
ON THE NÉRON-SEVERI GROUP
OF SURFACES WITH MANY LINES

SAMUEL BOISSIÈRE AND ALESSANDRA SARTI

Abstract. For a binary quartic form φ without multiple factors, we classify
the quartic K3 surfaces φ(x, y) = φ(z, t) whose Néron-Severi group is (ra-
tionally) generated by lines. For generic binary forms φ, ψ of prime degree
without multiple factors, we prove that the Néron-Severi group of the surface
φ(x, y) = ψ(z, t) is rationally generated by lines.

1. Introduction

The study of the Néron-Severi group NS(S) of a given surface S is interesting
for understanding its geometry, but it is not an easy task in general. A first step is
to compute its Picard number ρ(S) := rkNS(S). A second one is to give a family
of generators of NS(S) over Z. To this purpose, it is very useful to find first a
nice family of generators of NS(S) ⊗Z Q. If one already knows the value of the
determinant of NS(S), this can help deducing a family of generators. If not, the
study of the rational generators gives non trivial information for the value of the
discriminant.

Let φ be a binary quartic form without multiple factors. After a suitable linear
change of coordinates, we may assume that φ is of the form:

φ(x, y) = yx(y − x)(y − λx)

for λ ∈ C\{0, 1}. Naturally associated to φ are the K3 surface Sφ : φ(x, y) = φ(z, t)
and the elliptic curve Eφ : t2 = φ(1, y).

Remark 1.1. Observe that if φ, φ′ are the forms corresponding to λ, λ′ and λ′

is one of the values λ, 1
λ , 1 − λ, 1

1−λ , λ
λ−1 , λ−1

λ then there is a linear isomorphism
Sφ

∼= Sφ′ .

The interplay between the geometry of the K3 surface Sφ and the arithmetic
of the elliptic curve Eφ has been studied by many authors. Of particular interest
is the link between the value of the Picard number ρ(Sφ) and the existence of a
complex multiplication on Eφ. The following result is classical (see [Kuw95] and
references therein):

ρ(Sφ) =

{
20 if Eφ has a complex multiplication,
19 otherwise.

We pursue the study by giving numerical conditions for the Néron-Severi group
of Sφ to be rationally generated by lines:
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Notation – Definition. Let S ⊂ P3
C be a smooth surface of degree d ≥ 3. If

L is a line contained in S, by the genus formula the self-intersection of L in S is
L2 = −d+2, so the class of L in NS(S) is not a torsion class. We denote by LC(S)
the sublattice of the torsion-free part of NS(S) generated by the classes of the lines
contained in S. For a generic surface S, it is well-known that LC(S) = 0. If not,
these classes are natural candidates as generators of NS(S) and we say that NS(S) is
rationally generated by lines if rk LC(S) = ρ(S), that is LC(S)⊗ZQ = NS(S)⊗ZQ.

The most famous examples of surfaces whose Néron-Severi group is rationally
generated by lines are certain Fermat surfaces (see [Shi81]). The surfaces we study
here are a natural generalization of them. We prove (§2):

Theorem 1.2. The Néron-Severi group of Sφ is rationally generated by lines ex-
actly in the following cases:

(1) λ /∈ Q;
(2) λ ∈ {−1, 2, 1

2 , 1+i
√

3
2 , 1−i

√
3

2 };
(3) λ ∈ Q \ {−1, 2, 1

2 , 1+i
√

3
2 , 1−i

√
3

2 } and ρ(Sφ) = 19.

Looking now for a set of generators of the Néron-Severi group, we prove (§3):

Theorem 1.3. The Néron-Severi group of Sφ is generated by lines only in case (2).

Generalizing the construction, one can consider two binary forms φ, ψ of degree
d without multiple factors and the associated surface Sd

φ,ψ : φ(x, y) = ψ(z, t). One
can prove that ρ(Sd

φ,ψ) ≥ (d − 1)2 + 1 with equality for d prime and φ, ψ generic
(see [Sas68]). We prove (§4):

Theorem 1.4. For d prime and φ, ψ generic, the Néron-Severi group of Sd
φ,ψ is

rationally generated by lines.

In Theorem 1.2 we do not consider the quartics S4
φ,ψ for φ 6= ψ since, although

ρ(S4
φ,ψ) = 18 (see again [Kuw95]), Proposition 4.1 below says that their 16 lines

generate an intersection matrix of rank 10, so such surfaces do not enter in our
context.

We thank the referee for helpful suggestions and comments.

2. Proof of Theorem 1.2

The result follows from the following proposition:

Proposition 2.1. If λ ∈ {−1, 2, 1
2 , 1+i

√
3

2 , 1−i
√

3
2 }, then rk LC(Sφ) = 20, otherwise

rk LC(Sφ) = 19.

Proof of Theorem 1.2. Assuming Proposition 2.1, we prove Theorem 1.2. The key
argument is that if Eφ has a complex multiplication, then its j-invariant is algebraic
over Q (see [Sil94]). Since j(Eφ) = 256(1−λ+λ2)3

λ2(λ−1)2 , j(Eφ) ∈ Q if and only if λ ∈ Q.
Then:
- If λ /∈ Q, Eφ has no complex multiplication so ρ(Sφ) = 19 and by Proposition 2.1,
rk LC(Sφ) = 19. This proves (1).
- If λ ∈ {−1, 2, 1

2 , 1+i
√

3
2 , 1−i

√
3

2 }, by Proposition 2.1 we have rk LC(Sφ) = 20 so
ρ(Sφ) = 20. This proves (2).
- If λ ∈ Q \ {−1, 2, 1

2 , 1+i
√

3
2 , 1−i

√
3

2 }, then ρ(Sφ) ∈ {19, 20} and rk LC(Sφ) = 19.
This gives (3). ¤
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Remark 2.2. In case (3) of Theorem 1.2, one can not be more precise since:

• When j(Eφ) ∈ Q (so λ ∈ Q), it is not clear whether Eφ admits a complex
multiplication or not.

• There is a dense and numerable set of λ ∈ Q such that ρ(Sφ) = 20 (see
[Ogu]).

Proof of Proposition 2.1. The description of the lines on Sφ comes from Segre
[Seg47]. We follow the presentation given in [BS07].

Case 1. If λ /∈ {−1, 2, 1
2 , 1+i

√
3

2 , 1−i
√

3
2 }, the group of automorphisms of P1

C permut-
ing the set {∞, 0, 1, λ} is the dihedral group D2 = {id, s1, s2, s1s2} and the surface
Sφ contains exactly the following 32 lines:

`z(u, v) :

{
vx = uy

vt = uz
`id(p) :

{
x = pz

y = pt
`s1(p) :

{
x = pz − pt

y = λpz − pt

u,v∈{∞,0,1,λ} p∈{1,−1,i,−i} p∈{ 1√
λ−1

, −1√
λ−1

, i√
λ−1

, −i√
λ−1

}

`s2(p) :

{
x = pt

y = λpz
`s1s2(p) :

{
x = −λpz + pt

y = −λpz + λpt

p∈{ 1√
λ

, −1√
λ

, i√
λ

, −i√
λ
} p∈{ 1√

λ2−λ
, −1√

λ2−λ
, i√

λ2−λ
, −i√

λ2−λ
}

The intersection matrix of these 32 lines is easy to compute (we do not reproduce
it here), and is independent of λ. One finds that its rank is 19, so rk LC(Sφ) = 19.

Case 2. If λ ∈ {−1, 2, 1
2}, the surfaces are isomorphic to each other by Remark 1.1.

The group of automorphisms is the dihedral group D4 = 〈D2, r〉. The surface Sφ

contains exactly 48 lines: the 32 preceding ones and 16 other lines. For λ = −1 for
example, these lines are:

`r(p) :

{
x = pz + pt

y = −pz + pt
`r−1(p) :

{
x = −pz + pt

y = −pz − pt
p∈{ 1+i

2 , 1−i
2 ,−1+i

2 ,−1−i
2 }

`rs1(p) :

{
x = pt

y = pz
`s1r(p) :

{
x = −pz

y = pt
p∈{ 1+i√

2
, 1−i√

2
,−1+i√

2
,−1−i√

2
}

The rank of the intersection matrix of the 48 lines is rk LC(Sφ) = 20.

Case 3. If λ ∈ { 1+i
√

3
2 , 1−i

√
3

2 }, the surfaces are isomorphic to each other by Remark
1.1. The group of automorphisms is the tetrahedral group T = 〈r, s〉. The surface
Sφ contains exactly the following 64 lines:

`z(u, v) :

{
vx = uy

vt = uz
`id(p) :

{
x = pz

y = pt
u,v∈{∞,0,1,λ}
p∈{1,−1,i,−i}

`r(p) :

{
x = pz

y = pz + λ2pt
`r2(p) :

{
x = pz

y = λpz − λpt
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`s(p) :

{
x = pt

y = λpz
`rs(p) :

{
x = pt

y = −pz + pt
`rsr(p) :

{
x = pz + λ2pt

y = λ2pt

`r2s(p) :

{
x = pt

y = −λ2pz + λpt
`sr(p) :

{
x = pz + λ2pt

y = λpz
p∈{λ,−λ,iλ,−iλ}

`rsr2s(p) :

{
x = −λ2pz + λpt

y = −λ2pz + λ2pt
`r2srs(p) :

{
x = −pz + pt

y = −λpz + pt
p∈{λ2,−λ2,iλ2,−iλ2}

`srs(p) :

{
x = −pz + pt

y = λpt
`rsrs(p) :

{
x = −pz + pt

y = −pz

The rank of the intersection matrix of the 64 lines is rk LC(Sφ) = 20.
¤

3. Proof of Theorem 1.3

As we explained in the Introduction, once one has found a nice family of rational
generators of the Néron-Severi group, the next task is to get information on divisible
classes. We call a divisor Λ =

∑n
i=1 αiLi∈ NS(S) 2m-divisible if the class of Λ in

NS(S) is divisible by 2m; for m = 1 we say also that the lines in Λ form an even
set.

Proof of Theorem 1.3.
Cases (1) and (3). For λ /∈ {−1, 2, 1

2 , 1+i
√

3
2 , 1−i

√
3

2 }, with the help of a computer
program we obtain that the best choice of a family of 19 lines among the 32 gener-
ating rationally the Néron-Severi group gives a determinant of value 29. Denoting
this lattice by M and its dual by M∨, the discriminant group is:

M∨/M = (Z2)⊕2 ⊕ (Z4)⊕2 ⊕ Z8

hence we can have only 2m-divisible classes for m = 1, 2, 3. Denote by (M∨/M)2
the part of the discriminant group generated by the 2-torsion classes. We have
(M∨/M)2 = (Z2)⊕5 hence rank(M∨/M)2 = 5. However, denoting by T the tran-
scendental lattice of Sφ, (NS(Sφ)∨/ NS(Sφ))2 ∼= (T∨/T )2 has rank at most the rank
of T , which is three: This shows that M ( NS(Sφ), and that there are at least two
even sets of lines in the Néron Severi group. In particular there is no set of 19 lines
generating NS(Sφ).

Case (2) for λ ∈ {−1, 2, 1
2}. By Remark 1.1, the surfaces Sφ are isomorphic to each

other. The best choice of a family of 20 lines among 48 gives a determinant of value
−26. Observe that a suitable permutation of the zeros of x4 − y4 in P1

C gives a
cross-ratio equal to −1, so our surfaces are isomorphic to the Fermat quartic. It
is then well-known that det NS(Sφ) = −64, so the lines generate the Néron-Severi
group.

Case (2) for λ ∈ { 1+i
√

3
2 , 1−i

√
3

2 }. A computer program shows that the best choice
of a family of 20 lines among the 64 contained in the surface, generating rationally
the Néron-Severi group, gives a determinant of value −24 ·3. We show in Appendix
B that det NS(Sφ) = −48 so the lines generate the Néron-Severi group. ¤
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4. Proof of Theorem 1.4

Since ρ(Sd
φ,ψ) = (d − 1)2 + 1 for d prime and φ, ψ generic, Theorem 1.4 follows

from the following result:

Proposition 4.1. It is rk LC(Sd
φ,ψ) = (d− 1)2 + 1.

Proof of Proposition 4.1. We set S := Sd
φ,ψ. Let L be the line z = t = 0 and L′ be

the line x = y = 0. The intersection S ∩ L is the set of zeros of φ, whereas S ∩ L′

is the set of zeros of ψ. If p ∈ L is a zero of φ and q ∈ L′ a zero of ψ, the line Lp,q

joining p and q is contained in S: this gives a family of d2 lines contained in S. The
intersection matrix of this family is given by L2 = −d + 2 and L · L′ = 1 if L and
L′ intersect, 0 otherwise. Note that:

(Lp,q ∩ Lp′,q′ 6= ∅) ⇐⇒ (p = p′ or q = q′).

This implies that after ordering correctly the lines, the intersection matrix is the
matrix Md := Kd

−d+2,1,1,0 (see the notation in Appendix A). Remark A.5 gives
rk LC(S) = rk Md = (d− 1)2 + 1. ¤

Appendix A. Some linear algebra

Let a, b, c, d, . . . denote indeterminates. For d ≥ 2, let Jd
a,b be the (d, d)-matrix

defined by:

Jd
a,b :=




a b
. . .

b a


 = b ·

(
1

)
+ (a− b) · Id

where Id denotes the identity (d, d)-matrix. The following lemma is clear:

Lemma A.1. The following identities hold:

Jd
a,b + Jd

a′,b′ = Jd
a+a′,b+b′ ;

Jd
a,b · Jd

a′,b′ = Jd
aa′+(d−1)bb′,ab′+a′b+(d−2)bb′ .

Let now Kd
a,b,c,d be the (d2, d2)-matrix defined as the following (d, d)-blocks of

(d, d)-matrices:

Kd
a,b,c,d :=




Jd
a,b Jd

c,d
. . .

Jd
c,d Jd

a,b




The following lemma follows easily from Lemma A.1:

Lemma A.2. The following identity holds:

Kd
a,b,c,d ·Kd

a′,b′,c′,d′ = Kd
α,β,γ,δ
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where:

α = aa′ + (d− 1)(bb′ + cc′) + (d− 1)2dd′;

β = ab′ + a′b + (d− 1)(cd′ + c′d) + (d− 2)bb′ + (d− 1)(d− 2)dd′;

γ = ac′ + a′c + (d− 1)(bd′ + b′d) + (d− 2)cc′ + (d− 1)(d− 2)dd′;

δ = ad′ + a′d + bc′ + b′c + (d− 2)(cd′ + c′d + bd′ + b′d) + (d− 2)2dd′.

Set Kd := Kd
1,1,1,0. Its minimal polynomial µKd

(t) is given by:

Lemma A.3. µKd
(t) = (t− (d− 1)) · (t− (2d− 1)) · (t + 1).

Proof. Note that:

Kd − (d− 1)Id = Kd
−d+2,1,1,0;

Kd − (2d− 1)Id = Kd
−2d+2,1,1,0;

Kd + Id = Kd
2,1,1,0.

Applying Lemma A.2 one gets:

Kd
−d+2,1,1,0 ·Kd

−2d+2,1,1,0 = Kd
2(d−1)2,−2d+2,−2d+2,2;

Kd
−d+2,1,1,0 ·Kd

2,1,1,0 = Kd
2,2,2,2;

Kd
−2d+2,1,1,0 ·Kd

2,1,1,0 = Kd
−2d+2,−d+2,−d+2,2;

Kd
−d+2,1,1,0 ·Kd

−2d+2,1,1,0 ·Kd
2,1,1,0 = Kd

0,0,0,0 = 0.

¤

For λ ∈ {d− 1, 2d− 1,−1}, we denote by V (λ) the eigenspace of Kd associated
to the eigenvalue λ. One computes:

Lemma A.4.

dim V (2d− 1) = 1; dim V (−1) = (d− 1)2; dim V (d− 1) = 2(d− 1).

Proof. The first two results are a (quite long) direct computation. One deduces the
third one using that Kd is diagonalizable (Lemma A.3). ¤

Remark A.5. Since Kd
λ,1,1,0 = Kd−(1−λ)Id, the matrix Kd

λ,1,1,0 is invertible when
1− λ is not an eigenvalue of Kd. By Lemma A.3 this is λ /∈ {−d + 2,−2d + 2, 2}.
For λ = −d + 2, one has:

rkKd
−d+2,1,1,0 = d2 − dim V (d− 1) = (d− 1)2 + 1.

Appendix B. Results on Kummer surfaces

We recall some classical facts from [Ino76, PŠŠ71, SI77, SM74]. If S is a K3
surface with Picard number 20, we denote by TS the transcendental lattice and QS

the intersection matrix of TS with respect to an oriented basis. Let Q be the set
of positive definite, even integral 2 × 2 matrices. The class [QS ] ∈ Q/ SL2(Z) is
uniquely determined by S and det NS(S) = −det QS .

For Sφ, let σ be the involution (x : y : z : t) 7→ (x : y : −z : −t). Then the
minimal resolution of Sφ/σ is isomorphic to the Kummer surface Y := Km(Eφ×Eφ)
and:

QSφ
= 2QY = 4QA
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where A := Eφ × Eφ and QA is the binary quadratic form associated to A as in
[SM74].

For λ = 1+i
√

3
2 , the group of automorphisms of the elliptic curve Eφ fixing a point

has order 6 (since j(λ) = 0) so Eφ
∼= Cτ := C/Z + τZ with τ = −1+i

√
3

2 . By the

construction of [SM74], for A = Cτ ×Cτ , one has QA =
(

2 1
1 2

)
so QSφ

=
(

8 4
4 8

)

and det NS(Sφ) = − detQSφ
= −48. Moreover, observe that for A′ = Cτ × Cτ ′

with τ ′ = i
√

3, one has QA′ =
(

4 2
2 4

)
so Sφ

∼= Km(A′).

Remark B.1. The same method has been used to compute the determinant of the
Néron-Severi group of the Fermat quartic.
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Norm. Sup. (4) 14 (1981), no. 3, 303–321.

[SI77] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic ge-
ometry, Iwanami Shoten, Tokyo, 1977, pp. 119–136.

[Sil94] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate
Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994.

[SM74] Tetsuji Shioda and Naoki Mitani, Singular abelian surfaces and binary quadratic forms,
Classification of algebraic varieties and compact complex manifolds, Springer, Berlin,
1974, pp. 259–287. Lecture Notes in Math., Vol. 412.

Samuel Boissière, Laboratoire J.A.Dieudonné UMR CNRS 6621, Université de Nice
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