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Abstract

We give an explicit construction for the 4-dimensional family of Schoen
surfaces by computing equations for their canonical images, which are 40-
nodal complete intersections of a quadric and the Igusa quartic in P4. We
then study a particularly interesting example, with 240 automorphisms
and maximal Picard number.
2010 MSC: 14J29.

1 Introduction

While working on a problem related to the Hodge conjecture, Chad Schoen
[Sch07] used deformation theory to construct a family of surfaces S (from now
on called Schoen surfaces) with some interesting features. The one that has
interested Schoen most is that the Albanese map of S embeds it into its Albanese
variety A, but for a generic Schoen surface the cycle S in H4(A,Q) is not
contained in the subspace generated by the intersections of two divisors of A;
the existence of such cycles on an abelian variety A makes the Hodge conjecture
more difficult to prove.

Another interesting property of S is that the natural map

∧2H0(S,ΩS)→ H0(S,KS)

has a one dimensional kernel, and therefore S is a Lagrangian surface in A.
Moreover the kernel is not of the form ω1 ∧ ω2, (ωi ∈ H0(S,ΩS)), therefore by
the Castelnuovo-De Franchis Theorem, the surface do not admit fibrations onto
a curve of genus ≥ 2. Only a few number of Lagrangian surfaces without a
fibration onto a curve of higher genus are known (see [BNP07, BPS10, BT00]).
Such examples are interesting for people studying kähelerian groups, e.g. one
can ask whether their fundamental group is nilpotent (cf. [Cam95]).

By [Bea79], when the canonical map of a surface of general type has degree
> 1 onto a surface, that surface either has pg = 0 or is itself canonically em-
bedded, the latter case being rather exceptional (see [CPT03] for a list of the
examples known so far). In [CMLR15], Ciliberto, Mendes Lopes and the second
author studied Schoen surfaces geometrically, proving that the canonical map
of a Schoen surface S is 2-to-1 onto a 40-nodal degree 8 complete intersection
surface X40 ⊂ P4 and the ramification of the double cover S → X40 is the set
of 40 nodes. They also show that Schoen surfaces are not universally covered
by the bidisk (very few surfaces with K2 = 8χ and such property are known).

Miyaoka’s bound tells us that on a degree 8 complete intersection surface in
P4, there cannot be more than 40 nodes. The construction of Schoen surfaces
gives the first theoretical proof that such 40-nodal surface exists, but without
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providing any equations for it. In [Bea13], Beauville used Schoen surfaces in
order to show the existence of 48-nodal degree 16 complete intersection surfaces
X48 in P6 and surfaces S̃ whose canonical map is 2-to-1 onto X48.

The main result of this paper is an explicit construction of the surfaces
X40 by equations, and therefore an explicit construction of S by double cover.
The idea of the construction of the surfaces X40 is the following. The Igusa
quartic threefold I4 ⊂ P4 is singular along 15 lines of A1 singularities. Its
intersection with a generic quadric gives thus a degree 8 complete intersection
surface containing 30 nodes. The main question is therefore to find a quadric
Q2 which, while still transversal to the 15 singular lines, is tangent to the Igusa
quartic at 10 more points, leading to a 40-nodal surface X40 := I4 ∩ Q2. Our
construction is very concrete, since we have the explicit equation for the quadric
Q2, whose coefficients are depending of 4 parameters.

In order to obtain that result, we use the knowledge of the above mentioned
papers, computer algebra and the rich geometry of the Igusa quartic three-
fold, and of its dual, the Segre cubic threefold S3 ⊂ P4, which is the unique
cubic threefold with 10 nodes. It is well known that the Igusa quartic three-
fold parametrizes quartic Kummer surfaces [Hun96, Theorem 3.3.8]: taking the
intersection of I4 by a hyperplane Tx tangent to a generic point x ∈ I4, one
obtains a 16-nodal Kummer surface, 15 nodes coming from the intersection of
the 15 lines in I4 with Tx, and one more node at x. Our construction of X
uses the 15-nodal K3 surfaces obtained as the intersections of I4 with a generic
hyperplane, giving new interesting geometric features to the Igusa quartic I4.

We then study a Schoen surface with a large group of symmetries (of order
240). We compute the isogeny class of its Albanese variety and we prove that
it has maximal Picard number. Although interesting, examples of surfaces with
maximal Picard number are rather scarce, see e.g. [Bea14].

As a by product of our work, we also obtain a geometric construction of a 3-
dimensional subfamily of Schoen surfaces, as a bidouble cover of some particular
Kummer surfaces. Construction which interestingly matches some (theoretical)
constructions of Lagrangian surfaces suggested by Bogomolov and Tschinkel
in [BT00] (see Remark 13).

Since 15-nodal quartic surfaces, obtained as generic hyperplane sections of
the Igusa quartic, play a key role in our construction, one may ask if an analogous
construction could be done using a different family of 15-nodal quartics. The
answer is negative: we show in Appendix A.1 that a generic quartic surface with
15 nodes can be realized as a hyperplane section of the Igusa quartic threefold.

The paper is organized as follows. In Section 2, we recall some known facts on
Schoen surfaces. In Section 3, we construct the 40-nodal degree 8 surfaces in P4,
we prove that their set of 40 nodes is 2-divisible, their associated double covers
are not universally covered by the bidisk and that they are Schoen surfaces. In
Section 4, we study an example of a Schoen surface with a large automorphism
group. The first Appendix is on the moduli of K3 surfaces with 15 nodes,
the second contains computations using the computer algebra system Magma
[BCP97].

Notation
We work over the complex numbers. All varieties are assumed to be pro-

jective algebraic. For a smooth surface S, as usual KS is the canonical class,
pg(S) := h0(S,KS) is the geometric genus, q(S) := h1(S,KS) is the irregularity
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and χ(OS) = 1− q + pg is the holomorphic Euler characteristic. A (−n)-curve
on a surface is a curve isomorphic to P1 with self-intersection −n. Linear equiv-
alence of divisors is denoted by ≡ .
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2 Schoen surfaces

Let C be a smooth genus 2 curve with jacobian J(C) and consider the union

V := C × C ∪C J(C)

glued along the diagonal of C × C and C ↪→ J(C). Notice that V is singular
along C.

Theorem 1 ( [Sch07]). The reducible surface V can be deformed into a smooth
surface of general type S with invariants

c21 = 16 = 2c2, q = 4, pg = 5.

The moduli of these surfaces is 4-dimensional. The deformation space is locally
smooth, thus it is locally irreducible.

As said in the Introduction, the canonical map of a Schoen surface S is of
degree 2 onto a 40-nodal complete intersection X of a quadric and a quartic
in P4. From [CMLR15, Lemmas 5, 6 and proof of Theorem 4.1] we deduce the
following.

Proposition 2 ( [CMLR15]). The above surfaces X degenerate to the union
of a double quadric surface and a quartic Kummer surface, these being given by
the intersection of two hyperplanes and a quartic hypersurface in P4. Moreover,
this degeneration induces the degeneration in Schoen’s construction.

3 The construction

In this section we show the following:

Theorem 3. Let I4 be the Igusa quartic in P4. There exists a quadric on 4
parameters Qa,b,c,d such that, for generic values of the parameters, the surface

X40 := I4 ∩Qa,b,c,d

has exactly 40 nodes. These nodes are 2-divisible in the Picard group and the
double cover S → X40 ramified over the nodes is a Schoen surface.

We explain how to compute the quadric Qa,b,c,d. The corresponding com-
puter code, implemented with Magma, is in Appendix A.2.
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3.1 Segre cubic, Igusa quartic

The linear system of quadrics through points p1, . . . , p5 ∈ P3 in general posi-
tion (i.e. no 4 of them are contained in a hyperplane) is 4-dimensional. Let
φ : P3 99K P4 be the corresponding rational map. Then S3 := φ(P3) is the Segre
cubic, the unique cubic threefold in P3 (up to projective equivalence) with sin-
gular set the union of 10 nodes (the images of the lines pipj). The Segre cubic
contains 15 planes: the ”images” (after blowing up P3) of p1, . . . , p5 and of the
10 planes in P3 through exactly 3 of the points pi. The dual variety I4 (the image
under the gradient map) of S3 is the Igusa quartic. The dual map contracts the
above 15 planes to singular lines of I4, its singular set. The Igusa quartic has 10
tropes, i.e. 10 hyperplane sections which are double quadrics. For more details
see e.g. [Hun96] or [Dol12].

3.2 The 40-nodal surface

Let H ⊂ P4 be a generic hyperplane. Then Q15 := I4 ∩ H ⊂ P3 is a quartic
surface with 15 nodes. Consider the map φ : H 99K P4 given by the linear system
|L| of quadrics which pass through five nodes p1, . . . , p5 in general position.

Proposition 4. There exists a quadric S2 ⊂ P4 such that

Q10 := φ(Q15) ∼= S3 ∩ S2

and Q10 has (at least) 10 nodes, which are disjoint from the nodes of S3.

Proof.
We have φ(H) ∼= S3 and φ is of degree 1 outside of the lines pipj , therefore φ
sends Q15 birationally to a surface Q10 contained in S3, a 10-nodal K3 surface.
Now consider the resolution of singularities Q̃15 → Q15 and let |L′| be the strict

transform of |L| in Q̃15. Since L′2 = 6 and |L′| has no base points, [SD74,
Theorem 6.1] implies that Q10 is a complete intersection of a quadric S2 and a
cubic in P4. This cubic can be assumed to be S3 because Q10 ⊂ S3.

The second assertion follows from the fact that the 10 nodes of Q10 corre-
spond to the nodes of Q15 disjoint from the 10 lines pipj , i, j ∈ {1, . . . , 5}, which
are contracted to the nodes of S3.

In the Appendix A.2.1, we compute this 4-dimensional family of (smooth)
quadrics S2. The dual of S2 is a smooth quadric Q2. Consider the dual maps

d1 : S3 99K I4,

d2 : S2 99K Q2

and define X40 := I4 ∩ Q2. Since S2 is tangent to S3 at 10 smooth points of
S3 and duality preserves tangencies, then X40 has at least 10 singular points.
The purpose of this construction is to find Q2 meeting the 15 singular lines of
I4 transversally, so that X40 is a 40-nodal surface. We show below that, up to
the symmetry of I4, at most one choice of the nodes p1, . . . , p5 serves our aims.
Notice that the quartic surface Q15 has 10 tropes (double conics), which are
induced by the tropes of I4.
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Proposition 5. If exactly three of the nodes p1, . . . , p5 are in a trope of Q15,
then the surface X40 is non-normal.

Proof.
Let T be the hyperplane of H which gives the trope of Q15 containing three of
the nodes p1, . . . , p5. Since φ(Q15) = φ(H) ∩ S2, then φ(T ∩Q15) = φ(T ) ∩ S2.
Let C be the conic such that T ∩Q15 = 2C. After blowing up P3 at p1, . . . , p5,
the strict transform of a quadric in |L| meets the strict transform of C at ex-
actly one point. This implies that the image φ(C) is a line. We have then that
φ(T ) ∩ S2 is a double line and, as stated in Section 3.1, φ(T ) is a plane in S3.
When taking the duals, this plane is contracted to a singular line of I4 and the
quadric Q2 contains this line. This implies that the singular set of X40 is of
dimension 1.

Therefore, a surface X40 is normal only if no 3 of the nodes p1, . . . , p5 are in
a trope of Q15. We compute that there are exactly 6 such sets of nodes, see the
Appendix. The tropes of Q15 are induced by the tropes of I4, so we compute
the sets of 5 singular lines of I4 such that there is no trope containing 3 of them.
Fixing one of these sets (the S6 symmetry of I4 gives the remaining sets) we
have a choice of five nodes p1, . . . , p5 for each surface Q15. The computations
with Magma in the Appendix confirm that a generic surface X40 constructed as
above has 40 nodes and no other singularities. Our computations are optimal in
the sense that we construct the entire family at once: the output is a quadric on
4 parameters Qa,b,c,d such that, for generic values of the parameters, the surface
I4 ∩Qa,b,c,d has exactly 40 nodes.

S3
d1−−−−→ I4

I4 ∩Ha,b,c,d
|L|−−−−→ ⊃ ⊃ =: X40

S2
d2−−−−→ Qa,b,c,d

Figure 1: Here the symbol ⊃ means intersection.

3.3 2-divisibility of the nodes

Let X → B be a proper flat morphism onto a disk B such that for each t in B,
the fiber Xt above t is the minimal resolution of a 40-nodal complete intersection
of a quadric and a quartic in P4. Let 0 be a point of B

Proposition 6. Suppose that the sum of the 40 (−2)-curves on X0 is 2-divisible.
Then the sum of the 40 (−2)-curves on each of the surfaces Xt is 2-divisible.

Proof.
By [Dim92, Chapter 5, Lemma 3.1], the integral cohomology groups of a smooth
complete intersection are torsion free. Since the surface Xt is the minimal
resolution of a complete intersection with nodal points, the group H2(Xt,Z) is
also torsion free. Let A1, . . . , A40 be the 40 (−2)-curves on the surface X0. By
the hypothesis, there exists a class L0 in NS(X0) = H2(X0,Z)∩H1,1(X0) such
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that
40∑
i=1

Ai ∼ 2L0,

where ∼ denote numerical equivalence. There exists a diffeomorphism φt : Xt →
X0 such that φ∗t (Ai) is a (−2)-curve on Xt. The natural map

φ∗t : H2(X0,Z)→ H2(Xt,Z)

is an isomorphism of lattices, therefore we have

40∑
i=1

φ∗t (Ai) ∼ 2φ∗t (L0),

with φ∗t (L0) ∈ H2(Xt,Z). Since
∑40

i=1 φ
∗
t (Ai) ∈ H1,1(Xt), the class φ∗t (L0) is in

H1,1(Xt), thus
∑40

i=1 φ
∗
t (Ai) is 2-divisible.

According to our computations in Appendix A.2.2, one of the 40-nodal sur-
faces constructed above is projectively equivalent to the Σ5-invariant surface
X40 given in P5 by

x+ y + z + w + t+ h = 0,

5
(
x2 + · · ·+ t2

)
− 7 (x+ · · ·+ t)

2
= 0,

4
(
x4 + · · ·+ t4 + h4

)
−
(
x2 + · · ·+ t2 + h2

)2
= 0.

Proposition 7. The nodes of X40 are 2-divisible.

Proof.
One can verify that X40 has a (40, 12) configuration: 40 tropes and 40 nodes,
each trope contains 12 nodes, through each node pass 12 tropes. We show in
Appendix A.2.3 the existence of tropes T1, . . . , T4 such that:

· Ti = 2Ci, with C2, C3, C4 smooth and C1 the union of two conics;

· the singular points of C1 are not in C2 ∪ C3 ∪ C4;

· C1 ∪ C2 contains exactly 20 nodes of X40 which are not in C1 ∩ C2;

· C3 ∪ C4 contains exactly 20 nodes of X40 which are not in C3 ∩ C4;

· the above two sets of 20 nodes are disjoint.

Let X̂40 be the smooth minimal model of X40. Denote by T̃i the total trans-
form of Ti in X̂40 and by Ĉi the strict transform of Ci in X̂40, i = 1, . . . , 4.
There are (−2)-curves A1, . . . , A22 ⊂ X̂40 such that

T̃1 = 2Ĉ1 +

10∑
1

niAi + n21A21 + n22A22,

T̃2 = 2Ĉ2 +

20∑
11

niAi + n21A21 + n22A22,
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for some integers n1, . . . , n22. From

0 = T̃jAi = 2ĈjAi − 2ni = 2− 2ni,

we get ni = 1, i = 1, . . . , 22. So, we have

2T̃ ≡ T̃1 + T̃2 = 2Ĉ1 + 2Ĉ2 +

20∑
1

Ai + 2A21 + 2A22,

where T̃ is the pullback of a general hyperplane section of X40. This shows
that C1 ∪ C2 contains 20 nodes of X40 which are 2-divisible. Analogously, the
remaining 20 nodes of X40, contained in C3 ∪ C4, are also 2-divisible.

Proposition 8. The 40 nodes of a generic surface X40 are 2-divisible.

Proof.
Immediate from Propositions 6 and 7.

3.4 The surfaces

From the previous section, for a surfaceX40 with exactly 40 nodes as constructed
above there is a double covering

π : S −→ X40

ramified over the nodes.

Proposition 9. We have

pg(S) = 5, q(S) = 4, K2
S = 16.

Proof.
From the adjunction formula, the canonical system of X40 is induced by the
system of hyperplanes of P4, thus it is free from base points. Then the surface S
is minimal because its canonical system contains the pullback of the canonical
system of X40. Let X̂40 be the smooth minimal model of X40, A1, . . . , A40 be
the (−2)-curves which contract to the nodes of X40 and S′ → X̂40 be the double

covering with branch locus
∑40

1 Ai. The minimal model of S′ is isomorphic to
S.

Let L be the divisor such that
∑40

1 Ai ≡ 2L. The double covering formulas
(see e.g. [BHPVdV04, V. 22]) give

χ(S) = 2χ
(
X̂40

)
+

1

2
L
(
KX̂40

+ L
)

= 12− 10 = 2,

K2
S = 2

(
KX̂40

+ L
)2

+ 40 = −24 + 40 = 16.

Let us compute pg(S). We have that pg(S) ≥ pg (X40) = 5, thus q(S) ≥ 4.
Suppose that q(S) ≥ 5. We know from [Deb82, Beauville Appendix] that one
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always has pg(S) ≥ 2q(S)− 4, with equality only if S is the product of a curve
of genus 2 and a curve of genus q(S) − 2 ≥ 2. Thus pg(S) = q(S) + 1 implies
that q(S) = 5, pg(S) = 6 and S is the product of a genus 2 curve with a genus 3
curve. The restriction of the canonical map of S to a genus 2 fibre F is a map
of degree 2 to P1, the canonical map of F . Hence the map π|F is of degree ≥ 2
to P1. This is a contradiction because, since X40 is of general type, it is not a
ruled surface.

Proposition 10. The surface S is not covered by the bidisk H×H.

Proof.
If S is universally covered by H×H, then it is the quotient of H×H by a discrete
cocompact subgroup Γ of Aut(H×H) = Aut(H)2 o (Z/2Z) acting freely. Let

Γ0 := Γ ∩Aut(H)2

and Γ′0,Γ
′′
0 be the projections of Γ0 to the factors of Aut(H)×Aut(H). By [Shi63,

Theorem 1], if one of Γ′0, Γ′′0 is discrete, so is the other. In this case we say that
Γ is reducible.

If Γ is irreducible, we know from [MS63, page 419] that

b1(H×H/Γ0) = b1(P1 × P1) = 0.

This is impossible because 2q = b1 and q(S) = 4.
So, Γ is reducible and then Γ0 is a finite index subgroup of Γ′0 × Γ′′0 . It

follows that H×H/Γ0 is a covering of the product of two curves H/Γ′0 ×H/Γ′′0 .
We claim that S is isogenous to a product of curves (i.e. it is a quotient of a
product of curves by a fixed-point free group action). In fact, there exists a
normal sub-lattice Γ1 of Γ0, of finite index, of the form

Γ′1 × Γ′′1 ⊂ Γ0 ⊂ Γ′0 × Γ′′0 .

This implies the existence of an étale map

H×H/Γ1 = H/Γ′1 ×H/Γ′′1 −→ H×H/Γ0,

the action being given by Γ0/Γ1.
Surfaces with pg = 5 and q = 4 isogenous to a product of curves are classified

in [BNP07]. They are of the form (C ×H)/(Z/2Z), where:

a) C and H are curves of genus 3 with fixed-point free involutions, or

b) C is a curve of genus 5 with a fixed-point free involution and H is a bielliptic
curve of genus 2.

We know from [Pol06, Theorem 3.4] that the curves in a) are hyperelliptic, hence
in both cases the canonical map factors through a double covering of a ruled
surface and then the canonical image is not of general type. This implies that
S is not isogenous to a product of curves, a contradiction.
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3.5 The degeneration

Proposition 11. The family of surfaces S constructed above coincides with the
family of surfaces constructed by Schoen in [Sch07].

Proof.
The deformation space in Schoen’s construction is locally irreducible (see The-
orem 1), hence we get from Proposition 2 that it suffices to show that the
4-dimensional family of surfaces X40 degenerates to a 3-dimensional family of
reducible surfaces which are the union of a double quadric surface and a quartic
Kummer surface.

Recall from section 3.2 that to a generic hyperplane section Ha,b,c,d of the
Igusa quartic corresponds a quadric Qa,b,c,d such that X40 := I4 ∩Qa,b,c,d. Let

Fa,b,c,d = c1x
2 + · · ·+ c15wt, ci = ci(a, b, c, d),

be the defining polynomial of Qa,b,c,d in P4(x, y, z, w, t). The correspondence

Ha,b,c,d 7→ Qa,b,c,d

can be seen as a rational map

ϕ : A4 99K P14, (a, b, c, d) 7−→ (c1 : · · · : c15).

From our computations in the Appendix, if Ha,b,c,d gives a trope of I4, then
Fa,b,c,d vanishes identically. This happens for instance for

(a, b, c, d) = (0, 0,−1,−1).

We resolve the corresponding indeterminacy of ϕ by blowing up: locally, this is
done by evaluating the coefficients ci at (a, ab, ac− 1, ad− 1). The computations
give that

Fa,ab,ac−1,ad−1 = a3 ·Ga,b,c,d,

with G of degree 2. Moreover, there exists a linear form Jb,c,d such that

G0,b,c,d = x · Jb,c,d.

The hyperplane {x = 0} gives a trope of I4 (a double quadric). For generic val-
ues of the parameters, the hyperplane given by Jb,c,d is tangent to I4 at a point
(it gives a quartic Kummer surface) and the quadric given by Ga,b,c,d meets I4
at a 40-nodal surface.

4 The surface X40 with Σ5 symmetries

In this section we study a surface S which is the double cover of a particular 40-
nodal degree 8 complete intersection surface with a high group of symmetries.
Using these symmetries we prove that its Picard number is maximal and we
find the isogeny class of its Albanese variety. We moreover describe another
construction of a 3-dimensional subfamily of Schoen surfaces as bidouble covers
of some special Kummer surfaces.
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4.1 Some Schoen surfaces as bidouble covers

Recall from Section 3.3 the complete intersection X40 ⊂ P4 of the following
quadric and quartic:

5
(
x2 + · · ·+ t2

)
− 7(x+ · · ·+ t)2 = 0,

4
(
x4 + · · ·+ t4 + h4

)
−
(
x2 + · · ·+ t2 + h2

)2
= 0,

where h = −(x + y + z + w + t). The surface X40 has 40 nodes (defined over
the field Q(

√
−15)). The permutation group Σ5 is a subgroup of aut(X40), the

automorphism group of X40.
Let S → X40 be the double cover branched over the 40 nodes and let σ be

the corresponding involution of S. Let X̂40 be the minimal resolution of X40.
By the argument given in the proof of Proposition 6, the integral cohomology
group H2(X̂40,Z) is torsion free. Thus the Néron-Severi group NS(X̂40) being a
subgroup ofH2(X̂40,Z) is also torsion free. We note also that any automorphism
in Σ5 preserves the set of nodes. Then by [Liv81, §1.3, Theorem 1 e)], each
element of Σ5 lifts to an automorphism of S. We have:

Proposition 12. Let τ ∈ Σ5 be a transposition. The quotient surface

Q := X40/τ

is a K3 surface with 15 nodes containing in the smooth locus two (−2)-curves
A16 and A′16 such that A16A

′
16 = 10. The double cover X40 → Q is branched

over A16 +A′16.
Let A1, . . . , A15 be the 15 (−2)-curves in the resolution Q̂ of Q. The divisors

A16 +
∑15

i=1Ai and A′16 +
∑15

i=1Ai are 2-divisible. The bidouble cover Ŝ → Q̂
associated to the divisors

D1 =

15∑
i=1

Ai, D2 = A16, D3 = A′16

gives the blow-up Ŝ → S at the 40 fixed points of σ; the bidouble cover decom-
poses as

Ŝ

↙ ↓ ↘
B̂1 X̂40 B̂2

↘ ↓ ↙
Q̂

where B̂1, B̂2 are Abelian surfaces B1, B2 blown-up at their 2-torsion points,
each map Ŝ → B̂i is a double cover branched over a curve of genus 4, and the
maps B̂i → Q̂, i = 1, 2 are branched over D1 +D2 and D1 +D3, respectively.
The group generated by the lifts of τ on S is (Z/2Z)2 and it contains σ.

Proof.
Let τ ∈ Σ5 be a transposition (for example the one exchanging the coordinates
x and y). Using Magma, we compute that the fixed point set of τ is an union
of two smooth genus 0 curves meeting at 10 points which are 10 nodes of X40.
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Moreover the quotient of the surface X40 by τ is a quartic K3 surface Q ↪→ P3

which has 15 nodes (see Appendix A.2.4).
The image of the fixed point set of τ by the quotient map is A16 + A′16, where
A16 and A′16 are two (−2)-curves which are disjoint from the 15 nodes and such
that A16A

′
16 = 10. It is the intersection of Q with a quadric in P3.

Let A1, . . . , A15 be the 15 (−2)-curves above the nodes on the minimal resolu-
tion Q̂ of Q. Let us keep the same notations for the strict transform of A16, A

′
16

on Q̂. The 16 curves A1, . . . , A15, A16 are disjoint and so are the 16 curves
A1, . . . , A15, A

′
16. Thus by the results of Nikulin, the divisors A16 +

∑15
i=1Ai

and A′16 +
∑15

i=1Ai are 2-divisible. Using the three divisors D1, D2, D3, the

associated bidouble cover Ŝ → Q̂ gives the blow-up of S at the 40 fixed points
of σ (see [Par91] or [Cat99] for information on bidouble covers); the remaining
assertions follow.

Remark 13. More generally, one can prove that there exists a 3-dimensional
family of quartic K3 surfaces with 15 nodes, containing on their smooth locus
two (−2)-curves A16, A

′
16 such that A16A

′
16 = 10 (cf. [Rem07, Pia23]). Their

associated bidouble covers as above give a 3-dimensional subfamily of Schoen
surfaces.
It is interesting to compare this construction of Schoen surfaces by bidouble
covers with the construction of Lagrangian surfaces done by Bogomolov and
Tschinkel in [BT00, Sections 3 & 4].

4.2 The 240 automorphisms of S

We will use standard results in representation theory for which we refer the
reader to [FH91]. The permutation group Σ5 has 7 irreducible representations
(up to isomorphism), which we denote by

U, U ′, V, V ′ = V ⊗ U ′, W, W ′ = W ⊗ U ′, ∧2V,

of respective dimension 1, 1, 4, 4, 5, 5, 6, where U ′ is the signature, the 4-dimensional
representation V satisfies Tr(τ) = 2 and the 5-dimensional representation W is
determined by Tr(τ) = 1 (Tr is the trace and τ ∈ Σ5 is a transposition).

One has KX40
= O(1). By looking at the symmetries of the equations of

X40, the representation of Σ5 on H0
(
X40,KX40

)
is faithful. On P4, the point

(1 : 1 : 1 : 1 : 1) is invariant, thus the corresponding vector space is stable and the
representation is thus not irreducible. The only non-irreducible 5-dimensional
faithful representations are:

U + V, U + V ′, U ′ + V, U ′ + V ′.

Let aut(S)o be the subgroup of aut(S) generated by the lifts of the elements of
Σ5 ⊂ aut(X40). There is a natural exact sequence

0→ Z/2Z→ aut(S)o → Σ5 → 0

where the morphism Z/2Z → aut(S)o is obtained by the inclusion of σ. By
Schur theory, the group extensions

0→ Z/2Z→ H → Σ5 → 0

11



of Σ5 by Z/2Z are classified by the second homology group

H2(Σ5,Z/2Z),

which is isomorphic to (Z/2Z)2, therefore aut(S)o is one of the following groups

Z/2Z× Σ5, 2.Σ−5 , 2.Σ+
5 , 4.A5,

which we will describe later.

Theorem 14. The group aut(S)o is 2.Σ+
5 .

We prove this result by showing that aut(S)o cannot be Z/2Z × Σ5, 2.Σ−5
and 4.A5. We need the following Lemma.

Lemma 15. The trace of the involution σ on H0
(
S,ΩS

)
is −4.

Proof.
The minimal resolution X̂40 of the quotient surface S = X40/σ is regular.
By [Bea96, Lemma VI.11 and Example VI.12, 3)], the space of σ-invariant 1-
forms on S and the space of 1-forms on X̂40 have the same dimension. Therefore
σ acts on H0

(
S,ΩS

)
by multiplication by −1, thus the result.

We remark moreover that the morphism

ϕ2,0 : ∧2H0
(
S,ΩS

)
−→ H0

(
S,KS

)
' H0

(
X40,KX40

)
is equivariant under aut(S)o and we know that it has a 1-dimensional ker-
nel (since it is a Schoen surface). The group aut(S)o acts on H0

(
S,KS

)
=

H0
(
X40,KX40

)
through aut(S)o/σ = Σ5.

Proof of Theorem 14.
Suppose that aut(S)o = Z/2Z×Σ5. If the 4-dimensional representationH0

(
S,ΩS

)
of Σ5 is faithful, then it is V or V ′ and

∧2H0(S,ΩS) = ∧2V = ∧2V ′

is an irreducible (6-dimensional) representation, a contradiction. Therefore

H0
(
S,ΩS

)
= Ua + U ′b,

but then the representation of Σ5 = aut(S)o/σ on ∧2H0
(
S,ΩS

)
is not faithful,

again a contradiction.
The group 2.Σ−5 is the group number 89 among the order 240 groups in

Magma database. It contains an unique involution. But by Proposition 12, the
automorphisms of S lifting the transpositions of Σ5 acting on X40 are involu-
tions, thus aut(S)o cannot be 2.Σ−5 .

The group A5.4 (group number 91 in Magma database) has 14 irreducible
representations χi, i = 1, . . . , 14 of respective dimensions

14, 44, 54, 62,

(where ab means a repeated b times).

12



Let W4 be a non irreducible 4-dimensional representation of A5.4. It is
easy to see that ∧2W4 is not a faithful representation of Σ5 = aut(S)o/σ, thus
∧2H0(S,ΩS) cannot be such representation W4.

Looking at the character table (for instance given by Magma), the represen-
tation H0

(
S,ΩS

)
cannot be χ5 or χ6 since the trace of the involution σ must

be −4. The two remaining 4-dimensional representations χ7, χ8 satisfy

∧2χ7 = ∧2χ8 = χ14,

(for the computation of the wedge product of a representation see [FH91]) which
is an irreducible representation of Σ5 = aut(S)o/σ, thus A5.4 is not aut(S)o.
The only possibility is thus aut(S)o = 2.Σ+

5 .

4.3 The group 2.Σ+
5 and its action on S

The group 2.Σ+
5 (number 90 among groups of order 240 in Magma database)

has 12 irreducible representations χ1, . . . , χ12, of respective dimensions

12, 45, 52, 63.

It has 21 involutions, divided into two conjugacy classes, one containing an
unique element σ, which is the involution of the double cover S → X40. Since the
trace of σ on χ3 and χ5 is not −4, the only possibilities are H0

(
S,ΩS

)
= χ4, χ6

or χ7. One has

∧2χ4 = χ1 + χ2 + χ3 and ∧2 χ6 = ∧2χ7 = χ2 + χ9.

The representation of 2.Σ+
5 on χ9 gives an irreducible 5-dimensional represen-

tation of 2.Σ+
5 /σ = Σ5, which is impossible since H0

(
X40,KX40

)
is not irre-

ducible. We thus proved that H0(S,ΩS) = χ4, which has character

Order 1 2 2 3 4 5 6 6 6 8 8 10
Trace 4 −4 0 −2 0 −1 0 0 2 0 0 1

We conclude that:

Proposition 16. The representation of the group 2.Σ+
5 on H0

(
S,ΩS

)
is χ4.

Moreover, one has ∧2H0
(
S,ΩS

)
= χ1 + χ2 + χ3 and

H1,1(A) = χ4 ⊗ χ4 = χ1 + χ2 + χ3 + χ5 + χ10,

where A is the Albanese variety of S.

The group Σ5 = aut(S)o/σ acts on ∧2χ4 and ∧2χ4 = U + U ′ + V .

Proposition 17. The representation of 2.Σ+
5 on H0

(
S,KS

)
is χ2 + χ3.

Proof.
The trace of an involution ι 6= σ in 2.Σ+

5 acting on χ4 equals 0, thus the eigen-
values of ι on the space of holomorphic one forms are 1, 1,−1,−1. Moreover,
since ∧2χ4 = χ1 + χ2 + χ3, the involution ι acts on H0

(
S,KS

)
with trace −1

or −3 according if

H0
(
S,KS

)
= U + V or H0

(
S,KS

)
= U ′ + V.

13



Then the eigenvalues of ι on H0
(
S,KS

)
are respectively 1, 1,−1,−1,−1 and

1,−1,−1,−1,−1. By [Bea96, Lemma VI.11 and Example VI.12, 3)], the quo-
tient surface has invariants q = 2 and pg = 2 or pg = 1 respectively. By
Proposition 12, that quotient surface is (birational to) an Abelian surface and it
is the second case that is actually occurring, thus H0

(
S,KS

)
= U ′ + V, which

corresponds to the representation χ2 + χ3 for 2.Σ+
5 .

There is a basis ω1, . . . , ω4 of H0
(
S,ΩS

)
such that the action of 2.Σ+

5 is
generated by the following matrices of order 2 and 8:

( 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
,


√

2
2 (1 + I) 0 −

√
2

2 (1 + I) −I
0 0 −1 0
0 1 −

√
2 −1

0 0 0
√

2
2 (1− I)

 , (1)

where I2 = −1.
We have

∧2H0(S,ΩS) = χ1 + χ2 + χ3,

where the trivial representation χ1 is generated by the indecomposable vector

v = ω1 ∧ ω4 + ω2 ∧ ω3

which generates the kernel of ∧2H0
(
S,ΩS)→ H0(S,KS

)
. By the theorem of

Castelnuovo-de Franchis, that gives another proof that S has no fibration onto
a curve of genus ≥ 2.

4.4 The periods of the Albanese variety of S

Let us study the Albanese variety of S.

Proposition 18. The Albanese variety A of S is isogenous to E4 where E is
an elliptic curve with CM by Z[

√
−15].

Proof.
The Albanese variety A of S is A = H0(S,ΩS)∗/Λ, where Λ = H1

(
S,Z

)
⊂

H0
(
S,ΩS

)∗
. Since 2.Σ+

5 acts onA, Λ is a 2.Σ+
5 -stable lattice in χ4 = H0

(
S,ΩS

)∗
.

The representation χ4 has Schur index 2 and one computes that there exists a
non-trivial 2.Σ+

5 -invariant anti-symmetric bilinear form on V4 = χ4. By [PZ06,
Theorem 4.1 (ii4)], that implies that A is isogenous to E4 where E is an elliptic
curve with CM.

Let τ be the involution acting onX40 by exchanging the first two coordinates.
The line

L =

{
X + Z = Y +

1

4
(−1 + I

√
15)W = 0

}
, I2 = −1

is contained in the quotient surface Q = X40/τ , the equation of which is given
in the Appendix. This line contains 3 nodes a1, a2, a3, and cuts the two (−2)-
curves disjoint from the 15 nodes in points denoted by a4 and a5. By Proposition
12 and its proof, the surface Q is birational to two Kummer surfaces Bi/[−1],

14



i = 1, 2, where each Bi is an Abelian surface. The 4 points a1, . . . , a4 are the
branch points of a degree 2 cover E → L, where E is therefore an elliptic curve
on B1 (say). The line L is also the image of an elliptic curve on B2, the branch
points being a1, a2, a3, a5. Using cross ratio for the points a1, . . . , a4, one finds
that

E = {y2 = x(x− 1)(x− λ)}

where

λ =
1

64

(
17 + 21

√
5 + I

(
7
√

15− 17
√

3
))

, I2 = −1.

The j-invariant of E is

−335

2

(
5 · 283 + 7213

√
5
)

and using Magma again, see Appendix A.2.5, one obtains that E has CM by
the order Z[

√
−15] (taking the cross ratio for a1, a2, a3, a5 gives an elliptic curve

whose j-invariant is conjugated to j(E), having CM by the same order). We
know by Proposition 12 that S admits a map onto B1, thus the result.

4.5 The surface S has maximal Picard number

Finally we prove the following.

Theorem 19. The surface S and the minimal resolution X̂40 of X40 have
maximal Picard number, equal respectively to 12 and 52.

Proof.
The Albanese variety A of S is isogeneous to E4 where E is an elliptic curve
with CM, therefore A has maximal Picard number. Moreover the map

H2,0(A) = ∧2H0
(
S,ΩS

)
−→ H2,0

(
S
)

= H0
(
S,KS

)
is surjective, thus by [Bea14, Proposition 2(a)], the surface S has maximal Pi-
card number. There is a dominant rational map S 99K X̂40 and S has maximal
Picard number, thus by [Bea14, Proposition 2(b)], the surface X̂40 has maxi-
mal Picard number. It is easy to check that h1,1(S) = 12 and h1,1(X̂40) = 52.

A Appendix

A.1 Quartics with 15 nodes

Let Q15 be a K3 surface in P3(C) with 15 nodes. In this section we show that:

• The moduli space of quartic K3 surfaces with 15 nodes can be described
as the moduli space of K3 surfaces polarized by some lattice N that we
describe below, and it is irreducible;
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• A generic K3 surface with 15 nodes can be realized as a section of the
Igusa quartic threefold, generalizing a similar result for Kummer quartic
surfaces.

The K3 surfaces as Q15 above are described in [GS14, Theorem 8.6] and in
[Gar15, Section 5], we recall here the following result for convenience:

Theorem 20 ( [GS14]). Let Q̃15 be a projective K3 surface with 15 disjoint
smooth rational curves Mi, i = 1, . . . , 15. Then:

1) The Néron-Severi group of Q̃15 contains the lattice M(Z/2Z)4 (which is the
smallest primitive sublattice of the K3 lattice containing the 15 rational
curves Mi);

2) there exists a K3 surface X with a symplectic action by G = (Z/2Z)4 such
that Q̃15 is the minimal resolution of the quotient X/G.

With the same notations as in Theorem 20, assume that Q̃15 is the minimal
resolution of Q15. By [GS14, Theorem 8.3] the Néron-Severi group NS(Q̃15)
contains the sublattice 〈4〉⊕〈−2〉⊕15 of rank 16. We denote by M1, . . . ,M15 the
fifteen (−2)–curves that are the exceptional divisors on Q̃15. In the next section
we show that NS(Q̃15) must contain a special overlattice of 〈4〉⊕〈−2〉⊕15, which
is described in details in [GS14, Theorem 8.3] and is generated by:

• A pseudo-ample class L with L2 = 4 (and L ·Mi = 0, i = 1, . . . , 15);

• the lattice M := M(Z/2Z)4 (that we recall below);

• a class (L − v)/2 where v contains exactly 6 of the Mi’s in its support
(these are not arbitrarily chosen and we recall them below).

A.1.1 The lattice M and the class v

The lattice M has discriminant 27 and it is decribed by Nikulin [Nik76, §7].
Let K denote the Kummer lattice, i.e. the smallest sublattice of the K3 lattice
that contains sixteen (−2)–classes. This is negative definite, has rank 16 and
discriminant 26, see [Nik75]. We identify the 16 classes of the Kummer lattice
with the elements of (Z/2Z)4 so we denote the curves by Kijkh with i, j, k, h ∈
{0, 1}. One can identify M = K⊥0000 ∩ K. By using the description of K (see
e.g. [GS14]), the following classes are contained in M :

• The 15 classes Kijkh with (i, j, k, h) ∈ (Z/2Z)4\{(0, 0, 0, 0)};

• let W be an hyperplane in the affine space (Z/2Z)4 with an equation∑4
i=1 αixi = 1, with αi ∈ {0, 1}. Then the 15 classes (1/2)

∑
p∈W Kp are

contained in M . Each of these classes contains exactly 8 distinct (−2)–
classes of the Kijkh.

Finally as explained in [GS14, Theorem 8.3] the class v such that (L − v)/2 ∈
NS(Y ) can be taken as the sum

K0001 +K0010 +K0011 +K1000 +K0100 +K1100.

Notation : For the rest of the section we will denote the fifteen (−2)–classes by
Mi, i = 1, . . . , 15 or by Kijkh with (i, j, k, h) ∈ (Z/2Z)4\{(0, 0, 0, 0)}, depending
if it is important or not to specify the indices.
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A.1.2 The Néron-Severi group

Let N denote the abstract lattice generated by ZL⊕M and by a class (L−v)/2.
The next result is contained in the paper [Gar15, Proposition 5.1] in a more
general context, for convenience we give here a specific proof for our situation.

Proposition 21. Let Q̃15 be the minimal resolution of a K3 quartic surface
with 15 nodes, then Q̃15 is pseudo-ample N -polarized, i.e. there is a primitive
embedding of N in NS(Q̃15) and the image of N in NS(Q̃15) contains a pseudo-
ample class.

Proof.
We use a similar argument as in the proof of [GS14, Theorem 8.6]. By con-
struction and by [GS14, Theorem 8.6, 1)] we know that ZL⊕M is a sublattice
of NS(Q̃15) (and L is pseudo-ample). Let Q be the orthogonal complement of
ZL ⊕M in NS(Q̃15) and let R := (ZL ⊕M) ⊕ Q, then NS(Q̃15) is an over-
lattice of finite index of R and R∨/R has number of generators `(R) equal to
1 + 7 + `(Q) where `(Q) denotes the number of generators of Q∨/Q (recall that
M has discriminant 27 and discriminant group isomorphic to (Z/2Z)7). If k
denotes the index of R in NS(Q̃15), then we have

`(NS(Y )) = 8 + `(Q)− 2k.

Let TQ̃15
be the transcendental lattice. Since the K3 lattice is unimodular, we

have

`
(
NS

(
Q̃15

))
= `

(
TQ̃15

)
≤ rk

(
TQ̃15

)
= 22− rk

(
NS

(
Q̃15

))
= 6− rk(Q).

This gives
8 + `(Q)− 2k ≤ 6− rk(Q)

and then

k ≥ 1

2
(`(Q) + rk(Q)) + 1.

Observe that k is the minimum number of classes we have to add to R to obtain
the lattice NS(Q̃15). The classes can be of two types, either these are classes in
(ZL⊕M)∨/(ZL⊕M) or these are sums ν + ν′ with ν ∈ (ZL⊕M)∨/(ZL⊕M)
and ν′ ∈ Q∨/Q. The maximum number of classes of the second kind is
bounded by `(Q) so we must have at least (rk(Q) − `(Q))/2 + 1 classes of
the first type. Since rk(Q) − `(Q) ≥ 0, we have at least one class of the first
kind, i.e. contained in (ZL ⊕M)∨/(ZL ⊕M). The discriminant group here
is Z/4Z ⊕ M∨/M = Z/4Z ⊕ (Z/2Z)7. Observe that a class ν here is then
of the form (aL/4 + w/2) and we have 2(aL/4 + w/2) − w ∈ NS(Y ) so that
a = ±2. This shows that the class can be assumed to be (L + w)/2. More-
over the square of this class must be in 2Z, that gives L2 + w2 = 0 mod 8.
If h is the number of curves contained in the support of w, we get 2 − h = 0
mod 4. By the description of the discriminant group of M [GS14, Proposition
8.2] we get that h = 6 or h = 10, so that we may assume that the class is of
the form (L − v)/2 as in the statement (since by [GS14, Proposition 8.2] if we
take a class with h = 10 we get the same lattice N). This concludes the proof.

17



Remark 22. One can easily show that if a K3 surface has Néron-Severi group
exactly isometric to N , then it admits a projective model as a quartic surface
with 15 nodes (i.e. N contains a pseudo-ample class), so the corresponding mod-
uli space XΓ is 4-dimensional and (see [Hun96, section 2.3]) it is an arithmetic
quotient by some subgroup Γ of the isometries of the K3 lattice of the domain

DN = {ω ∈ P(T ⊗ C) |ω2 = 0, ωω̄ = 0},

where T is the orthogonal complement of N in the K3 lattice U3 ⊕ E8(−1)2.
This has rank four and it is the transcendental lattice of the generic K3 surface
in the family.

A.1.3 The Moduli Space

LetMN be the moduli space of K3 surfaces that are pseudo-ample N -polarized.
This moduli space is described e.g. in [Dol96, Section 1], where it is shown that
it is isomorphic to the space XΓ from Remark 22.

Proposition 23. The moduli space MN is irreducible.

Proof.
The embedding of N into the K3 lattice is unique by [Nik79, Theorem 1.14.4
and Remark 1.14.5] (see also [GS14, Theorem 8.3]). By the construction of
[Dol96, Section 3], DN has two connected components both isomorphic to a
bounded Hermitian domain of type IV19−(rk(N)−1) = IV4. Observe that by
[Nik79, Theorem 1.13.2 and Theorem 1.14.2], the orthogonal complement of N
in the K3 lattice is uniquely determined by signature and discriminant form.
We compute as in [GS14, Theorem 8.3] that the discriminant group of N is
(Z/4Z)⊕ (Z/2Z)5. If we denote by q2 the discriminant form of the lattice U(2)
(that denotes the lattice U with the bilinear form multiplied by 2), then the
discriminant form is the same as q2⊕ q2 on (Z/2Z)4 and take value 1/4 and 1/2
on the remaining part (Z/4Z) ⊕ (Z/2Z). Hence we can identify N⊥ (modulo
isometries) with the lattice

U(2)⊕ U(2)⊕ 〈−2〉 ⊕ 〈−4〉.

By [Dol96, Proposition 5.6 and Lemma 5.4] there is an involution in Γ that ex-
changes the two connected components of DN , so that XΓ 'MN is irreducible.

Since the hyperplane sections of the Igusa quartic give a 4-dimensional family
of quartic surfaces with 15 nodes, then Proposition 23 implies the following.

Theorem 24. A generic quartic K3 surface with 15 nodes can be realized as a
section of the Igusa quartic.

Remark 25. An interesting loci in the moduli spaceMN corresponds to quartic
Kummer surfaces with 16 nodes, that can be described as tangent sections of the
Igusa quartic, see [Hun96, Chapter 3, Section 3.3.3].
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A.2 Magma code

A.2.1 The construction

The following code is implemented on the Computational Algebra System Magma,
version V2.22-2.

We start by defining the Igusa quartic I4 and computing its 15 singular lines.

K:=Rationals();

P<x,y,z,w,t>:=ProjectiveSpace(K,4);

h:=-x-y-z-w-t;

U:=4*(x^4+y^4+z^4+w^4+t^4+h^4)-(x^2+y^2+z^2+w^2+t^2+h^2)^2;

I4:=Scheme(P,U);

SS:=SingularSubscheme(I4);

pc:=PrimeComponents(SS);

Then we compute the 6 sets of 5 lines described in Section 3.2. Each trope of
the Igusa quartic contains 6 of the 15 singular lines. Let us first define these 10
sets of 6 lines:

l6:={Seqset(PrimeComponents(Scheme(SS,P.q[1]+P.q[2]+P.q[3]))):

q in Permutations({1..5},3)};

Testing over all possible sets of 5 singular lines, we compute the ones which
meet each trope at no more than 2 singular lines.

per:={Seqset(q):q in Permutations({1..15},5)};

l5:={{pc[i]:i in q}:q in per};

ll5:={};

for q in l5 do

if &and[#(q meet u) lt 3:u in l6] then ll5:=ll5 join {q};end if;

end for;

#ll5 eq 6;

The intersection of the Igusa quartic with a generic hyperplane, depending on
parameters a, b, c, d, gives a parametrization of 15-nodal quartic surfaces

{Ua,b,c,d(x, y, z, w) = 0}

in P3. This can be seen as a hypersurface in P3 × A4.

A4:=AffineSpace(K,4);

P3:=ProjectiveSpace(K,3);

P3A4<x,y,z,w,a,b,c,d>:=DirectProduct(P3,A4);

t:=a*x+b*y+c*z+d*w;

h:=-x-y-z-w-t;

U:=4*(x^4+y^4+z^4+w^4+t^4+h^4)-(x^2+y^2+z^2+w^2+t^2+h^2)^2;

We fix one of the sets of 5 lines computed above and choose coordinates such
that the corresponding 5 nodes of the surface Q15 := {U = 0} are

(1 : 0 : 0 : 0), . . . , (0 : 0 : 0 : 1), (1 : 1 : 1 : 1)

(this implies that the equations of S3 and I4 computed below do not depend on
the parameters a, b, c, d).
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q:=[-b*x+b*y-b*z+c*x+c*y-c*w-d*y+d*z-d*w+x-z-w,

a*x-a*y+a*z-c*x+c*z-c*w+d*x+d*y-d*z-d*w+y+z-w,

-a*x-a*y+a*w+b*x-b*z+b*w-d*x+d*y+d*z-x+y-z+w,

a*y-a*z+a*w-b*x-b*y+b*z+b*w+c*x-c*y-c*z+x-y+w];

U:=Evaluate(U,q cat [a,b,c,d]);

Q15:=Scheme(P3A4,U);

The map given by the linear system of quadrics through the above 5 points
sends the family of surfaces Q15 ⊂ P3 to the family of surfaces Q10 ⊂ P4.

P4:=ProjectiveSpace(K,4);

P4A4,p:=DirectProduct(P4,A4);

s:=[x*y-z*w,x*z-z*w,x*w-z*w,y*z-z*w,y*w-z*w];

phi:=map<P3A4->P4A4|s cat [a,b,c,d]>;

Q10:=phi(Q15);

The defining equations of Q10 have degrees 3, 4, 2, in variables x, y, z, w, t :

f:=DefiningEquations(Q10);

[Degree(q):q in f] eq [3,4,2];

We know from Proposition 4 that the degree 4 polynomial is irrelevant here.
The cubic polynomial does not depend on the parameters a, b, c, d. We project
the corresponding cubic threefold to P4 and verify that it is the Segre cubic.

S3:=Scheme(P4A4,f[1]);

pS3:=p[1](S3);

pts10:=SingularPoints(pS3);

#pts10 eq 10;

These are ordinary double points:

[Multiplicity(pS3,q) eq 2 : q in pts10];

[Dimension(SingularSubscheme(TangentCone(pS3,q))) eq 0 : q in pts10];

We compute its dual, the Igusa quartic.

P4A4<x,y,z,w,t,a,b,c,d>:=P4A4;

phi:=map<P4A4->P4A4|

[Derivative(f[1],i):i in [1..5]] cat [a,b,c,d]>;

I4:=phi(S3);

The family of quadrics S2 (which meet the Segre cubic at a surface Q10) is
given by f [3]. We want to compute the dual Q2 of S2, the image of S2 under
the gradient map. It is sufficient to make the change of variables given by the
inverse of the Hessian matrix of S2. We use instead the adjoint matrix, so we
get a polynomial divisible by the determinant of the Hessian.

HM:=HessianMatrix(Scheme(P4A4,f[3]));

HM:=Submatrix(HM,1,1,5,5);

Ad:=Adjoint(HM);

J:=Ad*ColumnMatrix([x,y,z,w,t]);

s:=[J[i][1]:i in [1..5]] cat [a,b,c,d];

Q2:=Evaluate(f[3],s) div Determinant(HM);

20



We note that the previous line is very time and memory consuming.

So, Q2 gives the family of quadrics Q2. Finally we do the blow-up as described
in Section 3.5, remove the exceptional divisor and obtain the family of quadrics
{G = 0}.

F:=Factorization(Q2)[2][1];

G:=Evaluate(F,[x,y,z,w,t,a,a*b,a*c-1,a*d-1]) div (a^3);

Factorization(G);

This (huge) polynomial is available on the personal webpage of the first author,
http://www.crito.utad.pt/schoen.pdf .

A.2.2 The Σ5-invariant X40

We define the Segre cubic in P4(
√
−15) :

R<r>:=PolynomialRing(K);

K<r>:=ext<K|r^2+15>;

P4<x,y,z,w,t>:=BaseExtend(P4,K);

S3:=p[1](S3);

The quadric S2 := {G(x, y, z, w, t, 0, 0, 0, 0) = 0} :

f2:=9*x^2-22*x*y+9*y^2+2*x*z+2*y*z+9*z^2+2*x*w+2*y*w-

2*z*w+9*w^2+2*x*t+22*y*t-22*z*t-22*w*t+9*t^2;

S2:=Scheme(P4,f2);

We change variables:

cv:=[-3*z+3*w,-x+2*y-z+2*w-t,-2*x+y-2*z+w+t,

x+y-2*z+w-2*t,-x-y-z+2*w-t];

SS3:=Scheme(P4,Evaluate(DefiningEquation(S3),cv));

SS2:=Scheme(P4,Evaluate(DefiningEquation(S2),cv));

compute the duals:

phi:=map<P4->P4|JacobianSequence(DefiningEquation(SS3))>;

I4:=phi(SS3);

phi:=map<P4->P4|JacobianSequence(DefiningEquation(SS2))>;

Q2:=phi(SS2);

and verify that the corresponding complete intersection is as claimed:

h:=-x-y-z-w-t;

f2:=5*(x^2+y^2+z^2+w^2+t^2)-7*(x+y+z+w+t)^2;

f4:=4*(x^4+y^4+z^4+w^4+t^4+h^4)-(x^2+y^2+z^2+w^2+t^2+h^2)^2;

X40:=Surface(P4,[f2,f4]);

X40 eq (I4 meet Q2);

pts40:=Points(SingularSubscheme(X40));

#pts40 eq 40;

These are nodal points:

for q in pts40 do a,b,c:=IsSimpleSurfaceSingularity(X40!q);

a eq true,b eq "A",c eq 1;

end for;
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A.2.3 2-divisibility of the nodes

Now we show that the 40 nodes of the Σ5-invariant surface X40 computed above
are 2-divisible.

We define 4 hyperplane sections of X40 :

s:=[x+y+z,

x+1/16*(3*r+11)*y+1/16*(-r-9)*z+1/16*(3*r+11)*w+t,

x+1/6*(r-9)*y+1/6*(-r-9)*z+1/6*(-r-9)*w+1/6*(r-9)*t,

x+1/16*(r-9)*y+1/16*(-3*r+11)*z+w+1/16*(-3*r+11)*t];

T:=[Scheme(X40,s[i]):i in [1..4]];

and show that they are tropes:

RT:=[ReducedSubscheme(T[i]):i in [1..4]];

[Difference(T[i],RT[i]) eq RT[i]:i in [1..4]];

Only one of these divisors is supported on a singular curve:

[Dimension(SingularSubscheme(q)):q in RT] eq [0,-1,-1,-1];

But these singularities are not in the other 3 tropes:

[Dimension(SingularSubscheme(RT[1]) meet RT[i]):i in [2,3,4]] eq

[-1,-1,-1];

Finally these tropes give the 2-divisibility of the nodes:

SX40:=SingularSubscheme(X40);

p1:=Points(Scheme(SX40,s[1]*s[2])) diff

Points(Scheme(SX40,[s[1],s[2]]));

p2:=Points(Scheme(SX40,s[3]*s[4])) diff

Points(Scheme(SX40,[s[3],s[4]]));

#p1 eq 20; #p2 eq 20; #(p1 join p2) eq 40;

A.2.4 The Kummer quotient

Here we compute the quotient of the surface X40 by the involution given by the
transposition (1, 2).

We consider an extension of the field K for which the ramification curve C below
is reducible (this has been given by FieldOfGeometricIrreducibility(C)).

R<r1>:=PolynomialRing(K);

poly:=35284339556353076369543874303588182904378753024*r1^2 -

4204465507333591979442236784830217175481288318976*r1 +

125252116415005146543275919326425921487981573699131;

K<r1>:=ext<K|poly>;

X40:=BaseExtend(X40,K);

P4<x,y,z,w,t>:=Ambient(X40);

The projection to the quotient, a quartic surface Q with 15 nodes:
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P3<X,Y,Z,W>:=ProjectiveSpace(K,3);

phi:=map<P4->P3|[x+y,z,w,t]>;

Q:=phi(X40);

Degree(Q) eq 4;

pts15:=Points(SingularSubscheme(Q));

#pts15 eq 15;

These are nodal points:

for q in pts15 do a,b,c:=IsSimpleSurfaceSingularity(Q!q);

a eq true,b eq "A",c eq 1;

end for;

The ramification of φ is given by

C:=Curve(X40,[x-y]);

This curve has two components:

pc:=PrimeComponents(C);

#pc eq 2;

The (−2)-curves A16 and A′16 (denoted here B16) are given by the projection of
the above components to Q. We verify that these curves are as stated.

A16:=Curve(P3,DefiningEquations(phi(pc[1])));

B16:=Curve(P3,DefiningEquations(phi(pc[2])));

Dimension(SingularSubscheme(A16)) eq -1;

Dimension(SingularSubscheme(B16)) eq -1;

Dimension(SingularSubscheme(Q) meet A16) eq -1;

Dimension(SingularSubscheme(Q) meet B16) eq -1;

GeometricGenus(A16) eq 0;

GeometricGenus(B16) eq 0;

D1:=Divisor(Q,A16);

D2:=Divisor(Q,B16);

SelfIntersection(D1) eq -2;

SelfIntersection(D2) eq -2;

IntersectionNumber(D1,D2) eq 10;

The equation of Q is:

9*X^4+31*X^3*Y+14*X^2*Y^2-4*X*Y^3+4*Y^4+31*X^3*Z+58*X^2*Y*Z+

23*X*Y^2*Z-4*Y^3*Z+14*X^2*Z^2+23*X*Y*Z^2+9*Y^2*Z^2-4*X*Z^3-

4*Y*Z^3+4*Z^4+31*X^3*W+58*X^2*Y*W+23*X*Y^2*W-4*Y^3*W+58*X^2*Z*W+

81*X*Y*Z*W+23*Y^2*Z*W+23*X*Z^2*W+23*Y*Z^2*W-4*Z^3*W+14*X^2*W^2+

23*X*Y*W^2+9*Y^2*W^2+23*X*Z*W^2+23*Y*Z*W^2+9*Z^2*W^2-4*X*W^3-

4*Y*W^3-4*Z*W^3+4*W^4 = 0

A.2.5 The elliptic curve with CM

The elliptic curve given in Section 4.4:
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K:=Rationals();

R<r>:=PolynomialRing(K);K<r>:=ext<K|r^2 + 15>;

R<q>:=PolynomialRing(K);K<q>:=ext<K|q^2 + 3>;

R<i>:=PolynomialRing(K);K<i>:=ext<K|i^2 + 1>;

P<x>:=PolynomialRing(K);

E:=EllipticCurve( x*(x-1)*( x-(17+21*r/q+7*r-17*q)/64 ) );

It has complex multiplication by Z[
√
−15] :

a,b:=HasComplexMultiplication(E);

a eq true;b eq -15;

and its j-invariant is:

jInvariant(E) eq -1/2*(3^3*5)*(+5*283+7^2*13*r/q);
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Ann. Sci. École Norm. Sup. (4), 28(3):307–316, 1995.

[Cat99] F. Catanese. Singular bidouble covers and the construction of
interesting algebraic surfaces. In Algebraic geometry: Hirzebruch
70 (Warsaw, 1998), volume 241 of Contemp. Math., pages 97–
120. Amer. Math. Soc., Providence, RI, 1999.

[CMLR15] C. Ciliberto, M. Mendes Lopes, and X. Roulleau. On Schoen
surfaces. Comment. Math. Helv., 90(1):59–74, 2015.

[CPT03] C. Ciliberto, R. Pardini, and F. Tovena. Regular canonical covers.
Math. Nachr., 251:19–27, 2003.
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général. Bull. Soc. Math. France, 110(3):319–346, 1982. With
an Appendix by A. Beauville.

[Dim92] A. Dimca. Singularities and topology of hypersurfaces. Universi-
text. Springer-Verlag, New York, 1992.

[Dol96] I. V. Dolgachev. Mirror symmetry for lattice polarized K3 sur-
faces. J. Math. Sci., 81(3):2599–2630, 1996. Algebraic geometry,
4.

[Dol12] I. V. Dolgachev. Classical algebraic geometry: a modern view.
Cambridge University Press, Cambridge, 2012.

[FH91] W. Fulton and J. Harris. Representation theory, volume 129
of Graduate Texts in Mathematics. Springer-Verlag, New York,
1991. A first course, Readings in Mathematics.

[Gar15] A. Garbagnati. On K3 surfaces quotients of K3 or abelian sur-
faces. arXiv:1507.03824, 2015.

[GS14] A. Garbagnati and A. Sarti. Kummer surfaces and K3 surfaces
with (Z/2Z)2 symplectic action. to appear in Rocky Mountain
J., 2014.

[Hun96] B. Hunt. The geometry of some special arithmetic quotients,
volume 1637 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin, 1996.

[Liv81] R. Livné. On certain covers of the universal elliptic curve. Pro-
Quest LLC, Ann Arbor, MI, 1981. Thesis (Ph.D.)–Harvard Uni-
versity.

[MS63] Y. Matsushima and G. Shimura. On the cohomology groups at-
tached to certain vector valued differential forms on the product
of the upper half planes. Ann. of Math. (2), 78, 1963.

[Nik75] V. Nikulin. On kummer surfaces. Math. USSR. Izv, (9):261–275,
1975.

25



[Nik76] V. Nikulin. Finite groups of automorphisms of Kählerian surfaces
of type K3. Uspehi Mat. Nauk, 31(2(188)):223–224, 1976.

[Nik79] V. Nikulin. Integer symmetric bilinear forms and some of their ge-
ometric applications. Izv. Akad. Nauk SSSR Ser. Mat., 43(1):111–
177, 238, 1979.

[Par91] R. Pardini. Abelian covers of algebraic varieties. J. Reine Angew.
Math., 417:191–213, 1991.

[Pia23] M. Piazzolla-Beloch. Sulle superficie iperellittiche del 4◦ ordine
con 15 punti doppi. Rend. Circ. Mat. Palermo, 47:182–192, 1923.

[Pol06] F. Polizzi. Surfaces of general type with pg = q = 1, K2 =
8 and bicanonical map of degree 2. Trans. Amer. Math. Soc.,
358(2):759–798 (electronic), 2006.

[PZ06] V. Popov and Y. Zarhin. Finite linear groups, lattices, and prod-
ucts of elliptic curves. J. Algebra, 305(1):562–576, 2006.

[Rem07] L. Remy. Sur une famille dénombrable de surfaces hyperellip-
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