Pencils of symmetric surfaces in P,

vorgelegt von
Alessandra Sarti
aus Ferrara (Italien)






to my parents and my sister






Biischel von symmetrischen Flichen in P

Zusammenfassung

In der vorliegenden Arbeit betrachte ich einige neue Familien von Fliachen in
P2 mit vielen gewohnlichen Doppelpunkten. Sei Czg, 21, z2, z3] der Vektor-
raum von komplexen Polynomen in vier Verdnderlichen. Eine Fliche in P, ist
der Verschwindungsort eines homogenen Polynoms, f,in Clxg, 1, 22, z3]. Ein
Punkt p € S heif3t singuldr wenn alle partielle Ableitungen der ersten Ord-
nung verschwinden. Er heifit Doppelpunkt wenn es mindestens eine partielle
Ableitung der zweiten Ordnung gibt, die nicht in p verschwindet. Schliellich
heif}t ein singularer Punkt, p, gewohnlicher Doppelpunkt, wenn man in einer
Umgebung von p die Gleichung von S als 2% + 3% + 22 = 0 schreiben kann.
Sei d der Grad von f, der, nach Definition, der Grad von S ist. Es ist
natiirlich zu fragen, was die maximale Anzahl, u(d), von gewéhnlichen Dop-
pelpunkten ist, die eine Fliche vom Grad d in P? haben kann, die sonst
keine weiteren Singularititen hat. In der Einleitung zu meiner Doktorar-
beit gebe ich die bis jetzt bekannten Ergebnisse fiir p(d) an. Die Idee die
hinter vielen Beispielen von Flachen mit vielen gewohnlichen Doppelpunk-
ten steckt, ist die Folgende: man betrachtet Flachen mit vielen Symmetrien.
Man kann diese Idee folgendermafle algebraisch erklaren. Man betrachtet
eine endliche Gruppe G die auf Clzg,z1, z9, x3] operiert. Ein homogenes
Polynom, P, vom Grad d heifit invariant unter G wenn g - P = P, fiir alle
g € G, wobei ich mit - die Gruppenaktion von G bezeichne. Die Nullstelle-
menge von P in P} definiert eine symmetrische Fliche. In dieser Weise
habe ich einige Biischel von symmetrischen Flachen gefunden. Im ersten
Kapitel werden die Symmetrie-Gruppen der platonischen Korper (Tetraeder,
Oktaeder, Tkosaeder) beschrieben; eine genauere Beschreibung findet man in
[7], [17]. Diese sind Untergruppen 7,0, von SO(3). Mit Hilfe von zwei
klassischen Abbildungen aus der Theorie der Lie Gruppen, cf. e.g. [25] S.
77-78, erhilt man aus diesen Gruppen Untergruppen von SU(2) und dann
von SO(4). Diese bezeichne ich mit Gg, Gg, bzw. Gio. Sie operieren auf
Clzg, 1, w2, 23] und ich untersuche die Vektorrdume C[%,xl,xg,xg}f” der
homogenen G),-invarianten Polynome vom Grad j. Im Kapitel 2 werden
mit Hilfe der Poincaré-Reihen und eines Theorems von Molien (s. [5], S.
21) die Dimensionen der obigen Rdume berechnet. Fiir n = 6,8,12 und
j = 6,8, bzw. 12 gibt es genau zwei Erzeugende: die vielfache Quadrik
Qu(2) == (22 + 22+ 22+ 22)7 und ein anderes Polynom S, (). Die expliziten
Gleichungen werden am Ende vom Kapitel 2 berechnet. Fiir die Rechnungen
habe ich das Computeralgebra-System MAPLE benutzt. Die zwei invari-
anten Polynome definieren Biischel von symmetrischen Flichen in P%. Der



Basisort wird im Kapitel 3 berechnet. Es besteht aus 2n Geraden, die auf
der Quadrik @, liegen und Fixgeraden fiir Elemente in G,, sind. Dabei meine
ich punktweise feste Geraden, vgl. Definition 3.1, S. 34. Im Kapitel 4 un-
tersuche ich, dann die singuldren Flachen in jedem Biischel. Thre Anzahl ist
genau vier, und jede Fliche hat nur eine GG,-Bahn von gewo6hnlichen Dop-
pelpunkten, die auf Fixgeraden fiir Elemente von G, liegen. Diese Flachen
haben keine weitere Singularititen. Im Grad 12 findet man eine Flache mit
600 gewohnlichen Doppelpunkten. Das bestatigt eine Vermutung von Dr.
V. Goryounov in Europroj ’96 iiber die Existenz einer solchen Fliche. Das
gibt 600 < p(12) < 645, wobei die letzte Ungleichung die obere Schranke
von Miyaoka fiir Flachen von Grad 12 ist (s. auch die Tabelle auf Seite iii
der Einleitung). Im Kapitel 5 mache ich noch einige Bemerkungen iiber die
totale Anzahl von singuldren Punkten in jedem Biischel. Diese hingen mit
der Topologie der Biischel zusammen. Schliellich, im Kapitel 6 gebe ich die
Tabellen mit den Konfigurationen von Fixgeraden und singularen Punkten,
und einige Computer-Bilder der Flachen. Diese sind mit dem Programm
SURF von Dr. S. Endraf§ realisiert worden.



Introduction

In this thesis we deal with surfaces in three dimensional complex projective
space P2 with many double points, more precisely, with many nodes. Let
Clzo, 1, T2, 23] denote the vector space of complex polynomials in four vari-
ables. A surface S in P is the zero locus of a homogeneous polynomial f in
Clzo, x1, 2, x3]. A point p of S is singular if the first derivatives of f vanish
at p. It is a double point if a derivative of the second order does not vanish
at it. Finally, p is a node (or ordinary double point A;) if it is singular and
locally the equation of f can be put in the form 22 + y? + 22 = 0, i.e. the
point “looks like” the vertex of an affine cone. Let d denote the degree of
f, which by definition is the degree of S in P{. It is natural to ask what is
the maximal number u(d) of nodes which can occur on a surface S of degree
d. A very easy answer is given in degree d = 1, then (1) = 0 (plane) and
d = 2, then p(2) =1 (cone). The problem is solved for 3 < d < 6 as well. Al-
ready at the end of the nineteenth century (1864) it was shown that u(3) = 4
(Cayley cubic, cf. [23]) and p(4) = 16 (Kummer surfaces, cf. [18]). Then
it was proved that pu(5) = 31 (Togliatti, 1940, cf. [26]; Beauville, 1979, cf.
[4]) and p(6) = 65 (Barth, 1996, cf. [2]; Jaffe & Rubermann, 1996, cf. [15]).
The problem is still open in degree d > 7. In this case there are estimates
for the maximal number of nodes. The most recent and the best ones so far
are Varchenko’s spectral bound (1983, cf. [27]) and Miyaoka’s bound (1984,
cf. [21]). We recall them, up to degree 12, in the following table

| d 7 8 9 10 11 12 |

p(d) < | 104 174 246 360 480 645
[27) [21] [27] [21] [27] [21]

The above given estimates hold for the maximal number N(d) of rational
double points that S can have as well. Lower bounds are given by construct-
ing surfaces with as many nodes as possible (resp. as many rational double
points as possible). For instance Barth found in 1996 a decic surface with
345 nodes (cf. [2]) and in 1998 Endrafl found an octic surface with 168 nodes
(cf. [8]), which shows that p(10) > 345 and u(8) > 168. A very useful
idea in constructing surfaces with many nodes is to find surfaces with many
symmetries. The algebraic idea behind the geometric one is the following:
let a group G act on Clxg, x1, 29, 3], we say that a homogeneous polynomial
p, of degree d, is invariant under the action of G if g - p = p for all g € G,
where by - we denote the action of ¢ € G on p. The equation {p = 0} defines
a surface of degree d in P with the symmetries of G. In this way we found



some new surfaces with many nodes.

This thesis consists of seven chapters. In chapter one we describe the well
known symmetry groups of the platonic solids: tetrahedron, octahedron,
cube, icosahedron, dodecahedron (cf. e.g. [17]). These are subgroups of
SO(3); we denote them by T, O and I (remember that cube and dodeca-
hedron have the same symmetry group as octahedron and icosahedron re-
spectively). Then, using some classical maps from theory of Lie groups
(cf. e.g. [25]) we get subgroups of SU(2) and then of SO(4). We de-
note by Gg, Gg and G5 the subgroups of SO(4) which correspond to T,
O and I respectively. We call them bi-polyhedral groups. In chapter two
we give the conjugacy classes of elements in these groups and their respec-
tive characteristic polynomials, which we use to calculate the Poincaré se-
ries. More precisely, a matrix 0€G,,C SO(4) operates on Clxg, 21, xa, 3], by
o f(xo, 1,19, x3):=f (0 (20, 71, T2, 23)). Denote by C[l‘o,l‘l,fﬁg,l'g]]gn the
vector space of homogeneous polynomials of degree j invariant under the ac-
tion of G,,. The dimensions of these spaces are the coefficients of the Poincaré
series

o

p((C[.TO, T, T2, x3]Gn7 t) = Zt] dlm C[xﬂal‘la T, x3]]Gn
7=0

Using Molien’s theorem (cf.[5], p. 21), we show in chapter two that in fact
we can write

1 1
Gn _ E
p(C[anxlax2:x3] 7t) - ‘Gn‘ det(]l _ gflt)'
gEGn

We have invariant polynomials just in even degree, in fact, the Heisenberg
group, H, is contained in G,, n = 6,8,12, and it is well known that the
invariant polynomials under A are squares in the z;’s (cf. e.g. [14], [16]). As
stated at the beginning the zero loci of these polynomials in P} are surfaces
with many symmetries. In particular, in degree n = 6, 8,12 we get pencils
of surfaces (i.e. linear system of dimension one) with G, —symmetries. The
generators are the multiple complex quadric @, : (72 +22422+22)> = 0 and
a surface S,,. We calculate the equation of S,, at the end of that chapter. The
calculations are complex and require the use of a computer algebra system
(MAPLE). These are however difficult in degree n = 12. In chapter three we
compute the base locus of each pencil. It consists of 2n lines, n of each ruling
of the complex quadric surface in P2. These are fix lines for the action of
some elements of G,,. This means that if L C P is such a line then there is
ac€G,, o # +ls.t. ox =z for all z€L. In chapter four we find the singular
surfaces in these pencils. The general surface is smooth and the singular ones
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have just isolated singularities. The latter lie on lines of fix points for the
action of some elements of G, and are not contained in the quadric. The
singular points are intersection points of these fix lines, and we show that
they are all real points. Then we construct a morphism between the fix lines
and P! and show that the singular points are its ramification points. In the
last part of the chapter, using MAPLE, we find the singular points on the fix
lines. We describe, then, how the fix lines meet each other to get the number
of singular points on the singular surfaces in the pencils. Finally, we show
that they are all nodes. In degree 6 and 8 we have surfaces with at most 48
and 144 nodes respectively. In degree 12 we have a surface with 600 nodes.
This improves the previous results of Kreiss, 1955 (cf. [19]) and Chmutov,
1992 (cf. [6]), who found surfaces with 576 double points. The existence of
such a surface was already affirmed by Dr. V. Goryunov at Europroj ‘96, but
to our knowledge he never published this result, nor the explicit equation of
the surface. We recall in the table below the lower bounds for N(d) so far
(up to degree 12):

| d [7 8 9 10 11 12 |

N(d) > [[93 168 216 345 425 600
6] [8] [6] [2] [6] -

In chapter five we give some remarks on the singular surfaces in the pencils.
They in fact do not show anything new but confirm in an interesting way the
results of the previous chapters. By a theorem of Atiyah (cf. [1], theorem 1)
the Euler-Poincaré characteristic of the blow up of a surface with only nodes
and no further singularities is the same of that of a smooth surface of the
same degree. Using this fact we find again the total number of nodes in each
pencil, which we found already in chapter four. Then, using Morse theory,
we describe how the surfaces in the pencils behave close to the singularities.
Finally, we give the tables of the fix lines and the singular points on these,
and some computer pictures of the singular surfaces in the pencils.

Recently Mukai in [22] announced an application of the groups G, considered
in this thesis, to moduli spaces A 4 of abelian surfaces with (1, ¢) polariza-
tion. In fact, he asserts that the quotient P?/G,, is isomorphic to the Satake
compactification of A3y, (n = 6), resp. of A4 (n = 8). And a certain
modification of P2 /G5 is isomorphic to the Satake compactification of Ag ).
The pencils of invariant surfaces descend to pencils on these moduli spaces.
It is to be expected, that they admit a description in terms of modular forms.

il
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1 Rotation Groups

Let SO(n) denote the special orthogonal group consisting of the orthogonal
n x n matrices with determinant one. In this first chapter we describe briefly
the rotation groups of the platonic solids (for a more detailed description cf.
[7], chapter III; [17], chapter I) in terms of matrices in SO(3). Then we use
these groups to get finite subgroups of SO(4) (cf. [25], p. 77-78).

By rotation group we mean the group consisting of all the rotations which
bring the solid to coincide with itself.

The five platonic solids are tetrahedron, octahedron, cube, icosahedron and
dodecahedron, where octahedron and cube, icosahedron and dodecahedron
are reciprocal (cf. [7], p. 17), so they have the same rotation group. It is
useful to start by describing the Klein four group, which is contained in each
of the previous rotation groups.

1.1 Klein four group

Consider an orthogonal coordinate system z,y, z in R*. The elements of the
rotation group (not the identity) which bring it to coincide with itself are
given by rotations of 7 around z, y, respectively z. In terms of matrices of
SO(3) we may write:

1 0 0 10 0 1 0 0
Ar=l0 -1 0 |, 4= 0 1 0 |, 4 0 -1 0
0 0 -1 0 0 —1 0 0 1

These are matrices of period two and we denote by V := {I, Ay, Ay, A3} the
Klein four group (cf. [17], §5, p.12).

Let now Ny=number of vertices of a regular polyhedron, Ny=number of its
edges, No=number of its faces. The order of its rotation group is 2 - Ny (cf.
[7], p. 47). In what follows we describe the rotation group of the tetrahedron,
octahedron and icosahedron.

1.2 Tetrahedral group

A tetrahedron is a regular polyhedron with Ny =4, N; = 6 and Ny, = 4, so
the tetrahedral group, T, consists of 2- Ny =2 -6 = 12 elements.
Consider the following axes:



2 1 ROTATION GROUPS

-the 4 lines from a vertex through the center of the opposite faces (d-axis);
-the 3 lines from the middle point of an edge through the middle point of the
opposite edge (e-axis).

Around each d-axis we have a rotation of period three (i.e. about an angle of
27), therefore we find eight different elements (not the identity) of 7. On the
other hand around each e-axis we have a rotation of period two (the e-axes
all together form an orthogonal system and its rotation group is a Klein four
group), so we find 8 + 3+ 1 = 12 elements .

If we denote the vertices of the tetrahedron by the numbers 1, 2, 3,4, we see
that each element of T gives an even permutation of these four numbers, and
vice versa, therefore we may identify T with A4, the even permutation group
of four objects.

Generators for the group are two elements (not the identity) of the Klein
four group and one element of period three.

Now we choose a coordinate system in such a way that the axes z, y, 2 coincide
with the e-axes of the tetrahedron. In this coordinate system the matrices
which describe the elements of the Klein four group are the matrices Ay,
Aj, Az as in section 1.1. Additionally we consider a rotation of period three
around a d-axis, which is described by the matrix of SO(3)

Then we have T = (A;, Ay, R3). In terms of permutations of the tetrahe-
dron’s vertices we may identify Ay, Ay, A3 with (13)(24), (12)(34), (14)(23);
Rz and R? with (132) and (123).

1.3 Octahedral group

An octahedron is a regular polyhedron with Ny = 6, N; = 12 and N, = 8.
We call its rotation group octahedral group and we denote it by O. It consists
of 2-12 = 24 elements.

Consider the following axes:

-the 3 diagonals of the octahedron (d-axis);

-the 6 lines from the middle point of an edge through the middle point of the
opposite edge (e-axis);

-the 4 lines from the center of a face through the center of the opposite face
(f-axis).

The octahedron admits a rotation of period four around each diagonal (i.
e. by an angle of 7). In this way we find nine elements of O. Around each



1.3  Octahedral group 3

e-axis we have a rotation by an angle of 7, and we find six more elements. Fi-
nally the rotations around every f-axis give a cyclic subgroup of period three,
therefore we have 2 -4 = 8 elements. In total we have 9+ 64+ 8 +1 = 24
elements.

The centers of the octahedron’s faces are the vertices of a cube (the reciprocal
polyhedron of the octahedron) and a rotation of the octahedron corresponds
to a rotation of the cube into itself, hence to a permutation of the four di-
agonals. In this way one identifies O = S,, the permutation group of four
objects. Generators for O are rotations of period two, three and four respec-
tively.

Observe that inside the cube we have two tetrahedra, more precisely a tetra-
hedron and its counter-tetrahedron in a desmic configuration (cf. [14], ch.
I, p. 1-2). We denote their vertices respectively by 1,2,3,4 and 1',2', 3", 4,
therefore the diagonals of the cube are 1 := 11', 2 := 22', 3 := 33, and
4 := 44'. The rotations of the two tetrahedra together give the permutations
of the cub’s diagonals. In particular the tetrahedral group is contained in
the octahedral group. Now we choose a coordinate system such that the axes
x,y, z coincide with the three diagonals of the octahedron. We consider two
rotations of period two which are described, in this coordinate system, by
the matrices Ay, Ay( cf. section 1.1). Enumerating suitably the vertices of
the cube and hence the diagonals, the matrices A; and A, correspond to the
permutation (13)(24) and (12)(34) as in section 1.2. Consider now a period
three rotation around the cub’s diagonal 44’. The matrix of SO(3), which
describes it, is the matrix R3 of the previous section, and it corresponds to
the permutation of the diagonals (132).

Finally we consider a period four rotation around the x-axis, it has the matrix

and it corresponds to the permutation (1234) of the diagonals.
Observe that the product

0 0 1
RsRy=1 0 -1 0
10 0

is a matrix of period two and it corresponds to the transposition (132)(1234) =
(34). We have O = (As, R3, Ry), because R? = Ay, so we do not need this

generator.
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1.4 Icosahedral group

Let I denote the rotation group of an icosahedron, the icosahedral group. An
icosahedron has Ny = 12, N} = 30 and N, = 20. Therefore |I| =2 - 30 = 60.
Consider the following axes:

-the 6 diagonals of the icosahedron (d-axis);

-the 15 lines from the middle point of an edge through the middle point of
the opposite edge (e-axis);

-the 10 lines from the center of a face through the center of the opposite face
(f-axis).

Around each d-axis we have a period five rotation (of angle 27), thus we find
4 -6 = 24 such rotations.

Around an e-axis and an f-axis we have rotations of period two and three,
thus we get 15+ 2 - 10 = 35 rotations. In total we have 24 + 35+ 1 = 60
rotations and the icosahedral group is isomorphic to the group As, of even
permutations of five objects. In fact we have seen that there are fifteen e-
axes, and in groups of three they are the e-axis of a tetrahedron (cf. section
1.2). So inside an icosahedron we have five tetrahedra. In particular the
tetrahedral group is contained in the icosahedral group. A rotation of the
icosahedron gives a permutation of these five tetrahedra. If we consider a
rotation of period five, we see that the tetrahedra are cyclically permuted.
By a period three rotation two remain invariant and the others are cyclically
permuted. Finally by a period two rotation, one remains invariant and the
others are switched two by two (for a more detailed description cf. [17], p.19
and [7], p. 49-50).

Generators for I are given by a rotation of period five and two rotations of
period two. We choose a coordinate system, in such a way that the z,y,z-axes
coincide with three e-axes of the icosahedron, orthogonal to each other. The
rotations of period two around the z-axis and y-axis are given respectively
by the matrices A; and A, as before. Enumerating suitably the tetrahedra
inside the icosahedron, they correspond to the permutations (13)(24) and
(12)(34).

Consider now the rotation of %ﬂ' around the d-axis contained in the y, z-plane.
We take the icosahedron with vertices in analogous position as [7], p. 52. This
axis passes through the vertex (0, 1,7), where 7 = 1(1+/5) = 2cos(Z) is the
“golden section” number. The matrix R5 of this rotation, when we rotate in
counterclockwise direction, is

1 T—1 -7 1
R5::§ T 1 T—1
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It corresponds to the permutation (13254) of the tetrahedra. We have I =
(A1, Ay, R5). Moreover, observe that the rotation

1
R§A2:§ -1 1-7 -7
T—1 T —1

corresponds to the cycle (12435)(12)(34) = (145) and has period three.

1.5 Construction

Let H denote the real algebra of Hamilton’s quaternions. A basis is given by
g =1, g1 =1, go = j, g3 = k. The multiplication is defined by the following
rules (i,7 = 1,2, 3):

(a) i € {0,1,2,3}, then gigo = q¢i = g

(b) i € {1,2,3}, then ¢? = —qq

() 1 +— i, 2 — j, 3 kisan even permutation of {1,2,3}, then
495 = —4549 = qk-

The quaternions qq, g1, g2, g3 form an orthonormal basis for the following inner
product on H:

3 3 3
(Z Tiq; - Z Yid;) = Zfﬁz‘yz‘, where z;,y; € R.
i=0 j=0 i=0
The norm || || defined by this inner product satisfies:
fz-yl=lal-lyl.
This implies that the quaternions of length one form a group:
Hy={¢eH [ql=1}

under multiplication. It is a subgroup of the multiplicative group of the
non-zero quaternions:

H* := {q € H; q # 0}.

Via the map:

3 . .

Ty + 1Ty T9 + 173
— —X9 +1T3 Ty — 1T
1=
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the group Hj is isomorphic to SU(2).
We denote by
p:SU(2) — SO(3)

the epimorphism defined by conjugation. To be precise, let () C H be the
three-dimensional real vector space spanned by ¢, ¢2,q3. Each ¢ € H; via
conjugation defines an orthogonal automorphism:

pg H—=H, z+q-z-q"

Obviously p,(q) = o and p,|@ : @ — Q is an automorphism in SO(3).
Define:

p(q) == pg|@Q

Observe that p is a 2:1 morphism, with kernel {I, —T}.
We return, now, to the rotation groups.

1.6 Binary Groups

The pre-image in SU(2) of a rotation group G € SO(3) under the map p is
denoted by G. Hence |G| =2-|G/|.

Klein 4-group

First we calculate:

P(Q1)(Q1) = q1, P(Ch)(QQ) = —(q2, P(Q1)(Q3) = —q3,

P(QQ)(Ql) = —qi, P(Q2)(QQ) = g2, P(Q2)(Q3) = —q3,

P(%)(fh) = —qi, P(Q3)(QQ) = —q2, P(Q3)(Q3) = qs.
This shows

plq) = A1, plge) = Az, plgz) = As.

Denote by V. = p~1(V), the binary group in SU(2) corresponding to the
Klein four group. It consists of the eight quaternions:

{£q¢:,i=0,...,3}
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Tetrahedral group

Consider the tetrahedral group 7" = A, and the period six matrix :

1 1+7 —1+41
p3—2

1+i 1—i>ESU@%

(p3 = —I). We calculate:

p(p3)(q1) = a3, p(P3)(q2) = —q1, pP(p3)(a3) = —q2
and this shows that p(p3) = R3. Therefore the binary group Ay = p~Y(T) is
spanned by ¢, g2, p3 and |A4| = 24.
Octahedral group

For the octahedral group O = S, we consider the period eight matrix :

1 (14 0

(pi = _H)a and

P(,’D4)(Q1) = {1, P(M)(QIQ) = g3, P(,’D4)(CI3) = —(q>,

therefore p(ps) = Ry. Let Sy C SU(2) be the binary group which corresponds
to O, then it is spanned by ¢, g2, p3, p4 and |Sy| = 48.

Icosahedral group

Finally consider the icosahedral group I = A; and the matrix:

1 T T—14+1
p5.—§<1_7_+2. - >ESU(2)

(remember 7 = $(1 + V/5) = 2cos(Z)). One computes p} = —I, so ps has
order 10. Tt is easy to check that p(ps) = Rs.
Let A5 = p~'(I), then A5 = (q1, q2, p5) and |A5| = 120.

1.7 The bi-polyhedral groups in SO(4)

For ¢,q¢' € H; the automorphism:

o(¢,¢d) H—-Hz—q-x-(¢)"
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is orthogonal. This defines an epimorphism (cf. [25], p. 78)
o :SU(2) x SU(2) — SO(4) (1)
with kernel
{(LI), (=1, -D)}

Whenever G1,Gy C SU(2) are finite subgroups, then o(Gy,Gy) is a finite
subgroup of SO(4), of order $|G;|-|Gs|. In this section we want to determine

generators for the groups (G, Gs), when Gi= G equals V, Ay, Sy or A;.

Remark 1.1 Observe that if ¢ € G C SU(2) (G =V, Ay, S, or A;) and
g™ = =+I then the same holds for o(q,I) resp. o(I,q). In fact o(q,I)™ =
o(¢™ 1) = o(£I,1) = £1.

Gl = G2 = V
We compute the images under o of the generators

(qlaﬂ)a (QQa]I)a (HaQ1)7 (]Ian)

of V x V. By definition o(gi,1): 2+ ¢ -vand o(I,¢q) : x+ 2-¢". On the
elements of the basis:

U(Qh ]I) (CIO) = qi, 0(611, H) (Q1) —qo, 0(611, ]I) (QQ) = g3,
0(@1, ]I) (Q3) = —qQy, U(Q2; ]1) (QU) = g2, U(Q2, ]I) (Q1) = —ds,
0(@2, ]I) ((J2) = —{o, U(Q2; ]1) (Q3) = q1, U(H, Q1) (QU) = —,
U(H;%)((h) = qo, U(H;Ch)((h) = g3, U(Hafh)(%) = —qy,
U(]Ian)(QO) = 4o, U(H,QQ)(%) = —4gs, U(Han)(QQ) = qo0,
U(]I’ (]2) (Q3) = qi-

We call the group a(f/ X f/) Heisenberg group, and we denote it by H. From
these calculations and remark 1.1, in the basis qq, ¢1, ¢2, ¢3 generators for H
are given by the following period four matrices:

0 -1 0 O O 0 -1 0

0 0 O 0 O 0 1

01 = U(qla]I) = 0 0 0 —1 , 02 = U(q2a]I) = 1 0 0 0
0O 0 1 0O 0O -1 0 O

0O 1 0 O 0 0O 1 0

-1 0 0 O 0 0 01

03 = U(LQI) = 0 0 0 —1 , 04 1= U(Haq2) = -1 0 0 0
0O 01 0 0O -1 00

We have |H| = 32.
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G1 :GQ :A4.

Since A, = (g1, g2, p3), it remains to calculate the image of o(ps, ) and

o (I, p3). With calculations as before we find the following period six matrices
of SO(4):

1 -1 1 -1

1 1 -1 -1
T3 = U(p3a]1) = % —1 1 1 -1 )
1 1 1 1
1 1 -1 1
-1 1 -1 -1
my = o(l,p;) = % 101 1 -1
-1 1 1 1

Let G denote 0(1414 ><1414). Generators of G are the matrices 0,09,03,04,73,7}
and |G| = 288.

Let now Gy 1= 0(94 X §4). Generators of Gg are the matrices 0y,04,73,7% and
the matrices o(ps,1),0(I, ps). Here the last two matrices are the following
period eight matrices:

1 -1 0 0
1 1 0 0
mo= o) = G g g o1 |
0O 0 1 1
1 1 0 O
-1 1 0 0
= o(l,ps) = % 0001 -1 |
0 01 1
and |Gg| = 1152.
G1:G2:14~5.

Consider now the bi-polyhedral icosahedral group Gy := (A5 x As5). Gen-
erators of G5 are the matrices 01,09,03,04,0(ps, 1) and o(I, p5). We already
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know the first four matrices, the others are the following period ten matrices:

s = o(ps, 1) =

e = o(l,ps) =

T 0
1 0 T
2 T—1 1
1 1—7
T 0
1 O T
2 1—7 1
-1 1-7

1—-7 -1
-1 -1

with 7 := (1 4+ V/5) = 2cos(Z) and |G1,| = 7200.

The notations Gg, Gg, G5 for the bi-polyhedral groups are maybe not stan-
dard, but they will be convenient later.
In the following tables we resume the results of this chapter. We give the
groups in SO(3), SU(2), SO(4) with their order and the generators with the

respective periods:

Groups || Order || Generators || Periods
1% 4 Ay, Ay 2,2
T=A, |12 A, Ay, Rs | 2,2, 3
O=85, |24 Ag, R3, Ry || 2, 3, 4
I= A, | 60 AL Ay Rs [ 2,2,5
Groups || Order || Generators || Periods
v 8 a1, G 4, 4

A, 24 01 G2, D3 4,4,6
S 48 Q2 P3; P4 4,6, 8
A5 120 || qi, g2, ps || 4, 4, 10




1.7 The bi-polyhedral groups in SO(4)

Groups || Order || Generators Periods

H 32 o1, 09, 03, 04 4,4, 4,4

Gg 288 o1, 09, 03, 04, T3, Ty || 4,4, 4,4, 6,6
Gy 1152 || 09, 04, 3, w5, 4, Ty || 4, 4, 6, 6, 8, 8
G 7200 || 01, 09, 03, 04, ™5, W5 || 4, 4, 4, 4, 10, 10

11
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2 Invariant polynomials

The subgroups of SO(4) given in chapter 1 act on C[zg, z1, 9, 23]. The aim
of this chapter is to give the dimension of the vector spaces of homogeneous
polynomials invariant under the action of G4, Gg, G2 and to calculate the
invariant polynomials in degree 6, 8 and 12 respectively.

2.1 Conjugacy Classes

In this section we give the conjugacy classes of the elements in G, C SO(4)
under G, n = 6, 8,12, and under GL(4, C).

Let GG denote Ay, Sy or A5. We have seen that T'= Ay, O = Sy, [ = As. In
other words we have representations:

¢: G — SO(3,R)

and these are group homomorphisms. Hence if g, ¢’ € G are conjugate in
G, this means that there is an h € G with ¢’ = hgh™'. Then ¢(¢') =
o(h)e(g)e(h)~t and ¢(¢'), »(g) are conjugate resp. in T, O, I C SO(3) too.
Keeping in mind the table of the conjugacy classes of A4, Sy and Aj (cf. e.g.
[9]), in the following table we give representatives of the conjugacy classes of
the groups V, T, O, I under the groups themselves and the respective sizes
(number of elements in the classes):

Groups || Conjugacy Classes Size

v I, A, 1,3

T~ A, || 1, Ay, Rs, R2 1,3, 4,4

0= S4 ]I; A?: R3: R47 R3R4 1; 37 87 67 6

I~ A || 1, Ay, Rs, R2, R2A, | 1,15, 12, 12, 20

In GL(3,C) the matrices Rz, R? are conjugate. In fact, they have the same
eigenvalues 1, w, w?, with w = e Analogously, the matrices Ay and R3Ry
are conjugate in GL(3, C).

On the contrary, although the matrices Rs and R? have the same order, they
are not conjugate in GL(3,C). In fact, they have different characteristic
polynomials:

det(R5 - tH) =
det(R: — 1) =

(21> — tV/B 4t +2)(t — 1),
(262 +tV/5 4+t +2)(t — 1).

N[ —=b [ =
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In the following table we give the conjugacy classes under GL(3, C):

Group | Conjugacy Classes Size

v I, Ay 1,3
T=A, |1, Ay, Ry 1,3,8
O=5; |1, Ay, R3, Ry 1,9,8,6

I~ As || 1, Ay, Ry, R2, R2A, | 1,15, 12, 12, 20

Proposition 2.1 Let G C SO(3) denote one of the groups V, T, O, I, and
let geG. To each conjugacy class [g] under G, we find two conjugacy classes
[+3], [=4] in G= p Y(G), unless g € V or g € O and using the identification
of O with Sy, g corresponds to an odd permutation of order 2. In these cases
[+9]=[-4]

Proof. If g and —§ € G are conjugate then they have the same trace: tr(g) =
tr(—g) = —tr(g). From this follows tr(¢) = 0. This is the case only when §
€ V or §geSy and § €[psps]. Otherwise tr(j) # 0. We are left to prove that
—q2 € [g2] and —pspy € [p3ps]. We have

i
Paps = s <Z o ) = J5(a1 +a3).

By the multiplication rules qi_1 = —q;, 1t = 0,1,2,3, so we get Q1QQQ1_1 =
01¢(—q1) = —@3q1 = —q2 and QQ%(QI +@3)(—q2)= —%(fh + q3). O

We specify the matrices
9 1 147 =141 9 1 T—1 1+
p3 =35 . . ) p5 =3 . ,
2 147 —-1—1 2\ -1+ 7-1

o _1f —l—ir 7-1
PR=Z5\ —r4+1 —14ir )
In the following table we give the groups, the conjugacy classes under G

and the respective size. We write ¢ to indicate the representatives +¢q, —q.
Hence we write n,n for the sizes of the respective conjugacy classes.
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Groups || Conjugacy Classes Size

vV +1, ¢o 1,1: 6

Ay +1, ¢y, £ps, +p3 1,1; 6;: 4,4; 4,4

S +1, g2, £ps, £pa, pspa || 1,1; 6; 8.,8; 6,6; 12

1415 +1I, ¢2, £ps, :I:p%, :I:p%qg 1,1; 30; 12,12; 12,12; 20,20

In the next table, we give the eigenvalues of these matrices. We use the
. . . . . 273 273
following abbreviations for certain roots of unity: w:=es,c:=e5 , 7y :=

2w

€8s .

Matrix || Order Eigenvalues
Q2 4 with ¢2 = -1 i, —1

P3 6 with p3 = —T —w,—w?

P 3 w,w?

Dy 8 with pj = —1I v, Y7

DaD4 4 with (papa)® = -1 | i, —i

Ps 10 with p2 = —T —e2, —¢3
p? 5 g, gt
P2 3 w, w?

Lemma 2.1 The matrices ps and —p3, (resp. —p3 and p3) are conjugate in
SU(2), the matrices qu and pspy are there conjugate too.

Proof. The proof follows by the table above, in fact these matrices have two
by two the same eigenvalues. O

The conjugacy classes of G under SU(2) are:
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Groups || Conjugacy Classes Size

1% +1, ¢o 1,1: 6

Ay +1, g2, +ps 1,1; 6; 8,8

Sy +1, g2, £p3, 4 1,1; 18; 8.8; 6,6

As +1, q9, £ps, £p2, +p2qa | 1,1; 30; 12,12; 12,12; 20,20

The tensor product of C? with itself can be identified with the space of
complex 2 x 2-matrices. The tensors v ® weC? ® C? can be identified with
the zero determinant matrices, via

C?* x C? ™
(w1, 22), (Y1, 92)) +— < 1 ) (o) = ( T1Y1 T1Ys > (2)

Ta TaY1 X2Y2

Let o(p,q) €Gp, n =6,8,12, and v; ® 1,€C* ® C2. Then we have

op,q)(v@w) = plv@w)q!
= plv-w)f
=  pvqu.

Using these facts we give

Lemma 2.2 The eigenvalues, resp. the eigenvectors, of o(p, q) are the prod-
ucts, resp. the tensor products, of the eigenvalues, resp. of the eigenvectors,

of p and q.

Proof. Let o, &, vy, vy and B, 3, wy, wo the eigenvalues and the eigenvectors
of p, resp. ¢. We have

op,q)(vi @wi) = pu ® quy
= 045(1)1@1171).

So v @ is eigenvector of o(p, ¢) for the eigenvalue a_B. Analogously v; ® ws,
vy ® w1y, v9 @ wy have eigenvalues respectively af, af, af.
O

We consider now the conjugacy classes of the bi-polyhedral groups a(é X

G) C SO(4).
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In SU(2)x SU(2) we have the direct product subgroup G' x G' and recall that
the conjugacy classes here are the products of the conjugacy classes in G:

[(91,92)] = [o1] x [g2].

In particular the size of the conjugacy class |[(g1, g2)]| is the product |[¢:]] -
[92]1.

Lemma 2.3 The conjugacy classes in Gn, under G,, n = 6,8,12 are the
images via the map o of the conjugacy classes in Ay x A4, Sy X Sy and

A5 X A5.

Lemma 2.4 Ifp,q € G C SU(2), then o(p., q) and o(q. p) belong to the same
conjugacy class under GL(4, R).

Proof. The automorphism

H— Hq— ¢
has matrix
1 0 0 O
0 -1 0 0
C= 0 0 -1 0 € GL(4,R).
0o 0 0 -1
Zo
In fact, for an o = il € H = R*, one has
2
T3
To
—T9 To +1T3  Xo + 121

Moreover, observe that C~! = C. Now

Co(q,p)Cx = C(qz'p") = (¢z'p")! = pzq® = prg~' = o(p,q)z.

This shows that o(p,q) and o(q,p) are in the same conjugacy class under
GL(4,R), so in particular under GL(4, C). O
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Proposition 2.2 Let ¢;€G. The matrices o(ps,c;) and o(—p?,c) (resp.
o(—ps3,c;) and o(p3,¢;)), olqa,c;) and o(pspa,c;) belong to the same con-
jugacy class under GL(4, C).

Proof. The matrices p3 and —p3 have the same eigenvalues, so o(ps, ¢;) and
o(—p3,¢;) have the same eigenvalues too (cf. lemma 2.2). Moreover they
are diagonalizable. Therefore they belong to the same conjugacy class in
GL(4,C). A similar proof works for the other matrices. O

The number of elements in G,, conjugate to a fix element (g, go) depends
on the group action. In fact o(p,q) = Co(q,p)C ! shows that o(p,q) and
o(q, p) are always conjugate under GL(4, C), but for [p]#[q] are not conjugate
under G,,. The precise number of elements conjugate under GG,, resp. under
GL(4,C) are given in the following table. In the first column the conjugacy
classes are given under G.

91, 92 G GL(4,C)

[91]#(92] Lol - g2l || 2l1g0]l - 92|

[91),[92]# 2] [P3p4]

91]=[92]#(g0],[p3p4] [g1]]7 [g1]]7
[g1]#]90] sllall Mgl || gl - llge]]
[91][92]=l[42].[p3p4]

[91]=(g2]= [g2] o [papa] || 5ll91]]7 sllo]?

We are now ready to give the tables of the conjugacy classes. In 1), 2), 3)
we give the conjugacy classes of the elements of the groups G, under the
groups themselves with their respective size.
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Conjugacy Classes

1) Bi-tetrahedral group

‘ o(—,—) H I ‘ —I ‘ a2 ‘ D3 ‘ —D3 ‘ P ‘ —3
I o(L,LI) | —o(L,I) | o4 4 —T4 T —t
1 1 6 4 4 4 4
g2 o9 o4 o9y oy
6 18 24 24
D3 s —1r3 T304 | Tamy | —mamy | mamP | —mamy
4 4 24 16 16 16 16
p3 3 —m3 m3oy | mimy | —mimy | miwy | —mimy
4 4 24 16 16 16 16
2) Bi-octahedral group
‘ o(—,—) H I ‘ —1 ‘ a2 ‘ P3 ‘ —D3
I o(L,L) | —o(I,1) | o4 4 —4
1 1 6 8 8
q2 02 024 027f'3
6 18 48
D3 3 —1g T304 T3y | —T3my
8 8 48 64 64
P4 Ty —T4 T404 Ty | —Tymh
6 6 36 48 48
3P4 374 T3M404 T3T4Th
12 36 96
‘ o(=—) H P4 —P4 D3Py
I ) —) 2T,
6 6 12
02 o9y OoTyTY
36 36
D3 T3y —Tm3m)y 35Ty
48 48 96
P4 4Ty — Ty 4Ry
36 36 72
P3P TyTyTy | —TW3Mymy | T3TyTETY
36 36 72

19
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3) Bi-icosahedral group

o) [T [-T  Je P3¢ —P3s
I o(ILT) | —o(I,1) | 04 2o, e
1 1 30 20 20
q2 02 024 027%04
30 450 600
P> mioy | —mioy | Mooy | mioamloy | —Tmioemloy
20 20 600 400 400
Ds s — M504 5oy — 5oy
12 12 360 240 240
p? w2 -7z T204 memloy —mimloy
12 12 360 240 240
Lo(=—) [ »s —ps P} —p?
I g — T —7
12 12 12 12
G2 o9, oo
360 360
P2qs TE09TL | —T209ml | Te0omE | —TE0amy
240 240 240 240
Ds 5Ty — 5T 5T e
144 144 144 144
P} mmy | —mans | mang | —mand
144 144 144 144

In the last four tables we give the conjugacy classes under GL(4,C), the

respective size and the characteristic polynomials.




2.1 Conjugacy Classes

‘H || Conjugacy Classes || Size || Characteristic Polynomials
oy 12 | (#+1)?
094 18 (t? — 1)?
+1 L1 | (tFD)?
Gg || Conjugacy Classes || Size | Characteristic Polynomials
o3 12 | (2+1)?
o 18 (2 — 1)2
oo 96 =12 +1
+3 16,16 || (> Ft+1)?
+mymh 64,64 | (tF1)2(#2 £t +1)
+1 1,1 | (tF 1)
Gy || Conjugacy Classes || Size | Characteristic Polynomials
P 36 (t* +1)?
o 162 || (2 —1)?
o9 288 th—t2+1
oy Th 216 | t*+1
41 16,16 || (2 Ft + 1)
+mymy 64,64 | (tF1)* (> £t +1)
+g) 96,96 || t* + > F V262 F V2 + 1
+7, 12,12 || (2 F V2t +1)?
+y7) 36,36 || (tF 1)*(t*+1)
+1 L1 | tF)?

21
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G5 || Conjugacy Classes || Size Characteristic Polynomials
P 60 (t* +1)*
024 450 (t> — 1)
ool 720 =12+ L5+ 1
oo 720 th— 12— 12 +1
ooy 720 -2+ 1
+7s 24,24 L2 FtF Vbt +2)?
+yml 144,144 | 2t F 1222 F V5t £t +2)
trsmoy 480,480 || t* £ 143 £ 1\/5¢t% + 142
+iVEE £t £ LB+ 1
472 24,24 T2 £t F V6t +2)?
+r2ml 288,288 || t* F P+ 2 Ft+1
+72nl2 144,144 | 122 £ ¢V/5 £t 4+ 2)(t F 1)
+rirl0, 480,480 || t* 13 £ 1/5t% + 142
R VGl TR VAT
+rioy 40,40 (12 4+t + 1)
+rioymioy 400,400 | (tF 122 £t +1)
+1 1,1 (tF 1)

2.2 Poincaré series

Let G C SO(4) be a finite matrix group, and let Clzg,zy, zo, x3] denote
the ring of polynomials in four variables over C. If ¢ € G, then ¢ acts on
f(zo, 21,29, 23) € Clzg, 21, 9, 23] in the following way

g flz) = flg '2),

where we write x := (g, 1,22, 73). Let now (C[:z:o,xl,xg,xg} denote the
C-vector space of homogeneous polynomials of degree j, invariant under the
action of G, i.e. Clzg, 21, T, arg} = { p € Clxg, 1, 2, x3] | p is homogeneous



2.2 Poincaré series 23

of degree j and p(g~'z) = p(x), Vg € G}. We are interested in the dimension
of this vector space. Consider the Poincaré series:

o0
p(Clag, 21, 29, 23], 1) := th dim Clxg, 1, T2, T3 JG
=0

Molien’s theorem (cf.[5], p. 21) gives:
p(Clag, 21, 29, 23]%, 1) = LZ; (3)
B ’ G| det(I — g~'t)
geG
Since G C SO(4), we have det g = det ¢~ = 1, and we may write:
A et ()
T ’ |ngegdeug-—ﬂﬂ

where the denominator is the characteristic polynomial of g¢.
Remember that matrices in the same conjugacy class have the same charac-
teristic polynomial and that the group G is disjoint union of its conjugacy

classes. Let now n, = |[¢g]| be the order of the conjugacy class [g]. We write:
p(Clwo, 21, 79, 73], 1) = 1 Z Ny
. ’ |G‘ [g9] conj.class det(g N ]It)

Applying this result with GG a bi-polyhedral group and keeping in mind the
tables of the characteristic polynomials on page 21-22, we get:

G=H

1 12 18 1 1
C ) =—
p( [%0,1‘1,%2,%3] ) ) 32((t2 4 1)2 + (t2 _ 1)2 + (t_ 1)4 + (t_|_ 1)4)’
G - G6
1 12 18 96
C Ge ) =
p(Clzo, x1, T2, 73]7°, 1) 288((752 +1)2 + (2 —1)2 - (t4 — 24 1)
n 16 n 16
(12 —t+1)2  (2+t+1)2
64 64
+ +
(t—1)2(82+t+1)  (t+ 1282 —t+1)
1 1
+ + ),

(t—1*  (t+1)4



p(C[l‘Oaxlaanl‘?)]GS)t) =

GZGlQ

p(C[x07xlax2;x3]Gl2:t) =
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1 36 162

( +
1152 (¢ + 1)%(#* + 1 t—1)%(t+1)2
588 * 2)16 ( )(16 )

+ + +
th—t2 41 tt+1 2 —t+4+1)2
( b ) ( )64( )

+(t2+t+1)2 * (t—1)2(12+t+1)

64 96
_l’_

+
E+1D2( —t+1) (42— V2 — V2t + 1)
96 12

+ +
(12428 + V2t + 1) (12 — V2t +1)?
12 36 36

eVt 1’ TEoEr ) T Eee

1
ST 2l

1 60 450
7200 (2 +1)2 (2 - 1)?
@+1p -1

T, 1
(t* — 2 + =V5t2 + 1)

2 790 L™
(t — %tQ = %\/51? by E-PED
24 24
+1 2 2+1 2 2
72 —t— /5t 42) 72 +t+ V5t +2)
144
+1 2 2
(=12 — V5t +1t+42)
N 144
1 2 2
S+ D2 + V5t —t +2)
. 480
%(2t4+t3+\/5t3+t2+\/5t2+t+\/5t+2)
. 480

I
5(21:4—153—\/5753+1t2+\/5752—75—\/51t+2)
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24 24
T T
Z(21t2+t—\/51t+2)2 Z(2752—75+\/51t+2)2
288 288
+(t4—t3+t2—t+1)+(t4+t3+t2+t+1)
144
+]‘ 2 2
St =12 + V5t +1+2)
144
+1 2 2
S+ 1) (2 — V5t —t+2)
. 480
%(2t4—t3+\/5t3+t2—\/gtg—t+\/5t+2)
. 480
%(2t4+t3—\/5t3+t2+\/5t2+t—\/5t+2)
40 40 400
+(t2+tz(}())2+(tQ—t+1%2+(t—1€2(t2+t+1)

).

+(t+1)2(t2—t+1) * (t—1)* * (t+1)4

In the following table, doing calculations with MAPLE, we give the expres-
sions of the Poincaré series after expanding the previous polynomials as a
Taylor series up to the order 14:

Group || Poincaré series

H 1+ 2 + 5t + 615 + 1565 + 19410 + 35¢12 + 44411 + O(#15)
G 1+ ¢2 + " + 210 4 38 + 310 + 712 + 8" + O(¢'9)
Gy 1T+ 2 44 10 4+ 268 4+ 2410 4 312 4 31 4 O(¢19)

Gia T+ t2 441 18 + 18 + 110 + 212 + 2414 + O(#15)

2.3 The spaces C[zg, z1, :Ez,I:a]f"

We defined a homogeneous polynomial p to be invariant under the action of
G, (n=206,8,12) if p(¢-'z) = p(z) for all g € G,,. Clearly this is equivalent
to p being invariant under the action of the generators of (G,,. The generators
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of H give coordinate transformations:

—I —T2
o1 Xo o2 x3
xr —> , T ,
—Z3 Zo
) —I
X1 Hp)
o3 —Z o4 xs3
T — , X — ,
—Z3 —Zo
T2 —I1

it is a well known fact that the invariant polynomials have even degree
only. Since H C G, also under these groups we have invariant polyno-
mials just in even degree (as the table above shows). If the dimension of
Clzg, 1, 19, xg]JG" is one, then we have just one generator. It is the multiple
complex quadric Q;(z) := (22 + 22 + 22 + 22)3. In degree n = 6,8, 12, we
find dim Clzg, 21, 79, 23]" = 2, so we have two generators, the quadric and
another homogeneous polynomial. This explains, in particular, why we used
the notation G,,: the first non trivial invariant polynomial appears in degree
n. We give now a method to calculate it. We start with a basis p(ln), e ,pg{)
of Clxg,x1, 29, 3] (cf. e.g. [14], [16]). Then, considering a linear combi-
nation F,(z) := Alp(ln) ot App) (A; € C), we impose the condition
F,(ox) = F,(z) for all the generators o in G, \H. In this way we can find a
basis of (C[l‘g ,L1,Tg, 1‘3]7(5”

In degree 6 and 8 the calculations are not difficult if left to MAPLE. In de-
gree 12 it is however more difficult, because of the relatively high number
of parameters in the general expression of Fis(z). We show how to find the
invariant polynomial of degree 6 and 8 using this method. In degree 12 we
give first the expression of the invariant polynomial as a linear combination
of some symmetric polynomials and in the generators of Clxzg,x1, z2, 73]75.
Then at the end of the chapter we give it explicitly in the z;’s.

2.3.1 Degree 6

We have dim C[zg, 71, 72, 73] = 6 and a basis for this vector space is given
by the polynomials

6 6 6 6
P11 = Xyt x] + Ty + 23,
2 2 2 2 92 2 2 2 2 2 92 2
P2 = Xyx|x3 + ToTiTy + TyTTy + T3,
4.2 4.2 4.2 4.2
D3 = Tox] + X,Ty + TyT3 + T35,

4.2 4.2 4.2 4.2
Ps = xOxQ + xgxo + $1x3 + $3x1,
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4.2 4,2 4,2 4,2
Ds = XT3+ T3Ty + TT5 + Ty,
3 3 3 3
P ‘= XpT1T2X3 + ToT7T2X3 + ToT1X523 + ToT1T2X5.

We consider now the group Gg. Its generators s, 75 € Gg\H give the fol-
lowing transformations:

Xog— X1+ To — T3 To+ 21 — 29 + 23
Tl To+ 21— T2 — T3 . o1 | o+ T — T2+ T3
2 —$0+$1+l’2—$3 ’ 2 x0+x1+x2—x3

1‘0+$1+1‘2+$3 —ZEO+ZE1+1‘2+LE3

Writing Fg(x) := Aipr + Aaps + ... + Agps and imposing the condition
Fs(msz) = Fg(x), Fo(myz) = Fs(x). We get:

A2 == 15A1 —3143, A3 :A4:A5 and AG =0

Then Fys(x) = a(p1+ 15p2) +6 (—=3p2 + ps + D4 +p5)1- Now the sum f; +

NS > N
TV TV
::f1 ::f2

3fa = Q¢(z) and with

6 6 6 6 2.2.9 .22 9 229 929
Se(z) == f1 = xg + 2] + x5 + x3 + 15(zgair; + vgrizs + rorixs + r1T573)

we write an element of Clzg, 1, 2o, 23]5° as

AQs(z) + pSe(z), A, peC

2.3.2 Degree 8

In this case we have dim C[xzg, 71, 79, 23]3¢ = 15 and a basis is given by:

q = x3+x§+x§+x§,

qQ = xéx‘f + xéxé,

q3 = xéx% + x‘llxg,

qq = xﬁxé + x%x%,

¢ = TgriTy],

qe = fESl‘?fEQl‘g + :nglxgxg,

q; = x%x%xlxg + xg:erf:rg,

qs = xg:rgxgxl + xg:rgxgx:{’,

q9 = :ng% + x?x% + xgxg + xgxg,
quo = x0x5+ aSad + afxs + a5,

R 6,.2 6,.2 6,.2 6,.2
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Q2 = worini 4 wlrial + riaie? 4+ vhaial,
Qi3 = worivi 4 wiriel + rixial 4 vhaiad,
Q4 = xéx%x% + :L‘é%x% + xéxﬁx% + x‘fz%x%,
g5 = :rgxl:rﬂg + xox‘;’xQ:rg, + xgxlxg:rg, + xgzrlxg:rg.

We write an element Fy(z) = Ajq; + ... + Ais¢qi5 and we apply the same
method as before. Since G5CGy we consider first the space Clxg, 1, T2, 73]5°.
After calculations with MAPLE, we find generators

g1 = —24q¢5 + qu1 + qi2 + @9 + quo + q13 + Qu4,
g2 = qi +84qs + 14qi12 + 14q13 + 14414,
93 = @+q+qs—18¢5 + g9 + qro + qu1-

So we may write the element Fg(z) in C[x0,$1,$2,x3]§;6 as a combination:
F3(z) = Bigy + Bago + Bsgs, B; € C.

We impose now the conditions Fg(myz) = Fy(x), Fs(mjz) = Fg(z), i.e. the
transformations:

Ty — 1 To + 21
n To + X1 i —To + X1
T L , T L
V2 To — T3 V2 To — I3
To + T3 To + T3
The dimension of Clzg, 21, %2, 23]$® is two and we find the two invariant
polynomials:

G :=Tg1 + go and Gy := =3¢ + 293

Observe that Qs(z) = (2§ + 27 + 23 + z3)* = G1 + 3G5. We put

Ss(x) = Gi+T7Gy="Tg +go—21gi + 14g5 = go + 14(g5 — 1)
= 2§ + 2§ + a5 + 2§ + 14(zo2] + 2923 + 2525 + 2125 + 2425 + T373)
+168z2zir373.

We write an element in Clzg, 21, 72, 23]5° as
AQs(x) + pSs(x), A peC

2.3.3 Degree 12

In this case dimClzg, 2,79, 23]}, = 35, the generators are obtained as
products of the five invariant polynomials in degree four:
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Ly = x)+ !+ 2+ 23,
ly = 222 + 2322,

I3 = xdx3+ xixl,

ly = x3x5+ 2313,

l5 = XgX1T2T3.

Considering a general linear combination of the 35 invariants and proceeding
as before one can find the equation of the non trivial invariant polynomial
in C[$0,l‘1,$2,$3]16212. We call it Sya(x). We give its expression in terms of
some symmetric polynomials. Abbreviate ¢; := 7.

Ssi = @+ a2+ a3) + (00 + g2+ q3) +43(q0 + @1 + g3)
+a5(q0 + @1 + ¢2),

Si = q(ai + a3+ a3) +qi (a5 + a5+ a3) + (g5 + af + 43)
+a3(q5 + 4 + 43),

St = e+ aas + @as) + 40 + 9 + ;)
+¢5(0q1 + qogs + 143) + 43 (Qo¢ + QG2 + G142),

Ssz = g3} + a5 +a3) + (@ + a3) + 6343,

Ssor = q(ai(2 + a3) + @3 (a1 + a3) + a3 (a1 + @2)) + @7 (a3 (a2 + g3)

+45(q0 + q3) + 45 (q0 + 42)) + & (g3 (a1 + g3) + ¢ (g0 + ¢3)
+¢3(q0 + q1)) + 3 (a5 (1 + @) + @3 (a0 + @2) + @5 (q0 + @),

Sain = Q192q3(qe + ¢+ @3 + 43),
Sogg 1= (QOQ1Q2)2 + (QUQIQ3)2 + (QUQEQ3)2 + (Q1Q2Q3)2;
Soot1 = qoq19293(q0(q1 + G2 + q3) + ¢1(q2 + g3) + ¢2G3).

We say that a polynomial p := p(xg, 1, x9, x3) is totally symmetric if it is
invariant under each coordinate permutation. Similarly we say that p is anti-
symmetric if it is invariant under each even coordinate permutation o € Ay
and for v € S;\ A4 holds

p(’Y(u’Uo;xth,%)) = —p($0;371,552,553)-

With this terminology the totally symmetric part of the invariant Sis(z) is
given by

fs = 2551 — 6542 — 125411 + 14533 + 95321 + 34853111 + 305222 — 27052211.

and the anti-symmetric part is

33v/5 /4
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with

fo = @@Fw— 0+ Ea — @i+ g - ad) - G(@Ea — eid
+0390 — G395 + 4002 — Qa3) + G (@B — Wa + 67 es — ©d;
+@300 — 6395) — G (@0 — W4 + G — G145 + 6o — 4©2q3)-

In conclusion:

512(:5) = fs + 33\/5fa

This invariant polynomial can be expressed in the Iis powers. In fact putting

S1,0 = lllglg, + lllgl4 + l1l214, S11 = l%lg + l%lg + l%l4,
51’2 = lll% + lllg + lllz, 85’1 = lglg + lglg + l§l4,
Sps = lals =3l sya = Bl — 13,

5;2 = lilg — l%l4, S;r’?) == l%lg + lglg,

5;4 = l§l4 + lzlg, SIQ = lilg + l%l4,

Sosa = I3+ 13+13

the equation has the form:
Sia(x) 1= 33V/5(syy + s34+ Sio) + 19(s35 + s34+ 555) + 105234
—1481,0 + 281’1 — 681’2 — 35285’1 + 336l52)l1 + 48l2l3l4.

This shows that Sis(z) is in fact invariant under the action of #. The
generators 75,75 correspond to the transformations

Tx0 4+ (1 = 7)xy — 23 Tx0 + (T — 1)xy + 3

w1 | o — e+ (T — 1) o1 Tx] — Ty + (7 — 1)a3
Ty (1 —Daxg+ a1+ 729 |’ Ty (1= 7)xg+ 21 + T29
o+ (1 —7)xy + T3 —xo+ (1 — 7)1 + T3

Applying these coordinate transformations to Sis(z) and doing the calcula-
tions with MAPLE, one sees that Sio(m52) = Si2(z) and Sia(mhz) = Sia(x).
We write an element of C[zg, 21, z, :Jz:g,]%l2 as

AQ12(x) + pS1a(x), A\ e C

Before give the explicit expression of the invariant polynomial Sy5(x), we give
the following
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Proposition 2.3 For n = 6,8,12, we have S,(z) # AQ,(z), for all AeC.
Moreover the polynomial Qa(x) does not divide Sy(x).

Proof. We show that for some point p € C*, we have Q(p) = 0 but S,(p) # 0.
Consider p = (iv/2,1,1,0) then

Q:(p) = (V2 +1+1=0
On the other hand we have

Se(p) = (ivV2)*+1+1+15(iv/2)?
= (=2 +1+1+15(-2)
—36,

Ss(p) = (V2P +1+1+14(2(iv2)" +1)
= (=2 +1+1+14(2(-2)*+1)
— 144,
and a calculation with MAPLE shows S12(p) = —726. O

The invariant polynomial Si5(7)

20’2t + 20’23 + 20’23 + 22128 + 22123 + 221%23

+223022 + 221022 + 221922 + 221022 + 221022 4 221022

—6x3x} — 625y — 62813 — 6282) — 62¥wy — 62875

—623x) — 6x5x] — 62573 — 6287) — 6282 — 6287

—12282223 — 12252222 — 12282322 — 12282223 — 12282322 — 12282322
—12282223 — 12282222 — 12282222 — 122852227 — 12282322 — 12285232
+14z§2§ + 142825 + 14x§2§ + 142525 + 142825 + 142525

+9x8x a3 + 9xfrirs + 9adasat + 9xbeixd + 9xfasa? + 9xfaial
+928x523 + 928xg2s + 98502 + 9x8x3x3 + 9abaiad + 9alaial
+928x527 + 928522 + 98wl + 9xSwixd + 9xSaiad + 9xlaia?
+9x5xiw? + 9a§xgas + 9xsatiad + 9afaias + 9xSadiad + 9afaia?
+348x§a?asa; + 34815k aia3 + 348xSadaas + 34825kt
+30xgxixs + 30xgxixs + 30xgzsws + 30z 252,

—270zyz 372 — 2702 x50 03 — 2707 04230

—270x {vyxias — 270z w3wiws — 2705250207

+33V5(z8zia2 — alax?as + alxia? — alaxiad)

+33v/5(28x5a? — alx2at + 2Saxia? — 28a2x))

+33v5

6,.4,.2 6..2,.4 6,.4,.2 62,4

(z}2570 — 2iza2) + 2i20375 — T]T575)

6..4,..2 6.2 .4 6..4..2 6.2 .4

+33v/5 (25xda? — aSaat + 2Sata? — 2Sa?xd
( 6.2 .4

6,42 6,24 6.4 2
+33v/5 (252522 — a§22ad + aSaial — aalad)
+33v/5(28xiad — a§x?adt + 2Saia? — aala)).
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3 Pencils of surfaces

A homogeneous polynomial f(z)€ Clxg,z1,xq, 23] defines a surface S:=
{f(x) = 0} in three dimensional complex projective space P%. If f is in-
variant under the action of the group G, (n = 6,8,12), the surface S is sym-
metric. The two invariant polynomials in degree 6, 8 and 12 which we found
at the end of chapter 2, define pencils of surfaces in P§.. We have seen that in
degree 2 we have just one invariant, the quadric Qy: {22+ 2? + 22 + 22 = 0},
or equivalently in C* the complex sphere z? 4+ y? + 22 = —1 which has, of
course, “any” kind of symmetries. The equations of the pencils are given by:

Fo(A) 0 Sp(z) + AQn(z) =0, AeP!

For A = 0 we get the surface {S,(z) = 0} and for A = oo we get the
multiple quadric {@,(x) = 0}. In this section, after some general results,
we calculate the base locus of the pencils, i.e. the set of points p € P2 s.t.
Sn(p) + AQn(p) = 0 for all A € P'. For simplicity we denote the surfaces
{Sn(xz) =0} and {Q,(x) =0}, n=6,8,12, by S,, and @,.

Observe that the pencils are invariant under the action of bigger groups,
more precisely, let C' denote the matrix given on page 17, then

Lemma 3.1 (i) The group < G,,C > has order 2 - |G|, n = 6,8,12. Fz-
plicitly

| < G, C > | =576, | <Gs,C>|=2304, | < Gi,C > |=14400.

(ii) The surfaces of the pencil F,(\) are invariant under the action of <

G, C >.

Proof. (i)The set C' - G,, = {C - g| g € G, } is contained in < G,,,C > and
has |G,,| elements. Moreover C? = I and Co(p, q)C = o(q,p) € G, therefore
| < Gn,C > | =2-|G,l.

(ii) The matrix C' maps a point (zg : z; : 29 : 23) € P% to (zg: —x1 1 —29 :
—x3). The surfaces in F,,(\) are defined by polynomials in the x;’s squares,
therefore are invariant under this coordinate transformation. O

We do, now, some identification. Define

He = {20qo + T1¢1 + 2202 + 23q3] (20, 21, T2, 23) € C4}:

then P(Hc)2P?. Hence in the basis ¢y = < (1) (1) ), = < (Z) _OZ >, @ =

<_01 é);%:(? é>,Wecanwriteapointaj:(a:0:acl:xQ;xS)eP?C
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as

Ty + il‘l To + il‘g
T = . . .
—X9 +1T3 Xg— 1T

We have det(z) = a3 + 22 + 23 + 22, if det(z) = 0, then = € @y, hence
similarly to [22], we identify P2\ @, with PGL(2), the projectivization of the
space of invertible complex 2 x 2-matrices. We can explain this identification
in another way. Consider the Segre embedding, which is the analogous in
the projective case of the map (2) on page 16,

P! x P! P
((CLO : al), (bg . bl)) — (agbo : a0b1 : a1b0 : albl).

The points of P! x P! satisfy

dor (e o) o

a1b0 aq b1

So they correspond to the rank one matrices in the projectivization of the
space of 2 x 2-complex matrices. The complement P2\{P' x P'} is identified
with PGL(2).
Often we will identify a point of P} with the corresponding matrix without
mentioning it.

Definition 3.1 Let GC PGL(4,C) be a group acting on P%. Then z € P},
is called a fiz point if there isa o € G (0 # £ 1), s.t. 0z = z. We call

Fix(z) =Fixg(2) :={g€ G | g2 =2} CG
the fiz group of z and
O(z) = Og(z) = {9z | g € G} C P
the orbit of z. We have the formula:
[Fix(2)| - [O(2)] = |G| (5)

Definition 3.2 We call a line L C P2, a line of fiz points (or fiz line) of an
element 0 € G, (n = 6,8,12) if for every x € L holds ox = x

Proposition 3.1 The matrices o(p,1),0(L, q) € G, have in P two disjoint
lines of fix points each. These are contained on the quadric Qs and belong to
one ruling, respectively to the other ruling of (2.
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Proof. Using the lemma 2.2 we see that the matrices o(p,I), o(I, ¢) have two
eigenvalues with multiplicity two each. The eigenspaces are lines of P} and
these are spanned by points, which correspond to matrices of rank one (cf.
lemma 2.2). By the identification given by the map (2) on page 16, it follows
that the fix lines of o(p,I) are lines of the ruling {v} x P' and the fix lines
of o(I, q) are lines of the ruling P' x {w}, v, w € P'. O

3.1 Base locus

Definition 3.3 The base locus of the pencil F,,(\), n = 6, 8,12 is the variety

{x € PL| S,(2) + AQu(z) = 0 for all A € P'}.

Observe that if a point p is in the base locus, in particular S,(p) = 0 and
Qn(p) = 0. On the other hand the points x € P} s.t. S, (z)= Qn(z) = 0
are in the base locus. Hence the base locus is the intersection S, N @,. In
particular it is invariant under the action of G,,.

Since @, is a multiple quadric, Q,(7) = (¥2 4+ 22 + 22 + 22)2, the base locus
is not reduced. Define B,:= Q> N S,,.

We consider now the groups o(G,I) and o(I,G), (G= A4, Si, As) which
modulo {1} are isomorphic to the subgroups 7', O and I C SO(3). It is a
well known fact that under the action of these groups there are orbits of the
following lengths,

tetrahedron | octahedron | icosahedron

12, 6, 4 24,12, 8, 6 | 60, 30, 20, 12

Moreover, observe that

i) the group o(G,I) acts on the lines of the first ruling {v} x P' and lets
invariant each line of the second ruling P' x {w}. Vice versa o(I,G) acts on
P! x {w} and lets invariant each line of {v} x P

ii) Denote by £,, L] the sets of lines in {v} x P, resp. P' x {w} of the
orbit of length n. The matrix C' maps lines of £, to lines of L] .

Using these facts we show

1) the variety B, is reduced, i.e. does not contain multiple components.

2) The base locus splits in 2n lines, n of each ruling of Q.
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Proof of 1). By Bezout’s theorem deg(Qs N S,) = 2n. If Q3 N S, is not
reduced then there is a component V' C Q2 N S, s.t. 2 and S,, meet with
multiplicity at least two, this is the case when V' is singular on S, or S, and
(- are tangent at V. Consider a line L of one of the two rulings, not in B,
and which meets V' in at least one point. W.l.o.g. assume L in the ruling
{v}xP". Let x € LNV. We have mult,(L - S,) > 2. The group o(I, G) acts
on L, so we consider the orbit of x under this group. By the table on page 35,
we see that L and S,, meet at more then n points computed with multiplicity,
so LCS,,. This contradicts the assumption. We have shown that Qs N S,, is
reduced. 0

Proof of 2). Take a line L of the first or of the second ruling L € B,. The
curve B, has bi-degree (n,n) on Qq, so |L N B,| = n. W.l.o.g. assume that
L is in the ruling {v} x P'. The group o(I,G) acts on the points of L. Let
z € LN B,, then by the table on page 35, the orbit of z under ¢ (I, G) must
have length n. Hence x belongs to a line of £. As we have infinitely many
lines like L, the lines £, are contained in B,. By ii) above and lemma 3.1
the lines in £,, are contained in B, too. O
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4 Singular surfaces

In this chapter we show that the general surface in the pencil F,(\) (n =
6,8, 12) is smooth and we find the singular ones. After some general consider-
ations on the singular points of the pencils, we show that each pencil contains
exactly four singular surfaces, which have nodes and no further singularities.

Lemma 4.1 Let p be a singular point on a surface of the pencil F,,(\) (not
on Qn ), then p is not contained in the complex quadric.

Proof. Let p be a singular point on the surface F,(\g): Sp(x) + A@n(z) =0
and assume that p €Q),. We have

GlSn(p) + )\O@Qn(p) =0 forall s = 0, 1, 2, 3. (6)

Since Q,(p) = 0 we get S, (p) = 0 too. Moreover since 3;Q,(x) =nxz;(z3 +
2+ 22 +22)271, we get 3;Q,(p) = 0 too. The equality (6) gives 9;S,(p) =0
for all ¢+ = 0,1,2,3. This shows that p is a singular point of ) N S,,. This
consists of 2n lines which meet each other at n? points. Hence p must be
an intersection point of two lines. If S, is singular at p it follows that S, is
singular at all the n? points of intersection of the lines in the base locus, in
fact they form one orbit under the action of o(G,T) and o (I, G) (notation of
chapter 3). In particular S, has n singular points on a line L in Q2N S,. A
hypersurface 9;S,, =0 (i = 0, 1,2, 3) has degree n — 1, therefore it intersects
L in n — 1 points. So S, has at most n — 1 singular points on L. It follows
that L is singular on S,,. Hence S,, and (), meet at L and so at all the 2n
lines of (Yo N S, with multiplicity at least 2. This is not possible, in fact
deg(Q2 N S,)= 2n. This shows that pgQs. O

Proposition 4.1 The general surface in the pencil F,(\) is smooth.

Proof. The general surface in the pencil is smooth away from the base locus
(Bertini’s theorem, cf. e.g. [12], p.137). The base locus is the set QQ; N S, C
(2. By lemma 4.1 we have no singularities on Q5.

Proposition 4.2 A surface S € F,(\) (not Q,) has only isolated singular-
ities.

Proof. Assume that S:= {Q,(z) + M\Sn(z) = 0} contains a singular curve.
This meets () in at least one point p, which is singular on S. By the lemma
4.1, this is not possible. O

Resuming the results about the surfaces of the pencils F,(\):
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e the general surface is smooth,

e the surfaces in the pencils, different from (),, are irreducible and re-
duced,

e the singular ones (not @),,) have only isolated singularities.

Proposition 4.3 A singular point on a surface in the pencil F,(\), n =
6,8,12, is a fix point under G, in sense of definition 3.1. Moreover, as
vector of C*, it is eigenvector of a matriz with eigenvalue +1 or —1.

Proof. 1t is possible to obtain a first rough estimate of the maximal number
of singular points on a surface S of degree n in P} in the following way. If S
has equation {F = 0} then a point on S is singular if and only if 9;F(p) = 0
for all i = 0,1,2,3. The singular points on S are solutions of {9, F(p) = 0,
i = 0,1,2,3}. These are equations of hypersurfaces of degree n — 1. By
Bezout’s theorem the intersection of S with these hypersurfaces consists of
at most n(n — 1)? points. Since these are singular on S, they are counted at
n

least two times in the intersection, so the effective bound is 2Z(n — 1)%. In

the table below in the first row we give the number %(n —1)*, n = 6, 8,12,
in the second row we give the length of the orbit of a point under G,,, which
is not a fix point,

n 6 8 12

2n—1)%|| 75 | 196 | 726

orbit 144 | 576 | 3600

Clearly such a point cannot be singular.
Let now z denote a singular point and consider it as vector in C*. Let
o :=o0(p,q)EG, s.t. ox = A\x equivalently

prq b = Az

Consider x as matrix and take the determinant on booth sides of this equa-
tion. We get det(x) = A2det(x). In fact det(p) =det(q)=1, since they are
matrices in SU(2). The equality holds only when det(z) = 0 or \* = 1. If
det(x)=0 then = € @, and this is not possible by lemma 4.1. O

We have seen in lemma 2.2 that if « is eigenvalue of a matrix o €G,CSO(4),
then @ is eigenvalue too. Hence if @ = 1, resp. —1, then @ = 1, resp. —1 too.
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If 0 #41 the corresponding eigenspace in C' has dimension two (cf. lemma
2.2), so is a line in P}. This shows that the singular points are contained in
lines of fix points of elements of GG,. In the next section we describe these
lines.

4.1 Lines of fix points

We describe first how the fix lines of the elements o(p, ¢)#+1 of G,,, which
correspond to eigenspaces in C* with eigenvalues 1 or —1, are determined
by the fix lines of the elements o(p,I) and o(I,¢q). The element o(p,I) has
two fix lines in the ruling {v} x P! of @, and the element (I, q) has two fix
lines in the ruling P! x {w}. Let a, a be the eigenvalues of o(p,I) and L,,
Lq the corresponding eigenspaces in C*, let 3, 3 be the eigenvalues of o(I, ¢)
and Lg, Lz the corresponding eigenspaces in C*. Moreover let z; € L, N Lpg,
29 € LaNLg, 23 € LaNlLg, 24 € LoNLg. The 2}s are eigenvectors of the matrix
o(p, q) with eigenvalues a3, @3, @5 and af3. If one of these eigenvalues is 1
or —1, then the conjugate eigenvalue is 1 or —1 too, so o(p,¢q) has a whole
line of fix points in P%. E.g. if a8= af=1 or —1, then the line < z;, 23 > is
a fix line of o(p, q). See picture below

24 21 L
[0

Z3 ) L.
[0

Lj Ly

Using this construction we give the following lemma that we will use later.
We use the same notation as above.

Lemma 4.2 Let L denote a fiz line of o(p, q)€G,, and assume that L meets
the base locus of the pencil F,()\). W.l.o.g. let these intersection points
be 21,23 as above. Then for each surface S # @, in the pencil we have
mult,, (L -S) =1.

Proof. By lemma 4.1 the points z;, i = 1, 3, are smooth points on each surface
(not @) in the pencil F,,(\). The lines of the two rulings of ) which meet
at z;, ©« = 1,3, are lines of the base locus, hence are contained in S. The
tangent space of S at the z; is the plane spanned by these two lines. Clearly
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this plane does not contain L, hence L cannot be tangent to S at z;, ¢ = 1, 3.
O

In the table below we give the conjugacy classes under G, of the elements
in G, which have eigenspaces of dimension 2 in C* with eigenvalue 1 or —1
(cf. table on page 15 and proposition 2.2). We use the notation of chap-
ters 1 and 2. In particular when we write [+o] we mean the two distinct
conjugacy classes [+o] and [—o]. Of course these elements have the same

fix lines. Observe that the elements in the conjugacy classes [m3ms], [T2m8);

(msml], [m2mi); [mamy], [—mimh], have two by two the same fix lines, so we
consider them together. The elements in the conjugacy classes [094], [m47)]
have the same fix lines too. The latter is not trivial and we prove it.

Proof. The element mym),= o(p4, ps) has just one line of fix points which is
a line of fix points of o(p3,p3) = 0103 € [0 too. The element —a(p4, p})
€ [0(p4, p4)] has the other line of fix points of oy03 as fix line. We identify
ps €SU(2) with a permutation of Sy. In fact via the map p defined on page
6, p(ps4):= R4€SO(3) (cf. chapter 1) and it corresponds to the permutation
(1234) of section 1.3. In Sy the square of an element of order 4 is an even
permutation of order 2 and each such permutation is the square of a permu-
tation of order 4. Hence the fix lines of the elements in [my7)] = [0(p4, p4)]
are the same as in [94]. O

J

J

Under the conjugacy classes we write the number of the distinct eigenspaces
in C*, a short explanation of this follows.

Conjugacy classes with eigenvalues +1

G | [o24] [Emymy) [Eminy’]  [Erims], [Emymy]
18 16 16

Gs | [o24],[Emam)]  [Emam)] [mymymim)]
18 32 72
[m3m404] ooy )]
36 36

Gz || [024] [Emiosmiod] [Emsml], [Emims]
450 200 72
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In the case of [o94], [m3mamim}], [73m404], [o2mi 7] each matrix has two distinct
fix lines. Since o, —o are in the same conjugacy class, if n is the total number
of elements in a conjugacy class, we get just 2 - 5= n distinct fix lines. The
conjugacy classes [m37}] and [r37%] under G contain 16 elements each, with
just one line of fix points (this follows from the table on page 15). So we have
16 distinct lines of fix points. Observe that if we use again the notation of
the construction on page 39 and the fix line of w37} passes through the points
21, 73, the fix line of 737§ passes through the points zo, z4. This shows, in
particular, that these matrices have distinct fix lines.

The conjugacy classes [r375] under Gy and [r209m204], [7575] under G5 have
order respectively 64, 400 and 144. Now the elements w37, (7202)%(1204)?

and wiri are in these conjugacy classes and have the same fix lines, hence
we get just 62—4 = 32, 43—0: 200 and %: 72 distinct fix lines for the elements

in each conjugacy class.

Lemma 4.3 If [o] denotes a conjugacy class in the previous table, then the
fix lines of the elements in [o] form one orbit under G,. Moreover, the fix
lines of the elements in [oomim)] are in the orbit of the fix lines of the elements
in [m3m404] under the action of the matriz C of page 17.

Proof. The statement is clear when o has just one line of fix points. Moreover
Crymyo4C ™ = 097}, so the last assertion is clear too. We are left to prove
that the two fix lines of the elements in [094], [m3mymim)] or [m3ma04] are
equivalent under G,,. The latter are eigenspaces of C* with eigenvalues 1 and
—1. Remember that if 7 is an element in one of the previous classes then
—m is in the same conjugacy class. It has the same eigenspaces but with
eigenvalues interchanged. So we can find a matrix in ,, which maps one line
to the other and vice versa. O

This in particular shows that every GG,-invariant property, which holds for a
special fix line of an element in a conjugacy class above, holds for each other
fix line of the elements in the same conjugacy class.

Lemma 4.4 The intersection points of the previous lines are real. In par-
ticular they are not on the quadric.

Proof. Let L#L' be fix lines of the elements o, 6/ € GG,,. They descend from
eigenspaces in C' with eigenvalue 1 or —1. Let z € LN L'. Considering x as
eigenvector in C*, we have ox = ax and o'z = Bz, with a,3= 1. We have
also o = 6T = o and T = ¢'T = 0'Z, since the matrices o and ¢’ are real.
Hence 7 is eigenvector with the same eigenvalue as x. As point of Py, this

means that z € LN L' too, but L # L' therefore x = %, so x is a real point.
O



42 4 SINGULAR SURFACES

We will see that the singular points of the surfaces in the pencils are inter-
section points of these lines. This lemma shows that they are real points.
From now on, if not explicitly stated, we consider just fix lines of elements
belonging to the conjugacy classes in the table on page 40 (eigenvalues +1).

4.2 Configurations

We recall the definition of space configuration of lines and points. For more
details cf. [7], p.12.

Definition 4.1 A space configuration of lines and points is a system of [
lines and p points s.t. each line contains 7 of the given points and each point
belongs to A lines. We say that we have a (p,,l;) configuration. In this
situation

p-A=1-m. (7)

On pages 38, we have seen that the singular points are on lines of fix points.
Assume that S is a G,-orbit of singular points with |S| := Ny. Let Ny be the
number of distinct lines fixed by some elements in a conjugacy class [o]. They
form one orbit under the action of the group G, (cf. lemma 4.3), therefore
if the line L, with oL = L contains ngy of the Ny points, each other fix line
contains ng points too. Moreover we have

Lemma 4.5 Let p € S and assume that ny of the fix lines of the elements
in [o] contain p. Then through each other point of S pass ny lines.

Proof. Assume that p € L with oL = L and let ¢ € S, ¢ # p. There is
a vy € G, with ¢ = yp. Clearly ¢ € vL, which is a fix line of the element
o' = vyoy ! € [0]. Therefore if n; lines pass through p, then n; lines pass
through vp = q. O

In conclusion the fix lines and a set of singular points like S form a config-
uration of lines and points in sense of definition 4.1. Writing again formula
(7), we have

If the ng singular points belong to an invariant surface in F,(\), then all the
Ny points belong to the same surface, so we know that in the pencil we have
a surface with at least Ny singular points.
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Cycles of Ay, Sy, A; and points of P}

In chapter 1 we showed how a cycle in a permutation group Ay, Sy or As
has a representation as a matrix of SO(3). By the map p defined on page 6
it corresponds to two matrices in SU(2) and just to one in PGL(2). At the
beginning of chapter 3 we identified this space with P2\{P' x P'}. In this
way we can think of Ay, Si, As as subsets of P{ and of a cycle as a point of
P?. We will use this fact several times in section 4.4. Here we show

Proposition 4.4 The points of Ay, Sy and As form one orbit under the
action of Gg, Gg and G1s.

Proof. For 1€ Ay, Sy, or As and g€ Ay, Sy or As one has o(q,I)I= ¢, with
o(q,1)€Gs, Gg, G1a. So the assertion follows. O

Proposition 4.5 The points of Si\ A4 form one orbit under the action of
Gs.

Proof. The point paps of P corresponds to the cycle (34) of Sy\ A, and the
matrices o(q,I), ¢ € A,CPGL(2) correspond to cycles of A;. Observe that
the product o(q,1)psps = qpsps is in S;\ A4, in fact considering the sign of
the permutations we find sgn(q) - sgn((34)) = 1 (—=1) = —1. Moreover for
two different cycles ¢, ¢' € Ay we have qps3ps # ¢'p3ps, therefore we can write:

Si\As = {o(q.T)pspslq € As}

This shows that the points of S;\ A4 form one orbit under the action of Gg.
O

4.3 Coverings of P!

A point zo€P2, not in the base locus of the pencil F,,()\), determines a surface
Sn(z) + AQn(x) =0, A = —%EPI, passing through z,. If zo€(@), then
A = 00. Consider now a line of fix points L as in section 4.1. First assume

that L does not meet the base locus. We define a morphism

fi:L—P (9)

T

AEP! consists of the points of intersection of the surface S, (z) + AQ,(x) = 0
with the line L. In general, i.e. away from the ramification locus (for the

via f(x) = —g’;—((m)) if © €Qn, f(x) = oo if x € Q,. The fiber over a point
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definition of ramification locus cf. e.g. [13], p. 299), thisisan : 1 cover of P'.
In fact the line L intersects a general surface of the pencil in n = degF,,()\)
points.

If L meets the base locus @, N S,, of F},(A), then the map f is not defined at
the points of intersection p;,p;. By lemma 4.2 the line L meets each surface
in F,(A\) with multiplicity one at these points. So f extends to a cover

f:L—P (10)
of degree n — 2 having branch points of order § — 1 at p1, p». We calculate
now the degree of the ramification locus of the maps f and f. For this we
recall Hurwitz’s theorem (cf. [13], p. 301):

Theorem 4.1 (Hurwitz) Let f: X — Y be a finite morphism of curves,
and let n = degf, then :

29(X)—2=mn-(29(Y) — 2) + degR,

with R the ramification locus, degR =% (e, — 1) and e, the ramification
index.

Proposition 4.6 The degree of the ramification locus of the morphism f is
2n — 2 and of f it is 2n —6 (n = 6,8,12).

Proof. Apply Hurwitz’s theorem to f and f. O

Put now a:= 3" ., (e,—1) and let LNQn= {p1,p2}. If L does not meet the

base locus then we have e,, = 7, if L meets the base locus then e,, = 5 — 1.
Using now the degree of the ramification locus which we found above we get
in the first case & = n and in the second case a = n — 2. This gives an upper

bound for the number of singular points which eventually occur on L.

Proposition 4.7 The singular points of the surfaces in the pencils are ram-
ification points of the morphism (9), resp. (10).

Proof. The ramification locus of f, resp. f are the points of L where the
Jacobian matrix has not maximal rank. A calculation shows that this is the
case at the singular points. O

In fact, except for the points on the complex quadric, we will see that also
the converse is true, i.e. each ramification point is a singular point.
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4.4 Singular points

We have seen on page 38 that the singular points of the surfaces in the pencils
F,()) lie on lines of fix points. These are the fix lines of the elements in the
conjugacy classes in the table on page 40. By lemma 4.3 we have to analyze
just one line in each conjugacy class. In section 4.3 we defined morphisms
from a fix line L to P! and we remarked that the degree of the ramification
locus gives an upper bound for the number of singular points on these lines.
In this chapter we take a special line in each conjugacy class and we give
the singular points of the surfaces in the pencils F,(A) on it. We found the
singular points and the value of A for which the surface is singular in F, (1))
in the following way. Let {f = 0,9 = 0} be the equations of the line L and
0;Sn(x) + X0;Qn (), i = 0,1,2,3, denote the partial derivatives with respect
to o, T1, T2, 3. The solutions (), (zg : 71 : @3 : 73)) in P! x L of the system

f =0
=0
Fo(A) : Sp(z) + AQp(x) =0

@

give the singular points and the singular surfaces in the pencils. We calculate
them using MAPLE. We give these results in the tables in chapter 6. The
last column of each table will be explained in detail thorough 1),ii),iii),iv)
below. So when we refer to the tables of chapter 6, we mean only the first
five columns. Using the latter, we give a first result

Proposition 4.8 In each pencil F,()\), n = 6,8,12, there is at least one
surface with singular points which correspond to cycles in the permutation
groups Ay, Sy and As. More precisely

surface || sing. points
Fg(=1) || A4

Fs(—=5) || Si\Aq
Fg(=1) || Su

Fi3(0) || As

Proof. We use the identification given on page 43, and the propositions 4.4
and 4.5. The surfaces Fs(—1), Fz(—1), F12(0) contain the point (1 :0: 0 :
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0)€P? which corresponds to the identity. The surface Fi(—7) contains the
point (—1:0:1:0) €P} which corresponds to the matrix

% ( _ZZ z ) € PGL(2).

Via the map p we find the matrix of SO(3)

which corresponds, with notation of chapter 1, section 1.3, to a rotation of
order 2 around an e-axis of the octahedron. O

Then we proceed as follows.

i) We show that the singular points of intersection of a special fix line with
a singular surface form one orbit under the fix group of the line. Hence the
singular points of this surface on the fix lines in the orbit of the given line
form a G,-orbit (cf. lemma 4.3)

ii) All the singular points on the lines in the tables 1,2, 3 of chapter 6 are
double points.

iii) We explain how the fix lines meet each other, so that using the formula
(8): Ni-ng = Ng-nq, we find the singular points on a surface.

iv) We show, if necessary, that the fix lines of the elements in any other
conjugacy class meet a singular surface in points of the G,-orbit of i).
Hence from the tables on chapter 6 and ii) using the degree of the ramification
locus of the morphisms f, resp. f on these lines (cf. proposition 4.6) we get

e the ramification points, not on the multiple quadric, are double points
on surfaces in the pencils. Their number is n if the line does not
intersect the base locus, resp. n — 2 if the line meets the base locus,

e we have no other ramification points on the fix lines, so no other singular
points and singular surfaces in the pencils.

This, together with the tables in chapter 6, shows that:

in each pencil there are exactly four singular surfaces, with double points,
which by i) and iv) form one orbit under G,,.

To show i)-iv) the following facts will be useful. We use the notation of
chapter 1.
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1) Consider a fix line L, of an element o(m,n'). Then for x € L, the
orbit of x under o (7, 1), (I, 7') is again on L,,. In fact these last matrices
commute with o(m, 7'), hence leave the line L, invariant.

2) We have seen in section 4.1 that a matrix of order two in S;CPGL(2)
is the square of a matrix of order four. Consider the matrix ¢g,€S,. There
is a matrix ¢€Sy s.t. ¢>= ¢o. The matrices 0y := (g2, 1) and (g, I), resp.
04 := 0(I,q) and o(I,q) commute. As in 1), we can consider the orbit of a
point on a fix line of the matrix o94 under the action of o(q¢,I) and (I, q),
and of the matrices mymy04, resp. oomym) under the action of o(I, q), resp.
o(g,I).

3) Consider the matrices o(m,n'), resp. o(7v,7') in the same conjugacy
class in the table on page 40 and the intersection point, x, of their fix lines
L;w#L,y. We have o(r, ')z = = and o(v,7')z = z or equivalently

mer’ ™' =2 and a9 =1 (11)
Consider x as a 2 x 2-complex matrix. Since z € @, (cf. lemma 4.1), it is
an invertible matrix, hence we can write the (11) as

v 'rx =7 and x ‘vz =1
Now consider the groups < 7,y >:= G; and < 7',y >:= G5. The point x
defines an inner automorphism of SU(2)

int, : SU(2) — SU(2)
q — 17 gx

which restricts to G5 as
intx|G1 : G1 — GQ. (12)

We identify the elements 7, v, 7', '€ G C SU(2) with permutations of 4,4, S,
or As. So the morphism (12) is in fact an isomorphism between subgroups of
these permutation groups. If Gy = Go= A4, Sy or As, by [24], 11.4.6, p. 313,
the automorphism is an inner automorphism given by an element y € Ay, Sy
or As. Consider y as matrix of PGL(2). We have
y my =7 and y lyy =7,

This means that y as point of P% belongs to LML, . Since the lines are
different, necessarily x = y. So z€ Ay, Sy or As. The automorphism (12)
tells us in fact much more: for each element p€G, we have 2~ 'pa= ¢€G>, so
x belongs to the fix line of o(p, ¢) too.
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4) In section 4.1 we showed that the fix lines of the elements in [oy4] are
the same as those of the elements in [r47)|. The fix lines of the matrices in
[oamim)] are in the orbit of the fix lines of the matrices in [73m404] under the
matrix C' (cf. lemma 4.3). Moreover the surfaces of the pencils are invariant
under C.

We will use these facts several times in the sequel. However, to understand
i)-iv) correctly, one has to keep in mind the tables of chapter 6.

The situation is quite easy for the pencil Fg(\). We can apply 1) above to
each fix line and see that the points of intersection with a singular surface
form one orbit (cf. table 6.1 on pages 65-65). This shows i). Moreover since
in this way they have all the same multiplicity, using Bezout’s theorem and
lemma 4.2 (if the line meets the base locus), we see that the singular points
are all double points, this proves ii). This, together with proposition 4.8,
completes the case of the surfaces F5(—1) and Fg(—1): they have 12 double
points. Using 3), we explain iii) for the surfaces Fs(—2) and Fs(—).

Proposition 4.9 The fiz lines of the elements in [m3my] meet at the points
Of A4.

Proof. Assume that z is an intersection point of L;.#L., the fix lines of
the elements o(m, '), o(7,7') € [r3m}]. Then

'tz =7" and z7'yz =+

If < m >=< v > then m=7 because they are in the same conjugacy class.
So we get m'=" too, but this is not possible since the fix lines are distinct.
We assume < m >#< v > and so < ©' >#< +' >. If for some product
4% = gbiab2 then 7917t = Ab2=02  This is possible if and only if a; = b,
and ay = by. It follows that | < m,v > | > 9, but < m,y7 >C A, and A,
contains no proper subgroups of order > 9, so < w,v >= A4. In the same
way we have < 7', v >= A,. By 3), the point x determines an automorphism

A4 — A4
q — x_qu,

with x € S;. Now, in terms of cycles of A;, x does not interchange the
conjugacy classes of (123) and (132) in Ay, so x € Ay.

Proposition 4.10 The fiz lines of the elements in [T3m8] meet at the points
Of S4\A4.
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Proof. The proof is the same as the proof of proposition 4.9 with the only
difference that such an z interchanges the conjugacy classes, so z € Sy\Aj.
O

Using the formula (8) on page 42 with N; = 16, no = 3 and n; = 1 we get

Ny = 48, the number of singular double points on F5(—2) and F5(—5).

The situation is more complicate for the pencils Fy(\) and Fip()), A\eP!.
First, we show that the singular points on Fg(—1), resp. on Fi5(0) are double
points.

Proof. Consider the intersection with the fix lines of gq4, resp. of w57, then
use Bezout’s theorem and lemma 4.2. O

Combined with proposition 4.8, this completes the description of these sur-
faces.

The surface F5(—3). By 1) the points of intersection with the fix line of 7}

form one orbit and have the same multiplicity, hence this must be 2. This
shows i) and ii). About iii), we have

Proposition 4.11 The lines of fix points of the elements in [m4m)| meet at
the points of Sy.

Proof. Let Ly, 7L,y be the fix lines of mymy and o(y,v')€ [mymy]. If 2=
L,y Lz, then x vz = 4 and 27 'pyx = py. If < v >=< p,; > then
v =7p meN, sov=aplr= (z pyx)"= pP* and y= +'= p. Hence
L,y= Ly, which contradicts the assumption. So < v >#< py > and
< ' >#< ps >. Moreover if 7" py*>= vblp{}f then a; = b; and as = by. So we
get | < v,ps > | > 16, hence < v,p, >= S,;. Similarly < 4/, p, >= S,;. By
3) we have an automorphism

S4 — S4
q — xiqu

with z€ S,. O

Using the formula (8), we find 72 double points on Fy(—2). In this case
we have to show iv) too. By 4), we only need to show that the points of
intersection of the fix lines of m3m404 are in the orbit of these 72 points under
Gs.

Proof. Using 2) we see that the points on these lines form one orbit. The
fix lines of the element o935 are < (1 : 0 : 0 : 1),(0:1:1:0) > and
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<(0:=1:1:0),(=1:0:0:1) >, these are fix lines of a matrix in [my7)]
cf. 4)) They meet the fix lines of m3m404 at the points (1 :a: a: 1), resp.

(
(a:1:—1:—a),a:=1++2. n

The surface Fy(—3). To prove i) and ii) we apply 1) and lemma 4.2 to the

singular points on the fix line of w37}, They form one orbit and hence have
multiplicity 2. By proposition 4.9 and proposition 4.10 these fix lines meet in
points of Sy, so we find 96 singular points on Fy(—2) (use the formula (8)),
this gives iii). To prove iv), we show that the points of intersection of the
fix lines of mymymymy with Fy(—2) are in this orbit.

Proof. Observe that these 96 singular points are the 48 of the surfaces Fg(—1)
and Fg(—1) together. By table 1, we know that the point (0:1:2:1) €
F3(—2) too and is one of the 96. Using the notation of chapter 1 we put

0134:— 010304, 0123.:— 010203. Then

o134(0:1:=1:1) = (=1:1:0:1), o193(0:1:—-1:1) = (1:1:0:1)
o134(0:1:2:1) = (=2:1:0:1), o193(0:1:2:1) = (2:1:0:1)

which shows that the four points of intersection of the fix lines of m3mymim)
with Fg(—2) are in the orbit of the 96 above. O

The surface Fy(—<). By 2) the points of intersection of the fix lines of

Tymaoy with Fy(—7F) form one orbit. So since they have all the same multi-
plicity this must be 2, we get i) and ii). We prove iv). By 4), we have only
to show that the singular points on the fix lines of [m3my7y7)] are in the orbit
under G of the previous points.

Proof. The lines of fix points of oymgmymin€[mymymim)] are < (0 : 0 : 0 :
1),(=1:0:1:0)>and < (1:0:1:0),(0:1:0:0) > and they contain
the points (1:0: —1: —/2) resp (1:+/2:1:0) of aline of fix points of
m3myoy. The fix lines of oom3mymym) meet the surface Fg(— E) in two points
which by 1) form one orbit, so the assertion follows. O

To get iii) we have,

Proposition 4.12 The lines of fix points of the elements in |[wymymimy] do
not meet at the points of Fy(—1%).

Proof. We use 3). Let 1= Ly, nin, N Lyg, With Ly, a fix line of o(p, q) €
[mamamymy], and Lyyp,r o a fix line of mymymymy. We have T pspat = psps
and 2 'px = ¢. Consider the group < psps,p > and < p3ps,q >, where
P,q € [psps]. Assume < p3p; > # < p > and < p3py > #£< q >, S0
| < p3pa,p > | >4, | < p3ps,q > | > 4. We now identify the matrices of
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S, with cycles of S;. The element pypy corresponds to the cycle (34) and we
have two possibilities: p = (12), then | < psps, ¢ > | = 4; p = (13),(23),(14)
or (24), then < pspy,p >= S5 (| < psps, p > | = 6).

a) Let p = (12), then < pspy,p >=< (34), (12) > = {(12); (34); (12)(34); I}
= D, (the dihedral group with 2 -2 = 4 elements), so necessarily ¢ = (12)
too. Since 27 'p3psx = psps and x7'pr = p we get 7 pspapr = pspsp and in
terms of cycles z71(12)(34)z = (12)(34). This means that = belongs to a fix
line of 094. These fix lines contain points of Fy(—1) or Fz(—2) and no other
singular points. So = & Fy(—%).

b) Let S :=< p3ps,p >= S3. We have S’ :=< p3py, ¢ >= S;3 too. Now x
defines an automorphism:

S — 5
q xiqu

and z belongs to a fix line L,,, of o(7y, 7)€ [m3m}]. Again these lines contains
singular points of Fy(—1) and Fg(—2) and no other singular points. So

There are 72 fix lines of the elements in [m3mymi7)]. So we have a (729, Ny;)
configuration with the singular points on Fy(—+%) found above. By the for-
mula 72 -2 = Ny - 1, we find Ny = 144.

The surface Fi5(—). The points on the fix line of w57} form one orbit by

1) , so they have all the same multiplicity which must be 2. This shows i)
and ii). About iii) we have

Proposition 4.13 The lines of fix points of the elements in [msml] meet at
the points of As.

Proof. Let Ly #L; ., denote the fix lines of m57my:= o(ps,ps) and of the
element o (7, 7)€ [ms75]. Let & = Ly N Ly;,. We can assume as usual
< ps >#< 1 > and < p5 >#< Ty >, moreover pe' T = pngQ(” holds if and
only if a; = by and ay = by, therefore we have | < ps,7; > | > 25. Here
| < ps,7i > | = 30 is impossible, because A5 does not contain subgroups of
order 30. Hence we have < ps,7; > = A5 (i = 1,2). By 3), the point x
defines an automorphism

A5 — A5
q +—— z7lqu.

This automorphism is conjugation by some element of S5. However, it does
not interchange the conjugacy classes in As. So x, in fact, belongs to A5CP3..
O
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Using this proposition and the formula (8), we find 360 singular points on
Fi5(—%). We show that the points of intersection of the fix lines of the
elements in [094] and Fi5(—2) are some of these 360. This shows iv).

Proof. Observe that the point = (0: 0: 7 —1: 1)€ Ly N Fip(—5) is
on the fix line < (0:0:1:0),(0:0:0:1) > of 013:= 0103. Moreover the
points o(q;, Dz =(0:0:1:1—7), o194x = 0109042 = (0:0:1:7—1) and
0124(0:0:1:1—=7)=(0:0:1—7:1) are on the fix line of o3 too. This

proves the assertion. O
The last two surfaces in Fio(A) are more difficult to analyze.

The surface Fi5(—=5). The points of intersection with the fix line Lpymp2 of

Ty € [T2oamioy) are

Qo = (0:1:1:0), Q1 = (0:=1:0:1),
Qs = (0:0:1:1), Q3 O0:74+1:247:1),
Qi = (0:7—=3:7-2:1), Q5 = (0::(7=3)::(2+7):1).

The first three and the last three points form one orbit under the action of
o(ps3,I) . The matrix

O'(C,C) = —= eGlg,

with ¢ = Q1p5_1€fi5 is s.t. o(e,¢)Qo = Q4. So the points Qy, Q1, Q2, Q3, Q4,
@5 form one orbit on L,mgz. In particular they have all the same multiplicity,
so this must be 2. This shows i) and ii). We show that these lines meet in
such a way that the surface Fio(—y) has at least 300 singular points. This
explains iii).

Proof. A calculation with MAPLE shows that the points ); are in fact nodes
on Fi5(—35) (a more precise explanation will be given at the end of this
chapter on pages 54-55). Since degFi(—+5)= 12 they are at most 645 by
Miyaoka’s bound (cf. [21]). Hence some of the lines of fix points of the
elements in [r30ym 0] must intersect at these points. Let 2 €L, 7,NL24, 7120,
where L, ,, denotes the fix line of o (7, 7y) € [r2097m204]. Then 7 'p2gox =
p2qo, and x7'mix = 75, We assume < p2gy ># < 71 > and < pigy >#< Ty >.
We have the following possibilities:

a) < piqa, 71 >= Aj therefore < piqy, 7 >= Aj too. By 3) we get © € As,
but this is not the case.
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b) G:i=< piqo, 71 >= Ay and G':=< pig, 7 >= A too. The point x
describes an isomorphism

G — G
q — x_qu.

In particular x belongs to four lines of fix points of elements in the conjugacy
class [r209m204] and to three lines of fix points of elements in the conjugacy
class [094]. Observe that we cannot have more lines of fix points containing
x. Otherwise applying again 3), we find x€A5. Using formula (8) we have
2006 = Ny - 4, so Ny = 300. O

To prove iv), we show that the two points of intersection of the fix lines of
the elements in [094] with Fi3(—55) are in the orbit of the 300.

Proof. We have seen that a singular point of the 300 is contained in three
fix lines for elements in [094]. These lines, by table 3, contain two singular
points of Fi5(—z5), which, by 1), form one orbit. This proves the assertion.

O

The surface Fia(— 243) Consider the points of intersection of Fis(—25&) and

the fix line of 120,720y, By 1) they form an orbit of length three under
T209. So we get 1).

Proof of ii). Consider the morphism f of page 43 on this line. The degree
of the ramification locus is 12 (not considering the intersection with Q12).
The points of intersection with the surfaces Fi5(0) and Fi5(—45) have multi-
plicity 2, hence an easy calculation shows that the points on Fio(— 243) have
multiplicity 2 too. O

Now we want to explain iii).

Proposition 4.14 The lines of fix points in [n2oyn04| do not meet at the

points of Fio(—2%).

Proof. The proof is very similar to the proof in the description of the surface
Fi5(—45) on page 52. So, with the same notation, we have to show that in case
b), the point z is not on Fi(—2%). On the contrary assume that z is one of
the points in Fyo(— 243)ﬁL,r2(,27r .- Then we have a (2003, Ny,) configuration
with the fix lines of the elements in [r20,7F204] and using formula (8) on page
42 we find Ny = 150. With the fix lines of the elements in [094], we have
a (450,,, 1503) configuration and so ny = 1. But if a line of fix points of
an element o(q,q') € [094] contains the point = then it contains the point
o(q, 1)z too, therefore ng > 2 and we get a contradiction. So z & Fyo(—22)

243
and Ny = 600. O
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This shows that we have at least 600 singular points on Fi»(—2%). Finally

we prove iv). We show that the points on the fix lines of the elements in
[024] are in the orbit of these 600 points.

Proof. The point z = (0:1:7—2:0)€ Ly25yn25, N Fi5(—£2) is contained
in the fix line < (0:1:0:0),(0:0:1:0) > of 01934 := 01020304€ [024].
Following notation of chapter 1, put 0y, := 0,09 and 014 := 0704. The points
opr=(0:2—7:1:0),oux=(0:7—2:1:0)and 04(0:2—7:1:0) =
(0:1:2—7:0) are on this line too. O

We now show that the singular points are in fact all nodes (= ordinary double
points Ay).

Definition 4.2 A point p on a surface S C P given by the equation {F =
0} is a node if it is a singular point and in an affine neighborhood of p with
coordinate z,v, z, the rank of the Hesse matrix H at p is maximal, more
precisely:

o’F  9’°F  9*F
31281 812334 81232
— 0°F 0°F 8°F _
rankHy, = rank 9udr  Dydy oy = 3
9’F  9’°F  9*F
0z0r  0z0y 020z Ip

Equivalently p is a node if it is analytically isomorphic to the vertex of a
quadratic cone (cf. [1], lemma 3').

We show that the point I=(1:0:0:0) is a node. In affine coordinates
v =2,y =2, 2= 2Iis the origin (0,0,0). The equation of the surface

Fs(—1) becomes
0 - 1+1‘6+y6+26+ 15(:E2y2+1,2z2 +y222 +x2y222)
—(1+2* +y*+2%)°
= —3(2? 4+ y? + 2?) + terms of degree > 3.

The Hesse matrix at the origin is

3 0 0
0 -3 0 |,
0 0 -3

which clearly has rank 3.
The surface Fg(—1) has equation

0 = 1+x8+y8+z8+14(1;4+y4+z4+x4y4+x4z4+y4z4)

+1682%y%2? — (1 + 22 + % + 22)*
= —4(2? + y* + 2?) + terms of degree > 3.
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The Hesse matrix at the origin has again rank 3, therefore the origin is a
node. In the case of F5(0) the calculations are more complicate. Using the
expression on page 31, we find the equation of Sjo= Fj5(0) in the previous
affine coordinates

0 = 2(z%+y*+ 2%) + terms of degree > 3.

The Hesse matrix computed at the origin has rank 3 as in the previous cases,
hence we have a node again. This shows that all the points of A4, S; and Aj
are nodes on the surfaces Fg(—1), Fg(—1) and Fi5(0). For the others singular
points in the pencils, the method is the same, we eventually translate the
surface in such a way that the singular point coincides with the origin of an
affine chart. In any case calculations with MAPLE show that the singularities
of the surfaces in the pencils are nodes (in fact one has to check it just for
one singularity on each surface, the other singularities are in its orbit under
the action of Gy,).

In the following table we collect the values of A for which we have singular
surfaces in the pencils F,(A\). We denote by N,,(\) the number of nodes on
such a surface. Denote by S the sum of the numbers of singularities and by
A the alternating sum of the numbers of singularities of the four singular
surfaces in each pencil. For convenience we give these number here, in the
last two columns of the table. We shall use them in the next chapter.

n

6 | A -1 —2/3 ~7/12 | =1/4 || S | 120
Ng()) |12 48 48 12 A0

8 | A ~1 —3/4 ~9/16 | —=5/9 || S | 336
Ns(A) |24 72 144 |96 ||A]0

12 | A —3/32 | —22/243 | —2/25 | 0 S | 1320
Niz(A) [ 300 | 600 360 |60 | A]|0
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5 Final Remarks

In this last section we consider the numbers S and A given in the table on
page 55. We show that these are determined by the topology.

5.1 The number of nodes in the pencils F),(\)
Consider the variety

L= {(A: ), 2) € P X PP | AQn(2) + pSn(z) = 0},
We have projections

r, ¢ P x P

pry N\ DIy
P! P,

The projection pr; is a flat morphism (for the definition of flat morphism
cf. e.g. [13], p. 256) with fibres of dimension 2. Let I',, denote the fibre
pr; 1(\) over a A € P!. By the theorem on fibre dimension (cf. [13], p.256,
proposition 9.5) we get

dimT', = dim[,, +dimP' = 3

On the other hand the fibre over a point z; € P?, not in the base locus, is a
point of P'. More precisely is the value (X : 1) € P! s.t. AQy (z0) + pSn(z0) =
0. So dim(pry'(z)) = 0, for all z € P3\B,. If 2o € B,, all the surfaces
of the pencil F,(\) contain the point xg, so pry'(zg) = P'. We can write
T, =P'xB, UT,\{P'xB,}. The restriction pr, : T,,\{P' xB,} — P3\B, is
a surjective morphism with fibres of dimension 0, therefore is an isomorphism.
We now calculate e :=e(T',), the topological Euler-Poincaré characteristic of
[',. Using the additivity of e we have e(T',) = e(P' x B,) + e(T',\P* x B,).
By the isomorphism pr, on P! x B, we get

e(Cn\{P' x By}) = e(P’\B,)
= ¢(P?) —e(B,)
= 4—e(B,),

on the other hand
e(P' x B,) = e(P'")-e(B,)

Putting together
e(Tn) =4—e(B,) +2-e(B,) =e(B,) +4. (13)
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The reduced base locus B,, consists of 2n lines {Ly,...,L,} U{L},.... L.}
C . They meet each other at n? points. For two intersecting lines L;, L
we have
e(L; UL = e(L;)+e(L)) —e(L;NL
= 2e(P') —e(L; N L))
= 4-1
= 3,

so e(B,) = 2n-e(P')—n? = 4n—n? = n(4—n). Substituting in the expression
(13), we find

e(T',) =n(4 —n) + 4. (14)

Consider again the first projection pr;. Following [3] proposition 11.4, p.97,
we denote by X,e, the generic (smooth) fibre of the map pr;, by X, the fibre
over a point s € P! and by sy = (1:0), s1, So, 53, 54 € P! the critical value
of pry, i. e. in our situation the value of P! s.t. X, is the multiple quadric
Qn and X, i = 1,2,3,4, is a singular surface with nodes (in chapter 4 we
showed that we have exactly 4 such surfaces in each pencil). Applying now
[3], proposition 11.4, on page 97, in case of surfaces we get

4

e(Tn) = e(Xgen) - €(P') + ) (e(X,,) — e(Xgen)) + (6(Qn) — e(Xgen))- (15)
i=1

The calculation of (X, ) is standard and we recall it later. We now calculate

e(Xs,). Each of the surfaces X;,, i = 1,...,4, has nodes, so let v; : X;, —

X, denote the blow up of these surfaces at the nodes. A theorem of Atiyah

(cf. [1], theorem 1) shows that e(X,) = e(Xgen). Let now py,...,pm, be the
nodes of X, then we have

e(XSi) = 6(X5i) +Ze(pj)
j=1
= e(X,,) + {number of nodes on X}
= e(XSZ‘) + m’L:
so e(X,,) = e(X,, e(Xgen) — m;. Recall that e(Q,) = e(Qn)rea =

e(Q2), and e(Qy) = e(P* ><_IP’1) = e(P!) - e(P') = 4. Substituting in (15), we

get

e(Ty)

I
[\
o)

—~
>
o
=
~
+
]
o)
—~
>
o
s
~
E
)
—~
>
o
e}
=}
N—r
N—r
+
—~
e~
|
)
—~
>
o
e}
=}
N—r
N—r
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with v :={total number of nodes in the pencil F,,(\)} we can write
e(l'n) =4+ e(Xgen) — 1. (16)

We calculate now e(Xge,). As remarked this calculation is standard, cf. e.
g. [13], p. 433-434. We will use the same notation as [13]. We write X,
:= X, it is a hypersurface of degree n in P%. Consider the exact sequence of
the tangent bundle Tx on X

0 —Tx — T]}D3|X — Ox(n) — 0

Remember that for a compact variety the second Chern class co(X) = e(X),
where by definition ¢o(X) := ¢o(Tx). By the properties of the Chern poly-
nomial (for the definition and the properties cf. [13], p. 429-431), we get

e(Tx) - e(Ox(n)) = Ct(%3§)> (17)
a(Tx) = a(Ox(n))’

Let H denote the hyperplane section on X, then
c(Ox(n)) =1+ (nH)t.
We have the exact Euler sequence
0 — Ops —> 4 - Ops(1) — Tps —> 0,
c(4 - Ops(1))

Ct(Op:%)
We have ¢;(4 - Ops(1)) = (1 + ht)* and ¢;(Ops) = 1, therefore we get

and get ¢;(Tps) = . Let h denote the hyperplane section on P3.

ci(Tps) = (1 + 4ht + 6R%t* + o(t?)).

Substituting in (17) and developing as Taylor series, we get

1
1+ (nH)t

a(Tx) = (1+4Ht+6H** + o(t?))(1 — nHt + n>H?*t* + o(t?))
CQ(T)() = (6 —4n + TL2)H2

Since H? = H - H = n we find e(X) = ¢o(Tx) = (6 — 4n + n?)n.
Putting this value in (16) we get

e(T,) =4+ n(6 —4n +n?) — v.
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Using (14) we find

nd-—n)+4 = 4+n(6—4n+n?) —v,
v = n(n?—-3n+2).

For n = 6, 8, 12, we find the following total number of nodes in Fg(\), Fg()),
F12()\)Z

n |l 6 8 12

v || 120 | 336 | 1320

They are in fact the same numbers, S, which we found in chapter 4 (cf. table
on page 55).

5.2 Morse theory on the pencils F,,()\)

We have seen that each point of P2, outside the base locus, determines a
surface in the pencil F,,(\). We consider just the real points, i.e. the points
of P2, and define a map for each n = 6,8, 12:

¢ P2 — R
Sp()

r o =

Sn(p) = ince
~ ) Qn(z) =0.S

Qn(z) # 0 for all z € P}, the map ¢, is C*°. We show that:
1) The critical points of ¢, are singular points on the surfaces in the pencil
F,(X\) (for the definition of critical point cf. [20], p. 4).

2) The Hesse matrix of ¢, at a critical point p, up to multiplication by a
positive scalar, is equal to minus the Hesse matrix of F,,()\) at p, )\:—5"—((’;)).
Proof. 1) A point p € P} is a critical point of ¢, if and only if all the

derivatives 0;¢,, i = 0,1, 2, 3 vanish at p. We have
_ Sa(7) —0;Sn(2)Qn(x) + Sp(7)0;Qn(x)
and these are all equal to zero if and only if p is a singular point on the

surface {S,(x) — gz(é?) Qn(x) = 0}.

In fact a point p € P} belongs to the surface S, (z)

i (

)\p:(

)\p
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2) We consider the second derivatives 9;0;¢,, 7,7 = 0,1,2,3. We have

o Sal@) 0j(=0i5n (@) @n () + 5u(2)0,Qn(2))
8]31(Qn(x))\p Qn(p)Q )
 0,(-05,@)Qu(@) + Su(2)0Qu (@)
n(p)?
; x——Sn(p) Qn () for all i = erefore we get:
Now 9;S,(x) = o) 0;Qn () for all 0,1, 2,3, theref get:
v~S"(x)——"x T x)0;0; x;
ajaZ(Qn(x))‘p_( ajalsn( )Qn( )+Sn( )ajalQn( ))\an(p)g-
Hence the Hesse matrix of Fn(—gz((’;))) at p is
00,(50() = 2L Qu(a))) = QP @2~ 5 )

We have seen that the values of A € P' s. t. F,()) is singular (n = 6,8,12)
are all real and the singular points too, therefore these are the critical values
and the critical points of ¢, (by 1)). The indez of a critical point of ¢, is
defined as the number of negative eigenvalues of the Hesse matrix of ¢, at
p, hence by 2), of minus the Hesse matrix of Fn(—g’;((’;))) at p. Clearly if
p € F,()\) is a critical point with index m, then all the points in the orbit of
p under the action of G,, have the same index. With the help of MAPLE it
is possible to calculate the index of each singular point (cf. chapter 4, pages
54-55, where we calculated the Hesse matrix of Fy(—1), F3(—1) and Fj5(0)
at T). In the following table we give the degree n of the pencil, the value A
for which F,,()) is singular, the index of the singular points of Fy()) and the

number C; of critical points with this index (cf. table on page 55):
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n

A -1 —2/3 —7/12 | —=1/4
6 | index | 0 1 2 3

Ci 12 48 48 12

A -1 —3/4 —9/16 | —5/9
8 | index | 0 1 2 3

C; 24 72 144 96

A —3/32 | —22/243 | =2/25 | 0
12 || index | 0 1 2 3

C 300 600 360 60

A theorem of Morse (cf. [20], p. 29, theorem 5.2) gives the following formula
for the Euler Poincaré characteristic of P§(we use the notation of [20]):

X(P%) = i(—l)zC’z = CO - Cl + CQ - 03. (18)

1=0

In fact this formula holds when given a € R, ¢,!(a) contains at most one
critical point, which is not the case here. In our situation on a fiber ¢_'(a),
a € R, the critical points (if there are) have all the same index, so using
remark 3.3, p. 19 of [20], we see that the theorem holds in this case too.
Substituting the values of the table above on the right hand side of the
equality (18), we get

n = 6: 12 -48+48—-12 = 0
n = 8: 24 -724+144-96 = 0
n = 12: 300 — 600 + 360 — 60 = 0,

this agrees with the well known fact x(P%) =0 (cf. e.g. [10], p. 100).

Using now the local equation of ¢,, at a critical point p (cf. [20], p. 6, lemma
2.2), it is possible to show how the surfaces of the pencils behave close to
p. In the following picture we write on the left border the index of a critical
point p, then the local equation of ¢, at p. This is 0 at p, so the fourth
column shows how the surface which contains p looks like at p in P3. For
¢ < 0 or ¢ > 0 we see how the other surfaces of the pencil behave close to p.
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index

local equation

4yt +22=c

2?4+t —-22=c

—22 -y’ + 22 =c

2=

c<0

l
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We choose a represent o in each conjugacy class of the table on page 40 and
we write it in the first column of the following tables with its order. Then we
give the number N; of fix lines of the elements in its conjugacy class, and the
fix line(s) of the chosen matrix o. In the third column we write the surfaces
of Fy,()\), which the fix line(s) of [¢] meets at singular points. Then we give
the singular points, which are also the ramification points of a morphism
(9) or (10) and eventually the intersections with the base locus. Finally we
write the configuration of the fix lines of the elements in [o] with the singular
points of the surfaces in the pencil. We put @ :== 14++v/2 and 7 := %(1 ++/5).

6.1 Bi-tetrahedral group G
Matrix | N; | Fix line(s) Surface | Fix points Config.
0 1 0 1
024 0 0 0 0
orderd | 1] o Fo(=1) 1 ]'fo (185, 123)
0 0 0 0
1 1
0 0
Fs(=0 | | 1 || 27 || (18212s)
0 0
+2 points in the
base locus
0 0 0 0
0 1 0 1
< 0 ) 0 FG(_]') 0 ) 0 (182a ]-23)
1 0 1 0
0 0
1 -1
Fs(—i) E 0 (185, 123)
1 1

+2 points in the
base locus
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Matrix | N; | Fix line(s) Surface | Fix points Config.
- 1 0 3 3
TR B Y I PR DG N R Y Bl I NCTREY
order 3 0 1 1 1
0
1
—1
1
1 -1
Ry || L | asez)
1 1
1
0
0
0
B 0 0 0 0
s 1 -1 2 -1
(ﬂ-?%ﬂ-é) 16 < 1 ) 0 Fﬁ( %) 1 ) 1 (1637481)
order 6 0 1 1 5
0
1
2
1
0 0
e A R
0 1
0
0
1
1
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6.2 Bi-octahedral group Gy
Matrix | Ny | Fix line(s) Surface | Fix points Config.
0 1 1 0 1
024 0 0 0 0 0
order 4 | 18 < 1] 0 )| Fs(=1) o'l 1 | +1 (184, 245)
0 0 0 0 0
1 +a
0 0
LICS DN I I (P (184,721)
0 0
0 0 0 0 0
1 0 1 0 1
< 0 3 0 > FS(_l) 0 3 0 3 0 (184: 243)
0 1 0 1 +1
0 0
1 +a
Fs(_%) 0 ; 0 (184,724)
+a 1
1 0 1 +1
T3y 0 1 B 0 1
order 3 32 | ( 0|’ -1 ) | Fs(=1) O I | (323, 244)
0 1 0 1
0 +3
5 1 1
FS(_§) -1 3 -1 (323:961>
1 1

+2 points in the
base locus
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Matrix N, | Fix line(s) Fix points Conlfig.
1 0 1 0
4Ty 0 1 0 1
order 4 18 | { 0]l o 0] o (18, 245)
0 0 0 0
1
+1
0
0
1 +a
+a 1
0 ) 0 (1847721)
0 0
1 0 1 0
T34y Ty 0 1 0 1
order2 | 72 | 0’| 0 0’| o0 (722, 245)
0 1 0 1
+1 +2
1 1
0 y 0 (7247963>
1 1
+v/2
[1) (729,144)
1
0 0 0 0
1 0 1 0
< 0 ; 1 O ) 1 (7227246>
-1 0 -1 0
0 0
1 1
+1 ) +9 (7247963>
—1 —1
0
1
s, (729, 144)
-1
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Matrix | N; | Fix line(s) Surface | Fix points Conlfig.
1 0 1 0
1 1
gsg::; 36 | ( \f AN ) | Fs(—1%) \{5 NG (364, 144;)
0 1 0 1
1 V2
0 1
-1 0
—V2 -1
a 1
Fy(—2) _11 A (364, 72,)
—a 1
1 a
—1 a
—a || 1
—a -1
V2 1 V2 1
( 01 : lﬂ Fs(—15) 01 : 1“5 (364, 1441)
1 0 1 0
0 -1
1 0
-2 1
1 —V2
a 1
Fy(-3) 1 _1a (364, 725)
1 a
a -1
-1 a
-1 || —a
a 1
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Matrix | N; | Fix line(s) Surface | Fix points Config.
V2 —1 NG 1
!
oo s |36 | 01 : \? )| B(=5) 01 , ‘{5 (364, 144,)
0 1
1 0
V2 L1
1 V2
1 a
Fy(=3) i A1 (364, 725)
a 1
a —1
_1 a
1 ’ a
a 1
0 1 0 1
< —1/5 ! (1) ) | Fs(—15) _1/5 , (1) (364, 144,)
1 -2 1 )
V2 1
1 V2
0 1 -1
-1 0
a 1
YR O Y (364,725)
_1 —a
a 1
1 a
1 "1 —a
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6.3 Bi-icosahedral group Gis

+(2—-1)

Matrix | N; | Fix line(s) Surface Fix points Config.
0 0 0 0
orgz 4 | 490 ¢ (1) ) 8 Fia(—35) (1) , (1) (4505, 3005)
0 1 1 -1
0 0
2 1 1
Fia(—355) 0 , 0 (4504, 3605)
+r +(1—7)
0 0
F5(0) ! 0 (4505, 60;5)
0]’ 0 ’
0 1
0
Fio(—52) (1) (4504, 600;)
+(1+1)
0
1
0
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Matrix | N; | Fix line(s) Surface Fix points Conlfig.
0 1 1
- 0 0 , 0 0
order 4 450 | ( 111 o Fia(—35) K (4504, 3003)
0 0 0 0
1 1
0 0
_2
Fol=2) | | 4 [+ wg—p || (43083605)
0 0
1 0
0 0
Fi2(0) o111 (4502, 6015)
0 0
1
Fip(—22) 0 (4504, 6003)
1287243 +(1+1) 4, OUU3
0
1
0
+(2—17)
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Matrix

Ny

Fix line(s)

Fix points

Config.

n2oymloy

order 3

200

1

—~
o OO

H @ o o=

(2003, 601)

F12(—%

)

(2003, 600, )

(2004, 300,)
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6 TABLES

Matrix

Fix line(s)

Surface

Fix points

Config.

5T
(mems’)

order 5

72

(725, 360;)

H_OOOI—\

(2-7)
0
T—1
1
+7
0
T—1
1

(725, 60¢)

+2 points in the

base locus
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7 Pictures

Ay X Agj—symmetric sextic with 48 nodes

a2+ 28+ 2§+ 2§+ 15 (m%x%x% + x%x%m%) +

+15 (m%x%x% + x%x%mg) — %(x% + LE% + LE% + $§)3 =0
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Ay X Agj—symmetric sextic with 48 nodes

S+ 28+ 25+ 25+ 15 (x%x%x% + x%x%x%) +

+15 (m%x%x% + x%x%m%) — 1—72(9:% + 2?23+ m§)3 =0



Sy X Sy—symmetric octic with 72 nodes

x%+x§+x§+x§—|—l4 (:1:3:1:‘11 + xéx% + x%x% + x%x% + :1:‘11:123 + :L'%:L'

+168z2232323 — 3 (23 + 22 + 23+ 23)* = 0

4
3

77

) +
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|/

S\ \ % _‘_‘.

l

/B

Sy X Sy—symmetric octic with 144 nodes
338-1—:1:?4—:1:%-{—33%-1—14 (xéx‘ll + x%az% + xéxg + x‘llx‘% + x%az% + x%x%) +

+168zizirie; — 5 (zf + 1 + 23 + 23)' =0



A5 x As—symmetric surface of degree 12

with 600 nodes

79
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7

A5 x As—symmetric surface of degree 12

with 360 nodes

PICTURES
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Notations

SO(n) special orthogonal group, 1

V Klein four group, 1

Aq, A, Az rotations of order two in V, 1

T tetrahedral group, 1

Ay even permutation group of four objects, 2
Rs rotation of order three in 7', 2

O octahedral group, 2

Sy permutation group of four objects, 3

R, rotation of order four in O, 3

1 icosahedral group, 4

As even permutation group of five objects, 4
7= 1(1+/5) golden section number, 4

Rs rotation of order five in I, 4

H real algebra of Hamilton’s quaternions, 5
Gos 1, G2, 3 basis of H, 5

SU(2) special unitary group, 6

p:SU(2) — SO(3) 2:1 morphism, 6

I identity matrix, 6

G binary group, 6

Vi=p (V) binary Klein four group, 6

Ag=p~(T) binary tetrahedral group, 7

D3 matrix of order six in Ay, 7

Sy:= p~1(O) binary octahedral group, 7

P4 matrix of order eight in Sy, T

As:=p (1) binary icosahedral group, 7

Ds matrix of order ten in Ay, 7

o :SU(2) x SU(2) — SO(4) 2:1 morphism, 7

Hi=0(V x V) Heisenberg group, 8

o1 :=o(q,1),09 := (g, 1), matrices of order four in #H, 8
o3:=0(l,q1),04 := (I, q2)

Ge:= o(Ay x A)) bi-tetrahedral group, 9

w3 := o(ps, I),m := o (L, p3) matrices of order six in Gg, 9

Gs:= 0 (Sy x Sy) bi-octahedral group, 9

7y = 0(pg, 1), 7y 1= o (I, ps) matrices of order eight in Gg, 9

Gio:= 0(45 X 1415) bi-icosahedral group, 9

75 := o(ps, 1), 7wk = o (L, ps) matrices of order ten in Gyo, 10

Clzo, 1, 29, 73] complex polynomial ring in four variables, 13

C matrix of order two in GL(4,R), 17
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Oo4 product of oy and o4, 19
Clzo, 21, 22, 23] C-vector space of G-invariant
homogeneous polynomials of degree 7, 22
Q,(x) complex multiple quadric
(¢f + 27 + 23 + 23)7, 26
Se () invariant polynomial under Gg, 27
Ss(z) invariant polynomial under Gg, 28
Sia(z) invariant polynomial under G5, 30
F,(\) pencil S, (z) + A\Q,(z) =0, 33
Sn,@Qn surfaces which correspond to the
sets {S,(z) = 0}, {Qn.(x) =0}, 33
PGL(2) projectivization of the space

of invertible complex 2 X 2-matrices, 34
B, intersection of Q)5 and S,,, 35
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