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K3 surfaces

Definition
A K3 surface is a complex, compact smooth surface

which is simply connected
whose canonical bundle is trivial.

K3 surfaces appear in the Enriques-Kodaira classification of complex algebraic
surfaces as surfaces of Kodaira dimension 0, together with Enriques surfaces, complex
tori and bielliptic surfaces.

Definition
A 〈2t〉-polarized K3 surface is a pair (S,H) where S is a K3 surface and H is a
primitive ample divisor with H2 = 2t.
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Some examples

Proposition
For every t ≥ 1, the ample divisor H induces φ|H| : S → Pt+1. For t ≥ 2 and (S,H)
general, the morphism φ|H| is a closed embedding.

If (S,H) is general, then
t = 2 : φ|H|(S) ⊂ P3 is a quartic hypersurface. Every smooth quartic hypersurface in

P3 is a K3 surface.
t = 3 : φ|H|(S) ⊂ P4 is the complete intersection of a quadric and a cubic. Every such

intersection is a K3 surface.
t = 4 : φ|H|(S) ⊂ P5 is the complete intersection of three quadrics . Every such

intersection is a K3 surface.

Remark
These are all the K3 surfaces that can be obtained as complete intersections inside a
projective space!
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The case t = 5

For H2 = 10 we have φ|H| : S → P6. Take H very ample and consider S ⊂ P6.

Theorem (Saint-Donat, 1974)
If S is cut out by quadrics, we call V6 = H0(P6, IS(2)) the 6-dimensional space of
symmetric bilinear forms associated to quadrics containing S. Then there exists

a hyperplane V5 ⊂ V6

an embedding P6 ↪→ P(
∧2

V5)
such that, via the embedding,

S = P6 ∩G(2, V5) ∩Q(x),

where Q(x) is the projective quadric hypersurface of P6 associated to any x ∈ V6−V5.
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Gushel-Mukai varieties

Definition
In this situation, we say that the embedded K3 surface S = P6 ∩G(2, V5) ∩Q is a
(smooth) ordinary Gushel-Mukai variety of dimension 2.

We say that S = P6 ∩G(2, V5) ∩Q is strongly smooth if the Fano variety
MS = P6 ∩G(2, V5) is smooth.

Definition
We call Aut(S,P6) the group of automorphisms of S = P6 ∩G(2, V5) ∩Q induced by
restriction of linear automorphisms of P6.

Lemma (B.)
If S is strongly smooth, the group Aut(S,P6) is a finite subgroup of PGL(2,C). In
particular it appears in the following list

Z/nZ for 1 ≤ n ≤ 66, Dn for 2 ≤ n ≤ 66, A4, G4 A5.
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Hyperkähler manifolds

Definition
Let X be a complex smooth variety which is compact and Kähler. We say that X is a
hyperkähler manifold if

it is simply connected,
H0(X,Ω2

X) = C · ϕ i.e. there is, up to constant, one and only one holomorphic
2-form on X,
the rank of ϕ is maximal on every point of X.

Hyperkähler manifolds are a natural generalization of K3 surfaces.

Remark
In dimension 2, hyperkähler manifolds coincide with K3 surfaces.
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A first example of hyperkähler 4-fold: Hilbert squares on K3 surfaces

Let S be a projective K3 surface. We call S[2] the Hilbert square on S i.e. the
scheme parametrizing 0-dimensional subschemes (Z,OZ) of S whose length is two.

S[2] can be thought of as the blow up of S(2) =: S2/〈G2〉 along the diagonal
∆ = {2p | p ∈ S}.
outside the exceptional divisor, a point of S[2] is described by a non-ordered pair
p+ q for p, q ∈ S, p 6= q.

Theorem (Fujiki, 1983)
The scheme S[2] is a hyperkähler 4-fold.

Let (S,H) be a polarized K3 surface.
The ample divisor H ∈ Pic(S) induces a non-ample divisor H2 ∈ Pic(S[2]).
We call E ∈ Pic(S[2]) the class of the exceptional divisor of the blowing-up
S[2] → S(2). (E = 2δ for a primitive class δ ∈ Pic(S[2])).
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The definition of EPW sextics

A volume form on V6 ∼= C6  a bilinear form ω :
(∧3

V6
)
×
(∧3

V6
)
→ C.

Let A ⊂
∧3

V6 a Lagrangian subspace i.e. A ∼= C10 such that ω|A×A
= 0.

Remark
We always suppose P(A) ∩G(3, V6) = ∅ i.e. A does not contain any vector in the
form v1 ∧ v2 ∧ v3 with vi ∈ V6, i = 1, 2, 3.

We define

YA = {[v] ∈ P(V6) such that A ∩ (v ∧
2∧
V6) 6= 0}

Proposition (O’Grady, 2006)
The variety YA ⊂ P(V6) is a singular and normal sextic hypersurface. We call it EPW
sextic.

Sing(YA) is an irreducible surface.
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Dual EPW sextics

Let A be a Lagrangian subspace. The orthogonal complement A⊥ ⊂
(∧3

V6
)∨

is
again a Lagrangian subspace.

Definition
The EPW sextic YA⊥ ⊂ P(V ∨6 ) is called dual EPW sextic.

The dual EPW sextic YA⊥ is the projective dual of YA.
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A second example of hyperkähler 4-fold: double EPW sextics

Theorem (O’Grady 2006)
Let A ⊂

∧3
V6 be a Lagrangian subspace and YA the corresponding EPW sextic.

There exists a double cover fA : XA → YA ramified over the surface Sing(YA). The
variety XA is called double EPW sextic.

Theorem (O’Grady 2006)
The set of Lagrangian subspaces A ⊂

∧3
V6 such that XA is smooth is open inside

the space parametrizing Lagrangian subspaces inside
∧3

V6.
In this case, the double cover XA is a hyperkähler 4-fold (deformation equivalent to a
Hilbert square on a K3 surface).

Double EPW sextics, with a natural polarization induced by the cover structure, are a
locally complete family of polarized hyperkähler 4-folds.
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The point of the situation

Let S = P6 ∩G(2, V5) ∩Q be a strongly smooth ordinary Gushel-Mukai variety of
dimension 2 (general 〈10〉-polarized K3 surface).

We consider the Hilbert square S[2], with the linear system |H2 − E|, where
H2 is induced by the divisor H ∈ Pic(S) given by the embedding S ↪→ P6,
E is the class of the exceptional divisor of the blow-up S[2] → S(2).

Proposition (O’Grady, 2010)
H0(S[2], H2 − E) ∼= V6, the 6-dimensional space of symmetric bilinear forms
associated to quadrics containing S.
The morphism φ|H2−E| is everywhere defined if S does not contain lines.

So, under these conditions, we have a morphism φ|H2−E| : S[2] → P(V ∨6 ).

Once we fixed a volume form on V6, there is a family of (dual) EPW sextics in the
form YA⊥ ⊆ P(V ∨6 ) for A ⊂

∧3
V6 Lagrangian subspace.
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The dual EPW sextic associated to a Gushel-Mukai variety of dimension 2

We call PS ⊂ S[2] the closure of the scheme parametrizing lines inside
MS = P6 ∩G(2, V5). We have PS ∼= P2 (Iskovskih, 1977).
For any C ⊂ S smooth conic, we have C(2) ⊂ S[2] with C(2) ∼= P2.

Theorem (O’Grady, 2010)
1) There exists a Lagrangian subspace A(S) ⊂

∧3
V6 such that

φ|H2−E|(S[2]) = YA(S)⊥ ⊂ P(V ∨6 ).

2)Let C1, . . . , Ck be the smooth conics contained in S. If S does not contain any line,
then φ|H2−E| factorizes as

S[2] c−→ XA(S)⊥
f

A(S)⊥−−−−−→ YA(S)⊥ ↪→ P(V ∨6 ),

where c is an isomorphism on the complement of PS ∪ C
(2)
1 ∪ . . . ∪ C(2)

N .

3)The morphism c contracts each of PS , C
(2)
1 , . . . , C

(2)
k

to a point, and
Sing(XA(S)⊥ ) = {c(PS), c(C(2)

1 ), . . . , c(C(2)
N )}.
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Gushel-Mukai varieties associated to the same EPW sextic
Two strongly smooth ordinary Gushel-Mukai varieties (S,H), (S′, H′) are associated
to the same Lagrangian subspace, A(S) = A(S′) =: A, if and only if there exists a
birational map α : S[2] 99K (S′)[2] with α∗(H′2 − E′) = H2 − E i.e.

S[2] (S′)[2]

XA⊥

YA⊥

c

α

φ|H2−E|

c′

φ|H′2−E′|f
A⊥

commutes, see O’Grady, 2010.

Corollary (B.)
For S = P6 ∩G(2, V5) ∩Q generic between Gushel-Mukai varieties containing a conic,
there is exactly one 2-dimensional Gushel-Mukai variety S′ non isomorphic to S such
that A(S) = A(S′).
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Some questions

As S is strongly smooth, we have P(A(S)) ∩G(3, V6) = P(A(S)⊥) ∩G(3, V ∨6 ) = ∅
(Debarre, Kuznetsov, 2015).

Remark
XA(S)⊥ is never a hyperkähler manifold, since c(PS) ∈ Sing(XA(S)⊥ ). A priori, we
do not know if the double EPW sextic XA(S) is.

First question
Can we give conditions on S to have XA(S) smooth, hence hyperkähler?

Second question
Can we get rid of the additional hypothesis ”S does not contain lines”?
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Some answers

Theorem (B.)
If S = P6 ∩G(2, V5) ∩Q contains a line, then XA(S) is not a hyperkähler manifold.
Moreover, if S contains neither a line nor an elliptic pencil of degree 5, then XA(S) is
a hyperkähler manifold.
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A modular point of view

The conditions we found can be described as divisorial conditions on the moduli space
K10 of 〈10〉-polarized K3 surfaces.

We consider on K10 the divisor

Dx,y = {(S,H) ∈ K10 such that there is a primitive sublattice

ZH + ZD ⊆ Pic(S) whose Gram matrix is
[

10 x
x y

]
}.

Corollary (B.)
Consider (S,H) ∈ K10. If (S,H) /∈ Dh,0 for h = 1, . . . , 5 and (S,H) /∈ D1,−2, then
XA(S) is a hyperkähler manifold.
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Automorphisms

Definition
An automorphism σ on a hyperkähler manifold is said to be symplectic if it acts
trivially on a 2-form on the manifold. Otherwise σ is non-symplectic.

Consider (S,H) ∈ K10 with associated Lagrangian subspace A(S) ⊂
∧3

V6.
We choose (S,H) ∈ K10 such that the double EPW sextic XA(S) is a hyperkähler
manifold.

We are interested in the biregular automorphisms of XA(S).

Remark
There is an inclusion Aut(S,P6) ⊂ Aut(YA(S)), described by Debarre and Kuznetsov,
2015.
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Lifting groups of automorphisms to double EPW sextics
We denote by AutιA (XA) the group of biregular automorphisms of XA commuting
with the covering involution ιA. There is a short exact sequence

1→ {id, ιA} → AutιA (XA)→ Aut(YA)→ 1,

see Debarre, Kuznetsov, 2015.

Let A ⊂
∧3

V6 be a Lagrangian subspace with associated EPW sextic YA. Take A
such that XA is a hyperkähler manifold.

Proposition (Mongardi, 2013)
Consider G ⊆ Aut(YA). If G acts trivially on a section of KYA

, then G lifts to a
symplectic action on XA.

Proposition (B.)
Consider G ⊆ Aut(YA). If G has odd order, then G lifts to an action on XA.
Moreover, for every α ∈ G the lifting of α acts as a n-th rooth of the identity on a
2-form on XA if and only if α acts as a n-th rooth on a section of KYA

.
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Automorphisms of EPW sextics associated to K3 surfaces
Consider (S,H) ∈ K10 such that the double EPW sextic XA(S) is a hyperkähler
manifold. We have φ|H| : S → P6.

Definition
We call AutC(S,P6) the group of automorphisms of S

induced by P6, i.e. contained in Aut(S,P6),
that send every conic inside S in itself.

AutC(S,P6) appears in the following list

Z/nZ for 1 ≤ n ≤ 66, Dn for 2 ≤ n ≤ 66, A4, G4 A5.

Theorem (B.)
There is an exact sequence

1→ AutC(S,P6)→ Aut(YA(S))→ GN+1,

where N is the number of conics on S.
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Symplecticity of automorphisms

Consider (S,H) ∈ K10 such that the double EPW sextic XA(S) is a hyperkähler
manifold.

Proposition (B.)
For any σ ∈ Aut(S,P6), the induced action on YA(S)

lifts to a symplectic action on XA(S) if and only if σ is symplectic,
lifts to an automorphism that acts as a n-th root of the identity if and only if σ
do.
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Inducing automorphims

There is a lot of literature on automorphisms of K3 surfaces, for example actions of
cyclic groups of prime order on K3 surfaces are classified, both

symplectic (Nikulin, 1979 - van Geemen, Sarti, 2007 - Sarti, Garbagnati, 2007)
and
non-symplectic (Nikulin, 1979 - Artebani, Sarti, 2008 - Artebani, Sarti, Taki,
2011).

Corollary (B.)
Let p = 2, 3, 5. We can induce a symplectic action of Z/pZ on a family of
(hyperkähler) double EPW sextics associated to a family of K3 surfaces.
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Thanks for your attention!
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