linear system |H|. The linear system |H| defi nes a map
φH and if H = M + B then φH = φM . Now we assume that |H| has no fi xed components
(and hence no base points). The system |H| defi nes the map:

φH : X −→ P
pa(H)

where pa(H) = H2/2 + 1 and there are two cases (cf. [SD , Paragraph 4.1]):
(i) either φH is of degree two and its image has degree pa(H) − 1 (φH is hyperelliptic),
(ii) or φH is birational and its image has degree 2pa(H) − 2.
In particular in the second case if H is ample (i.e. does not contract (−2)-curves) φH is an
embedding, so H is very ample.
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Proposition 3.1. Let X be as in the Proposition 2.1. Then we may assume that L is pseudo
ample and it has no fixed components.

Proof. Since X and Y are algebraic, by using the notations of the Diagram 1, the surface X̄
is embedded in some projective space and has eight nodes. The generic hyperplane section
of X̄ is a smooth and irreducible curve (it does not pass through the nodes). Its pull back on
X is then orthogonal to N1, . . . , N8, we call it H, observe that H = αL for some integer α.
Since H is pseudo ample then L is pseudo ample too, in particular observe that LΓ > 0 for
each (−2)-curve which is not one of the Ni’s. If L has fixed components then by [R, Theorem
p.79] it is L = aE + Γ where |E| is a free pencil and Γ an irreducible (−2)-curve such that
EΓ = 1. If Γ 6= Ni for each i = 1, . . . , 8, then 0 < LΓ = a − 2, which gives a > 2. Now
0 = LNi = aENi + ΓNi, since a > 2, ENi ≥ 0, ΓNi ≥ 0 we obtain ENi = 0 and ΓNi = 0 for
each i, so Γ is in (N)⊥ which is not possible. If Γ = Ni for some i, then 0 = LNi = a − 2 so
a = 2 then L = 2E + Ni and so (L−Ni)/2 is in the Néron Severi group too which is not the
case. So by [SD, Proposition 2.6] we can assume that L is smooth and irreducible. �

Proposition 3.2. Let X be as in the Proposition 2.1. If d ≥ 3, i.e. L2 ≥ 6, then the class
L − N̂ in the Néron S everi group is an ample class.

Proof. The self intersection of L − N̂ is (L − N̂)2 = 2d − 4, which is positive for each d ≥ 3.

So to prove that L− N̂ is ample we have to prove that for each irreducible (−2)-curve C the

intersection number C · (L − N̂) is positive.
In the proof we use the inequality:

(
n∑

i= 1

xi)
2 ≤ n

n∑

i= 1

x2
i(4)

which is true for every (x1, . . . , xn) ∈ R
n. Suppose that there exists an effective irreducible

curve C such that C · (L − N̂) ≤ 0, then we prove that C · C < −2.
We observe that each element in the Néron Severi group is a linear combination of L and
Ni with coefficients in 1

2Z. We consider the curve C = aL +
∑8

i= 1 biNi where a, bi ∈
1
2Z. If

a = 0 the only possible (−2)-curves are the Ni’s and Ni · (L− N̂) = 1. So we can assume that
a 6= 0. Since C is an irreducible curve, it has a non-negative intersection with all effective
divisors. Hence C · L = 2da ≥ 0, so a > 0, and C · Ni = −2bi ≥ 0, so bi ≤ 0.
Now we assume that C · (L − N̂) ≤ 0, then

(aL +

8∑

i= 1

biNi) · (L − N̂) = 2da +

8∑

i= 1

bi ≤ 0.

Since bi ≤ 0, 2da−
∑n

i= 1 |bi| ≤ 0 and so 2da ≤
∑n

i= 1 |bi|, where each member is non negative.
So it is possible to pass to the square of the relation, obtaining 4d2a2 ≤ (

∑n
i= 1 |bi|)

2. U sing
the relation (4) one has

4d2a2 ≤ (
n∑

i= 1

|bi|)
2 ≤ 8

8∑

i= 1

b2
i .(5)

Now we compute the square of C and we use the inequality (5) to estimate it:

C · C = 2da2 − 2

8∑

i= 1

(b2
i ) ≤ 2da2 − d2a2.
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If d ≥ 5 then
√

2
d2−2d

< 1
2 , and so for d ≥ 5 we have C ·C < −2 (because a ≥ 1

2). This proves

the theorem in the case d ≥ 5.

M ore in general for each d ≥ 3,
√

2
d2−2d

< 1, so for the cases d = 3 and d = 4 one has to

study only the case a = 1
2 .

For d = 3, then L2 = 6 and so in NS(X) all the elements are of the form aL +
∑8

i=1 biNi

with a ∈ Z (and not in 1
2Z). Then the theorem is proved exactly in the same way as before.

Let d = 4. By the previous computations follows that the only possible irreducible (−2)-

curves with a negative intersection with (L− N̂) are of the form 1
2 (L+N1 +N2 +N3 +N4)+

∑8
i=1 βiNi with βi ∈ Z, β1, . . . , β4 ≤ −1 and β5, . . . , β8 ≤ 0. It is easy to see that the only

(−2)-curves of this type are L+N1+N2+N3+N4

2 − N1 − N2 − N3 − N4 − Nj , j = 5, 6, 7, 8 and

these curves have a positive intersection with L− N̂ . Then the proposition is proved also for
d = 4. �

Proposition 3.3. In the situation of Proposition 3.2, m(L− N̂) and mL− N̂ for m ∈ Z>0,

are ample. If d = 2, i.e. (L − N̂)2 = 0, then m(L − N̂) is nef and mL − N̂ is ample for
m ≥ 2.

Proof. It is a similar computation as in the proof of Proposition 3.2. �

Proposition 3.4 . The divisors L− N̂ , mL− N̂ and m(L− N̂), m ∈ Z>0, do not have fixed
components for d ≥ 2.

Proof. We proof the proposition for the divisor L − N̂ . The proof in the other cases is
essentially the same.
For d = 2 we have (L − N̂)2 = 0 and is nef by the Proposition 3.3 so by [R, Theorem p. 79,

(b)] L − N̂ = aE where |E| is a free pencil, and so the assertion is proved in this case.

Assume d ≥ 3, then for [R, Theorem p. 79, (d)] we have either L−N̂ has no fixed components

or L − N̂ = aE + Γ, where |E| is a free pencil and Γ is an irreducible (−2)-curve such that

EΓ = 1. We assume we are in the second case, then since L − N̂ is ample we have

0 < Γ(L − N̂) = a − 2

and so a > 2. We distinguish two cases:
1. Γ = αL +

∑

βjNj , Γ 6= Ni for each i, so α 6= 0. For each i we have:

1 = Ni(L − N̂) = aENi + ΓNi

Since ENi ≥ 0 and a > 2 then ENi = 0 and so

1 = ΓNi = (αL +
∑

j

βjNj)Ni = −2βi.

We obtain βj = −1/2 for all j, so

Γ = αL −
N1 + . . . + N8

2
= αL − N̂ .

By considering the self-intersection of Γ we obtain

−2 = α22d − 4 ≥ 6α2 − 4

which is positive since α is a non zero integer. So this case is not possible.
2. Γ = Ni for some i = 1, . . . , 8. We have

1 = Ni(L − N̂) = Ni(aE + Ni) = aENi − 2 = a − 2
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so a = 3, L − N̂ = 3E + Ni. For j 6= i we have

1 = (L − N̂)Nj = 3ENj

but this is impossible. Hence L − N̂ has no base components. �

Lemma 3.1. The map φ
L−N̂

is

• an embedding if L2 ≥ 10,
• a 2:1 map to P

1 × P
1 if L2 = 8,

• a 2:1 map to P
2 if L2 = 6.

Proof. By the Proposition 3.2 L − N̂ is ample and by the Proposition 3.4 |L − N̂ | has no

fixed components; for a K3 surface this implies that |L − N̂ | has no base points too (cf.
[SD, Corollary 3.2]), and it defines a map φ

L−N̂
. The assertion for L2 = 6 is clear since

(L − N̂)2 = 2 and hence the map φ
L−N̂

defines a double cover of P
2. We show that in the

case L2 = 2d ≥ 10, i.e. d ≥ 5, the map is not hyperelliptic. By [SD, Theorem 5.2] L − N̂ is

hyperelliptic iff (i) there is an elliptic irreducible curve E with E · (L − N̂) = 2 or (ii) there

is an irreducible curve B, with pa(B) = 2 and L − N̂ = O(2B). The case (ii) would implies

L − N̂ ≡ 2B and so 1
2 (L − N̂) ∈ NS(X) which is not possible by the description of NS(X)

of Proposition 2.1. We have to exclude (i). We argue in a similar way as in Proposition 3.2.

Assume that there is E = aL +
∑

biNi an irreducible curve with E · (L − N̂) = 2. Then we
show E2 6= 0. Since E is the class of an irreducible curve, a ∈ 1

2Z>0 and bi ∈
1
2Z≤0. We have

2 = E · (L − N̂) = 2da +
∑8

i=1 bi and so 2da − 2 = −
∑8

i=1 bi which gives together with the
inequality (4):

4(da − 1)2 = (

8
∑

i=1

|bi|)
2 ≤ 8

8
∑

i=1

|bi|
2

and so (da − 1)2 ≤ 2
∑8

i=1 b2
i . On the other hand we have

E2 = 2da2 − 2
8

∑

i=1

b2
i ≤ 2da2 − (da − 1)2 = 2da2 − d2a2 − 1 + 2da.

We have E2 < 0 for a < d−
√

2d
d(d−2) or a > d+

√
2d

d(d−2) , since a > 1/2 and d−
√

2d
d(d−2) < 1

2 for each

d ≥ 5 and d+
√

2d
d(d−2) < 1

2 for each d ≥ 6, we obtain E2 < 0 for d ≥ 6. We analyze the case of

d = 5. Here L2 = 10 and so a ∈ Z>0, for d = 5 we have d+
√

2d
d(d−2) = 5+

√
10

15 < 1. In conclusion

for each d ≥ 5 we obtain E2 < 0. In the case of d = 4, then we have L2 = 8 and the
classes E1 = L−N1−N2−N3−N4

2 , E2 = L−N5−N5−N7−N8

2 are in the Néron Severi group. We

have E2
1 = E2

2 = 0, E1 ·E2 = 2 and L− N̂ = E1 +E2, so φ
L−N̂

defines a 2:1 map to a quadric

in P
1 × P

1 (cf. [SD, Proposition 5.7]). �

Proposition 3.5 . 1) Let D be the divisor D = L−(N1 + . . .+Nr) (up to relabel the indices),
1 ≤ r ≤ 8.

• If NS(X) = L2d, then D is pseudo ample for d > r;
• if NS(X) = L′

2d, then D is nef for d = r + 4 and pseudo ample for d > r + 4,
• if D is pseudo ample and NS(X) = L2d then it does not have fixed components.

2) Let NS(X) = L′
2d. Let D̄ = (L − (N1 + . . . + Nr))/2 with r = 2, 6 if 2d ≡ 4 mod 8 and

r = 4 if 2d ≡ 0 mod 8. Then
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• the divisor D̄ is nef and is pseudo ample whenever it has positive self intersection,
• if D̄ is pseudo ample then it does not have fixed components, if D̄2 = 0 then the

generic element in |D̄| is an elliptic curve.

Proof. The arguments are similar as those used in the the proof of the Proposition 3.2 for
the ampleness properties and in the proof of the Proposition 3.4 for the absence of fixed
components. �

Corollary 3.1. Let D and D̄ be divisors as in the Proposition 3.5 . W e suppose that D2 > 0,
D̄2 > 0. Let C be a (−2)-curve with C · D = 0 or C · D̄ = 0. Then C = Ni for some
i = 1, . . . , 8.

Lemma 3.2. W ith the same notation as in Proposition 3.5 , we have:

• for NS(X) = L2d and D2 ≥ 4 the map φD is birational,
• for D̄2 ≥ 4 the map φD̄ is birational.

Proof. The proof is very similar to the proof of Lemma 3.1 and is left to the reader. �

We prove the following proposition which is a generalization of [C, Proposition 2.6] to the
case of surfaces in P

n.

Proposition 3.6 . Let F be a surface in P
n and let N be a subset of the set of nodes of F .

Let G ⊂ P
n be a hypersurface s.t. div F (G) = 2C (here div F (G) denotes the divisor cut out

by G on F ), with C a divisor on F which is not C artier at the points of N . Then N is an
even set of nodes iff G has even degree. C onversely if N is an even set of nodes then there
is an hypersurface G as above.

Proof. The proof is identical to the proof of [C, Proposition 2.6], we recall it briefly.

Let F̃ −→ F be the minimal resolution of the singularities of F , let H denote the pull-back
on F̃ of the hyperplane section on F and let deg G = m then

mH ∼ 2C̃ +
∑

αiNi

where C̃ denotes the strict transform of C on F̃ and the Ni’s denote the exceptional curves
over the nodes. Since C is not Cartier at the singular points, the αi are odd. Hence

∑

Ni ∼ δH + 2
(

[
m

2
]H − C̃ −

∑

[
αi

2
]Ni

)

where δ = 0, 1 according to m even or odd. Now if
∑

Ni is an even set then δ = 0 and m is
even. If m is even then δ = 0 and so

∑

Ni is an even set.
On the other hand, if N is an even set then

2B ∼
∑

Ni.

For B ∈ P ic(F̃ ) choose r such that rH − B is linearly equivalent to an effective divisor C̃.
Then

2rH ∼ 2B + 2C̃ = 2C̃ +
∑

Ni

so there is a hypersurface G (∼ 2rH) with the properties of the statement. �

From this follows a geometrical characterization of even set of nodes on K3 surfaces.

Corollary 3.2. Let X̄ ⊂ P
d+1, d ≥ 2, be a surface of degree 2d with a set of m nodes N ,

s.t. its minimal resolution is a K3 surface. Then
(i) if m = 8, then N is even iff G is a quadric,
(ii) if m = 16 and d ≥ 3, then N is even iff G is a quadric.
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Proof. (i) Let L := H ∩ X̄ be the generic hyperplane section with 2d = L2 and let N be an

even set of nodes. Then the lattice ZL ⊕ N ⊂ NS(X) and we have 2N̂ ≡
∑

Ni. Since the

self-intersection of L− N̂ is 2d− 4 ≥ 0 by the theorem of Riemann-Roch L− N̂ or −(L− N̂)

is effective. Since (L − N̂) · L ≥ 0, L − N̂ is effective, so 2L ≡ 2(L − N̂) +
∑

Ni. And so

G ∈ |2L| and divX̄(G) = 2C = 2(L − N̂). The converse follows from the Proposition 3.6.
(ii) The proof in this case is essentially the same. We use the Kummer lattice K instead
of the Nikulin lattice N . The lattice K is generated over Q by the sixteen disjoint rational
(−2)-curves K1, . . . ,K16 and it contains the class (K1 + . . . + K16)/2, which we use in the

proof above instead of the class N̂ (for a precise definition of the lattice K see [N1]). �

Remark. In particular this means that if X̄ is a K3 surface with an even set of nodes, then
there exists a quadric cutting a curve on X̄ with multiplicity two, passing through the even
set of nodes (this is the condition divF (G) = 2C of the theorem).

4. Projective models

In this section we determine projective models of K3 surfaces with an even set of nodes and
Picard number nine. These were already partially studied by Barth in [B2]. Here we recover,
with different methods, some of these examples and we discuss many new examples. Observe
that some of the cases that Barth describes require Picard number at least ten (these are
case five and case four in his list (cf. Paragraph 4.5 below)).

In Section 3 we proved that the divisors L, L − N̂ , and (L − N1 − . . . − Nm)/2, m = 2 or
m = 4 or m = 6 on X define regular maps. We use these divisors to give projective models of
a K3 surface X with Néron Severi group isometric to L2d or to L′

2d and in general we study
the projective models of the same surface by using different polarizations. In particular in
each case one can use as polarization L or L − N̂ , if L2 > 4. The first polarization contracts
the curves of the even sets to eight nodes on the surface, the second one sends these curves
to lines on the projective model.
In case (1) of the Corollary 2.2 it is also possible to study the projective models given by the
maps φL1

, resp. φL2
(for L2

i > 0) where L1 and L2 are the divisors defined in (2) or in (3).
They give projective models of X in the projective space P(H0(X,L1)), resp. P(H0(X,L2))
or give 2 : 1 maps to the images of X in these spaces. If the maps are not 2 : 1, the image of
X contains nodes and lines, which on X form an even set. The image of X under φL1

×φL2
:

X → P(H0(X,L1)) × P(H0(X,L2)) is a surface, which is the image of Y ↪→ Ph0(L1)+h0(L2)−1

under the projection to the eigenspaces: Ph0(L1)+h0(L2)−1 −→ P(H0(X,L1))× P(H0(X,L2)).
Indeed put h0(L1) = m1 + 1, h0(L2) = m2 + 1, then h0(M) = m1 + m2 + 2 and we have a
commutative diagram:

Y //

��
�

�

�

P
m1+m2+1 v

// P
r
⊃ Vm1+m2+1

p

��

X // P
m1 × P

m2
s

// P
r
′

⊃ Sm1+m2

Here the rational map between Y and X follows from D iag ram 1 , v is the V eronese embed d ing

and so r = (m1+m2+2)(m1+m2+3 )
2 , s is the S eg re embed d ing and so r′ = (m1 + 1 )(m2 + 1 )− 1 ,

p is the projection, Vm1+m2+1 is the imag e of P
m1+m2+1 in P

r and Sm1+m2
is the imag e of

P
m1 × P

m2 in P
r
′

. T he N ik u lin inv olu tion on P
m1+m2+1 operates as:

(x0 : . . . : xm1
: y0 : . . . : ym2

) 7→ (x0 : . . . : xm1
: −y0 : . . . : −ym2

)
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which induces an operation on the coordinates of P
r as

(x2
0 : x2

1 : . . . : y2
0 : y2

1 : . . . : ym2−1ym2
: x0y1 : x0y2 : . . . : xm1

ym2
) 7→

(x2
0 : x2

1 : . . . : y2
0 : y2

1 : . . . : ym2−1ym2
: −x0y1 : −x0y2 : . . . : −xm1

ym2
).

The projection p goes to the invariant space P
r′ with coordinates (x0y1 : x0y2 : . . . : xm1

ym2
)

and so the eq uations of the image of Y in Vm1+m2+1 in these coordinates give eq uations for
the image of the surface X in Sm1+m2

(cf. also [vG S, P roposition 2.7 ]).

O bserve that the sum of the divisors L1 and L2 is ex actly L−N̂ . F rom now on if NS(X) = L′

2d

and d /2 is odd then L1 := (L − N1 − N2)/2, L2 := (L − N3 − . . . − N8)/2, if NS(X) = L′

2d

and d /2 is even then L1 := (L − N1 − . . . − N4)/2, L2 := (L − N5 − . . . − N8)/2.

In the case NS(X) = L2d the construction above holds if instead of L1 and L2 we take L

and L − N̂ .

4 .1. The case of L2 = 2, NS(X) = L2, the p olarization L. Since L is pseudo ample by
the P roposition 3.1 the linear sy stem |L| defi nes a 2 : 1 map X ′ −→ P

2 ramifi ed on a sex tic
curve with eight nodes where X ′ is the surface X after contraction of the (−2)-curves. M ore
precisely we have a commutative diagram:

X −→ X ′

↓ ↓

P̃
2 −→ P

2

where P̃
2 is the blow up of P

2 at the eight double points of the sex tic. B y general results
on cy clic coverings the pull back of the branching sex tic on X is 3L − (N1 + . . . + N8) =

3L − 2N̂ = (L − N̂) + (2L − N̂). Now (L − N̂)2 = 2 − 4 = −2, L · (L − N̂) = 2 and so by

using R iemann-R och Theorem the divisor L− N̂ is eff ective, and is a rational curve of degree
two on P

2. O bserve that its image is an irreducible conic, in fact we are assuming that X ′

has ex actly eight nodes and no other singularities. O n the other hand (2L− N̂)2 = 8 − 4 = 4

so by P roposition 3.4 and by [SD, P roposition 2.6 ] the generic member in |2L − N̂ | is an
irreducible curve of genus three, and its image in P

2 is a curve of degree four (and in fact

genus 3 = (4 − 1)(4 − 2)/2). In both cases we have (L − N̂) · Ni = (2L − N̂) · Ni = 1 and
so the curves intersect at the points which are the images of the curves Ni in P

2. This is the
fi rst case in the paper of B arth, [B 2].

4 .2. The case of L2 = 4 , NS(X) = L4, the p olarization L. B y the P roposition 3.1 the
linear sy stem |L| defi nes a birational map φL from X to a q uartic surface in P

3, the curves

Ni are contracted to nodes. In this case (L − N̂)2 = 0 and by the P roposition 3.4 |L − N̂ |
has no base components, so the generic member in the sy stem is an irreducible elliptic curve
(observe that by the structure of the Néron Severi group it cannot be the multiple of an

elliptic curve). Since L · (L− N̂) = 4 the elliptic curve is sent to a q uartic curve in P
3 and is

a complete intersection of two q uadrics (observe that it cannot be a plane q uartic since this

has genus three). M oreover since (L− N̂) ·Ni = 1, the q uartic contains the nodes. There is a

third q uadric passing through the nodes, in fact h1(L− N̂) = 0 ([SD, P roposition 2.6 ]) hence

h0(L−N̂) = 2 and again by loc. cit. h0(2(L−N̂)) = 3. Now 2(L−N̂) = 2L−(N1 + . . .+N8)
and the image of these divisors are precisely the q uadrics which vanish on the eight singular
points (cf. C orollary 3.2). L et s1,s2 be a basis of H0(L − N̂) then s2

1,s1s2,s
2
2 is a basis of

H0(2(L − N̂)) and these are the three q uadrics through the nodes. This is the case three of
B arth [B 2] and by the Table 1 it corresponds to the case of M′

8 of [vG S].
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Table 1. Néron Severi lattices and projective models

X Y

N S (X) = L2 N S (Y ) = M
′

4

φL d o u b le p la n e (sin g u la r se x tic ) φM sm o o th q u a rtic in P
3

N S (X) = L4 N S (Y ) = M
′

8

φL q u a rtic w ith e v e n se t o f n o d e s φM c o m p le te in te rse c tio n in P
5

N S (X) = L
′

4 N S (Y ) = M2

φL d o u b le c o v e r o f a c o n e φM d o u b le p la n e
φL1

e llip tic fi b ra tio n

N S (X) = L6 N S (Y ) = M
′

12

φL sin g u la r c o m p le te in te rse c tio n in P
4 φM p ro je c tiv e m o d e l in P

7

φ
L−N̂

d o u b le p la n e (sm o o th se x tic )
φL × φ

L−N̂
c o m p le te in te rse c tio n in P

4
× P

2

N S (X) = L8 N S (Y ) = M
′

16

φL sin g u la r c o m p le te in te rse c tio n in P
5 φM p ro je c tiv e m o d e l in P

9

φ
L−N̂

sm o o th q u a rtic in P
3

N S (X) = L
′

8 N S (Y ) = M4

φL sin g u la r c o m p le te in te rse c tio n in P
5 φM sm o o th q u a rtic in P

3

φ
L−N̂

d o u b le c o v e r o f a q u a d ric

N S (X) = L10 N S (Y ) = M
′

20

φ
L−N̂

sm o o th c o m p le te in te rse c tio n in P
4 φM p ro je c tiv e m o d e l in P

11

φ
L−

P

4

i=1
Ni

double cover of a plane

NS(X) = L12 NS(Y ) = M
′

24

φ
L−N̂

sm ooth com plete intersection in P
5 φM projective m odel in P

13

φ
L−

P

4

i=1
Ni

sing ular q uartic in P
3

(m ix ed even set w ith conics)

NS(X) = L
′

12 NS(Y ) = M6

φ
L−N̂

sm ooth com plete intersection in P
5 φM com plete intersection in P

4

φL2
× φL1

surface of bideg ree (2 , 3 ) in P
1
× P

2

NS(X) = L
′

16 NS(Y ) = M8

φL1
× φL2

com plete intersection in P
2
× P

2 φM com plete intersection in P
5

NS(X) = L
′

24 NS(Y ) = M12

φL1
× φL2

com plete intersection in P
3
× P

3 φM com plete intersection in P
7

4.3. The case of L2 = 4, NS (X) = L′

4
.

(a) The p olarization L. W e m a y a ssu m e th a t th e c la ss (L/2, v /2) is e q u a l to (L/2, (−N1−
N2)/2). B y th e P ro p o sitio n 3.5 a n d [S D , P ro p o sitio n 2.6 ] th is d e fi n e s a p e n c il o f e llip tic
c u rv e s w h ich w e d e n o te b y E. O b se rv e th a t L = 2E + N1 + N2 w ith Ni · E = 1 , h e n c e
b y [S D , P ro p o sitio n 5 .7 , (iii), a )] L d e fi n e s a 2 : 1 m a p to a c o n e o f P

3. T h e p e n c il |E|
c o rre sp o n d s to th e sy ste m o f lin e s th ro u g h th e v e rte x o f th e c o n e u n d e r th is m a p . T h e c la ss
C2 := E − N̂ + N1 + N2 = L/2 + (−N3 − . . .− N8)/2 is e ff e c tiv e w ith C2 · Ni = 1 , sim ila rly
w e m a y a ssu m e th a t th e c la ss C6 := 3L/2 + (−N3 − . . .− N8)/2 is a n irre d u c ib le c u rv e (it
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follows by Proposition 3.5), with C6 ·Ni = 1, moreover C2 ·C6 = 0 , C2 ·L = 2 and C6 ·L = 6.
L et c2 := ϕL(C2) and c6 := ϕL(C6). These two curves meet on the cone at the images of
Ni, i = 3, . . . , 8 . Their union is a curve of degree eight, which is the branch divisor of the
covering. In fact if C2 is not a component of the branch divisor then ϕL(C2) has degree
one and so is a line. But this means that C2 ∈ |E| which is not the case. H ence C2 is a
component of the branch divisor and c2 is a conic. If now C6 is not in the branch divisor,
we have deg c6 = 3, and c2 · c6 = 6, but then c6 is contained in the plane of c2 and on the
cone too, which is impossible. H ence C6 is also a component of the branch divisor. F inally
observe that ϕL(Ni) = Q, for i = 1, 2 where Q is the vertex of the cone. This surface is also
described in [vG S, Paragraph 3.2].
(b) An elliptic fibration. N ow we describe the elliptic fibration on X defined by the
divisor E. We consider the rational curve C2 = L/2+ (−N3 − . . .−N8)/2, it has intersection
one with the class of the fiber E. So C2 is a section of the fibration φE : X → P1 and the
classes E and C2 generate a lattice isometric to U .
Since the six (−2)-curves N3, N4, . . . , N8 are orthogonal to E, they are the components of
some reducible fibers. A ll these curves intersect the section C2 so they are components of six
different reducible fibers. The rational curve N1 is another section of the fibration (because
its intersection with E is one). The N éron Severi group is generated over Q by the classes
E of the fiber, by C2, by the components Ni, i = 3, . . . , 8 of the reducible fibers and by
the other section N1. The N éron Severi group of an elliptic fibration admitting a section
is generated by the class of the fiber, by the zero section, by the irreducible components of
the reducible fibers (not meeting the zero section) and by other sections. Since the Picard
number is nine the six reducible fibers containing Ni, i = 3, . . . , 8 are the only reducible fibers
of the fibration, they are all of type I2 (two rational curves meeting in two distinct points).
The E uler characteristic of a K 3 surface is 24 and is the sum of the E uler characteristics of
the singular fibers. The singular irreducible fibers in the generic case are of type I1 (singular
irreducible curve with a node). E ach fiber of type I1 has E uler characteristic one, and each
fiber of type I2 has E uler characteristic equal to two. By the computation on the E uler
characteristic it is clear that there are twelve singular fibers of type I1 and six of type I2.
There are two independent sections, so the rank of the M ordell-Weil lattice is one. One of
these sections (the zero section) is the curve C2, mapped by φL to the conic in the branch
locus on the cone. Other sections correspond to the curves N1 and N2, these are both mapped
to the vertex of the cone.
Since X is a double cover of a cone, it admits an involution j. This involution fixes the classes
Ni, i = 3, . . . , 8 , because they correspond to the intersection points between the conic and
the sextic in the branch locus on the cone; it fixes the class C2, and switches the classes N1

and N2. The involution j fixes also the class L which defines the double cover φL. On the
fibration the involution j fixes the class of the fiber E and so it acts on the base, P1, of the
fibration as the indentity, it fixes the zero section, which corresponds to the class C2, and
switches the other two independent sections N1 and N2. On the reducible fiber the involution
j clearly fixes the component Ni and it fixes the other component E − Ni too, since it fixes
the fiber and a reducible fiber has two components. On E −Ni the involution j switches the
points P1 and P2, which are the points of intersection between the fiber and the sections N1,
respectively N2.
The surface X admits an even set of eight disjoint rational curves, so it is the minimal
resolution of the quotient of a K 3 surface Y by a N ik ulin involution. The elliptic fibration of

X on P1 induces a fibration of Ỹ (the blow up of Y ) on P1 and so of Y (cf. Diagram 1). L et
E denote the generic fiber of the fibration on X and A the generic fiber of the fibration on
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Ỹ . By the Hurwitz formula, we have

2g(A) − 2 = 2(2g(E) − 2) + deg R

where R is the branch divisor. Since X has an elliptic fibration we have g(E) = 1 and
deg R = 2 because the involution ramifies on the points of intersection E ∩ N1 and E ∩ N2.

So we find 2g(A) − 2 = 2(2 − 2) + 2, hence the generic fiber of the fibration Ỹ → P1 is
hyperelliptic of genus two.

4.4. The case of L2 = 6, NS(X) = L6.

(a) The polarization L − N̂ . In this case (L − N̂)2 = 2 by Lemma 3.1 it defines a 2 : 1

map to P2. The curves Ni are mapped to lines in the plane. Let l := φ
L−N̂

(L − N̂), then

for each curve C in the plane we have the formula φ∗

L−N̂
(l) · φ∗

L−N̂
(C) = 2(C · l). Since

(L − N̂) · Ni = 1 the curves Ni are contained in the preimage φ−1

L−N̂
(Ti) where Ti are lines

which are tritangents to the branch divisor, and so ϕ∗

L−N̂
(Ti) = Ni + N ′

i
. The curves Ni, N

′

i

meet in three points. Barth in [B2, Paragraph 2] shows that there is a quartic in P2 meeting
the branch sextic at the tangency points.
(b) The polarization L. We consider the projective model of X as complete intersection
of a cubic and a quadric hypersurface, it has eight nodes and the map is φL : X → P4. The
curve L− N̂ (cf. Proposition 3.4) has degree 6 = L · (L− N̂) and genus (L− N̂)2/2 + 1 = 2.

Since (L − N̂) · Ni = 1, i = 1, . . . , 8 its image in P4 passes through the eight singular points.

This curve is contained in the intersection of three quadrics in P4, in fact h0(2L− (L− N̂ )) =

(L + N̂)2/2 + 2 = 3. The eight singular points of the surface are contained in three more

quadrics, in fact h0(2L − (
∑

8

i= 1
Ni)) = 6 (cf. C orollary 3.2).

We consider now the linear system |L − N̂ | associated to the hyperplane sections passing

through the eight singular points of the image of X in P4. We have h0(L− N̂ ) = 3 and let l1,

l2, l3 be its generators. The six elements l21, l22, l23, l1 · l2, l1 · l3, l2 · l3 span |2L−
∑

8

i= 1
Ni| ∼= P5

(these are the quadrics passing through the nodes).
(c) The m ap φL × φ

L−N̂
. In [vGS, Paragraph 3.9 ] the K3 surface Y admitting a Nikulin

involution with Néron Severi group M′

12
is described. Its quotient X̄ is birational to a

K3 surface which is complete intersection of a hypersurface of bidegree (2, 0) and three hy-
persurfaces of bidegree (1, 1) in P4 × P2 (for a more detailed description of this complete
intersection see the Section 5). The minimal resolution of the quotient X̄ is the K3 surface
X with NS(X) = L6. The projection of X to the first factor is defined by the divisor L and

to the second one by L− N̂ . The first projection contracts eight disjoint rational curves and
the same curves are sent to eight lines by the second projection (the 2 : 1 map to P2).

4.5. The case of L2 = 8, NS(X) = L8.

(a) The polarization L−N̂ . We have (L−N̂)2 = 4 and the map φ
L−N̂

: X −→ P3 exhibits

X as a quartic surface in P3 with eight disjoint lines. This case is studied by Barth in [B2].
He describes two conditions to have an even set. The second one is not satisfied in our case,
since it requires Picard number at least ten. In fact he shows that in this case there are two
skew lines Z1, Z2 on the quartic surface with Z1 meeting four lines and skipping the other
four lines, and viceversa for Z2. An easy computation shows that the intersection matrix of
the hyperplane section, of the lines Ni and of Z1 (or Z2) has rank ten.
Barth’s first condition says that there is an elliptic quartic curve in P3 which meets in two
points four rational curves and skips the other four. In term of classes in the Néron Severi
lattice this means that there is a curve E = α L+

∑
biNi with E2 = 0, ENi = 2 for i = 1, . . . , 4
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and ENi = 0 for i = 5, . . . , 8. By using the intersection products we obtain α = 1, bi = −1
for i = 1, . . . , 4 and bi = 0 for i = 5, . . . , 8. So the elliptic curve is E = L−N1 − . . .−N4 and
in fact E · (L− N̂) = 4 which is the degree of E in P3. Similarly the curve L−N5 − . . .−N8

meets the other four curves and skips the first four. Finally observe that these divisors are
not studied in Proposition 3.5, with the notation there this is the case d = r and the proof
does not work in this case.
We describe briefl y the elliptic fibration defined by E. Since E · Ni = 0, for i = 5, . . . , 8
these are components of reducible fibers. On the other hand the curves Ni, i = 1, . . . , 4
are bisections of the fibration. The curves L − N2 − N3 − N4 − Nj − Nk with j 6= k and
j, k = 5, 6, 7, 8 are rational (−2)-curves which meet E in two points and Nj, Nk in two points
as well. Hence they are also bisections of the fibration, and since a bisection meets also the
singular fiber in two points, the curves N5, . . . , N8 are contained in four different singular
fibers, which are of type I2. The remaining singular fibers are of type I1, and we have 16
of them. This fibration does not admit sections. In this case the even set consists of four
bisections and of four components of the singular fibers I2 (these are all disjoint).
(b) The polarization L. We consider the projective model of X given by the map
φL : X → P5, this is a complete intersection of three quadrics and has eight nodes. The
generic element in |L− N̂ | is a curve of degree 8 = L · (L− N̂) and genus (L− N̂)2/2 + 1 = 3

(cf. Proposition 3.4). Since (L− N̂) ·Ni = 1, i = 1, . . . , 8 the image of the curve L− N̂ in P5

passes through the eight singular points, moreover this divisor is not Cartier at the nodes.
By the Corollary 3.2 there exists a quadric G which cuts on the surface the curve L − N̂
passing through all the singular points, so this curve is contained in the intersection of four
quadrics in P5, in fact h0(2L − (L − N̂)) = (L + N̂)2/2 + 2 = 4. The quadric G must cut

the image of L − N̂ with multiplicity two since deg(X) = 8 and the intersection has degree
16. The eight singular points of the surface are contained in the intersection of ten quadrics,
in fact h0(2L − (

∑
8

i=1
Ni)) = 10. We consider the linear system |L − N̂ | associated to the

hyperplane section passing through the eight singular points. We have h0(L − N̂) = 4 and
we call l1, l2, l3, l4 its generators. The ten elements l2

1
, l2

2
, l2

3
, l2

4
, l1l2, l1l3, l1l4, l2l3, l2l4, l3l4

span |2L −
∑

8

i=1
Ni|.

(c) The map φL × φ
L−N̂

. This K3 surface is the minimal resolution of the quotient of a

K3 surface Y by a Nikulin involution. The Néron Severi group of Y is M′

16
by the Table 1,

and M is the ample class on Y with M2 = 16. This gives an immersion of Y in P9, and the
action of the Nikulin involution is induced by (x0 : . . . : x5 : y0 : . . . : y3) 7→ (x0 : . . . : x5 :

−y0 : . . . : −y3). By the projection formula we have H0(Y,M) ∼= H0(X,L) ⊕ H0(X,L − N̂),

with h0(X,L) = 6, h0(X,L − N̂) = 4. Now

S2H0(Y,M) = (S2H0(X,L) ⊕ S2H0(X,L − N̂)) ⊕ (H0(X,L) ⊗ H0(X,L − N̂)).

This has dimension 55 = (21 + 10) + 24. On the other hand

H0(Y, 2M) ∼= H0(X, 2L) ⊕ H0(X, 2L − N̂)

and the dimensions are 34 = 18 + 16. This shows that there are (21 + 10) − 18 = 13
invariant quadrics and 24 − 16 = 8 antiinvariant quadrics Qi(x, y), i = 1 . . . , 8 in the
ideal of Y . Since the quadrics in four variables are only ten, there are three quadrics
q1(x0, . . . , x5), q2(x0, . . . , x5), q3(x0, . . . , x5) in the ideal of Y . The map φL×φ

L−N̂
sends X to

the product P5×P3 and its image is the image of Y ⊂ P9 into the product of the eigenspaces,
hence it is contained in three quadrics q1(x0, . . . , x5), q2(x0, . . . , x5), q3(x0, . . . , x5) of bide-
gree (2, 0) and eight quadrics Qi(x, y), i = 1, . . . , 8, of bidegree (1, 1) in particular it is not a
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complete intersection of quadrics. The quadrics q1(x0, . . . , x5), q2(x0, . . . , x5), q3(x0, . . . , x5)
define the image of Y in P5, which is X with the polarization L. Since the fixed points of the
Nikulin involution are contained in the space y0 = . . . = y3 = 0, then the projection of the
ten quadrics of the kind q(x) − q′(y) = 0 to P5 are ten quadrics cutting out the set of nodes

on X ⊂ P5. The projection to P3 is X with the polarization L− N̂ and is a quartic. One can
obtain an equation for the quartic in the following way: a point x ∈ X ⊂ P5 has a non-trivial
counterimage if there is a non-trivial solution of Qi(x, y) =

∑
5

j=0
aij(y)xj = 0, i = 1, . . . , 8

which for a fixed x is a linear system of eight equations in six variables. Hence all the 6 × 6
minors of the matrix (aij(y)) are zero. Each of these is a sextic surface of P3 vanishing on
X ⊂ P3. Since this is a surface of degree four, each of them splits into a product q(x) · p4(x)
where p4(x) = 0 is an equation of X ⊂ P3.

4.6. The case of L2 = 8, NS(X) = L′

8.

(a) The polarization L − N̂ . In this case we have the divisor E1 := (L/2, v/2) with
v2 = −8 and v = −N1 − N2 − N3 − N4, and also the divisor E2 := (L/2, v′/2) with v′ =

−N5−N6−N7−N8 so (L/2, v/2)2 = (L/2, v′/2)2 = 0 and L− N̂ = (L/2, v/2)+(L/2,−v/2)
is the sum of two elliptic curves (cf. Proposition 3.5). This is a 2 : 1 map to P1 × P1 (by
Lemma 3.1) and the curves Ni are sent to lines on the quadric. Moreover since E1 ·Ni = 1 and
E2 ·Ni = 0 for i = 1, 2, 3, 4 the images of these lines belong to the same ruling on the quadric
and the images of Ni, i = 5, 6, 7, 8 belong to the other ruling. By a similar computation as
in Paragraph 4.4 the curves Ni are one of the two components of the preimage of a curve on
the quadric which splits on X, hence φ

L−N̂
(Ni) = Ti and these are bitangents to the branch

curve of bidegree (4, 4). Let φ∗

L−N̂
(Ti) = Ni + N ′

i then

OB′(N1 + . . . + N8 + N ′

1 + . . . + N ′

8) = OB′(4(L − N̂)) = OB′(2(2(L − N̂)))

By Proposition 3.4 2(L − N̂) is a curve, and has bidegree (2, 2) on the quadric. Hence the

divisor cut out by N1 + . . . + N ′

8
is two times the divisor cut out by 2(L− N̂) + µ where µ is

a 2-torsion element in the Picard group. Barth shows in [B2], case six, that such an element
does not exist. This implies that the tangency points of the Ti on the quadric are cut out by
a curve of bidegree (2, 2).
(b) The polarization L. All the considerations of the Paragraph 4.5, case (b) are true.

Moreover there are two elliptic curves L1 = L−N1−N2−N3−N4

2
, L2 = L−N5−N6−N7−N8

2
passing

through four of the eight singular points each and not passing through the other four. Ob-
viously also in this case the image of 2(L − N̂) = 2(L1 + L2) is cut out by a quadric. By
the Table 1 this case corresponds to a K3 surface Y with NS(Y ) = M4. After a change of
coordinates the surface X can be written in the form

q(z0, . . . , z5) = 0, z0z1 − z2
4 = 0, z2z3 − z2

5 = 0

and there are four singularities on z0 = z1 = z4 = 0 and four on z2 = z3 = z5 = 0 (the two
copies of P2 which are the vertices of the cones). Now the quadrics of the kind zizj = 0 with
i = 0, 1 and j = 2, 3 meet the K3 surface in two curves Ci, Cj with multiplicity two, hence
2Ci ∈ |L − (N1 + . . . + N4)| and 2Cj ∈ |L − (N5 + . . . + N8)| and so Ci, Cj are in the linear
system of L1, resp. of L2.

4.7. The case of L2 = 10, NS(X) = L10.

(a) The polarization L − N̂ . Since (L − N̂)2 = 6, then the projective model of X is a
complete intersection of a quadric and a cubic hypersurfaces in P4 with an even set of eight
lines (cf. Lemma 3.1).
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(b) The polarizations L−N1 −N2 −N3 −N4 and L−N5 −N6 −N7 −N8. The divisors
L−N1−N2−N3−N4 and L−N5−N6−N7−N8 are pseudo ample classes by the Proposition
3.5. They define two maps 2 : 1 to P2. Each of these maps contracts four curves of the eight
rational curves Ni and maps the other four in four conics.

4.8. The case of L2 = 12, NS(X) = L12.

(a)The polarization L− N̂ . Since (L− N̂)2 = 8 the projective model of X is a K3 surface
in P5 with an even set of eight disjoint lines.
(b) The polarizations L − N1 − N2 − N3 − N4 and L − N5 − N6 − N7 − N8. The curves
E1 = L − N1 − N2 − N3 − N4 and E2 = L − N5 − N6 − N7 − N8 have self intersection four,
so they define two maps to P3 (by Lemma 3.2). The map φE1

contracts the four curves Ni,
i = 1, . . . , 4 and sends the other in four conics. The map φE2

contracts the other four curves
and sends Ni, i = 1, . . . , 4 in conics.

4.9. The case of L2 = 12, NS(X) = L′

12.

(a)The polarization L − N̂ . Observe that the considerations of Paragraph 4.8, (a) are

true also in this case. Moreover there are two curves C1 = L−N1−N2−N3−N4−N5−N6

2
and

C2 = L−N7−N8

2
intersecting respectively six and two of the lines Ni in one point. The curve

C1 has degree three and genus one. The curve C2 has degree five and genus two.
(b) The map φL1

×φL2
. The intersection properties of L1 and L2 are L1 ·L1 = 2, L2 ·L2 = 0

and L1 ·L2 = 3. The K3 surface X is the minimal rsolution of the quotient X̄ of a K3 surface
Y admitting a Nikulin involution with NS(Y ) = M6 which is described in [vGS, Paragraph
3.3]. The surface X̄ has bidegree (2, 3) in P1 × P2. The maps φL1

and φL2
are respectively

the projection to the second and to the first projective space.
The map φL1

: X → P2 is a 2:1 map. It contracts the six rational curves N3, . . . , N8 to six
nodes of the branch sextic and the two curves N1 and N2 are mapped to lines in P2 which are
tritangent to the branch locus. The map φL2

: X → P1 is an elliptic fibration, it contracts
the two rational curves N1, N2, whence the curves N3, . . . , N8 are six independent sections
of the fibration. This fibration has two reducible fibers of type I2 (made up by the classes
N1, E2 − N1 and N2, E2 − N2).
The Segre map s sends P1 × P2 in P5.

P1

φL2
↗ ↖

X
φL2

×φL1−→ P1 × P2 s
−→ P5

φL1
↘ ↙

P2

Observe that the map s◦ (φL2
×φL1

) : X −→ P5 is the map φL1+L2
= φ

L−N̂
(since L1 +L2 =

L− N̂). Indeed let s1, s2, s3 be a basis of H0(L1), and s4, s5 be a basis of H0(L2). Then the
products s1s4, s1s5, s2s4, s2s5, s3s4, s3s5 are linear independent sections in H0(L1 +L2) and
define the Segre embedding of X in P1 × P2. Since h0(L1 + L2) = 6 then the map φL1+L2

is
exactly the map s ◦ (φL2

× φL1
).

4.10. The case of L2 = 16, NS(X) = L′

16, the map φL1
×φL2

. The intersection properties
of L1 and L2 are L1 ·L1 = 2, L2 ·L2 = 2 and L1 ·L2 = 4. In [vGS, Paragraph 3.6] is described
the K3 surface Y admitting a Nikulin involution with Néron Severi group M8. Its quotient
X̄ is the complete intersection of a hypersurface of bidegree (1, 1) and of a hypersurface of
bidegree (2, 2) in P2 × P2, its minimal resolution is X. A K3 surface which is a complete
intersection of a bidegree (1, 1) and a bidegree (2, 2) hypersurface in P2×P2 is a Wehler surface
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(cf. [W]). We describe this surface more in details in the Section 5. The surface X has a
projective model in P2×P2 and the map associated to the divisors L1 and L2 are respectively
the projection to the first and to the second projective space. The map φL1

: X → P2 is a
2 : 1 map. It contracts the four rational curves N5, . . . , N8 to nodes of the branch sextic of the
double cover. The four curves N1, . . . , N4 are mapped to lines in P2. Since their intersection
with L1 is equal to one, each of them is one of the two components of the pullback of a line
in P2. So their image under the map φL1

is a line tritangent to the branch curve. The branch
curve has degree six and has four nodes so its genus is (6−1)(6−2)/2−4 = 6. The curve R1

on X such that φL1
(R1) is the branch curve, has degree six and genus six (because it is the

branch curve, so the genus of the curve on X is the genus of its image on P2), this implies
that the curve R1 has self-intersection ten (g = R2

1/2 + 1) and its intersection with L1 is six.
The curve R1 has to intersect the curves Ni, i = 1, . . . , 4 in three points (because Ni are
mapped to tritangent to the sextic) and the curves Ni, i = 5, . . . , 8 in two points (because
the branching curve has nodes in the points which are the images of these curves). So we
find

R1 = 3

(
L − N1 − N2 − N3 − N4

2

)
− (N5 + N6 + N7 + N8).

Exactly in the same way one sees that the branch curve of the second projection is

R2 = 3

(
L − N5 − N6 − N7 − N8

2

)
− (N1 + N2 + N3 + N4).

The equation of a generic K3 surface which is complete intersection of a (1, 1) and a (2, 2)
hypersurface in P2 × P2 is given by the system

{ ∑
i,j=0,1,2 qij(x0 : x1 : x2)yiyj = 0∑
i=0,1,2 li(x0 : x1 : x2)yi = 0

where qij and li, i, j = 0, 1, 2 are homogeneous polynomial of degree respectively two and one
in the variables xj , which are the coordinates of the first copy of P2 and yj denote coordinates
of the second copy of P2.
For a generic point (x0 : x1 : x2) of P2 the system has two solutions in (y0 : y1 : y2) and this
gives the 2:1 map to P2. If the point (x0 : x1 : x2) is such that

∑
i=0,1,2 li(x0 : x1 : x2)yi = 0

for each (y0 : y1 : y2), then the fiber on it is the quadric
∑

i,j=0,1,2 q(x0 : x1 : x2)yiyj = 0.

Otherwise if
∑

i,j=0,1,2 q(x0 : x1 : x2)yiyj = 0 for each (y0 : y1 : y2) then the fiber on

(x0 : x1 : x2) is a line.
Since in our case each map to P2 contracts four lines, then for each copy of P2 there are
four points in which

∑
i,j=0,1,2 q(x0 : x1 : x2)yiyj = 0 are identically satisfied. U p to a

projective transformation one can suppose that the four points with dimension one fiber are,
on each P2, (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1). This implies that the equation∑

i,j=0,1,2 q(x0 : x1 : x2)yiyj = 0 is of the form

y0y1(x0x1 + ax0x2 − (a + 1)x1x2) + y0y2(bx0x1 + cx0x2 − (b + c)x1x2)+
+y1y2(−(1 + b)x0x1 − (a + c)x0x2 + (a + b + c + 1)x1x2) = 0.

and so it depends on three projective parameters. The equation of type (1, 1) are

x0y0 + dx0y1 + ex0y2 + f x1y0 + gx1y1 + hx1y2 + lx2y0 + m x2y1 + n x2y2 = 0

and so depends on eight parameters (we can not apply other projective transformations
because we have chosen the points on which there are lines as fibers). So a Wehler K3 surface
such that the projection φL1

to P2 contracts four rational curves of the K3 surface and φL2
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contracts four other rational curves (disjoint from the previous curves) depends exactly on
eleven param eters.

4 .1 1 . The case of L2 = 2 4 , NS(X) = L′

24, the m ap φL1
×φL2

. T h e intersection properties
of L1 and L2 are L1 · L1 = 4 , L2 · L2 = 4 and L1 · L2 = 6 . E ach of th em defi nes a m ap from
X to P3 (b y L em m a 3 .2 ). E ach m ap φLi

, i = 1 , 2 contracts four rational curves and sends
th e oth er in four lines. T h e curve L1 is sent b y φL2

to a curve of deg ree six, and viceversa.
In [vG S , P arag raph 3 .8 ] it is describ ed th e K 3 surface Y adm itting a N ik ulin involution w ith
N éron-S everi g roup M12. Its q uotient is X̄ and it is a com plete intersection of four varieties
of b ideg ree (1 , 1 ) in P3 × P3, th e m inim al resolution is X (cf. T ab le 1 ). T h e projections to
th e tw o copies of P3 are φL1

and φL2
.

5 . Geometric conditions to have an even set.

In th is section w e describ e g eom etrical properties of K 3 surfaces w h ich im ply th e presence of
an even set. T h ese even sets can b e of eig h t nodes, of eig h t rational curves (lines or conics)
or of som e nodes and som e rational curves. T h e follow ing results are in a certain sense th e
converse of th e results of th e previous section, w h ere w e supposed th at a K 3 surface adm its
an even set and w e describ ed its g eom etry. T o prove th e existence of an even set on S w e
w ill prove th at eith er th e lattice L2d or L′

2d
is em b edded in NS(S) and th at th e sub lattice

N of L2d (or of L′

2d
) is g enerated over Q b y (−2 )-irreducib le curves. S ince rank L2d = rank

L′

2d
= 9 and since th e K 3 surfaces w ith N éron S everi g roup eq ual to L2d or L′

2d
h ave an even

set, th en th e num b er of m oduli of th e fam ilies of K 3 surfaces th at w e describ e h ere is eleven.

5 .1 . D ou b le cov er of a con e w ith an ev en set. L et S b e a K 3 surface w h ich is a doub le
cover of a cone, th en b y [S D , P roposition 5 .7 case iii)] th e m ap from S to th e cone is g iven
b y a class L′ in NS(S) such th at eith er

a) L′ = 2E′ + Γ0 + Γ1 w ith Γ0 · E
′ = Γ1 · E

′ = 1 and Γ0 · Γ1 = 0 or
b ) L′ = 2E′ +2Γ0 + . . .+2Γn +Γn+ 1 +Γn+ 2, w ith E′ ·Γ0 = Γi ·Γi+ 1 = 1 i = 0 , . . . , n − 1 ,

Γn · Γn+ 1 = Γn · Γn+ 2 = 1 and th e oth er intersections are eq ual to zero.

T h e Γi’s are irreducib le (−2 )-curves. If w e are in th e case a), th en w e can g ive a suffi cient
condition for S to h ave an even set of eig h t disjoint rational curves.

P rop osition 5 .1 . Let S be a K 3 su rfa ce su ch th a t th ere exist a m a p φL′ : S
2:1
→ Z, w h ere Z

is a co n e a n d L′ = 2E′ + Γ0 + Γ1 w ith Γ0 · E
′ = Γ1 · E

′ = 1 a n d Γ0 · Γ1 = 0 . If th e bra n ch

locu s o f th e d o u ble co ver is th e u n io n o f a co n ic a n d a sextic m eetin g in six d istin c t po in ts

a n d n o t pa ssin g th ro u gh th e vertex o f th e co n e, th en S a d m its a n even set o f eigh t d isjo in t

ra tio n a l cu rves.

P roo f. W e prove th at under th e h ypoth esis th e lattice L′

4 is em b edded in th e N éron S everi
lattice of S. In particular th ere exist eig h t disjoint rational curves in NS(S) g enerating on
Q a copy of N in th e N éron S everi lattice. T h is im plies th at S adm its an even set m ade up
b y th ese eig h t disjoint rational curves.
B y th e h ypoth esis th e classes L′, E′ and Γ0 are linearly independent and are in NS(S). T h e
m ap φL′ is a 2 : 1 m ap to th e cone, w h ich contracts th e tw o rational curves Γ0 and Γ1 to
th e vertex of th e cone. T h e (sm ooth ) K 3 surface S is th e doub le cover of th e b low up of th e
cone in th e vertex and in th e six sing ular points of th e ram ifi cation locus. O n S th ere are six
rational curves Γi, i = 2 , . . . , 7 on th e six sing ular points of th e ram ifi cation locus, and th e
tw o rational curves Γ0 and Γ1 on th e b low up of th e vertex of th e cone (since th is is not in
th e ram ifi cation locus w e ob tain tw o curves).



190 ALICE GARBAGNATI AND ALESSANDRA SARTI

Let C ′

2 be the curve such that φL′(C ′

2) = c′2 is the conic of the branching locus. Since c′2 is a
conic, C ′

2 · L = 2 and since it does not pass through the vertex then C ′

2 · Γ0 = C ′

2 · Γ1 = 0,
so C ′

2 · E′ = 1, moreover C ′

2 is a rational curve and so C ′2
2 = −2. Since on the cone c′2

passes through the six singular points of the ramification locus, on the K3 surface we have
C ′

2 · Γi = 1, i = 2, . . . , 7.
The classes L′, E′, Γ0, C2, Γi, i = 2, . . . , 7 spans a lattice R which is isometric to the lattice
L′

4. In fact a basis for L′

4 is given by (L − N1 − N2)/2, N̂ and Ni, i = 1, . . . 7. The map

E′ 7→ (L − N1 − N2)/2, C2 + E′ − L′ 7→ N̂ , Γi 7→ Ni+1 i = 0, . . . , 7.

gives the explicit change of basis from R to L′

4. �

5.2. Complete intersection of one (2, 0) and three (1, 1) hy persurfaces in P4 × P2.

If S is a complete intersection of a hypersurface of bidegree (2, 0) and three hypersurfaces of
bidegree (1, 1) in P4 × P2, by the adjunction formula S is a K3 surface. The Néron Severi
group of a generic K3 surface which is a complete intersection of this type is generated by the
two divisors D1 and D2 associated to the two projections. The family of the K3 surfaces of
this type has Picard number two and so it has 18 moduli. To give the complete description
of the Néron Severi group we compute the intersection D1 ·D2. We describe here how to find
D1 ·D2 as explained in [vG, Section 5]. On the K3 surface the divisors D1 and D2 correspond
to the restriction to S of the pull back of the hyperplane section of P4, respectively of P2. We
put h = P3 × P2 and k = P4 × P1. It is clear that h3 = {p o int} × P2, and so h4 = 0 because
in P4 it corresponds to the intersection between a point and a space. In the same way one
computes that k2 = P4 × {p o int} (intersection of two lines in P2) and k3 = 0, h3k2 = 1
({p o int} × {p o int}). The hypersurface of bidegree (2, 0) corresponds to 2h (has degree two
with respect to the first factor, so with respect to h, and zero with respect to the second
factor, k) and the hypersurfaces of bidegree (1, 1) correspond to the divisor h + k. Since X
is the complete intersection of one hypersurface of bidegree (2, 0) and three hypersurfaces of
bidegree (1, 1), X corresponds in P4 × P2 to the divisor 2h(h + k)3. We want to compute
D1 ·D2 which is h · k restricted to 2h(h + k)3. Then D1 ·D2 is equal to hk(2h)(h + k)3 in the
six dimensional space P4 ×P2. The terms hikj with i + j = 6 correspond to the intersections
of codimension six and so are a finite number of points. The sum of the coefficients of these
terms is exactly the number of points, so D1 · D2 = 6.
H ence the general K3 surface which is complete intersection of a (2, 0) hypersurface and three

(1, 1) hypersurfaces in P4 × P2 has Néron-Severi lattice isometric to {Z2,

[

6 6
6 2

]

}. This

is a sublattice of the Néron Severi lattice of any K3 surface which is a complete intersection
of a (2, 0) hypersurface and three (1, 1) hypersurfaces in P4 × P2.

Proposition 5.2 . Let S be a complete intersection of one hypersurface of bidegree (2, 0) and

three hypersurfaces of bidegree (1, 1) in P4 × P2. Let φA1
and φA2

be the projections to the

fi rst and to the second factor associated to the pseudo ample class A1, with A2
1 = 6, and to

the pseudo ample class A2, with A2
2 = 2. If there exist eight curves Ri, i = 1, . . . , 8 such that

φA1
contracts all these curves to eight nodes of the image and φA2

sends these curves in lines

on P2, then Ri, i = 1, . . . , 8 form an even set.

Proof. The idea of the proof is similar to the proof of Proposition 5.1 and is based on the pres-
ence of certain divisors in NS(S). The divisors Aj , j = 1, 2, Ri, i = 1, . . . , 8 are contained in
the Néron Severi group. Nine of these classes are linearly independent. The lattice generated
by A1, A2, R1, R2, R3, R4, R5, R6, R7 is embedded in NS(S) and a computation shows that
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it is isometric to the lattice L6. Since the lattice L6 contains an even set, also in the Néron
Severi group of S there is an even set made up by R1, . . . , R7, 2A2 − 2A1 + R1 + . . . + R7.�

Remark. Observe that Proposition 5.2 gives a sufficient condition for a K3 surface complete
intersection in P4 to have an even set of nodes (or of eight rational curves in the minimal
resolution).

5.3. Complete intersection of three q uadrics in P5 with an even set of nodes. We
give two diff erent sufficient conditions for a K3 surface in P5 to have an even set of nodes.
These two possibilities correspond to the fact that the Néron Severi group of such a K3
surface, with Picard number nine, is equal either to the lattice L8 or L′

8.

Proposition 5.3 . Let S be a K3 surface admitting two maps φA1
, φA2

associated to the

pseudo ample class A1 with A2
1 = 8 and to the ample class A2 with A2

2 = 4. If there exist

eight curves Ri, i = 1, . . . , 8 such that φA1
contracts all these curves to eight nodes and φA2

sends these curves to lines on the quartic in P3, then Ri, i = 1, . . . , 8 form an even set.

Proof. One can prove that L8 is primitively embedded in NS(S) as in the Propositions 5.1
and 5.2. �

Proposition 5.4 . Let X be a K3 surface in P5 having eight nodes. T hese nodes form an

even set if X is the complete intersection of a smooth quadric and two quadrics, which are

singular in two planes H ∼= P2 and K ∼= P2, H ∩ K = ∅ and four of the points are contained

in H and the other four in K.

Proof. Let h0 = h1 = h2 = 0 and k0 = k1 = k2 = 0 be the equations defining H resp. K in
P5, then we can write the equations of the two cones as h0h1 − h2

2 = 0 and k0k1 − k2
2 = 0.

The quadrics hikj = 0, i = 0, 1, j = 0, 1 meet the K3 surface in two curves Ci, Cj with
multiplicity two, which passes through four singular points, resp. to the other four. So
2(Ci + Cj) ∈ |2L − (N1 + . . . + N8)|, which shows that N1 + . . . + N8 form an even set. �

5.4. Double covers of P2. Here we consider two diff erent K3 surfaces with an even set
which admit maps 2 : 1 to P2. The first one is a Wehler surface, the second one is not. In the
first case the curves of the even sets are contracted to singular points of the branch locus or
are sent to lines of P2 which are tritangent to the ramification locus, in the second case they
are contracted or sent to conics. Other double covers of P2 with an even set are described in
[B2].

5.4.1. T he first case: complete intersections of bidegree (1, 1), (2, 2) in P2×P2. The complete
intersections of bidegree (1, 1) and (2, 2) in P2 × P2 are the Wehler surfaces. The projections
to the two copies of P2 are 2:1 maps. It is known (but can also be computed as in Section
5.2) that the Néron Severi group of the generic member of this family is the two dimensional

lattice {Z2,

[

2 4
4 2

]

}. The number of moduli of the family of the Wehler K3 surfaces is

18.

Proposition 5.5. Let S be a W ehler K3 surface such that the first projection π1 contracts

four rational disjoint curves Rl, l = 1, . . . , 4 on S and the second projection π2 contracts

other four rational disjoint curves Rl, l = 5, . . . , 8. M oreover the map π1 sends the curves

contracted by π2 to lines on P2 and viceversa. T hen the eight rational curves Rl, l = 1, . . . , 8
form an even set on S.

Proof. One can prove that L′

16 is primitively embedded in NS(S) as in the Propositions 5.1
and 5.2, and that N ⊂ L′

16 is generated over Q by the curves Ri. �
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5.4.2. The second case.

Proposition 5.6. Let S be a K3 surface admitting two maps 2 : 1 to P2. If there exist
eight curves Ri, i = 1, . . . , 8 such that the map on the first copy of P2 contracts the curves
Ri, i = 1, . . . , 4 and sends the others in four conics and the map on the second copy of P2

contracts the curves Ri i = 5, . . . , 8 and sends the others in conics, then Ri, i = 1, . . . , 8 is
an even set of eight disjoint rational curves.

Proof. One can prove that L10 is primitively embedded in NS(S) as in the Propositions 5.1
and 5.2. �

5.5. A mix ed even set.

Proposition 5.7 . Let S be a K3 surface admitting two maps to P3. If there exist eight curves
Ri, i = 1, . . . , 8 such that the map on the first copy of P3 contracts the curves Ri, i = 1, . . . , 4
and sends the others in four conics and the map on the second copy of P3 contracts the curves
Ri, i = 5, . . . , 8 and sends the others in conics, then Ri, i = 1, . . . , 8 is an even set of eight
disjoint rational curves.

Proof. One can prove that L12 is primitively embedded in NS(S) as in the Propositions 5.1
and 5.2. �

In this case we have on a quartic in P3 a mixed even set, in fact it consists of four nodes and
of four conics.

5.6. S urfaces of bideg ree (2, 3) in P1 ×P2. A K3 surface in P1 ×P2 has bidegree (2, 3) by
the adjunction formula. These K3 surfaces are studied in [vG, Paragraph 5.8]. The family
has 18 moduli, in fact the Néron Severi group of such a K3 surface has to contain two classes
D1, D2 giving the regular maps φD1

and φD2
, which correspond to the projections to P1 and

to P2. We can compute the intersection properties of D1 and D2 as in the Paragraph 5.2
(these computations can be found also in [vG, Paragraph 5.8]). The general K3 surface which

has bidegree (2, 3) in P1 × P2 has Néron-Severi lattice isometric to {Z2,

[

0 3
3 2

]

}. This is

a sublattice of the Néron Severi lattice of all the K3 surfaces which have bidegree (2, 3) in
P1 × P2.

Proposition 5.8 . Let S be a K3 surface of bidegree (2, 3) in P1 × P2 and such that the
projection to the first space p1 (which gives an elliptic fibration) contracts two disjoint rational
curves and the projection p2 to the second space contracts other six disjoint rational curves.
If the curves contracted by p1 are sent to lines by p2 and the curves contracted by p2 are sent
by p1 to two sections of the elliptic fibration, then the eight rational curves on S form an
even set.

Proof. One can prove that L′

12 is primitively embedded in NS(S) as in the Propositions 5.1
and 5.2. �

5.7. Complete intersections in P3×P3. The Néron Severi group of a complete intersection
of four hypersurfaces of bidegree (1, 1) in P3 × P3 is generated by the two divisors D1 and
D2 associated to the two projections. The divisors D1 and D2 have self intersection equal
to four, computing as before the intersection between D1 and D2 one finds D1 · D2 = 6, so
the Néron Severi lattice of the generic K3 surface which is a complete intersection of four

bidegree (1, 1) hypersurfaces in P3 × P3 is {Z2,

[

4 6
6 4

]

}.



PROJECTIVE MODELS OF K3 SURFACES WITH AN EVEN SET 193

Proposition 5.9. Let S be a complete intersection of four bidegree (1, 1) hypersurfaces in
P3 × P3. Let A1 and A2 be two pseudo ample divisors defining two maps to P3. If the map
φA1

, respectively φA2
, contracts four rational curves R1, R2, R3, R4, respectively R5, R6, R7,

R8, and sends the others four rational curves in lines, then Ri, i = 1, . . . , 8 is an even set on
X.

Proof. One can prove that L′

24 is primitively embedded in NS(S) as in the Propositions 5.1
and 5.2. �
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CONTRACTION OF EXCESS FIBRES BETWEEN THE MCKAY

CORRESP OND ENCES IN D IMENSIONS TWO AND THREE

SAMUEL BOISSIÈR E AN D ALESSAN D R A SAR T I

Abstract. T h e q u o tie n t sin g u la ritie s o f d im e n sio n s tw o a n d th re e o b ta in e d fro m p o ly -

h e d ra l g ro u p s a n d th e c o rre sp o n d in g b in a ry p o ly h e d ra l g ro u p s a d m it n a tu ra l re so lu tio n s

o f sin g u la ritie s a s H ilb e rt sch e m e s o f re g u la r o rb its w h o se e x c e p tio n a l fi b re s o v e r th e

o rig in re v e a l sim ila r p ro p e rtie s. W e c o n stru c t a m o rp h ism b e tw e e n th e se tw o re so lu -

tio n s, c o n tra c tin g e x a c tly th e e x c e ss p a rt o f th e e x c e p tio n a l fi b re . T h is c o n stru c tio n is

m o tiv a te d b y th e stu d y o f so m e p e n c ils o f K 3 -su rfa c e s a risin g a s m in im a l re so lu tio n s o f

q u o tie n ts o f n o d a l su rfa c e s w ith h ig h sy m m e trie s.

1. In tro d u ctio n

C o n sid e r a b in a ry p o ly h e d ra l g ro u p G̃ ⊂ S U (2 ) c o rre sp o n d in g to a p o ly h e d ra l g ro u p

G ⊂ S O (3 , R) th ro u g h th e d o u b le -c o v e rin g S U (2 ) → S O (3 , R). T h e g ro u p G̃ a c ts fre e ly

o n C
2 − { 0} a n d th e q u o tie n t C

2/G̃ is a su rfa c e sin g u la rity w ith a n iso la te d sin g u la r p o in t

a t th e o rig in . T h e e x c e p tio n a l d iv iso r o f its m in im a l re so lu tio n o f sin g u la ritie s X → C
2/G̃

is a tre e o f sm o o th ra tio n a l c u rv e s o f se lf-in te rse c tio n −2 , in te rse c tin g tra n sv e rse ly , w h o se
in te rse c tio n g ra p h is a n A -D -E D y n k in d ia g ra m . T h e c la ssic a l M c K a y c o rre sp o n d e n c e

([2 3 ]) re la te s th is in te rse c tio n g ra p h to th e re p re se n ta tio n s o f th e g ro u p G̃, a sso c ia tin g
b ije c tiv e ly e a ch e x c e p tio n a l c u rv e to a n o n -triv ia l irre d u c ib le re p re se n ta tio n o f th e g ro u p :
th e c o rre sp o n d e n c e in fa c t id e n tifi e s th e in te rse c tio n g ra p h w ith th e M c K a y q u iv e r o f

th e a c tio n o f G̃ o n C
2. A m o n g th e se irre d u c ib le re p re se n ta tio n s w e fi n d a ll irre d u c ib le

re p re se n ta tio n s o f th e g ro u p G: w e c a ll th e m pure a n d th e re m a in in g o n e s bin a ry . S in c e

G̃/G ∼= { ± 1}, o n e c a n p ro d u c e a G-in v a ria n t c o n e C
2/{ ± 1}

∼

−→ K ↪→ C
3 w h o se q u o tie n t

K /G is iso m o rp h ic to C
2/G̃. In th is n o te , w e p ro v e th e fo llo w in g re su lt, c o n je c tu re d b y

W . P . B a rth :

Th e o re m 1 .1 . T h ere exists a crepa n t reso lutio n o f sin gula rities o f C
3/G co n ta in in g a

pa rtia l reso lutio n Y → K /G w ith th e pro perty th a t th e in tersectio n gra ph o f its exceptio n a l

locus is precisely th e M cK a y quiver o f th e a ctio n o f G o n C
3, togeth er w ith a reso lutio n

m a p X → Y m a ppin g iso m o rph ica lly th e exceptio n a l curves co rrespo n d in g to pure repre-

sen ta tio n s a n d co n tra ctin g th o se a ssocia ted w ith bin a ry represen ta tio n s to o rd in a ry n od es.

W e m a k e th is c o n stru c tio n in th e fra m e w o rk o f th e H ilb e rt sch e m e s o f re g u la r o rb its o f
N a k a m u ra ([2 5 ]) p ro v id in g , th a n k s to th e B rid g e la n d -K in g -R e id th e o re m ([5 ]), th e n a tu ra l
c a n d id a te s fo r th e re so lu tio n s o f sin g u la ritie s in d im e n sio n s tw o a n d th re e . W e p ro d u c e a
m o rp h ism S b e tw e e n th e se tw o re so lu tio n s o f sin g u la ritie s, d e fi n e o u r p a rtia l re so lu tio n

1 9 9 1 Mathematics Subject Classification. P rim a ry 1 4 C 0 5 ; Se c o n d a ry 1 4 E1 5 ,2 0 C 1 5 ,5 1 F 1 5 .

K ey w ord s and p hrases. Q u o tie n t sin g u la ritie s, McK a y c o rre sp o n d e n c e , H ilb e rt sch e m e s, p o ly h e d ra l

g ro u p s.

1 9 5
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Y as the image of this map and study the effect of S on the exceptional fibres:

G̃-Hilb
(
C

2
) S //

eπ

��

S
%% %%LLLLLLLLLLL

G-Hilb
(
C

3
)

π

��

Y

��

+

�

99rrrrrrrrrrr

C
2/G̃

∼ // K/G �

�

// C3/G

Although the exceptional fibres can be described very explicitly in all cases (see [19 ]), by
principle our proof avoids any case-by-case analysis. Therefore, the key point consists in
a systematic modular interpretation of the objects at issue.
F rom the strict point of view of the McKay correspondence, this construction shows some
new properties revealing again the fertility of the geometric construction of the McKay
correspondence following G onzales-Sprinberg and V erdier [14 ], Ito-Nakamura [19 ], Ito-
Najakima [18 ] and Reid [26 ]. The beginning of the story was devoted to the study of all
situations in dimension two and three, in general by a case-by-case analysis. Then efforts
were made to understand how to get all these cases by one general geometric construction
([18 , 5]). The development followed then the cohomological direction in great dimensions
in a symplectic setup ([21, 11]), leading to an explicit study of a family of examples of
increasing dimension for the specific symmetric group problem ([3]). The new point of view
in the present paper consists in working between two situations of different dimensions
for different - but related - groups and construct a relation between them. This may be
considered as a concrete application of some significant results in this area coming again
at the beginning of the story, dealing with a now quite classical material approached by
natural transformations between moduli spaces.
This study is motivated by previous works of Sarti [27 ] and Barth-Sarti [2] studying special
pencils of surfaces in P3 with bipolyhedral symmetries. The minimal resolutions of the
associated quotient surfaces are K3-surfaces with maximal Picard numbers. F or some
special fibres of these pencils, the resolution looks locally like the quotient of a cone by
a polyhedral group, and our result gives a local interpretation of the exceptional locus in
these cases.
The structure of the paper is as follows: in Section 2 we introduce the notations and
we recall some basic facts about clusters and in Section 3 we recall the construction of
the Hilbert schemes of points and clusters. The Sections 4 , 5 and 6 give a brief survey
on polyhedral, binary polyhedral and bipolyhedral groups, their representations and the
classical Mckay correspondences in dimensions two and three. In Section 7 we start the
study of the map S . F irst we show that it is well defined (lemma 7 .1) and then that it is
a regular projective map, which induces a map between the exceptional fibres (proposition
7 .2). In Section 8 the theorem 8 .1 is the fundamental step for proving the main theorem 1.1:
we show that the map S contracts the curves corresponding to the binary representations
and maps the curves corresponding to the pure representations isomorphically to the
exceptional curves downstairs. In Section 9 , as an example we describe in details the case

when G̃ is a cyclic group. F inally the Section 10 is devoted to an application to resolutions
of pencils of K3-surfaces.
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2. Clusters

In the sequel, we aim to study a link between the two-dimensional and the three-dimensional
McKay correspondences. In order to avoid confusion, we shall use different sets of letters
for the corresponding algebraic objects at issue in both situations. In this section, we fix
the notations and the terminology.

2.1. G enera l setu p . L et V be a n-dimensional complex vector space and G a finite
subgroup of SL (V ). We denote by O(V ) := S∗(V ∨) the algebra of polynomial functions
on V , with the induced left action g · f := f ◦ g−1 for f ∈ O(V ) and g ∈ G.
We choose a basis X1, . . . ,Xn of linear forms on V , denote the ring of polynomials in
n indeterminates by S := C[X1, . . . ,Xn] and identify O(V ) ∼= S. The ring S is given a
graduation by the total degree of a polynomial, where each indeterminate Xi has degree
1. In particular, the action of the group G on S preserves the degree.
L et mS := 〈X1, . . . ,Xn〉 be the maximal ideal of S at the origin. We denote by SG

the subring of G-inv ariant p oly nom ials, by mSG its m ax im al id eal at the origin and by
nG := mSG · S the id eal of S generated by the non-constant G-inv ariant p oly nom ials
v anishing at the origin. T he q uotient ring of coinvariants is by d efi nition SG := S/ nG.
A n id eal I ⊂ S is called a G-clu ster if it is globally inv ariant und er the action of G

and the q uotient S/I is isom orp hic , as a G-m od ule, to the regular rep resentation of G:
S/I ∼= C[G]. A c losed subschem e Z ⊂ C

n is called a G-clu ster if its d efi ning id eal I(Z) is
a G-c luster. S uch a subschem e is then zero-d im ensional and has length |G|. F or instance,
a free G-orbit d efi nes a G-c luster. In p articular, a G-c luster contains only one orbit: the
sup p ort of a cluster is a union of orbits, and any function constant on one orbit and
v anishing on another one w ould ind uce a d iff erent cop y of the triv ial rep resentation in the
q uotient S/I.
W e are p articularly interested in G-c lusters sup p orted at the origin. T hen I ⊂ mS and
in fact this cond ition is enough to assert that the cluster is sup p orted at the origin: else,
the sup p ort of the cluster w ould consist in m ore than one orbit. F urtherm ore, one has
autom atically nG ⊂ I, since any non-constant function f ∈ nG not contained in I w ould
ind uce a new cop y of the triv ial rep resentation in the q uotient S/I, d iff erent from the one
alread y giv en by the constant functions. H ence w e w ish to und erstand the structure of
the G-c lusters I such that nG ⊂ I ⊂ mS, eq uiv alent to the stud y of the q uotient id eals
I/nG ⊂ mS/nG ⊂ S/nG = SG, w ith the ex act seq uence:

(1 ) 0 −→ I/nG −→ SG −→ S/I −→ 0.

F rom now on, w e assum e that the group G is a subgroup of ind ex 2 of a group R ∈ G L (V )
generated by refl ections (w e follow here the term inology of [7 ]), i.e. elem ents g ∈ R such
that rk (g − Id V ) = 1 .
T he structure of the action of R on S has the follow ing p rop erties (see [7 ]):

• T he algebra of inv ariants SR is a p oly nom ial algebra generated by ex actly n alge-
braically ind ep end ent hom ogeneous p oly nom ials f1, . . . ,fn of d egrees di.

• |R| = d1 · . . . · dn.
• T he set of d egrees {d1, . . . ,dn} is ind ep end ent of the choice of the hom ogeneous

generators.
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• The algebra of coinvariants is isomorphic to the regular representation: SR
∼= C[R].

As a byproduct, we get that the algebra of coinvariants SR is a graded finite-dimensional
algebra.
From this and the fact that G = R ∩ SL(V ), one deduces the structure of the action of G

on S (see [4 , 12, 13 ]):

• There exists a homogeneous R-skew-invariant polynomial fn+ 1 ∈ S, i.e. such that
g·fn+ 1 = det(g).fn+ 1 for all g ∈ R, unique up to a multiplicative constant, dividing
any R-skew-invariant polynomial: hence the set fn+ 1 · SR is precisely the set of
R-skew-invariants. A natural choice for this element is fn+ 1 = J ac(f1, . . . , fn).

• SG = C[f1, . . . , fn, fn+ 1].
• nG = nR ⊕ Cfn+ 1.
• SR = SG ⊕ Cfn+ 1.

N ote that, as a G-module, C[R] is isomorphic to two copies of C[G]. It follows that mS/nG

is a graded finite-dimensional algebra which, as a G-module, consists exactly of each non-
trivial representation ρ of G repeated 2 dim ρ times: one can denote the occurrences of each
representation ρ by V (1)(ρ), . . . , V (2 d im ρ)(ρ) where each V (i)(ρ) is given by homogeneous
polynomials modulo nG.
Thanks to the exact sequence (1), giving a G-cluster supported at the origin consists in
choosing, for each non-trivial representation ρ of G, dim ρ copies of ρ in mS/nG. B ut this

gives many choices since any linear combination of some V (i)(ρ) and V (j)(ρ) provides such
a copy. The ground idea is that one does not have to make all these choices in order to
define I (see §9 for an explicit example).
For such an ideal I with nG ⊂ I ⊂ mS, we consider the finite-dimensional G-modules
W ⊂ S generating I in the sense that I = W · S + nG. Such modules do exist thanks to
the preceding construction. Among these choices, we consider the minimal ones, i.e. such
that no strict G-submodule of them generate I in the preceding sense.
If W is a generator in this sense, then

I = W · S + nG = W + mS · W + nG = W + mS · I + nG.

This means that the C-linear map W → I/(mS · I + nG) is surjective. Also, since W is a
G-module and since mS ·I+ nG is G-stable, this map is G-linear. If W is a minimal set of
generators, it satisfies in particular W ∩ (mS · I + nG) = {0} since this intersection would
provide a G-submodule whose complementary in W is a smaller G-submodule generating
I. Hence, for W minimal one gets an isomorphism of G-modules W ∼= I/(mS · I + nG).
We set then V (I) := I/(mS · I + nG). The set of generators of V (I) may not be uniquely
determined, but its structure as a G-module is unique. The important issue, that will
be the core of the classification, will be to determine whether V (I) is irreducible or not,
although it is a minimal set of generators.

2.2. Notations for the two- and three-dimensional cases. When applying the pre-
ceding constructions in dimensions two or three, we fix the following notations:

• For n = 2, the polynomial ring is denoted by A := C[x , y ], the group by G̃ and
any ideal by I.

• For n = 3 , the polynomial ring is denoted by B := C[a , b , c ], the group by G and
any ideal by J .

3 . Moduli space of clusters

We recall here the constructions of the Hilbert schemes of points or clusters.
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3.1. Hilbert scheme of points. Let X ⊂ P
n
C

be a quasi-projective scheme and N a

positive integer. C onsider the contravariant functor HilbN
X from the category of schemes

to the category of sets

HilbN
X : (Sch e m e s ) → (Se ts )

which is given by

HilbN
X(T ) :=





Z ⊂ T × X

∣∣∣∣∣∣∣∣

(a) Z is a closed subscheme

(b) the morphism Z ↪→ T × X
p
−→ T is fl at

(c) ∀t ∈ T,Zt ⊂ X is a closed subscheme
of dimension 0 and length N





By a theorem of Grothendieck ([15 ]), this functor is representable by a quasi-projective
scheme HilbN (X) equipped with a universal family ΞX

N ⊂ HilbN (X) × X. In the sequel,

we shall always denote by p the projection to the moduli space (here HilbN (X)) and by

q the projection to the base (here X). When X is projective, the scheme HilbN (X) is
projective and comes with a very ample line bundle (for ` � 0):

det
(
p∗

(
OΞX

N

⊗ q∗OX(`)
))

.

When X = C
n, one gets an open immersion HilbN (Cn) ↪→ HilbN (Pn

C
) corresponding to the

restriction of the universal family. The induced restriction of the preceding determinant

line bundle provides us the very ample line bundle det
(
p∗OΞCn

N

)
on HilbN (Cn).

There exists a natural projective morphism from HilbN (X) to the symmetric product
SN (X) sending a closed subscheme to the corresponding 0-cycle describing its support,
called the H ilbert-C h ow morphism:

H : HilbN (X) −→ SN (X).

By a theorem of Fogarty ([10]), the scheme HilbN (X) is connected. For dim X = 2, it is
reduced, smooth and the morphism H is a resolution of singularities.

3.2. Hilbert scheme of reg u lar orbits. We consider the sub-functor G-Hilb
Cn of Hilb

|G|
Cn

given by

G-HilbCn(T ) :=
{
Z ∈ Hilb

|G|
Cn (T ) | ∀t ∈ T,Zt ⊂ C

n is a G-cluster
}

.

This functor is representable by a quasi-projective scheme G-Hilb(Cn) called the H ilbert

sch eme of G-regular orbits, which is a union of some connected components of the sub-

scheme of G-fixed points
(
Hilb|G|(Cn)

)G

. Furthermore, the quotient C
n/G can be iden-

tified with a closed subscheme of S|G|(Cn) and since the support of a G-cluster consists
exactly of one orbit through G, the restriction of the Hilbert-C how morphism factorizes
through a projective morphism (see [5 , 18 , 28 ]):

H : G-Hilb(Cn) −→ C
n/G.

There is a unique irreducible component of G-Hilb(Cn) containing the free G-orbits and
mapping birationally onto C

n/G. This component is taken as the definition of the Hilbert
scheme of G-regular orbits in [25 ]. By the theorem of Bridgeland-K ing-R eid [5 ], if n ≤
3, then G-Hilb(Cn) is already irreducible, reduced, smooth and the map H a crepant
resolution of singularities of the quotient C

n/G. M oreover, H is an isomorphism over the
open subset of free G-orbits. As a byproduct, the two definitions coincide.
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As before, the scheme G-Hilb(Cn) is equipped with a universal family ZG which is the re-
striction of the universal family ΞCn

|G| corresponding to the closed immersion G-Hilb(Cn) ↪→

Hilb|G|(Cn). The induced restriction of the determinant line bundle provides us, by nat-
urality of the construction of the determinant of a family (see [17, §8.1]), the very ample
line bundle det (p∗OZG

) on G-Hilb(Cn).

4. Rotation groups

4.1. Polyhedral groups. Let SO (3, R) be the group of rotations in R
3. U p to conjuga-

tion, there are five different types of finite subgroups of SO (3, R), called polyhedral groups:

• the cyclic groups Cn
∼= Z/nZ of order n ≥ 1;

• the dihedral groups Dn
∼= Z/nZ o Z/2Z of order 2n, n ≥ 1;

• the group T of positive isometries of a regular tetrahedra, isomorphic to the alter-
nate group A4 of order 12;

• the group O of positive isometries of a regular octahedra or a cube, isomorphic to
the symmetric group S4 of order 24;

• the group I of positive isometries of a regular icosahedra or a regular dodecahedra,
isomorphic to the alternate group A5 of order 6 0.

4.2. B inary polyhedral groups. Let H be the real algebra of quaternions, with basis
(1, i, j, k). The norm of a quaternion q = a·1+b·i+c·j+d·k is N(q) := a2+ b2+ c2+ d2,
a, b, c, d ∈ R. Let S be the three-dimensional sphere of quaternions of length 1 and H the
three-dimensional vector subspace of pure quaternions (i.e. a = 0). For q ∈ S, the action
by conjugation φ(q) : H → H, x 7→ q · x · q−1 is an isometry. Since the group S is
isomorphic to SU (2) by the identification

q =

(
a + ib c + id
−c + id a − ib

)
,

one gets an exact sequence

0 −→ {± 1} −→ SU (2)
φ

−→ SO (3, R) −→ 0.

For any finite subgroup G ⊂ SO (3, R), the inverse image G̃ := φ−1G is called a binary

polyhedral group. It is a finite subgroup of SU (2) or equivalently, up to conjugation, of
SL(2, C):

• the binary cyclic groups C̃n
∼= C2n have order 2n;

• the binary dihedral groups D̃n have order 4n;

• the binary tetrahedral group T̃ has order 24;

• the binary octahedral group Õ has order 48;

• the binary icosahedral group Ĩ has order 120.

4.3. R epresentations of polyhedral groups. Consider a binary polyhedral group G̃,
the associated polyhedral group G and set τ := {± 1}:

0 −→ τ −→ G̃
φ

−→ G −→ 0.

This exact sequence induces an injection of the set of irreducible representations of G in the

set of irreducible representations of G̃: if ρ : G → GL(V ) is an irreducible representation

of G, it induces by composition a representation of G̃ which is τ -invariant, i.e. such that

ρ(−g) = ρ(g) for all g ∈ G̃. Thanks to this property, if the representation ρ would admit

a non-trivial G̃-submodule, it would also be a non-trivial G-submodule after going to the
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quotient G̃/τ ∼= G. This shows also that the image of the injection (since G is a quotient

of G̃):

Irr(G) ↪→ Irr(G̃)

consists precisely on those irreducible representations which are τ -invariant. These rep-
resentations are called pure and the remaining representations are called binary. More

precisely, if ρ : G̃ → GL(V ) is an irreducible representation of G̃, the subspace

V τ := {v ∈ V | v = ρ(−1)v}

is a G̃-submodule of V . Hence either V τ = V and the representation ρ is pure, or ρ is
binary and V τ = {0}.
For each type of binary polyhedral group, we draw the list of the irreducible representations
with their dimension. The binary representations are labelled by a “ ˜” and the trivial
representation is denoted by χ0 in all cases:

• binary cyclic group C̃n, n ≥ 1:
representation χ0 {χj}j= 1,...,n−1 {χ̃j}j= 1,...,n

dimension 1 1 1

• binary dihedral group D̃n for n = 2` + 1, ` ≥ 1:
representation χ0 χ1 {τj}j= 1,...,` χ̃1 χ̃2 {σ̃j}j= 1,...,`

dimension 1 1 2 1 1 2

• binary dihedral group D̃n for n = 2`, ` ≥ 1:
representation χ0 χ1 χ2 χ3 {τj}j= 1,...,`−1 {σ̃j}j= 1,...,`

dimension 1 1 1 1 2 2

• binary tetrahedral group T̃ :
representation χ0 χ1 χ2 χ3 χ̃1 χ̃2 χ̃3

dimension 1 1 1 3 2 2 2

• binary octahedral group Õ:
representation χ0 χ1 χ2 χ3 χ4 χ̃1 χ̃2 χ̃3

dimension 1 1 2 3 3 2 2 4

• binary icosahedral group Ĩ:
representation χ0 χ1 χ2 χ3 χ4 χ̃1 χ̃2 χ̃3 χ̃4

dimension 1 3 3 4 5 2 2 4 6

4.4. Bipolyhedral groups. For p, q ∈ S, the action σ(p, q) : H → H, x 7→ p · x · q−1 is an
isometry and one gets an exact sequence

0 −→ {±1} −→ SU(2) × SU(2)
σ

−→ SO(4, R) −→ 0.

For any binary polyhedral group G̃, the direct image σ(G̃ × G̃) ⊂ SO(4, R) is called a
bipolyhedral group. In §10, we shall make use of the following particular groups:

• G6 = σ(T̃ × T̃ ) of order 288;

• G8 = σ(Õ × Õ) of order 1152;

• G12 = σ(Ĩ × Ĩ) of order 7200.

5. Graph-theoretic intuition

5.1. M cK ay q uiv ers. If G ⊂ SL(n, C) is a finite subgroup, it defines a natural faithful
representation Q of G. Let {V0, . . . , Vk} be a complete set of irreducible representations
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of G, where V0 denotes the trivial one. For each such representation, one may decompose
the tensor products

Q⊗ Vi
∼=

k⊕

j=0

V
⊕ai,j

j

for some non-negative integers ai,j. If the character of the representation Q is real-valued,
then ai,j = aj,i for all i, j. One defines the McKay quiver as the graph with vertices
V0, V1, . . . , Vk and ai,j edges between the vertices Vi and Vj . In particular, this quiver
may contain some loops. For our purpose, we only consider the reduced McKay quiver
with vertices V1, . . . , Vk and one edge between Vi and Vj if i 6= j and ai,j 6= 0: this means
that we remove from the McKay quiver the vertex V0, all edges starting from it, all loops
and all multiple edges. When there is an edge joining Vi and Vj , the vertices are called
adjacent.
One may check that all finite subgroups of SL(2) or SO(3, R) enter in this context since
their natural representation Q is real-valued.

5.2. McKay quivers for the polyhedral groups. For each binary polyhedral group

G̃ ⊂ SU(2) and its corresponding polyhedral group G ⊂ SO(3, R), we draw the reduced
McKay quiver with our conventions. For the binary polyhedral groups, we denote by a
white vertex the pure representations and by a black vertex the binary ones. We get (see
for example [14, 12, 13]) the graphs of figure 1.
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In the sequel, we shall interpret these graphs as the intersection graphs of a family of
smooth rational curves meeting transversally. One may then get the following intuition:
looking at the two-dimensional graphs, if one contracts the curves associated to a binary
representation (black nodes), then one gets as intersection graph precisely the correspond-
ing graph in dimension three!
Another property of the two-dimensional quivers is that no two pure representations and no
two binary representations are adjacent. This means that the preceding idea of contraction
contracts only one curve each time.

6. Exceptional fibres in dimensions two and three

Considering the Hilbert-Chow morphism H : G-Hilb(Cn) −→ C
n/G, our purpose is to

describe the exceptional fibre H −1(O) over the origin O ∈ C
n/G in the two- and three-

dimensional cases. Note that all finite subgroups of SL(2, C) or SO(3, R) enter in the
context of §2 since they are subgroups of index 2 of a reflection group (see [13, §2.7]).
Hence we may apply the general procedure for the study of the clusters supported at the
origin.
The understanding of the exceptional fibre in these cases was achieved by Ito-Nakamura
[19, 20] in dimension two and by Gomi-Nakamura-Shinoda [12, 13] in dimension three, by
a case-by-case analysis. For the two-dimensional case, there is another proof by Crawley-
Boevey [8] avoiding this case-by-case analysis. We recall the results.
For any finite group G, Irr∗(G) denotes the set of irreducible representations but the trivial
one.

6.1. Structure of the exceptional fibre in dimension two. Let G̃ ⊂ SL(2, C) be a
binary polyhedral group and denote the Hilbert-Chow morphism by

π̃ : G̃-Hilb
(
C

2
)
−→ C

2/G̃.

For each non-trivial irreducible representation ρ of G̃, set

E(ρ) := {I ∈ π̃−1(O)red |V (I) ⊃ ρ}.

T heorem 6 .1 . ([19, Theorem 3.1]

• Each E(ρ) is a smooth rational curve of self-intersection −2.
• π̃−1(O)red =

⋃
ρ
E(ρ) and π̃−1(O) =

∑
ρ
d im ρ · E(ρ) as a C artier-diviso r, ρ ∈

Irr∗(G̃).
• If I ∈ E(ρ) and I /∈ E(ρ′) fo r all ρ 6= ρ′, th en V (I) ∼= ρ.
• If I ⊂ E(ρ) ∩ E(ρ′), th en V (I) ∼= ρ ⊕ ρ′ and th e cu rves E(ρ) and E(ρ′) intersect

transversally at I.
• T h e intersectio n grap h o f th ese cu rves is th e redu ced M cK ay qu iver o f th e gro u p

G̃.

In p a rtic u la r, a g e n e ra to r V (I) d o e s n o t c o n ta in m o re th a n o n e c o p y o f a n y irre d u c ib le
re p re se n ta tio n , a n d E(ρ)∩E(ρ′) 6= ∅ if a n d o n ly if th e re p re se n ta tio n s ρ a n d ρ′ a re a d ja c e n t.

6 .2 . Structure of the exceptional fibre in dimension three. L e t G ⊂ S O (3 , R) b e
a p o ly h e d ra l g ro u p a n d d e n o te th e H ilb e rt-C h o w m o rp h ism b y

π : G-H ilb
(
C

3
)
− → C

3/G.

F o r e a ch n o n -triv ia l irre d u c ib le re p re se n ta tio n ρ o f G, se t

C(ρ) := {J ∈ π−1(O)re d |V (J) ⊃ ρ}.
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Theorem 6.2. ([13, Theorem 3.1])

• Each C(ρ) is a sm ooth rational curve.

• π−1(O)red =
⋃

ρ C(ρ), ρ ∈ Irr∗(G).

• If J ∈ C(ρ) and J /∈ C(ρ′) for all ρ 6= ρ′, then V (J) ∼= ρ.
• The intersection graph of these curves is the reduced McKay quiver of the group

G.

6.3. E xplicit parameterizations. Let us ex plain briefl y the ex plicit parameterizations
of the ex ceptional curves obtained in loc.cit. This description holds both in dimensions
two and three so we do it with our general notations. The ex ample of the cyclic group is
treated in §9 . A s we ex plained in §2,

mS/nG
∼=

⊕

ρ∈Irr(G)
ρ6=ρ0

2 dim ρ⊕

i=1

V (i)(ρ)

where ρ0 denotes the trivial representation. Thank s to the ex act seq uence

0 −→ I/nG −→ mS/nG −→ mS/I −→ 0,

if one wants to parameterize a fl at family of clusters over P1, one has to choose, in the
trivial sheaf:

OP1 ⊗
⊕

ρ∈Irr(G)
ρ6=ρ0

2 dim ρ⊕

i=1

V (i)(ρ),

a locally free G-eq uivariant sheaf aff ording the regular representation on each fi bre whose
q uotient is also locally free. The parameterizations are then produced as follows: one
chooses one non trivial subbundle

OP1
(−1) ⊗ ρ ↪→ OP1

⊗ (V (i)(ρ) ⊕ V (j)(ρ))

for some appropriate choice of the indices, and shows that this gives the req uired family
whose points I are characterized by their generator

V (I) ⊂ P(V (i)(ρ) ⊕ V (j)(ρ)).

That is: once one choice has been made, the other choices are automatic, and we shall see
that they always correspond to a trivial subbundle (see 8 .4 ).

7 . Geometric construction

Let G̃ be a binary polyhedral group acting on A = C[x, y ]. Set τ := 〈± 1〉 ⊂ G̃ and

G := G̃/τ the associated polyhedral group as before. It is important for the seq uel to
begin so, and not to choose the group G with its action on some coordinates fi rst, as we
shall see. W e aim to defi ne a regular map

S : G̃-Hilb
(
C

2
)
−→ G-Hilb

(
C

3
)

inducing a map between the ex ceptional fi bres over the origin.
Since Aτ = C[x2, y 2, xy ], we consider the following composition of ring morphisms, with
B = C[a , b , c]:

(2) σ : B // //B
/
〈a b − c2〉

∼
//Aτ

//A
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where the identification is defined by a = x2, b = y2, c = xy. The action of G̃ on A induces
an action of G on Aτ . U sing the identification, we can define an action of G on the
coordinates a, b, c, inducing an action on B with the property that the cone K = 〈ab− c2〉
is G-invariant. This is the reason why we did not fix the action of G at first: another
choice of identification would induce another action of G.
Let I be an ideal of A and J := σ−1(I) the corresponding ideal of B. Observe the following
property of the map σ:

Lemma 7.1. If I is a G̃-cluster in A, then J is a G-cluster in B. F urthermore, if I is

supported at the origin, then so is J .

P roof. If I is a G̃-cluster, then A/I ∼= C[G̃]. Since the group τ is finite, we have isomor-
phisms:

B/J ∼= Aτ/Iτ ∼= (A/I)τ ∼= C[G̃]τ ∼= C[G],

hence J is a G-cluster in B. Furthermore, note that σ−1
mA = mB hence if I is a G̃-cluster

supported at the origin, one has I ⊂ mA and then J ⊂ mB, which implies that J is also
supported at the origin (see §2.1). �

Therefore, this construction defines set-theoretically a map between the two moduli spaces

of clusters S : G̃-Hilb
(
C

2
)
−→ G-Hilb

(
C

3
)

by S (I)
Def
= J . It remains to see that this

map is a regular morphism.

P roposition 7.2. The map S is regular, projective, and induces a map betw een the

exceptional fi bres.

P roof.

� In order to get that the map S is regular, we show that it is induced by a natural
transformation between the two functors of points

G̃-Hilb
C2(·) =⇒ G-Hilb

C3(·).

Let T be a scheme and Z ∈ G̃-Hilb
C2(T ). Then Z ⊂ T × C

2 is a flat family of G̃-clusters

over T and the map Z ↪→ T × C
2 is τ -equivariant (for a trivial action on T ). It induces a

family

Z/τ ↪→ T × (C2/τ) ↪→ T × C
3

where the quotient C
2/τ is considered as the cone 〈ab − c2〉 in C

3. If T is a point, this is
precisely our set-theoretic construction since then if Z is given by an ideal I, Z/τ is given
by the ideal Iτ .
In order to show that Z/τ ∈ G-Hilb

C3(T ), we have to prove that this family is flat over T .
Since this problem is local in T , we may assume that T is an affi ne scheme, say T = SpecR.
Then the family Z is given by a τ -equivariant quotient R⊗A � Q so that the composition
R ↪→ R⊗C A � Q makes Q a flat R-module. The family Z/τ is then given by the quotient

R ↪→ R ⊗C B � R ⊗C Aτ
� Qτ ,

where the quotient R⊗CB � R⊗CAτ is induced by tensorization of the quotient B � Aτ .
We have to show that this makes Qτ a flat R-module. B y hypothesis, the functor Q⊗R −
in the category of R-modules is exact. Since τ is finite, the functor (−)τ is also exact in
this category, and we note that the functor Qτ ⊗R− is the composition of this two functors
since

Qτ ⊗R N = (Q ⊗R N)τ
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for any R-module N . Hence the functor Qτ ⊗R − is exact, which means that the family
is flat.
� The composition of ring morphisms (2) gives an equivariant ring morphism

C[a, b, c]
σ

//

G

VV

C[x, y]

eG

VV

inducing a surjective map at the level of the invariants: C[a, b, c]G // //
C[x , y ]

eG , hence

a closed immersion

η : C
2/G̃ = S pecC[x , y ]

eG
−→ S pecC[a, b, c]G = C

3/G.

T ak ing more care of the cone K = C
2/τ (in the notations of the introduction), the eq ui-

variant map

C
2 //

eG

WW C
2/τ //

G

UU C
3

G

WW

induces the η map b etw een the q uotients:

η : C
2/G̃

∼ //
(
C

2/τ
)/
G //C3/G

sending the origin O ∈ C
2/G̃ to the origin O ∈ C

3/G and b y defi nition of S the follow ing
diagram is commutative:

G̃-H ilb
(
C

2
) S //

eπ

��

G-H ilb
(
C

3
)

π

��

C
2/G̃

η // C3/G

T his implies that S induces a map b etw een the ex ceptional fi b res

π̃−1(O)
S
−→ π−1(O).

� W e prove that the map S is proper b y apply ing the valuative criterion of properness.
L et K b e any fi eld over C and R ⊂ K any valuation ring w ith q uotient fi eld K. C onsider
a commutative diagram:

S pecK
φ //

i

��

G̃-H ilb
(
C

2
)

S

��
S pecR

ψ // G-H ilb
(
C

3
)

W e have to show that there ex ists a uniq ue factorization

S pecK
φ //

i

��

G̃-H ilb
(
C

2
)

S

��
S pecR

ψ //

φ̃
88

r
r

r
r

r
r

r
r

r
r

r

G-H ilb
(
C

3
)

mak ing the w hole diagram commute.
B y modular interpretation, the data of the map φ consists in an ideal I ⊂ K[x , y ] such

that K[x , y ]/I ∼= C[G̃] ⊗C K and K[x , y ]/I is K-fl at (it is here trivial since K is a fi eld).
S imilarly , the data of the map ψ consists in an ideal J ⊂ R[a, b, c] such that R[a, b, c]/J ∼=
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C[G] ⊗C R and R[a, b, c]/J is R-flat. The commutativity S ◦ φ = ψ ◦ i : SpecK →
G-Hilb

(
C

3
)

means the following. Consider the diagram of ring morphisms induced by
natural extension of scalars and base-change from the map σ:

R[a, b, c]
σR //

� _

��

R[x, y]
� _

��
K[a, b, c]

σK // K[x, y]

Then the commutativity condition means that σ−1

K (I) = J ·K[a, b, c].

We are looking for a map φ̃ such that φ̃ ◦ i = φ and S ◦ φ̃ = ψ, i.e. for an ideal Ĩ ⊂

R[x, y] such that R[x, y]/Ĩ ∼= C[G̃] ⊗C R and R[x, y]/Ĩ is R-flat, satisfying the conditions

Ĩ ·K[x, y] = I and σ−1

R (Ĩ) = J .

A natural candidate is Ĩ
D ef
= I∩R[x, y]. We have to prove that it satisfies all the conditions

and that it is unique for these properties. D enote by ν : K −{0} → H the valuation with
values in a totally ordered group H, satisfying the properties:

ν(x · y) = ν(x) + ν(y) and ν(x+ y) ≥ min(ν(x), ν(y)) for x, y ∈ K − {0}

and such that R = {x ∈ K | ν(x) ≥ 0} ∪ {0}. R ecall that R is by definition integral and
that a R-module is flat if and only if it is torsion-free (see for instance [1 , 1 6 ]).

• It is already clear that Ĩ ·K[x, y] ⊂ I. Conversely, Let P =
∑

i,j pi,jx
iyj ∈ I and

p ∈ {pi,j} an element of minimal valuation. If ν(p) ≥ 0, then P ∈ Ĩ. E lse all

coeffi cients of p−1P have positive valuation and so p−1P ∈ Ĩ. So P = p · (p−1P ) ∈

Ĩ ·K[x, y], hence the equality.
• By commutativity of the above diagram,

σ−1

R (Ĩ) = σ−1

R (I ∩R[x, y])

= σ−1

K (I) ∩R[a, b, c]

= (J ·K[a, b, c]) ∩R[a, b, c].

It is already clear that J ⊂ (J · K[a, b, c]) ∩ R[a, b, c]. Conversely, let P ∈ (J ·
K[a, b, c])∩R[a, b, c], decomposed as P =

∑
` U` ·V` with U` ∈ J and V` ∈ K[a, b, c].

A s before, there exists a coeffi cient q in all V`’s of minimal valuation, and we
assume ν(q) < 0 (else there is no problem). Then q−1P ∈ J . By assumption, the
R-module R[a, b, c]/J is torsion-free, so the multiplication by q−1 ∈ R is injective.
This means that P ∈ J .

• By definition, we have an R-linear inclusion R[x, y]/Ĩ ↪→ K[x, y]/I, which shows

that R[x, y]/Ĩ is torsion-free, hence flat. It inherits an action of G̃ and since

K[x, y]/I ∼= C[G̃] ⊗C K, there exists a subrepresentation V of C[G̃] such that

R[x, y]/Ĩ ∼= V⊗CR (this uses the flatness, see [2 0, lemma 9 .4 ]). By the isomorphism

of R-modules R[x, y]/Ĩ ⊗RK ∼= K[x, y]/I, the representation V is such that V ⊗R

K = C[G̃] ⊗C K, which forces V ∼= C[G̃].

• The uniqueness of the candidate follows from the condition Ĩ ·K[x, y] = I since as
we already noted:

I ∩R[x, y] = (Ĩ ·K[x, y]) ∩R[x, y] = Ĩ

so our natural candidate is the only possibility.
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� To finish with, remark that any proper map between to quasi-projective varieties is
automatically a projective map. �

8 . Contracted versus non-contracted fibres

Theorem 8.1. Consider the restriction of the map S : G̃-Hilb
(
C

2
)
−→ G-Hilb

(
C

3
)

to

a redu ced cu rve E(ρ). T hen:

(1) If the representation ρ is pu re, then S maps isomorphically the cu rve E(ρ) onto

the cu rve C(ρ).
(2) If the representation ρ is b inary , then S contracts the cu rve E(ρ) to a point.

P roof. Let E(ρ) be any exceptional curve. Since the map S sends this curve to the bunch
of curves π−1(O), the image lies in some irreducible component C and the restricted
morphism S : E(ρ) → C is a proper map. We prove that:

• if the representation ρ is binary, then the map S : E(ρ) → C contracts the curve
to a point;

• if the representation ρ is pure, then C = C(ρ) and the restricted map S : E(ρ) →
C(ρ) is an isomorphism.

The parameterizations of the two curves E(ρ) and C defines a composite proper map f
whose properties reflect those of the restriction of S :

P1

∼

φ
//

f

��

E(ρ) ⊂ G̃-Hilb
(
C

2
)

S

��
P1

∼

ψ
// C ⊂ G-Hilb

(
C

3
)

We know (see [16, II.6.8 ,II.6.9]) that either the map f contracts the curve to a point, or
it is a finite surjective map. The basic idea in order to determine which case occurs is
to suppose given an ample line bundle OP1

(a) o n th e ta rg e t (w ith a > 0 ): if th e m a p f

c o n tra c ts th e c u rv e to a p o in t, th e n f∗OP1
(a) is triv ia l a n d e lse f∗OP1

(a) ∼= OP1
(d e g (f) ·a)

is a m p le .
T h e n a tu ra l c a n d id a te fo r a n a m p le lin e b u n d le o v e r th e c u rv e C is th e d e te rm in a n t
d e t(p∗OZ(C)) o b ta in e d b y re stric tio n o f th e u n iv e rsa l fa m ily Z(C) := ZG|C .

T h e p a ra m e te riz a tio n P1
φ

− → G̃-H ilb
(
C

2
)

o f th e c u rv e E(ρ) c o rre sp o n d s to a fl a t fa m -

ily Z eG
(ρ) ⊂ P1 × C

2 w h ich is th e re stric tio n to E(ρ) o f th e u n iv e rsa l fa m ily Z eG
o v e r

G̃-H ilb
(
C

2
)
. T h e d ire c t im a g e p∗OZ eG

(ρ) is a v e c to r b u n d le o f ra n k |G̃| o v e r P1 e q u ip p e d

w ith a n a c tio n o f G̃ a ff o rd in g th e re g u la r re p re se n ta tio n o n e a ch fi b re . It a d m its a n iso ty p -

ic a l d e c o m p o sitio n o v e r th e irre d u c ib le re p re se n ta tio n o f G̃ a n d w e re c a ll th e w e ll-k n o w n
e x p lic it d e c o m p o sitio n :

Lemma 8.2.

p∗OZ eG
(ρ)

∼=
(
OP1

(1 ) ⊕O⊕ d im ρ−1
P1

)
⊗ ρ ⊕

⊕

ρ′∈Irr( eG)
ρ′ 6=ρ

O⊕ d im ρ′

P1
⊗ ρ′

Proof of the lemma. T h is is a n e q u iv a le n t fo rm o f [2 2 , §2 .1 le m m a ] o r [1 8 , P ro p o sitio n
6 .2 (3 )]. W e re c a ll b rie fl y th e a rg u m e n t. S in c e th is b u n d le is a q u o tie n t o f OP1

⊗ A (se e
§6 .3 ), it is g e n e ra te d b y its g lo b a l se c tio n s, h e n c e it is a su m o f lin e b u n d le s OP1

(a) fo r
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a ≥ 0. By the classical observation deg(p∗OZ eG
(ρ)) = 1 (see [14 ]), all line bundles are trivial

but one, of degree one. �

In particular, note that det(p∗OZ eG
(ρ)) ∼= OP1

(dim ρ) is the ample determinant line bundle

in dimension two.
Thanks to the functorial definition of the map S , the composition

P1
φ

−→ G̃-Hilb
(
C

2
) S
−→ G-Hilb

(
C

3
)

parameterizes the flat family Z eG(ρ)/ τ whose structural sheaf is OZ eG
(ρ)/ τ =

(
OZ eG

(ρ)

)τ

and one gets:

f∗(det(p∗OZ(C))) = det
(
(p∗OZ eG

(ρ))
τ
)

.

N ow, as we noticed in §4 .3, taking the invariants under τ keeps invariant the pure repre-
sentations and kills the binary ones. Hence:

• If the representation ρ is binary, then:
(
p∗OZ eG

(ρ)

)τ
∼=

⊕

ρ′∈Irr(G)

O⊕dim ρ′

P1
⊗ ρ′

hence det(p∗OZ eG
(ρ))

τ ∼= OP1
is trivial;

• If the representation ρ is pure, then:
(
p∗OZ eG

(ρ)

)τ
∼=

(
OP1

(1) ⊕O⊕ dim ρ−1
P1

)
⊗ ρ ⊕

⊕

ρ′∈Irr(G)
ρ′ 6=ρ

O⊕ dim ρ′

P1
⊗ ρ′

hence det(p∗OZ eG
(ρ))

τ ∼= OP1
(dim ρ) is ample.

This achieves the first part of the proof. It remains to show that in the case of a pure
representation ρ, the target curve is C = C(ρ) and that the finite surjective map f is an
isomorphism. We do it by hand. A point I ∈ E(ρ) is characterized by the choice of V (I)
and generically V (I) ∼= ρ. F or a pure representation ρ, the polynomials defining V (I) are
even hence:

V (Iτ ) = V ((A · V (I) + nA)τ ) ⊃ V (I)

so generically V (Iτ ) = V (I) (only modified by setting a = x2, b = y2, c = xy). This means
that C = C(ρ) and if I 6= J ∈ E(ρ), then V (I) 6= V (J) hence the images are also different,
so the map is generically injective. This concludes the proof. �

A s a byproduct of our argument, we get the following equivalent in dimension three of the
lemma 8.2 which, to our knowledge, does not appear explicitly in the literature:

Corollary 8.3. For any finite subgroup G ⊂ SO (3, R) and any non-triv ial representation

ρ of G, the restric tion of the tautological bund le to the exceptional curve C(ρ) d ecomposes

as:

p∗OZG(ρ)
∼=

(
OP1

(1) ⊕O⊕ dim ρ−1
P1

)
⊗ ρ ⊕

⊕

ρ′∈Irr(G)
ρ′ 6=ρ

O⊕ dim ρ′

P1
⊗ ρ′

Proof. The same argument as in the proof of lemma 8.2 shows that this bundle in generated
by its global sections. The bijectivity of the map f on the curves associated to pure
representations (in the notation of the proof of theorem 8.1) implies that det(p∗OZG(ρ)) ∼=
OP1

(dim ρ), hence in the isotypical decomposition there is only one non-trivial line bundle,
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of degree one, and we already know by the explicit parameterizations that the isotypical
component corresponding to ρ is not trivial. �

Remark 8.4. In the decomposition of the lemma 8.2, the unique presence of the OP1(1)
corresponds to the choice of the line V (I) in a projective space P(ρ ⊕ ρ) as explicitly
described in §6 .3 . T he fact that no other ample bundle occurs refl ects the property that
once one choice has been made, the other generators of the ideal do not involve the choice
any more, as one can easily notice from the explicit computations of [20, §13,§14] (see §9
in this paper for an example). In the three-dimensional case, the same situation occurs
thanks to the corollary 8.3 .

We get now the theorem 1.1 presented in the introduction as a corollary of the theorem
8.1:

Corollary 8.5 . T he image Y := S (G̃-Hilb
(
C

2
)
) projects onto the quotient K /G, induc-

ing a partial resolution of singularities containing only the exceptional curves corresponding

to pure representations. T he map S : G̃-Hilb
(
C

2
)
−→ Y is a resolution of singularities

contracting the excess exceptional curves to ordinary nodes.

Proof. The projection π : Y −→ C
3/G factors through K /G by construction of Y. The

other assertions result from theorem 8.1. The excess curves contract to ordinary nodes
since, as one checks with the figure 1, each excess (−2)-curve is contracted to a different
point. �

9 . Example: the cyclic group case

L et the cyclic group C̃n
∼= Z/(2n)Z act on C

2 with generator:
(

ξ 0
0 ξ−1

)
with ξ = e

2πi
(2n) .

The choice of coordinates made in §7 implies that the group Cn
∼= Z/nZ acts on C

3 with
generator: 


ξ2 0 0
0 ξ−2 0
0 0 1


 .

The irreducible representations of the cyclic group C̃n are given by the matrices (ξi),
i = 0, . . . , 2n − 1. For i even, they are also the irreducible representations of Cn. There
are then n pure and n binary representations. With the notations of §4.3, we set χi :=
ρ2i and χ̃i = ρ2i+ 1 for i = 0, . . . , n − 1. By Theorem 8.1, the exceptional curves on

C̃n-Hilb
(
C

2
)

corresponding to the binary representations are contracted by S to a node

on S (C̃n-Hilb
(
C

2
)
) whereas the curves corresponding to the pure representations are in

1 : 1 correspondence with the exceptional curves downstairs (see figure 2). In this section,
we check this by a direct computation.

The ring of invariants C[x, y]
eCn is generated by x2n, y2n, xy and C[a, b, c]Cn is generated

by c, an, bn, ab. R ecall the description of the exceptional curves of C̃n-Hilb
(
C

2
)

following
[20, Theorem 12.3]. We sort the basis of the algebra of coinvariants with respect to each
irreducible representation:

{1}, {x, y2n−1}, . . . , {xi, y2n−i}, . . . , {x2n−1, y}.



Contraction of excess fibres 213

``````

#
#

#
#

#
#

c
c

c
c

c
c

χ̃1

χ̃2

χ̃3

χ̃4

χ1

χ2

χ3

?

S

aaaaaa!!!!!!!aaaaaa

χ1 χ2

χ3

Figure 2. Contracted fibres for C̃4

T o ch oose a clu ster I/ nA su p p orted at th e orig in am ou nts in ch oosing one cop y of each
non-triv ial rep resentation, i.e. for all i = 1, . . . , 2n − 1 a p oint (pi : qi) ∈ P1 defining th e
ideal by th e g enerators:

〈p1x − q1y
2n−1, . . . , pix

i − qiy
2n−i, . . . , p2n−1x

2n−1 − q2n−1y〉.

B u t th e p oint is th at one only needs o n e ch oice. S u p p ose th ere ex ists an index i su ch th at
piqi 6= 0 , and tak e th e sm aller i w ith th is p rop erty . S et p = pi, q = qi and v = pxi−qy2n−i.
T h en since xy is inv ariant, xi+ 1, . . . , x2n−1 ∈ I/ nA and y2n−i+ 1, . . . , y2n−1 ∈ I/ nA so all
ou r oth er ch oices w ere triv ial, and V (I) = C · v. M ore form ally , w e p aram eterized th e
ex cep tional cu rv e E(ρi) by a su bbu ndle:

OP1
(−1) ⊗ ρi ⊕

⊕

j 6=i

OP1
⊗ ρj ↪→

⊕

j

(OP1
⊕OP1

) ⊗ ρj .

If th ere is no su ch index , su p p ose xi is th e m inim al p ow er of x in th e ch oice: in order to
find once each non-triv ial rep resentation one h as to ch oose y2n−i+ 1 and th e m inim al set
of g enerators V (I) = C · xi ⊕ C · y2n−i+ 1 contains tw o adjacent rep resentations.

O th erw ise stated, a C̃n-clu ster at th e orig in tak es th e form :

Ij(p : q) := 〈pxj − qy2n−j, xy, xj+ 1, y2n−j+ 1〉,
1 ≤ j ≤ 2n − 1, (p : q) ∈ P1

(th e abov e ex p ression contains enou g h g enerators to inclu de th e tw o p ossible cases) and

E(ρj) = {Ij(p : q)}.

B y th e sam e m eth od, one sees easily th at a Cn-clu ster at th e orig in tak es th e form :

Jk(s : t) := 〈sa k − tbn−k, c, a k+ 1, bn−k+ 1, a b〉,
1 ≤ k ≤ n − 1, (s : t) ∈ P1

and

C(χk) = {Jk(s : t)}.

R ecall th at w ith th e constru ction (2) w e h av e to com p u te σ−1(Ij(p : q)). D enoting by σ̄
th e m ap B

/
〈a b − c2〉 −→ A, it is eq u iv alent to com p u te σ̄−1(Ij(p : q)). F irst w e com p u te

Ij(p : q)τ ∈ Aτ . W e disting u ish tw o cases:
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• j even, i.e. j = 2j′, j′ = 1, . . . , n − 1. In this case we have

Ij(p : q)τ = Ij(p : q) = 〈p(x2)
j′
− q(y2)

n−j′
, xy, (x2)

j′+1
, (y2)

n−j′+1
〉

expressed in Aτ = C[x2, y2, xy]. Then

σ̄−1(Ij(p : q)) = 〈paj′ − qbn−j′, c, aj′+1, bn−j′+1〉

= Jj′(p : q).

• j od d , i.e. j = 2j′ +1, j′ = 0, . . . , n−1. Observe that xy ∈ Ij(p : q)τ and (x2)j
′+1,

yn−j′ ∈ Ij(p : q)τ , but px2j′+1 − qy2n−2j′−1 /∈ Ij(p : q)τ . So

σ̄−1(Ij(p : q)) = 〈aj′+1, bn−j′ , c〉.

We observe then that

σ̄−1(Ij(p : q)) ∈ C(ρj′) ∩ C(ρj′+1)

since

σ̄−1(Ij(p : q)) = Jj′(0 : 1) = Jj′+1(1 : 0).

The curves E(ρj) with j even correspond to the pure representations and are not con-
tracted by S as the previous computation shows, the curves with j odd correspond to the
binary representations: these are contracted by S .

10. Application

10.1. Pencils of symmetric surfaces. L et HC := H⊗R C be the complexification of the
space of quaternions. By the choice of the coordinates q = a·1+b·i+c·j+d·k, a, b, c, d ∈ C,
one gets an isomorphism P3

∼= P(HC) such, that for n = 6 , 8, 12 the bipolyhedral group
Gn acts linearly on P3, leaving invariant the quadratic polynomial Q := a2 + b2 + c2 + d2.
In [27 ] it is shown that the next non-trivial invariant is a homogeneous polynomial Sn of
degree n. Consider then the following pencil of Gn-symmetric surfaces in P3:

Xn(λ) = {Sn + λQn/ 2 = 0}, λ ∈ C.

In [27 ] it is proved that the general surface Xn(λ) is smooth and that for each n there
are precisely four singular surfaces in the corresponding pencil: the singularities of these
surfaces are ordinary nodes forming one orbit through Gn.
Consider now the pencil of quotient surfaces in P3/Gn:

{Xn(λ)/ Gn}, λ ∈ C.

In [2] it is proved that these quotient surfaces have only A -D-E singularities and that
the minimal resolutions of singularities Yn(λ) → Xn(λ)/ Gn are K 3 -surfaces with P icard
number greater than 19 . For the four nodal surfaces in each pencil, a careful study of the
stabilizers of the nodes shows that, if X denotes one of these nodal surfaces, the image
of the node on X/Gn ⊂ P3/ Gn is a particular quotient singularity locally isomorphic to

C
2/G̃ ⊂ C

3/G for some polyhedral group G explicitly computed (see [2, §3 , P roposition
3 .1]):

• for n = 6 : C3,T ;
• for n = 8: D2,D3,D4,O;
• for n = 12: D3,D5,T ,I.
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Therefore, our theorem 1.1 gives locally a group-theoretic interpretation of the exceptional
curves of the K3-surfaces Yn(λ) over the particular singularities of the nodal surfaces.
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