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Abstract. In this paper we study embeddings of the Fano plane as a bipartite
graph. We classify all possible embeddings especially focusing on those with

non-trivial automorphism group. We study them in terms of rotation systems,

isomorphism classes and chirality. We construct quotients and show how to
obtain information about face structure and genus of the covering embedding.

As a by-product of the classification we determine the genus polynomial of the

Fano plane.
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1. Introduction

Incidence structures, regarded as bipartite graphs, give rise to dessins d’enfants
(oriented hypermaps) when they are embedded into orientable compact surfaces
([13],[12]). According to Bely̆ı’s Theorem any dessin d’enfant defines a complex
structure on its underlying topological surface which becomes a Riemann surface
with a model on the field of algebraic numbers Q ([2]). This means that there exists
a close relation between embeddings and Riemann surfaces (or algebraic curves).

Here we consider incidence structures describing finite projective spaces ([5],
[10]). These spaces are of particular interest since their geometry is well-known and
this is helpful to understand properties of the corresponding incidence structures
and of their embeddings.

In this work we concentrate on the Fano plane as an example remarking that
our results can be possibly generalised. We construct embeddings using rotation
systems (see [14]) and analyze the action of Fano plane’s automorphism group
PGL(3, 2) on them (Section 3 and 4). In this way, we achieve a classification of
all the embeddings with information about isomorphism classes and automorphism
groups. We determine under which conditions rotation systems generate embed-
dings with a non-trivial automorphism group. For these embeddings we construct
quotients from which we derive combinatorial and topological properties of the
covering embeddings (Section 5).

Finally, we give cell operations such that starting from particular embeddings
with a non-trivial automorphism group one can construct all the others with the
same automorphism group (Section 6).

We start with exhaustive preliminaries (Section 2) since, in this work, knowledge
from different areas of mathematics is needed. Our aim is to provide readers having
different backgrounds with the basic definitions and tools necessary to understand
our approach. In this way, the paper becomes self-contained .

2. Preliminaries

2.1. Incidence structures. An incidence structure is a triple of non-empty sets
Γ = (p,B, I) satisfying p ∩B = ∅ and I ⊆ p ×B. The elements of p are called
points, those of B blocks and those of I flags.
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A homomorphism from the incidence structure Γ = (p,B, I) to the incidence
structure Γ = (p,B, I) is a function φ : p ∪ B → p ∪ B satisfying φ(p) ⊆ p,
φ(B) ⊆ B and (φ(p), φ(b)) ∈ I for any (p, b) ∈ I. A bijective homomorphism
φ (from Γ to Γ) for which φ−1 is a homomorphism (from Γ to Γ) is called an
isomorphism. An isomorphism from Γ to Γ is called an automorphism of Γ. The
set of automorphisms of an incidence structure Γ = (p,B, I) with the composition
of functions is obviously a (permutation) group (on p∪B) called the automorphism
group of Γ and denoted by Aut(Γ).

An incidence structure Γ = (p,B, I) is said to be finite if p ∪B is a finite set.
Writing pIb or bIp instead of (p, b) ∈ I, we say that Γ is connected if for any
distinct u, v ∈ p ∪B there is a (possible empty) sequence u1, ..., un in p ∪B such
that uIu1I . . . IunIv.

For our purposes, it is convenient to regard incidence structures Γ = (p,B, I)
as bipartite graphs with vertex set V = p ∪B (partitioned by {p,B}) and edges
corresponding to unordered pairs of elements of I. Therefore, in the following we
denote an incidence structure by Γ = (B,W, I) and call respectively black vertices
and white vertices the elements of B and W (instead of points and blocks, see Fig.
1). Only finite and connected incidence structures are of our interest therefore this
will be assumed from now on without mention.

Figure 1: A block as a white vertex.

2.2. Rotation systems. A rotation system for the incidence structure Γ = (B,W, I)
is a function R assigning to any v ∈ B ∪W a cyclic permutation Rv = R(v) of the
set I(v) = {u ∈ B ∪W : uIv} of neighbours of v.

Any rotation system R for an incidence structure Γ = (B,W, I) gives rise to
a triangulation of an orientable compact and connected surface S in which Γ is
embedded (as a bipartite graph). More precisely:

• Consider I as a set of disjoint plane rhombuses, where each rhombus (b, w) ∈
I is the gluing of two plane triangles along an edge with vertices labeled b
and w as in Fig. 2 (a).
• Fix now an orientation of the plane (say anti-clockwise as in Fig. 2) and

– identify a side of (b, w) with a side of (b, Rb(w)) in such a way that
(b, Rb(w)) is a positive rotation of (b, w) centered at vertex labeled b
(see Fig. 2 (b)),

– identify a side of (b, w) with a side of (Rw(b), w) in such a way that
(Rw(b), w) is a positive rotation of (b, w) centered at vertex labeled w
(see Fig. 2 (c)).
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Figure 2: A rhombus and side identifications of two rhombuses.

After performing all possible side identifications one gets a triangulation of an
orientable compact and connected surface S (with an orientation) in which Γ is
embedded as a bipartite graph. Thus, we call the pair (Γ, R) an embedding of Γ by
R into S. Compactness of S is guaranteed by finiteness of Γ, while connectedness of
S is a consequence of the connectedness of Γ. Orientability is a direct consequence
of the construction and the orientation of S is given by the choice of an orientation
of the plane. In particular, taking the mirror image of Fig. 2 is the same as taking
R−1 as the rotation system for Γ, where R−1(v) = Rv

−1. Therefore (Γ, R−1) is
called the mirror image of (Γ, R). By the given construction, according to Euler’s
formula, the genus g of S is

(1) g = 1− |B|+ |W |+ |F | − |I|
2

,

where F is the set of unlabelled vertices of the triangulation called faces of (Γ, R).
These are in one-to-one correspondence with the connected components of S \ Γ,
which are simply connected open sets of S by construction. Here S \Γ denotes the
topological space obtained by removing the embedded bipartite graph Γ from S.
We call S the underlying surface and g the genus of (Γ, R).

A homomorphism φ from the incidence structure Γ = (B,W, I) with rotation
system R to the incidence structure Γ with rotation system R is a morphism from
(Γ, R) to (Γ, R) if it satisfies

φRv = Rφ(v)φ for any v ∈ B ∪W .

An isomorphism from Γ to Γ which is a morphism from (Γ, R) to (Γ, R) will be
called an isomorphism from (Γ, R) to (Γ, R) as well as an automorphism of Γ which
is a morphism from (Γ, R) to (Γ, R) will be called an automorphism of (Γ, R). The
group of automorphisms of an embedding (Γ, R) will be denoted by Aut(Γ, R).
Remark that Aut(Γ, R) is a subgroup of Aut(Γ).

Let R(Γ) denote the set of all possible rotation systems for the incidence struc-
ture Γ = (B,W, I). For φ ∈ Aut(Γ) we denote by Rφ the rotation system for Γ
defined by

(2) Rφv = φRφ−1(v)φ
−1 , v ∈ B ∪W .

Then we have an action of Aut(Γ) on R(Γ)

R(Γ)×Aut(Γ)→ R(Γ), (R,φ) 7→ Rφ

with the property that two embeddings (Γ, R1) and (Γ, R2) are isomorphic if and
only if R1 and R2 are in the same orbit. Moreover, Aut(Γ, R) is the stabilizer of
R ∈ R(Γ) under this action. Hence

(3) |Aut(Γ)| = |Aut(Γ, R)| · |{Rφ : φ ∈ Aut(Γ)}|

for any R ∈ R(Γ), by the orbit-stabilizer theorem.
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Proposition 2.2.1. Let φ ∈ Aut(Γ). Then aφ = φaφ−1 ∈ Aut(Γ, Rφ) for any
a ∈ Aut(Γ, R) and

Aut(Γ, R)→ Aut(Γ, Rφ), a 7→ aφ

is a group isomorphism.

Proof. Let R = Rφ. Then

R
aφ

v = φaφ−1Rφa−1φ−1(v)φa
−1φ−1 = φaRa−1φ−1(v)a

−1φ−1 = φRaφ−1(v)φ
−1

= φRφ−1(v)φ
−1 = Rφv = Rv ,

proving that aφ ∈ Aut(Γ, Rφ). It is now straightforward to conclude the statement.
�

2.3. Dessins d’enfants. Another equivalent way of describing combinatorially
embeddings of incidence structures is by means of dessins d’enfants.

A dessin d’enfant or (oriented) hypermap is a pair D = (Ω, (x, y)), where Ω
is a finite non-empty set and x, y are permutations of Ω generating a transitive
subgroup of the symmetric group on Ω, called the monodromy group of D and
denoted by Mon(D). Orbits of x are called black vertices (or hypervertices) of the
dessin d’enfant D, while orbits of y are called white vertices (or hyperedges) of D.
The orbits of xy are the faces (or hyperfaces) of D. The valency of a black or of a
white vertex, as well as the valency of a face, is given by its length as an orbit (of
the action of x, y or xy, respectively).

Let D = (Ω, (x, y)) and D = (Ω, (x, y)) be dessins d’enfants. A covering (or
morphism) from D to D is a function φ : Ω→ Ω satisfying

xφ = φx and y φ = φ y .

By means of the transitivity of the monodromy groups of D and D, any covering
from D to D is uniquely determined by the image of an element and is onto.
Therefore a one-to-one covering is called an isomorphism. An automorphism of D
is then an isomorphism from D to D. The set of automorphisms of D = (Ω, (x, y))
with the composition of functions is a group of permutations on Ω, called the
automorphism group of D and denoted by Aut(D). By definition, Aut(D) is the
centralizer of Mon(D) in the symmetric group on Ω. Thus

(4) |Aut(D)| ≤ |Ω| ≤ |Mon(D)|
with |Aut(D)| = |Ω| if and only if |Ω| = |Mon(D)|, in which case we say that D
is a regular dessin d’enfant. The two inequalities in (4) are a consequence of the
following

Proposition 2.3.1. Let D = (Ω, (x, y)) be a dessin d’enfant. Then |Aut(D)| di-
vides |Ω| and |Ω| divides |Mon(D)|.

Proof. The statement is a consequence of the transitivity of the action of Mon(D)
on Ω, which implies that Aut(D), being the centralizer of Mon(D) on the symmet-
ric group on Ω, acts semiregularly on Ω ([6], Theorem 4.2A). Hence any orbit of
Aut(D) on Ω has |Aut(D)| elements and therefore |Aut(D)| divides |Ω|. Stabilizers
of transitive actions have all the same size, since they are conjugated and, as all
elements are in the same orbit, the orbit-stabilizer theorem gives |Mon(D)| = s|Ω|,
where s is the size of a stabilizer of the action of Mon(D) on Ω. �

Given an embedding (Γ, R) of the incidence structure Γ = (B,W, I) one gets a
dessin d’enfant D(Γ, R) = (I, (x, y)) setting

(5) x(b, w) = (b, Rb(w)) and y(b, w) = (Rw(b), w) ,
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for any (b, w) ∈ I. Connectedness of Γ guarantees transitivity of the monodromy
group of D(Γ, R).

Let Γ = (B,W, I) and Γ = (B,W, I) be incidence structures. If φ is a morphism
from the embedding (Γ, R) to the embedding (Γ, R), then

I → I, (b, w) 7→ (φ(b), φ(w))

is a morphism from D(Γ, R) to D(Γ, R) .

Using the language of category theory, one can say that there is a faithful functor
from the category of embeddings to the category of dessins d’enfants. In particular,
this gives the following corollary to Proposition 2.3.1.

Corollary 2.3.2. Let (Γ, R) be an embedding of the incidence structure Γ =
(B,W, I). Then |Aut(Γ, R)| divides |I|.

2.4. Projective spaces. We recall some known facts about finite projective spaces
Pm(Fn) (see [10], [5], [11]).

Let Fm+1
n be the vector space over the finite field Fn where n = pe is a prime

power. Consider in Fm+1
n \ {0} the equivalence relation

y = tx for some t ∈ F∗n = Fn \ {0} .
We define the projective space Pm(Fn) of dimension m and order n as the set of
equivalence classes [x] and we call them points of Pm(Fn). A subspace of dimension
d is a subset S of Pm(Fn) such that {0}∪

⋃
[x]∈S

[x] is a linear subspace of dimension

d + 1. Hence points are subspaces of dimension 0. Subspaces of dimension m − 1
are called hyperplanes. Incidence between subspaces is given by set inclusion. Pro-
jective spaces satisfy the following duality principle: Any true statement on points
and hyperplanes remains true interchanging the words “points” and “hyperplanes”.

Permutations of Pm(Fn) preserving incidence are called collineations. The set of
all collineations of Pm(Fn) with the composition of functions is a group, called the
collineation group of Pm(Fn) and denoted by PΓL(m+ 1, n). By the fundamental
theorem of projective geometry, any element of PΓL(m + 1, n) is induced by a
semilinear transformation of the vector space Fm+1

n (here m ≥ 2). A semilinear
transformation of Fm+1

n is a permutation f of Fm+1
n for which there is g ∈ Aut(Fn)

such that
f(a+ b) = f(a) + f(b) , f(sa) = g(s)f(a) ,

for any a, b ∈ Fm+1
n and any s ∈ Fn. As Aut(Fn) is a cyclic group of order e

generated by the Frobenius automorphism

ϕ : Fn → Fn , s 7→ sp ,(6)

we have g = ϕj for some j ∈ {0, . . . , e− 1}.
The group PΓL(m + 1, n) contains as a normal subgroup the group PGL(m +
1, n) of linear transformations of Pm(Fn), induced by the linear transformations
of Fm+1

n . In case that e = 1 (that is n = p), the collineation group of Pm(Fn)
is equal to PGL(m + 1, n). Among the linear transformations of Pm(Fn) we find
transformations permuting points in a single cycle (see [17]). A group Σ generated
by such a transformation σ is called a Singer group. Any Σ is isomorphic to the

cyclic group Z`, where ` = nm+1−1
n−1 is the size of Pm(Fn). Its existence allows us to

identify Pm(Fn) with Z`, setting

(7) σ : Z` → Z` , j 7→ j + 1 .

The Frobenius automorphism ϕ of Fnm+1 acts then in the following way

(8) ϕ : Z` → Z` , j 7→ pj .
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The group Φ generated by ϕ is a cyclic group of order e(m+1). It can be identified
with the Galois group Gal(Fnm+1/Fp) cyclically permuting the elements of the field
extension Fnm+1 of Fp.

Combinatorially, Pm(Fn) can be described by an incidence structure Γ = (B,W, I),
where B is the set of points, W is the set of hyperplanes of Pm(Fn) and (b, w) ∈ I
if and only if b is incident with w. The incidence structure Γ is, thus, a projective
design (denoted by Pm−1(m,n) in [5], see Chapter 2) with parameters

(9) ` =
nm+1 − 1

n− 1
, q =

nm − 1

n− 1
and λ =

nm−1 − 1

n− 1
.

The integer ` is the number of points and, by duality, of hyperplanes of Pm(Fn).
The integer q is the number of points incident with a hyperplane and of hyperplanes
incident with a point. The last parameter λ is the number of hyperplanes incident
with any two distinct points or, dually, the number of points incident with any two
distinct hyperplanes. The automorphism group of the projective design Γ is the
collineation group PΓL(m+ 1, n) of the projective space Pm(Fn) described above.

Projective designs are also called symmetric balanced incomplete block designs
([3], [9]) or cyclic symmetric block designs when they have a cyclic group of auto-
morphisms like Γ above ([9], [1]). The interesting fact is that any cyclic symmetric
block design can be constructed using difference sets (see next section).

2.5. Difference sets. In general, one can construct incidence structures having a
group of automorphisms acting transitively on points and on blocks by quotient
sets (see, for instance, [5] or [4]). In particular, since projective spaces have a cyclic
sharply transitive (regular) group acting on points and on hyperplanes (blocks)
they can be constructed by quotient sets of cyclic groups called difference sets.

Definition 2.5.1. A (v, k, λ)-difference set D = {d1, ..., dk} is a collection of k
(distinct) residues modulo v, such that for any residue α 6≡ 0 the congruence

di − dj ≡ α mod v

has exactly λ solutions (di, dj) ∈ D ×D.

The following lemmas are well-known and their proofs are straightforward.

Lemma 2.5.2. For any (v, k, λ)-difference set holds k(k − 1) = λ(v − 1) .

Lemma 2.5.3. Let D = {d1, ..., dk} be a (v, k, λ)-difference set and let s and t be
residues modulo v. Then

(i) D + s = {d1 + s, ..., dk + s} is a (v, k, λ)-difference set.
(ii) tD = {td1, ..., tdk} is a (v, k, λ)-difference set if and only if gcd(t, v) = 1.

Two (v, k, λ)-difference set D and D are called equivalent, if there are residues s
and t modulo v with gcd(t, v) = 1 such that D = tD + s.

Given a (v, k, λ)-difference set D, one gets a projective design ΓD = (B,W, ID),
where B and W are two disjoint copies of Zv = Z/vZ, setting

ID = {(b, w) ∈ B ×W : b− w ∈ D} .
In general, for v, k, λ as in Lemma 2.5.2, the existence of a (v, k, λ)-difference set
cannot be guaranteed, but for `, q, λ satisfying (9), with n = pe a prime power,
(`, q, λ)-difference sets exist. Moreover, any projective design ΓD constructed with
an (`, q, λ)-difference set D can be regarded as the incidence structure of points and
hyperplanes of a projective space ([17], see also [10] or[1]).

According to (7) and (8), we set

(10) σ(b, w) = (b+ 1, w + 1) and ϕ(b, w) = (pb, pw) for any (b, w) ∈ ID .
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Obviously σ(b, w) ∈ ID for any (b, w) ∈ ID, but ϕ(b, w) ∈ ID if and only if
p(b − w) ∈ D. Hence σ ∈ Aut(ΓD) for any D but ϕ ∈ Aut(ΓD) if and only if
D = pD. We call this type of difference sets, fixed under the action of ϕ, Frobenius
difference sets. For existence conditions and properties see [16]. We recall here only
some facts:

• For any projective space there exists at least one Frobenius difference set.
• Under the action of ϕ elements of a Frobenius difference set D are sub-

divided into orbits of length a divisor of the order e(m + 1) of ϕ. If the
elements of D all belong to the same orbit, then we can order the elements
of D in such a way that the action of ϕ on them is a cyclic permutation.

The choice of a Frobenius difference set to construct designs ΓD describing pro-
jective spaces is not necessary but in our work it turns out to be convenient for the
study of Fano plane’s embeddings.

In general, for an incidence structure ΓD = (B,W, ID) constructed with a
(v, k, λ)-difference set D, we regard automorphisms of ΓD as pairs φ = (φ1, φ2)
of permutations of Zv such that φ1(b) − φ2(w) ∈ D for any (b, w) ∈ ID (see (10)
above). Then, setting

(11) φb(d) = φ1(b)− φ2(b− d) and φw(d) = φ1(w + d)− φ2(w)

for any b ∈ B, w ∈ W and d ∈ D, we get permutations φv of D depending on
v ∈ B ∪ W . We will now describe the action of an element φ ∈ Aut(ΓD) on a
rotation system R for ΓD. For any (b, w) ∈ ID we set

(12) Rb(w) = b− ρb(b− w) and Rw(b) = w + %w(b− w) ,

where ρb and %w are cyclic permutations of D depending on the black vertex b and
on the white vertex w. We write

R ∼=
(
(ρb), (%w)

)
=
(
(ρ0, ρ1, . . . , ρv−1), (%0, %1, . . . , %v−1)

)
meaning (12) .

Proposition 2.5.4. For any φ = (φ1, φ2) ∈ Aut(ΓD) and any rotation system
R ∼=

(
(ρb), (%w)

)
it holds true that Rφ ∼=

(
(ρb), (%w)

)
with

ρb = ρ
φβ
β = φβρβφ

−1
β and %w = %φωω = φω%ωφ

−1
ω ,

with b = φ1(β) and w = φ2(ω), for any β ∈ B and any ω ∈W .

Proof. Let φ = (φ1, φ2) ∈ Aut(ΓD), R ∼=
(
(ρb), (%w)

)
a rotation system for ΓD and

(b, w) = (φ1(β), φ2(ω)) with (β, ω) ∈ ID. Then, according to (2),

ρb(b− w) = b−Rφb (w) = φ1(β)− φ2Rβ(ω)
= φ1(β)− φ2(β − ρβ(β − ω)) = φβρβ(β − ω)

and
%w(b− w) = Rφw(b)− w = φ1Rω(β)− φ2(ω)

= φ1(ω + %ω(β − ω))− φ2(ω) = φω%ω(β − ω) .

Setting d = b − w = φ1(β) − φ2(ω) ∈ D we have β = φ−11 (φ2(ω) + d) and ω =
φ−12 (φ1(β)− d). Hence

Rφb (w) = φ1(β)− φβρβ(β − φ−12 (φ1(β)− d))

= φ1(β)− φβρβφ−1β (d)

= b− φβρβφ−1β (b− w)
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and

Rφw(b) = φ2(ω) + φω%ω(φ−11 (φ2(ω) + d)− ω)

= φ2(ω) + φω%ωφ
−1
ω (d)

= w + φω%ωφ
−1
ω (b− w) .

�

Proposition 2.5.4 gives the theoretical tool to describe all embeddings of a projective
design arising from a difference set provided its automorphism group is known. In
this paper we focus on the Fano plane as an example.

3. The collineation group of the Fano plane

The Fano plane P2(F2) is the smallest finite projective plane. According to
Section 2.4 it has seven lines and seven points (` = 7). Each line is incident
with three points and by duality each point is incident with three lines (q = 3).
Through two points goes one line and two lines are incident in one point (λ = 1).
According to Section 2.5 the Fano plane can be described by an incidence structure
ΓD = (B,W, ID), where B and W are disjoint copies of Z7 and D is a (7, 3, 1)-
difference set. For our convenience we choose D = {1, 2, 4} which is a Frobenius
difference set, but we could choose any other (7, 3, 1)-difference set.

1

0

2

4

5

3 6
0

1

4

3

56

2

1

0

2

4

5

3 6
0

1

4

3

56

2

Figure 3: The Fano plane with points and lines numbered using the difference set
D = {1, 2, 4} and its representation as a bipartite graph.

Automorphisms of P2(F2) are permutations of ID that we write as pairs of per-
mutations of Z7. According to Section 2.4 we have Aut(P2(F2)) = PGL(3, 2). The
following three permutations generate PGL(3, 2):

(13)

σ = (σ1, σ2) =
(
(0123456), (0123456)

)
,

ϕ = (ϕ1, ϕ2) =
(
(124)(365), (124)(365)

)
and

ι = (ι1, ι2) =
(
(12)(36), (14)(56)

)
.

The first generator σ is an element of order 7 cyclically permuting the set B of
points and the set W of lines, i.e. it generates a Singer group. The second generator
ϕ is the Frobenius automorphism acting on B and on W by multiplication with the
prime p = 2 (compare with Section 2.4). The third generator ι is the mirroring of
the Fano plane across the line passing through {5, 0, 4}.
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Figure 4: The collineations σ, ϕ and ι acting on black vertices.

With these generators we obtain the following presentation of PGL(3, 2):

P =
〈
σ, ϕ, ι | σ7 = ϕ3 = ι2 = (ϕι)

2
= (σι)

3
= 1, ϕσ = σ2ϕ

〉
.

From the group presentation P we see that

〈ϕ, ι〉 = 〈ϕ〉o 〈ι〉 with ιϕι−1 = ϕ−1 and(14)

〈σ, ϕ〉 = 〈σ〉o 〈ϕ〉 with ϕσϕ−1 = σ2 .(15)

The groups 〈ϕ, ι〉 and 〈σ, ϕ〉 are respectively the normalizers of Φ = 〈ϕ〉 and of
Σ = 〈σ〉 in PGL(3, 2) (see also [11]).

Remark 3.5. It follows from the presentation P , by means of (14) and (15), that
ϕ = (σι)3ϕ = ϕ−1σ2ισ4ισ2ι, which gives

ϕ = ισ5ισ3ισ5 ,

that is PGL(3, 2) = 〈σ, ι〉. Hence ϕ is a redundant generator.

In view of Corollary 2.3.2 the automorphism group A of a Fano plane’s embed-
ding has size 1, 3, 7 or 21 since |ID| = 21. By means of the presentation P , we can
state:

• If |A| = 3, then A is a conjugate of Φ.
• If |A| = 7, then A is a conjugate of Σ.
• If |A| = 21, then A is a conjugate of Σ o Φ = 〈σ, ϕ〉.

This is a consequence of the fact that PGL(3, 2) has only one conjugacy class of
subgroups of order 3, 7 or 21. In the next section, we will see that no embedding
of the Fano plane has automorphism group of order only 7.

4. Fano plane’s embeddings

Let ΓD = (B,W, ID) be the Fano plane constructed with the (7, 3, 1)-difference
set D = {1, 2, 4} we have chosen in the previous section. According to Section 2.2,
any rotation system R for ΓD gives rise to an embedding (ΓD, R) of the Fano plane
on an orientable compact and connected surface S. We count 214 = 16384 possible
rotation systems for ΓD, since |B ∪ W | = 14 and |ID(v)| = 3, which gives two
possible cyclic permutations Rv of ID(v) for any v ∈ B ∪W . According to Euler’s
Formula (1), these 16384 embeddings have following genera (and number of faces):

• genus 1 (7 faces);
• genus 2 (5 faces);
• genus 3 (3 faces);
• genus 4 (1 face).

Even if computationally possible, genus 0 (9 faces) is forbidden by geometry. In
this case we would in fact have some faces of valency two and this is not possible
since two lines incident with the same two points cannot be distinct. Alternatively,
Kuratowsky’s Theorem (see, for instance, [14]) also implies the non-existence of
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genus 0 embeddings of the Fano plane ΓD since ΓD, regarded as a bipartite graph,
has a subdivision of K3,3 as a subgraph.

From Proposition 2.5.4 we obtain the following corollaries.

Corollary 4.1. For a rotation system R ∼=
(
(ρb), (%w)

)
of the Fano plane ΓD we

have:

Rσ ∼=
(
(ρb−1), (%w−1)

)
, Rϕ ∼=

(
(ρ4b), (%4w)

)
and

Rι ∼=
(
(ρ−10 , ρ2, ρ1, ρ

−1
6 , ρ4, ρ

−1
5 , ρ−13 ), (%−10 , %−14 , %−12 , %3, %

−1
1 , %6, %5)

)
,

where σ, ϕ and ι are the generators of PGL(3, 2) = Aut(ΓD) given in (13).

Proof. From (11) we have σv = idD and ϕv = (124) for any v ∈ B ∪ W . As
ρb, %w ∈ {(124), (142)}, this implies ρσbb = ρϕbb = ρb for any b ∈ B and similarly
%σww = %ϕww = %w for any w ∈W . Hence

Rσ ∼=
(
(ρσ−1

1 (b)), (%σ−1
2 (w))

)
=
(
(ρb−1), (%w−1)

)
and

Rϕ ∼=
(
(ρϕ−1

1 (b)), (%ϕ−1
2 (w))

)
=
(
(ρ4b), (%4w)

)
by Proposition 2.5.4. For the generator ι, from (11) we have that ιβ is an involution
if and only if β ∈ {0, 3, 5, 6} ⊂ B and ιω is an involution if and only if ω ∈
{0, 1, 2, 4} ⊂W . Hence

ρ
ιβ
β =

{
ρβ if β ∈ {1, 2, 4}
ρ−1β otherwise

and %ιωω =

{
%ω if ω ∈ {3, 5, 6}
%−1ω otherwise

and Proposition 2.5.4 gives Rι ∼=
(
(ρb), (%w)

)
, with ρb = ρ

ιβ
β , %w = %ιωω and b =

ι1(β), w = ι2(ω). �

Remark 4.2. It follows from Corollary 4.1 (or Proposition 2.5.4) that Rφ 6= R−1

for any φ ∈ PGL(3, 2). Hence (ΓD, R) and its mirror image (ΓD, R
−1) cannot be

isomorphic. In this case we say that (ΓD, R) with its mirror image (ΓD, R
−1) is a

chiral pair.

Corollary 4.3. If the Fano plane’s embedding (ΓD, R) has an automorphism of
order 7, then |Aut(ΓD, R)| = 21 and therefore (ΓD, R) is a regular embedding (i.e.
D(ΓD, R) is a regular dessin). Up to isomorphism there are four regular embeddings
of the Fano plane (two chiral pairs).

Proof. Let s ∈ Aut(ΓD, R) be of order 7. A φ ∈ Aut(ΓD) = PGL(3, 2) exists
such that sφ = σ since there is only one conjugacy class of subgroups of order 7
in PGL(3, 2) (Remark 3.5). The embeddings (ΓD, R) and (ΓD, R

φ) are isomorphic
and σ belongs to Aut(ΓD, R

φ) by means of Proposition 2.2.1. Setting R = Rφ ∼=(
(ρb), (%w)

)
, we have R

σ
= R and therefore, by means of Corollary 4.1,

(16) ρb = ρ0 and %w = %0 for any b ∈ B and any w ∈W .

The equalities above imply that also ϕ ∈ Aut(ΓD, Rφ), showing that Aut(ΓD, R
φ) =

〈σ, ϕ〉 since Aut(ΓD, R
φ) cannot have more than 21 = |ID| = |〈σ, ϕ〉| elements. As

there are four possible choices of
(
(ρb), (%w)

)
satisfying (16) and resulting into non-

isomorphic embeddings (Corollary 4.1 or Proposition 2.5.4), we conclude that there
are four non-isomorphic regular embeddings of the Fano plane. They are grouped
into chiral pairs by means of Remark 4.2. �

Regular embeddings of the Fano plane are well-known. There is a chiral pair on
the torus (see [12]) and a chiral pair on genus 3 (on the Klein quartic [18]). The
chiral pair (ΓD, R), (ΓD, R

−1) with R ∼=
(
(ρb), (%w)

)
and ρb = %w = (124) is on the

torus, while the pair with ρb = (142) and %w = (124) is on genus three. The last
one corresponds to Wada dessins studied in [19], [15], [16].
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Corollary 4.4. Up to isomorphism there are 28 embeddings of the Fano plane with
automorphism group of size 3.

Proof. Let f ∈ Aut(ΓD, R) be of order 3. A φ ∈ Aut(ΓD) = PGL(3, 2) exists
such that fφ = ϕ since there is only one conjugacy class of elements of order 3 in
PGL(3, 2) (Remark 3.5). As (ΓD, R) and (ΓD, R

φ) are isomorphic embeddings with
ϕ ∈ Aut(ΓD, Rφ) (Proposition 2.2.1), we can assume w.l.o.g. that ϕ ∈ Aut(ΓD, R).
Then, setting R ∼=

(
(ρb), (%w)

)
, from Rϕ = R and Corollary 4.1 we have

(17)
ρ1 = ρ2 = ρ4 , ρ3 = ρ5 = ρ6 and
%1 = %2 = %4 , %3 = %5 = %6 .

There are 23 × 23 = 64 such rotation systems. Consider that if R is one of those
64 rotation systems, then Rι 6= R also belongs to these 64 rotation systems. As
we have seen in Section 3, the normalizer of Φ = 〈ϕ〉 is 〈ϕ, ι〉 thus embeddings
with rotation system R and embeddings with rotation system Rι are isomorphic.
It follows that we have 32 non-isomorphic embeddings with automorphism group
of size at least 3. Four of them are the regular embeddings of Corollary 4.3. �

We can now state the following:

Theorem 4.5. Up to isomorphism, there are 120 embeddings of the Fano plane:
4 of them are regular, 28 have (cyclic) automorphism group of size 3 and 88 have
trivial automorphism group.

Proof. It remains to prove that there are 88 embeddings of the Fano plane with
trivial automorphism group. This follows from Section 2.2. Namely, from (3) we
have that the 16384 possible rotation systems are grouped in the following way:

• 4 orbits of length 8 giving the regular embeddings;
• 28 orbits of length 56 giving the embeddings with automorphism group of

size 3;
• x orbits of length 168 giving the embeddings with trivial automorphism

group;

From 4× 8 + 28× 56 + x× 168 = 16384 we obtain x = 88. �

Given a rotation system R it is not straightforward to obtain the genus g = g(R)
of the embedding (ΓD, R). One has to count the number of faces, that is, the
number of orbits of the permutation xy on ID, where x(b, w) = (b, Rb(w))and
y(b, w) = (Rw(b), w) (see Section 2.3 and Euler’s formula (1)). Anyway, taking into
account that

xy(b, w) =
(
Rw(b), RRw(b)(w)

)
,

this task can be accomplished by a computer algebra system. Using GAP (see [7]),
we get

• 2 embeddings of genus 1 resulting from 16 rotation systems;
• 10 embeddings of genus 2 resulting from 1008 rotation systems;
• 76 embeddings of genus 3 resulting from 10880 rotation systems;
• 32 embeddings of genus 4 resulting from 4480 rotation systems.

The genus polynomial of the Fano plane is then

γ1x+ γ2x
2 + γ3x

3 + γ4x
4 = 16x+ 1008x2 + 10880x3 + 4480x4 ,

where γg is the number of rotation systems R with g(R) = g (see [8]). The genus
distribution (γ1, γ2, γ3, γ4) is log-concave that is it satisfies γk−1γk+1 ≤ γ2k, i = 2, 3,
according to a conjecture (stated in [8]) that this is true for any graph.
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5. Quotients

As we have seen in Section 4 above we obtain 32 non-isomorphic embeddings
of the Fano plane with non-trivial automorphism group. We now consider their
quotients by a group of automorphisms of order three.

Proposition 5.1. Let (ΓD, R) be an embedding of the Fano plane ΓD having a
group of automorphisms G of order 3. Then, up to mirror image, either there is a
covering of (ΓD, R) onto one of the quotient embeddings in the sphere (see Fig. 5)
or there is a covering onto one of the quotient embeddings in the torus (see Fig. 6).

Proof. Let B = {Gb : b ∈ B}, W = {Gw : w ∈W} and I = {G(b, w) : (b, w) ∈ ID},
then Γ = (B,W, I) is an incidence structure and

φ : B ∪W → B ∪W, v 7→ Gv

is a covering from ΓD to Γ. As G is generated by a conjugate of the Frobenius
automorphism ϕ of ΓD, we have that Γ has

• one black vertex of valency one (branched with branch index three),
• one white vertex of valency one (branched with branch index three),
• two black vertices of valency three,
• two white vertices of valency three,
• seven incidences.

Applying Euler’s formula (1) we obtain following relation between genus g and face
number |F |:

2− 2g = 3 + 3− 7 + |F | ⇒ g =
3− |F |

2
.

Hence either we have embeddings into the torus with |F | = 1 or we have embeddings
into the sphere with |F | = 3. By construction it is now easy to see that, up to
isomorphism and mirror image, Γ has two embeddings on the sphere (see Fig. 5)
and two embeddings on the torus (see Fig. 6). �

(a) (b)
Figure 5: Quotients of the Fano plane embedded into the sphere.

A

A B

B

CDE

CDE

A

A B

B

CDE

CDE

(a) (b)
Figure 6: Quotients of the Fano plane embedded into the torus. Edges labeled

with the same letter have to be identified.

From the constructed quotients we obtain information about the covering em-
beddings considering what follows:
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• The group G fixes one black vertex b0 and one white vertex w0 cyclically
permuting the edges incident with b0 and the edges incident with w0.
• The images of b0 and w0 by the covering are the black and the white vertex

of valency one in a quotient (which are branched points of index 3).
• The resulting quotient does not depend on the choice of the rotations Rb0

and Rw0
.

• In a quotient, (the center of) a face f of valency ν can be ramified or not,
e.g. preimages of f are either one face of valency 3ν or a set of three faces
of valency ν.
• In a quotient, faces of valency one or two are always ramified since faces of

such valency are not allowed in the covering embeddings.

Hence each of the four quotients has four covering embeddings, i.e.

• quotients with only one face of valency 7 (on the torus) have four covering
embeddings with faces of valency 7, 7, 7 or with one face of valency 21;
• quotients with three faces of valency 1, 2, 4 have four covering embeddings

with faces of valency 3, 4, 4, 4, 6 or of valency 3, 6, 12;
• quotients with faces of valency 1, 3, 3 (on the sphere) have covering embed-

dings with faces of valency 3, 9, 9 or 3, 3, 3, 3, 3, 3, 3 or 3, 3, 3, 3, 9.

In Appendix A, the above quotients and their covering embeddings are listed.
They are constructed choosing different rotations around sets of black vertices
{0}, {1, 2, 4}, {3, 6, 5} and around sets of white vertices {0}, {1, 2, 4}, {3, 6, 5} ac-
cording to the equalities in (17) (see proof of Corollary 4.4).

6. Cell operations and unicellular embeddings

Let (ΓD, R) with R =
(
(ρb), (%w)

)
be an embedding of the Fano plane whose

automorphism group is of size equal to or larger than three. If the three faces
incident with black (or white) vertex 0 are distinct with valency ν, then replacing
the respective rotation ρ0 (or %0) by ρ−10 (resp. %−10 ) we obtain a new embedding
with a face of valency 3ν. This operation on rotation systems explains face valencies
given in the Table of Appendix A. More precisely:

• In the first group of four embeddings, we obtain the unicellular ones (embed-
dings with one face) starting from the Wada embeddings with face valency
sequence (7, 7, 7).
• The second group of four embeddings contains the regular embedding on

the torus with face valency sequence (3, 3, 3, 3, 3, 3, 3). By construction
the three faces incident with the black vertex zero are all different from
the three faces incident with the white vertex zero, thus starting from
(3, 3, 3, 3, 3, 3, 3) we obtain first the embeddings with face valency sequence
(3, 3, 3, 3, 9) from which we obtain the embedding with face valency se-
quence (3, 9, 9).

• For the third group of embeddings we obtain unicellular embeddings start-
ing from (7, 7, 7) in the same way as for the first group.

• In the fourth group of embeddings, the three faces of valency 4 of the
embedding with face valency sequence (3, 4, 4, 4, 6) are incident with black
and white vertex zero by construction. This implies that starting from these
embeddings we obtain the first two with face valency sequence (3, 6, 12)
from which we then obtain the third.

Remark 6.1. For any embedding (Γ, R) with R ∼= ((ρb), (%w)) and genus g, if
there is a black (or white) vertex v of odd valency r incident with r distinct faces of
valency ν1, . . . , νr, replacing the rotation ρv (or %v) with ρ−1v (resp. %−1v ) we obtain
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a new embedding with a face of valency ν1 + · · · + νr and genus g + r−1
2 . If the

valency r is even, then we obtain two faces whose valency sum is ν1 + · · ·+ νr and
the genus of the embedding is g + r−2

2 (see Fig. 7).

ϱv
-1

v

Figure 7: A cell operation.
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Appendix A. Embeddings of the Fano plane with non-trivial
automorphism group

In the following table sixteen non-isomorphic embeddings of the Fano plane
(ΓD, R) are listed. For the construction we choose the Frobenius difference set
D = {1, 2, 4}. The automorphism group of the embeddings is of order at least
three and it contains the Frobenius automorphism. The remaining non-isomorphic
embeddings with non-trivial automorphism group can be obtained mirroring the
listed ones.

The first column of the table gives rotation systems such that the Frobenius
automorphism is contained in Aut(ΓD, R) (see Section 4). The sign + and −
denote respectively permutations (124) and (142) of the difference set D. The
next two columns contain the resulting embeddings and their quotients with the
corresponding face valencies. Embeddings are subdivided into four groups having
the same quotient. The last column lists the numbers of the figures in which the
quotients are sketched.

ρ0 ρ1, ρ2, ρ4 ρ3, ρ6, ρ5 (ΓD, R) (Γ, R) Fig.
%0 %1, %2, %4 %3, %6, %5

+ + + (7, 7, 7) (7)

6 (a)

− − − regular
− + + (7, 7, 7) (7)
+ − −
+ + + (21) (7)
+ − −
− + + (21) (7)
− − −
+ + + (3, 3, 3, 3, 9) (1, 3, 3)

7 (b)

− + +
− + + (3, 3, 3, 3, 9) (1, 3, 3)
+ + +
+ + + (3, 3, 3, 3, 3, 3, 3) (1, 3, 3)
+ + + regular
− + + (3, 9, 9) (1, 3, 3)
− + +

+ + + (7, 7, 7) (7)

6 (b)

− − +
− + + (7, 7, 7) (7)
+ − +
+ + + (21) (7)
+ − +
− + + (21) (7)
− − +

+ + + (3, 6, 12) (1, 2, 4)

7 (a)

− + −
− + + (3, 6, 12) (1, 2, 4)
+ + −
+ + + (3, 6, 12) (1, 2, 4)
+ + −
− + + (3, 4, 4, 4, 6) (1, 4, 2)
− + −
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