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The moduli space

Let Mg denote the moduli space of isomorphism classes of
compact Riemann surfaces of genus g ⩾ 2.

▸ Mg has a structure of complex analytic space,

▸ its dimension is 3g − 3, and

▸ if g ⩾ 4 its singular locus is

Sing(Mg) = {[S] ∶ S has non-trivial symmetries}
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Equivalences

We assume g ⩾ 2.

Theorem.

There is an equivalence between isomorphism classes of:

▸ compact Riemann surfaces,

▸ (complex projective smooth) algebraic curves, and

▸ orbit spaces of the upper-half plane

H ∶= {z ∈ C ∶ Im(z) > 0}

by the action of a co-compact Fuchsian group ∆.
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Fuchsian groups

We recall that a Fuchsian group is a discrete subgroup ∆ of

Aut(H) ≅ PSL(2,R)

and the co-compact ones are those such that H/∆ is compact.

Definition. The signature of ∆ is the tuple

σ(∆) = (h;m1, . . . ,ml)

where h is the genus of the quotient H/∆ and m1, . . . ,ml are
the branch indices in the universal canonical projection

H→ H/∆.
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Uniformization theorem

If ∆ is a Fuchsian group of signature (h;m1, . . . ,ml) then ∆
has a canonical presentation with generators

α1, . . . , αh, β1, . . . , βh, γ1, . . . , γl

and relations

γm1
1 = ⋯ = γmll = Πh

i=1[αi, βi]Πl
i=1γi = 1,

where the brackets stands for commutator.

Uniformization theorem Let S be a compact Riemann surface
of genus g. There is a unique, up to conjugation, Fuchsian
group Γ of signature (g;−) such that

S is isomorphic to H/Γ.
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Automorphisms

Let S be a Riemann surface of genus g ⩾ 2.

Well-known facts.

▸ Aut(S) is finite group and ∣Aut(S)∣ ≤ 84(g − 1).

▸ Each finite group can be realized as a group of
automorphisms of a compact Riemann surface of a
suitable genus.

▸ If G ⩽ Aut(S) then the space of orbits S/G is endowed
with a Riemann surface structure in such a way that

π ∶ S → S/G

is holomorphic

6 / 36



Riemann’s existence theorem

Let S ≅ H/Γ be a compact Riemann surface of genus g ⩾ 2.

Riemann’s existence theorem

A finite group G acts on S if and only if:

1. There is a Fuchsian group ∆ and a group epimorphism

θ ∶ ∆→ G such that ker(θ) = Γ.

2. The Riemann-Hurwitz formula is satisfied

2(g − 1) = ∣G∣(2h − 2 +Σl
j=1(1 − 1

mj
))

G acts on S with signature σ(∆) = (h;m1, . . . ,ml).
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Riemann’s existence theorem

▸ H→ S ≅ H/Γ is smooth.
▸ the ramification arises in S → S/G.
▸ mi is the order of an isotropy group.
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Bounds

Let Ng denote the maximal order of the full automorphism
group among the compact Riemann surfaces of genus g.

Hurwitz’s upper bound:

Ng ⩽ 84(g − 1)

Accola-Maclachlan’s lower bound:

8(g + 1) ⩽ Ng
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Accola-Maclachlan curve

Let X8 be the compact Riemann surface of genus g defined by

y2 = x2(g+1) − 1

Then (Accola-Maclachlan)

1. The full automorphism group of X8 has order 8(g + 1).
2. Aut(X8) acts on X8 with signature (0; 2,4,2(g + 1)).
3. there are infinitely many values of g for which there is no

compact Riemann surfaces of genus g with more than
8(g + 1) automorphisms.

Moreover, up to finitely many values of the genus, if
g /≡ 3 mod 4 then X8 is the unique compact Riemann surface
of genus g with exactly 8(g + 1) automorphisms (Kulkarni).
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One-dimensional families

Let g ⩾ 2. Then (Costa-Izquierdo)

▸ there exists a closed equisymmetric one-dimensional
family C̄g of Riemann surfaces of genus g with a group of
automorphisms isomorphic to

Dg+1 ×C2 acting with signature (0; 2,2,2, g + 1).

▸ 4(g + 1) is the largest order of the full automorphism
group of complex one-dimensional families of compact
Riemann surfaces of genus g appearing for all g.

▸ X8 ∈ C̄g

Similar results for 3 and 4-dimensional families were recently
obtained by Izquierdo-RC-Rojas.
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Large prime actions

If a compact Riemann surface of genus g ⩾ 2 has an
automorphism of prime order q such that q > g then either

q = 2g + 1 or q = g + 1.

The former case corresponds to the so-called Lefschetz
surfaces. This talk deals with the latter case.

Let q ⩾ 5 be a prime number. Consider the singular sublocus

M q
q−1 ⊂ Sing(Mq−1)

consisting of all those compact Riemann surfaces of genus
q − 1 endowed with an automorphism of order q.
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Goal

To classify and describe the surfaces lying in M q
q−1.

In other words, we shall consider all those compact Riemann
surfaces of genus g ⩾ 4 with a group of automorphisms of order

λ(g + 1) where λ ⩾ 1 is an integer,

under the assumption that q ∶= g + 1 is a prime number.

Remark: This locus has been considered by Arakelian-Speziali,
Costa-Izquierdo, Hidalgo and Urzúa, among others.
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Classification

Theorem 1. Let q ⩾ 7 be a prime number. If S is a compact
Riemann surface of genus g = q − 1 endowed with a group of
automorphisms of order λq for some integer λ ⩾ 1 then

λ ∈ {1,2,3,4,8}.

Assume λ = 8. Then S is isomorphic to the Accola-Maclachlan
curve X8.

Assume λ = 4.
▸ If q ≡ 3 mod 4 then S belongs to the closed family C̄g.

▸ If q ≡ 1 mod 4 then S belongs to the closed family C̄g or
S is isomorphic to the unique compact Riemann surface
X4 with full automorphism group isomorphic to

Cq ⋊4 C4 acting with signature (0; 4,4, q).
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Classification

Moreover, if Cg stands for the interior of C̄g then

C̄g −Cg = {X8}.

Assume λ = 3. Then S is isomorphic to the unique Riemann
surface X3 with full automorphism group isomorphic to

Cq ×C3 acting with signature (0; 3, q,3q).

Assume λ = 2. Then one of the following statements holds.

▸ S is isomorphic to one of the q−3
2 pairwise non-isomorphic

compact Riemann surfaces X2,k for k ∈ {1, . . . , q−32 } with
full automorphism group isomorphic to

Cq ×C2 acting with signature (0; q,2q,2q).
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Classification

▸ S belongs to the closed family K̄g of compact Riemann
surfaces with a group of automorphisms isomorphic to

Dq acting with signature (0; 2,2, q, q).

Moreover, the closed family K̄g consists of at most

{
q+3
4 if q ≡ 1 mod 4
q+1
4 if q ≡ 3 mod 4

equisymmetric strata; one of them being Cg. Furthermore, if
Kg stands for the interior of K̄g then the full automorphism
group of S ∈ Kg −Cg is isomorphic to Dq and

K̄g −Kg = { {X4,X8} if q ≡ 1 mod 4
{X8} if q ≡ 3 mod 4.
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Some remarks

▸ If S ∈ M q
q−1 then either Aut(S) ≅ Cq or S lies in one of

the cases described in the theorem. These two possible
situations were considered by Costa and Izquierdo where
the focus was put on finding isolated equisymmetric
strata of Sing(Mg).

▸ The case q = 5 is slightly different. As a matter of fact, if
S has genus 4 and is endowed with a group of
automorphisms of order 5λ for some λ ⩾ 1 then, in
addition to the case Aut(S) ≅ C5 and the possibilities
given in the theorem, λ can equal 12 and 24. In the last
two cases, S is isomorphic to the classical Bring’s curve.
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Idea of the proof

The proof consists of several steps.

▸ The case λ = 3. There is only one possible signature
(0; 3, q,3q) and this implies that G is cyclic. The action
can only be extended non-normally to a group G′ of
order 12q acting with signature (0; 2,3,3q) but this is not
possible: the non-normality implies that G′ ≅ Cq ×A4.

▸ Numerically, the cases λ = 5,6,7 are not possible.

▸ To prove that λ ⩾ 8 implies λ = 8. Most cases are
numerically disregarded. Group theory considerations
allow us to show that λ = 8 and (0; 2,4,2q). This
together with results of Kulkarni show that S =X8.
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Idea of the proof

▸ Cq ×C2
2 acts with signature (0; 2,2q,2q) and there is only

one surface X, up to isomorphism. The action extends to
a group of order 8q. The uniqueness of X8 implies that
X =X8.

▸ Cq ⋊4 C4 acts with signature (0; 4,4, q) and there is only
one surface X4, up to isomorphism. The action does not
extend. Thus, X4 has exactly 4q automorphisms and is
not isomorphic to X8.

▸ etc... (13 propositions)
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Algebraic description

Theorem 2. Let q ⩾ 5 be a prime number and let g = q − 1. Set
ωl = exp(2πi

l ).

If S belongs to the closed family C̄g then S is isomorphic to

Xt ∶ y2 = (xq − 1)(xq − t) for some t ∈ C − {0,1}.

In addition, if S ∈ Cg then the full automorphism group of
S ≅ Xt is generated by

(x, y)↦ (ωqx,−y) and (x, y)↦ ( 1
x ,

1
xqψt(x)y)

where ψt(x) =
√

txq−1
xq−t .
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Algebraic description

Assume q ≡ 1 mod 4 and choose ρ ∈ {2, . . . , q − 2} such that
ρ4 ≡ 1 mod q. Then X4 is isomorphic to

yq = (x − 1)(x − i)ρ(x + 1)q−1(x + i)q−ρ

where i2 = −1. In the previous model the full automorphism
group of X4 is generated by

(x, y)↦ (x,ωqy) and (x, y)↦ (ix,ϕ(x)yρ)

where ϕ(x) = −(x+i)e−ρ

(x−i)e−1(x+1)ρ−1 and e = ρ2+1
q .

X3 isomorphic to y3 = xq − 1 and, in this model, its full
automorphism group is generated by (x, y)↦ (ωqx,ω3y).
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Algebraic description

For each k ∈ {1, . . . , q−32 } there exists nk ∈ {1, . . . , q − 1}
different from q − 2 such that X2,k is isomorphic to

yq = xnk(x2 − 1)

and, in this model, its full automorphism group is generated by

(x, y)↦ (x,ωqy) and (x, y)↦ (−x, (−1)nky).

If S belongs to the closed family K̄g then S is isomorphic to

Zt ∶ yq = (x−1)(x+1)q−1(x−t)(x+t)q−1 for some t ∈ C−{0,±1}

and, if S ≠X4 and S ∉ C̄g then the full automorphism group of
S ≅ Zt is generated by

(x, y)↦ (x,ωqy) and (x, y)↦ (−x,φt(x)y−1)

where φt(x) = (x2 − 1)(x2 − t2).
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Hyperelliptic surfaces in M q
q−1

Arakelian and Speziali studied groups of automorphisms of
large prime order of projective absolutely irreducible algebraic
curves over algebraically closed fields of any characteristic.

They succeeded in proving that

S ∈ M q
q−1 is non-hyperelliptic implies λ ∈ {1,2,3,4}.

We lengthen the implication above.

Proposition. The Riemann surfaces lying in M q
q−1 that are

non-hyperelliptic are X2,k,X3,X4, the surfaces which belong
to Kg −Cg and the ones for which Aut(S) ≅ Cq.
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Jacobian varieties

Let S be a compact Riemann surface of genus g ⩾ 2.

Well-known facts.

▸ JS is an irreducible principally polarised abelian variety of
dimension g.

▸ up to isomorphism, the surface is determined by its
Jacobian (Torelli’s theorem).

▸ The action of G ⩽ Aut(S) induces an action of G on JS.

▸ The latter action induces the so-called group algebra
decomposition of JS

JS ∼ A1 ×⋯ ×Ar ∼ Bn1
1 ×⋯ ×Bnr

r
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The group algebra decomposition

▸ The group algebra decomposition only depends on the
structure of G (Lange-Recillas, Carocca-Rodŕıguez)

▸ The dimension of the factors depends on the way G acts
(Rojas)

Example: The group algebra decomposition of JX3 is trivial
whilst the one of JX2,k agrees with the classical decomposition

JX2,k ∼ J(X2,k/H) × Prym(X2,k →X2,k/H)

where H ⩽ Aut(X2,k) is isomorphic to C2.
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Jacobian varieties

Theorem 3. Let q ⩾ 5 be a prime number and let g = q − 1.

The Jacobian variety JX8 decomposes, up to isogeny, as

JX8 ∼ JY 2
8

where Y8 is quotient given by the action of ⟨z⟩ on X8, where

Aut(X8) ≅ ⟨x, y, z ∶ x2q = y2 = z2 = 1,

[x, y] = [z, y] = 1, zxz = x−1y⟩.
The Jacobian variety JX4 decomposes, up to isogeny, as

JX4 ∼ JY 4
4

where Y4 is quotient given by the action of ⟨B⟩ on X4, where

Aut(X4) ≅ ⟨A,B ∶ Aq = B4 = 1,BAB−1 = Aρ⟩

and ρ is a primitive fourth root of unity in Zq.
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Jacobian varieties

The Jacobian variety JS of each S ∈ Kg decomposes, up to
isogeny, as

JS ∼ JX2

where X is quotient given by the action of ⟨s⟩ on S, where

Aut(S) ≅ { Dq if S ∈ Kg −Cg

Dq ×C2 if S ∈ Cg

and Dq = ⟨r, s ∶ rq = s2 = (sr)2 = 1⟩.

Idea: to study the representations of the involved groups and
to study the induced decomposition of the intermediate covers.
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Field of moduli and fields of definition

Let Gal(C/Q) denote the group of field automorphisms of C.

The correspondence

Gal(C/Q) ×Mg →Mg given by (σ, [S])↦ [Sσ]

where Sσ is the Galois σ-transformed of S, defines an action.

The field of moduli of S is the fixed field M(S) of the
isotropy group of S under the aforementioned action, namely

M(S) = fix{σ ∈ Gal(C/Q) ∶ Sσ ≅ S}.
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Field of moduli and fields of definition

Known facts.

▸ Koizumi: the field of moduli of S agrees with the
intersection of all its fields of definition and S can be
defined over a finite degree extension of M(S).

▸ Weil: necessary and sufficient conditions under which S
can be defined over its field of moduli were provided;
these conditions are trivially satisfied if S has no
non-trivial automorphisms.

▸ Wolfart: if S is quasiplatonic then S can be defined over
its field of moduli.
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Field of moduli and fields of definition

The general question of deciding whether or not the field of
moduli is a field of definition is a challenging problem.

If the genus of S/Aut(S) is zero then (Debes-Emsalem)

▸ S can be defined over M(S) or

▸ S can be defined over a quadratic extension of M(S)

Example. The surfaces X3,X2,k and X8 are defined over Q
(Theorem 2) and therefore their fields of moduli are Q.

Example. As X4 is quasiplatonic, it can be defined over its
field of moduli. Moreover, the uniqueness of X4 implies that
its field of moduli is Q. In fact, X4 is isomorphic to

yq = x(x + 1)ρ(x − 1)q−ρ
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Field of moduli and fields of definition

Proposition. Let q ⩾ 5 be prime and let g = q − 1. If S belongs
to the family Kg and

S ≅ Zt = {(x, y) ∶ yq = (x − 1)(x + 1)q−1(x − t)(x + t)q−1}

for t ∈ C − {0,±1} then the field of moduli of S is Q(t).

Remark: S and JS can be defined over the same fields and
that their fields of moduli agree (Sekiguchi, Milne). Thus:

Corollary. The Riemann surfaces of Theorem 1 and their
Jacobian varieties can be defined over their fields of moduli.
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The sublocus of Ag with G-action

Known facts.

▸ The moduli space Ag of principally polarised abelian
varieties of dimension g is isomorphic to the quotient

π ∶ Hg → Ag ≅ Hg/Sp(2g,Z)

▸ If the isomorphism class of JS is represented by ZS ∈ Hg

then there is an isomorphism of groups

Aut(JS) ≅ ΣS ∶= {R ∈ Sp(2g,Z) ∶ R ⋅ZS = ZS},

where ΣS is well-defined up to conjugation in Sp(2g,Z).

32 / 36



The sublocus of Ag with G-action

▸ The subset of Hg given by

SS ∶= {Z ∈ Hg ∶ R ⋅Z = Z for all R ∈ ΣS}

consists of those matrices representing abelian varieties
admitting an action equivalent to the one of Aut(JS).

If Ūg is an equisymmetric family of surfaces of genus g and if
S is any surface lying in the interior Ug of Ūg then

{JX ∶X ∈ Ug} ⊆ π(SS).

In general, those loci of Ag do not agree.
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The sublocus of Ag with G-action

Although a satisfactory description of the matrices in SS

seems to be a difficult problem, there is a simple representation
theoretic way to compute the dimension NS of SS.

Theorem. Let q ⩾ 5 be prime, let g = q − 1 and let S ∈ Kg.
Then

NX8 = NX3 = NX2,k
= 0, NX4 =

q−1
4 and NS = q−1

2 .

According to results due to Streit (and later generalised by
Frediani-Ghigi-Penegini), if NS equals zero then the full
automorphism group of S determines the period matrix for JS
and JS admits complex multiplication.
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The sublocus of Ag with G-action

As a direct consequence of the previous theorem we recover
the following known result.

Corollary. The Jacobian varieties of X3,X2,k and X8 admit
complex multiplication.

Final remark: The fact that NX8 = 0 allows us to determine
explicitly the period matrix of the Accola-Maclachlan curve
X8 of genus 4 (a theoretical method was given by Bujalance,
Costa, Gamboa and Riera).

35 / 36



Thanks!
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