COMPLEX REFLECTION GROUPS AND K3 SURFACES II.
THE GROUPS Ga9, G3o AND G3;

CEDRIC BONNAFE AND ALESSANDRA SARTI

ABsTrRACT. We study some K3 surfaces obtained as minimal resolutions of
quotients of subgroups of special reflection groups. Some of these were already
studied in a previous paper by W. Barth and the second author. We give here
an easy proof that these are K3 surfaces, give equations in weighted projective
space and describe their geometry.

1. INTRODUCTION

In the first paper of this series [5], the authors have explained how to build
K3 surfaces from invariants of complex reflection groups of rank 4 generated by
reflections of order 2. In this second part and the upcoming third part [6], we
complete this qualitative result by investigating more precisely the examples given
by the primitive groups (see [5, §2] for the definition), i.e. the groups Gas, Gag,
G30 and G3; (as in [5], we follow Shephard-Todd numbering for complex reflection
groups [25]). In particular, we investigate the following questions:

(a) We show that all the K3 surfaces constructed this way have big Picard
number compared to the number of moduli of the family they belong to.

(b) We compute some of the transcendental lattices of those K3 surfaces with
Picard number 20.

(¢) We give some explicit equations in weighted projective space.

(d) We construct explicit elliptic fibrations for all the examples of K3 surfaces
we obtain: as shown in [27, Corollary 2.7] there is only a finite number of
elliptic fibrations for a K3 surfaces (up to automorphism) but, even though
we sometimes contruct several non-equivalent elliptic fibrations, there is
no case in which we pretend to have constructed all of them. For some of
them, we determine the singular fibers. When one knows the transcendental
lattice one could use the recent paper by Festi and Veniani [13] to compute
the number of elliptic fibrations (up to automorphism of the surface).

In this second paper, we focus on the groups Gag, G3g and Gs3; while the third
paper [6] will be devoted to the study of Gas. See the introduction of [6] for the
reasons why Gog deserves a particular treatment, we recall here the main points
: firstly, Ghs # G55; secondly, there are two possible interesting degrees for the
fundamental invariants, namely 6 and 8; thirdly, Gog admits an interesting outer
automorphism. Also, we take opportunity of this work to revisit results from both
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authors who constructed highly singular surfaces from invariants of complex reflec-
tion groups [21], [3]. Most (but not all) of the singularities constructed this way can
be obtained from [5, Corollary 2.4]. In §6.5, we also revisit Boissiére-Sarti example
of the smooth octic surface containing 352 lines |2], using Springer theory [5, The-
orem 3.13].

Finally, note that the first part [5] was free of computer calcutations, as the ar-
guments were pretty general: in this second part, we study very specific examples,
for which the determination of geometric features (singularities, transcendental lat-
tices, branch locus,etc.) requires computer calculations. We use here the software
MAGMA [9] (as well as some specific functions described in [4]).

The structure of the paper is as follows. In section 3 we recall some general
facts on the groups Gag, G3¢ and G31. The section 4 is devoted to the group Gag.
Here we consider the unique Gag-invariant polynomial of degree four which defines
a quartic K3 surface in P?(C), this is denoted by Xy, in [8]. We consider then the
quotient of the quartic K3 surface by the derived group Ghy = G5 As remarked
in [8] we have that PG5Hq = My the Mathieu group, which acts symplectically on
Xnu- It is well known that the minimal resolution is again a K3 surface and Xiao
in [31] showed that the Picard number is 20. We give in Lemma 4.1 and Corollary
4.2 an alternative proof that uses Lehrer-Springer theory. In §4.3 we describe an
elliptic fibration on this surface and thanks to that we compute the transcendental
lattice. This result is new and summarized in the following theorem:

Theorem 1.1. Let X% be the minimal resolution of Xniu/Glhy. This is a K3
surface with Picard number 20 admitting an elliptic fibration with fibers Eg + D¢ +
2A5 + A1 and transcendental lattice isometric to

6 0
T = (0 60) '

Observe that this surface was already studied under a different point of view by
M. Schiitt in the paper [23, Table 2] about the construction of elliptic fibrations
on extremal K3 surfaces. Note that Schiitt constructs another elliptic fibration for
X29: it would be interesting to know if there are still other elliptic fibrations. In
section 5 we consider the group G3¢ and the zero set of the one dimensional family
of invariant polynomials of degree 12. The group Gsq is the Coxeter group of type
H,. Let X30 denote the K3 surface which is the minimal resolution of the quotient
of the zero set Z(f2,) of the polynomials of degree 12 by G55 and let X3° denotes
this singular quotient (recall that here G5, = G55). In [1], [22] the Picard number
and the transcendental lattice of the K3 surfaces were computed. The equation
of X ;’\0 and the description of the elliptic fibration is new. We show the following
result :

Theorem 1.2. We have the following equation

X ={lyr: ys : ya: 4] € P(1,2,3,6) | 5% = ra(y1,ys,94)}
uzhere ra(y1,ys,ys) s a polynomial of total degree 12. For \ generic tl}e sm:face
X309 has Picard number 19 and it admits an elliptic fibration with fibers D5 + A4 +
2A5 + 3A;. The transcendental lattice as computed in [22] is
4 2 0
TXio =12 34 O
0 0 =30
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There are at least four special values of A for which the Picard number of the
corresponding K38 surface is 20, these four values correspond to the surfaces in
Z(fa,x) that have isolated ADE singularities. These values of A, the singular fibers
of an elliptic fibration and the transcendental lattices are resumed in Table 5.4

Finally section 6 is devoted to the group G3; and the one-dimensional family of
invariant polynomials of degree 20. We have again G5} = G4, let X3! denote the
singular quotient by G§% and by X3! its minimal resolution. The latter is a K3
surface and we show

Theorem 1.3. We have the following equation

X ={lyr 2 ya: 5] €P(2,1,2,5) | 5% = ax(y1,y2,9a)}-
where q\(y1,y2,y4) is a polynomial of total degree 10. For )\ generic the surface
)Nfil has Picard number 18 and it admits an elliptic fibration with singular fibers
D7 + 3Ay + 3A1. There are at least siz special values of A for which the Picard
number of the corresponding K8 surface is 19, five of these values correspond to the
singular fibers in Z(f3 ). These values of X\ and the singular fibers of an elliptic
fibration are resumed in Table 7.3

Finally in the Appendix we collect several useful results that allow to find the
equations of the K3 surfaces and the elliptic fibrations. We remark that in the case
of G371 we described a one parameter family of K3 surfaces, we believe that this
family is not isotrivial, but we could not prove it, for G5 this was shown in [1].

Acknowledgements: We warmly thank A. Degtyarev and B. Naskrecki for useful
comments on Xy, and X. Roulleau for explaining us how to use the Artin-Tate
conjecture to compute the Picard number in Theorem 1.3 and for useful comments.
The first author is grateful to the MSRI to let him use its high performance com-
puting facilities.

Hypothesis and notation. We keep the notation introduced in [5]. We recall
some of them. First, V is a complex vector space and W is a complex reflection
group acting on V of dimension n. If v € V' \ {0}, we denote by [v] € P(V) the
line it defines (i.e. [v] = Cwv). If S is a subset of V, we denote by Wy (resp. W (S))
the setwise (resp. pointwise) stabilizer of S (so that W(S) is a normal subgroup
of Wg and Wg/W (S) acts faithfully on S). The derived subgroup of W will be
denoted by W', and we set W5" = W N SL¢(V). The degrees (resp. codegrees) of
W (see [5, §3.1]) are denoted by (dy,ds,...,d,) and (df,d5,...,d) respectively.
If e € Zz1, we set

d0(e) = {1 <k<n|edivides dy}| and §*(e) =[{1 <k <n|edivides dj}|.
With this notation, we have
d(e) = glg/)&(dlm V(w,¢)).

In particular, (. is an eigenvalue of some element of W if and only if §(e) # 0 that
is, if and only if e divides some degree of W. In this case, we fix an element w, of
W such that

dim V(we, ) = d(e).
We set for simplification V(e) = V(we,() and W(e) = Wy (/W (V(e)): this
subquotient of W acts faithfully on V'(e).
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However, from now on, and until the end of this paper, we assume that n =
dim(V) = 4 and that W C GL¢(V) is a primitive! complex reflection group. If S
is a K3 surface, we denote by T its transcendental lattice and by p(.S) its Picard
number.

If Ci,..., C, are curves on a surface S, the intersection graph will be rep-
resented as follows: vertices correspond to C1,..., C, and are represented by cir-
cles (with no information if self-intersection is —2; otherwise, the self-intersection
number is written inside the circle) and there is an edge between the vertices cor-
responding to C; and Cj if C;j - Cj # 0 (nothing more is written on the edge if
C; - Cj» = 1; otherwise, the number C; - C} is written above the edge).

The singular fibers of elliptic fibrations will be denoted as usual according to
their intersection matrix: for instance, a singular fiber of type Dy is a fiber whose
intersection matrix is the Cartan matrix of the extended Dynkin diagram of type
D, (in Kodaira’s notation, it is of type I3). There remain some ambiguities (for
types A; and [12): we say that a singular fiber is of type A, (resp. flz) if it is
of type I (resp. I3) and will use Kodaira’s notation (i.e. III or IV) for the other
singular fibers whose intersection graph is of type A; or A,.

If S is a K3 surface and ¢ : S — P!(C) is an elliptic fibration admitting a
section o : P}(C) — S, we denote by MW, () (or simply MW(yp) if o is clear
from the context) its Mordell-Weil group. In this case, we denote by Triv,(y) (or
Triv(p)) the trivial lattice of the fibration ¢, namely the lattice generated by the
vertical divisors and the class of the image of o. Then

(1.4) MW, (¢) =~ Pic(S)/Triv, ().

See the book [24] for more details on elliptic surfaces.
We will often denote by (a b c) the 2 x 2—matrix:

a b
b ¢’
2. PRELIMINARIES ON PRIMITIVE COMPLEX REFLECTION GROUPS OF RANK 4

Recall [25] that there are five primitive complex reflection groups of rank 4, and
that they are denoted by Gag, Gag, G3g, G31 and Gsz. The first four are generated
by reflections of order 2 and Gsq is generated by reflections of order 3. Note that
Gag (resp. Ggp) is the Coxeter group of type Fy (resp. Hy).

When we do explicit computations, we use the models of the primitive complex
reflection groups W that were implemented in MAGMA by the first author (almost
copying files due to Michel [17] and Thiel [28]) in a file

primitive-complex-reflection-groups.m
which can be downloaded in [4]. Most of them (but not all) are taken from [17]
or [28]. We do not pretend that these are the best models, but the interested reader
might have a look at [3, Remark 1.3] for a discussion about some of the advantages
of these models.

Representing W as a subgroup of GL4(C) allows to identify V with C* and
we denote by (z,y,2,t) the dual basis of the canonical basis of C*. Therefore,
C[V] =Clz,y, 2, t].

IRecall that W is said primitive if there does not exist a decomposition V =V; &--- &V, with
r > 2 and Vi # 0 such that W permutes the Vi’s
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W W | [W/zw)| | W] 533%%&)
Goag 7680 1920 3840 g: 2: g %2
Gso = W(H,) | 14400 | 7200 | 7200 32 igfgjgg
G 46080 | 11520 | 23040 gj 13 ?g 3;‘

TABLE I. Numerical informations for Gag, G390 and G3

A first advantage of the chosen models is that the group W is implemented as a
Galois stable subgroup of GL4(K) where K is a finite Galois extension of Q (the
fact that such a model always exists was proved by Marin-Michel [16]). This implies
that we can find fundamental invariants in Qz,y, z,t]. For instance, with such a
model for W = G539 = W(Hy), the singular dodecic surfaces constructed by the
second author [21] can be realized over Q, as explained in [3, Proposition 1.1].

Another advantage of our models is that W generally contains a big subgroup
of monomial matrices (except for W = Gsg = W(H,)). This leads to expressions
of fundamental invariants in terms of symmetric functions. For this reason, we
introduce the following notation: if m is a monomial in z, y, z, ¢, we denote by
Y (m) the sum of the monomials obtained by permuting the variables. For instance,

Saty) =aty+z+t) +ytl@tz+ )+ 2N @y 1) H e -y +2) = Sayh).

3. THE GROUPS (a9, G39 AND G3

Hypothesis. From now on, and until the end of this paper, we
assume moreover that W is one of the three primitive groups
Gag, G3o or G1.

Let us first recall in Table I some specific data for these three groups that were
contained in [5, Table I].

Note that the hypothesis implies that

W/ — WSL

is of index 2 in W (recall from [5] the notation W = W N SL¢(V)): we denote
by ¢ the non-trivial element of W/W’. According to |5, Theorem 5.4|, the surface
Z(f)/W'is a K3 surface with ADE singularities (endowed with a non-symplectic
automorphism given by the action of o), provided that f is a fundamental invariant
of W of degree 4 if W = Gag, of degree 12 of W = G3q or of degree 20 if W = G3;
such that Z°(f) has only ADE singularities (which is almost always the case?). Our
aim in this paper is to study the geometry of the K3 surface with ADE singularities

2This is not true only for the one-parameter family of surfaces of degree 20 built from G3;: in
this family, only one surface does not have ADE singularities (it is in fact reducible). See Section 6
for details.
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W | d | Zing(f) | m | singularities of Z°(f)/W’ p T, &7

Hyw

Go | 4 @ 0| Di+2A,+3A+ A 20 | (6 0 60)
7] 1 Ay +4A5+5A4A, > 19 | Theorem 1.2

Gso | 12| 604: 0 Eg+3A,+44A 20 (4 2 34)

3004; | 0| Eg+A;+2A4;+44, 20 | (12 6 58)

3604, | 0 D7+ 445 +34 20 | (6 0 132)

600A; | 0| Ds+As+3A,+34; | 20 | (6 0 220)

%] 1 De+As+3A2+2 A, > 18

960 A, 0 D¢+ D5 + Az +2 Ay 19

480 A, 0 E6+D6+A3+A2+A1 19

19204, | 0 | Dg+ A5+ Az + As +2 4,4 19

144045 | O Dg+ Ds+3As + Ay 19

640 As 0 Dg+2A3+2A,+24A; 19

(Here, d = deg(f), m is the number of moduli of the family and

p = p(Z(f)/W"))

—_~—

TaBLE II. K3 surfaces of the form Z(f)/W’ for W = Gag, G3p or G31

—~

Z(f)/W' and of its minimal resolution Z°(f)/W': in particular, we prove that the
informations given in Table IT are correct?.

4. THE GROUP (G99

Hypothesis. We assume in this section, and only in this
section, that W = Gag.

SErratum: the singularities of the five singular surfaces of degree 20 defined by fundamental
invariants of G31 given in Table II differ from the ones given in [3, Table 4]: in fact, there is a
mistake in [3], as can be checked with Macama thanks to [4], and the correct values are given in
Table II. See the correction statement at https://doi.org/10.1080/10586458.2018.1555778.
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We have Gag = (s1, S92, 83, 84, where

1 0 0 O 1 1 ¢ ¢
o1 0 o0 11 1 i —i
1710 01 o 2Tl i o1 1)

000 -1 i i -1 1

0100 100 0
G |L 000 s |00 10

001 0] 0100

000 1 000 1

Recall that i = (4, a primitive fourth root of unity. Some of the numerical facts
used below can be extracted from |5, Table I|. For instance, note that G55 = Gbg is
of index 2 in Gag, so that Gag = (s1) X Gbqy (observe that s; is an involution). Note
also that Z(Gag) ~ py C GYg, see for instance [5, (3.2)]. Moreover, PGhy =~ My
(the Mathieu group of degree 20) so that we have a split exact sequence

1 — PGhy ~ Myg —> PGog — py —> 1,

where the last map is induced by the determinant.

4.1. The K3 surface. By [5, Table I], there exists a unique (up to scalar) homo-
geneous invariant polynomial f; of degree 4: it is given by

f1 =3(z*) — 62 (zy?).

Asin [8], we set Xy = Z(f) (recall that this surface was discovered by Mukai [18]).
It can easily be checked that Xy, is a smooth and irreducible quartic in P3(C),
so that it is a K3 surface, endowed with a symplectic action of My and an extra
non-symplectic automorphism of order 2. Several properties of Xy, are given in [§]
(transcendental lattice, automorphisms, polarizations: note that it is denoted by
Xy in [8], as it was discovered by Mukai [18]). For instance, it is known that Xy,
has Picard number 20.

Continuing with the topic of this paper, we describe here geometric properties
of the quotient X2 = Xy1,/Ghg: as the quotient of a K3 surface by a finite group
acting symplectically, it is also a K3 surface with ADE singularity, whose minimal
resolution X2 has Picard number 20 (see [8]). This can also be proved by examining
the singularities of X2?, which are given below:

Lemma 4.1 (Xiao). The K3 surface X?° has singularities Dy +2 Ay +3 Ay + A;.

Proof. See [31, Table 2, last line]. As we need concrete results (for instance, the
coordinates of the singular points), we provide a proof that will provide these extra-
informations.

Since the action of PGhy on Xy, is symplectic, it is sufficient to compute the
stabilizers of points of Xy,. For this, we follow the discussion of [5, §4.1], from
which we keep the notation. We fix v € V' \ {0} such that z = [v] € Xu, and we
may assume that W, = W, (w,,). Note that 4 divides e, because wy = (4 Idy € W,
and that e, divides one of the degrees of W. So e, € {4,8,12,20}. This leads to
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the following discussion (the MAGMA codes relative to the computations mentioned
below are available at [7, §4.1]):

e If e, = 20 then, since 6(20) = §*(20) = 1, we have W,, = 1 by [5, Theo-
rem 3.13] and det(wao) = (g ©T2T297* = 1. So the stabilizer of z in W
is contained in W': so the W-orbit of z contains two W’-orbits, and the
stabilizer of z in PGYq is cyclic of order 5. This leads to 2 A4 singularities
in X2°, which we denote by ai

o If e, = 12, then 6(12) = 1, so the W-orbit of z is completely determined,
and a computation with MAGMA shows that |IW,| = 24. This shows that
W, is generated by a single reflection and so W, = (w12) ¢ W.. So the
W-orbit of z is a single W/-orbit, and the stabilizer of z in PG is cyclic
of order 3. This leads to an A, singularity in X?2°, which we denote by as.

e If e, =8, then 6(8) = 1, so the W-orbit of 2 is completely determined, and
a computation with MAGMA shows that |W,| = 64 # 32 = |[W/|. So the
W-orbit of z is a single W’-orbit, and one checks with MAGMA that the
stabilizer of z in PGy is the quaternionic group of order 8. This leads to
a D, singularity in X?2°, which we denote by dy.

e Assume now that e, = 4. If |W,| = 1 or 2, then W, = (w4) and so the
stabilizer of z in PGy is trivial. So the image of z in X?? is smooth.
By [5, Corollary 2.4], the group W, cannot have rank 3, for otherwise z
would be singular in Xyr,. So W, has rank 2. There are three conjugacy
classes of parabolic subgroups of rank 2 (see [7, §4.1]), and representatives
are given by

Wiz = (s1, S2), Wis = (s1, 53) and Wasg = (52, 53).

We denote by Lji the projective line P(VWit) in P(V). Since Xy is
smooth, it follows that Lj;; meets Xw, transversally [5, Corollary 2.8],
and we set Ej; = Ljr N Xyw. Then |Ej;| = 4 and it follows from [5,
§sub:stab, (c)] that two elements of €2;, are in the same W'-orbit if and
only if they are in the same (W’ N Nj)-orbit. Now the next results can be
obtained with MAGMA:

— The group Wiy is of type Ay and |(W/NNy2)/Wia(wys)| = 2. Moreover,
the stabilizer of any point in Ejo is equal to (W' N Wig)(ws), so its
stabilizer in PW”’ is cyclic of order 3. This leads to 2 Ay singularities
in X2, which we denote by a;.

— The group Wis is of type A; x Ay and [(W' N Ni3)/Wis{ws)| = 4.
Moreover, the stabilizer of any point in Ey3 is equal to (W' NWi3){wy),
so its stabilizer in PW' is cyclic of order 2. This leads to an A;
singularities in X 2%, which we denote by a;.

— The set Es3 is contained in the W-orbit of zg, so this case has already
been treated and does not lead to new singularities in X?2°.

The proof of the proposition is complete. O
Corollary 4.2. The Picard number of the K3 surface X2 is 20.

Proof. As X% is algebraic, we get from Lemma 4.1 that the rank of Pic(X?) is
>14+(1+3-2+2-4+4)=20.
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Since this rank is bounded above by 20 for a K3 surface, this yields the result. [

Remark 4.3. With a suitable choice of a family f of fundamental invariants and a
suitable normalization of J, one gets [7, §4.2] with MAGMA that

X29 = {[’132 X3 Xy j] € P(233;5,10) |
§% = —6423x3 + 162323 + 3223234 + 180023233

—4322925 — 5000z9737] + 4320534 + 312527}
(see [5, Proposition 3.11]). In this model, the singular points are given as follows [7,
§4.4]:
dy=1[1:0:0:0], aa=1[0:1:0:0], af=[0:0:1:%25V5]

ap=[a:f:1:0] and af =[ax:fr:1:0],
where

(@, aB, B%) = (84375/16,—25/2,3125/54),

(3, ax B, B2) = ((3987 £ 16321/6) /16, (7 + 21/6)/2, (117 & 621/6)/18).
Indeed, it follows from [5, Lemma 2.2] that d4, as and ajf have coordinates of the
form [1:0:0: 7], [0:1:0: o] and [0:0: 1 : j5] respectively, and the values of
j1, jo and ji are determined by the equation of X2°.

For the remaining points, computations with MAaGMA [7, §4.4] show that the

evaluation of f; (the invariant of degree 20) at points of E15 or Fi3 is different

from 0, so that the points a; and (12i belong to the affine chart X(zf) of X?° defined

by x4 # 0. Setting 24 = 1, the coordinates in the ambient space of X(Qf) are a = 13,
b= zaw3, ¢ = 3 and j, and X(Qf) is equal to
X(249) ={(a,b,c,j) €A*(C) | b° = ac and
§% = —64a + 16b* + 326% + 1800b> — 432bc — 5000b + 432¢ + 3125}.
From the second equation, we can express a in terms of b, ¢ and j, and so
(4.4) XT) = {(b,c,j) €A’(C) | 64b° = cPag (b, ¢, j)},

where Pag(b,c,j) = 16b* 4+ 320> + 18006 — 432bc — 50000 + 432¢ + 3125 — j2. The
coordinates of the singular points of X (22) can then be computed with MAGMA and

fit with what is written above [7, §4.4].
Finally, recall that the action of the non-trivial element o of W/W"' is given by
(4.5) o-[xe w3 @y j| = [w2 w324 —]]

that X/(0) ~ P(2,3,5). W
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4.2. Some smooth rational curves in X22. We work in the model given by
Remark 4.3 and we denote by 7 : X2 — X29 the natural morphism from the
minimal resolution X2 of X2, If p is a singular point of X2°, we denote by A ...,
AP the irreducible components of 77! (p) (these are smooth rational curves and m
is equal to the Milnor number of X?° at p). We define

Co={[xo:x3:m4:5] € X? | 23=0}

and Cs={[wg:a3:w4:j] € X* | 23 =0}

Let Cy and Cj denote the respective strict transforms of C5 and C3 in X29,

Proposition 4.6. The curves Cy and C3 are smooth rational curves.

Proof. First,
C3 = {[zg: 4 : j] € P(2,5,10) | 52 = —64adz? + 312527}

But the map P(2,5,10) — P2?(C), [z2,24,j] — [23,23,;] is an isomorphism of
varieties. Through this isomorphism, we get

Cys={[z2:24:]] € P2(C) | j% = —64xomy + 3125xi}.

Hence, C3 is a non-degenerate conic in P?(C), i.e. C3 is a smooth rational curve.
For (5, note that

Co = {[x3: 24 : j] €P(3,5,10) | j% = 4322524 + 31253 }.
But P(3,5,10) ~ P(3,1,2) and, through this isomorphism, one gets
Cy = {[x3: 24 : 5] €P(3,1,2) | j% = 432z324 + 312527}

For k € {3,4}, we denote by C;k) the affine chart of Cy defined by xy # 0. Then
Cy = Cég) U 02(4) and we only need to show that Cég) and C§4) are smooth rational
affine curves. For 02(4), this is obvious. For 053), working with the coordinates
a=2z3, b=247 and c = j3, one gets

Cé?’) = {(a,b,c) € A*(C) | b* = ac, c = 432b + 3125ab and b* = 432a + 31254}
{(a,b) € A%(C) | b* = 432a + 3125a%}.

12

This is clearly smooth and the result follows. (Il

Proposition 4.6 implies that C, and Cj are smooth rational curves in X?29.
Adding the 19 smooth rational curves of the form AP , this gives us 21 smooth
rational curves in X2°, we investigate in the next subsection if these curves are
independent in the Picard group or not.
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4.3. An elliptic fibration. Any K3 surface with Picard number 20 admits an
elliptic fibration. We construct here an explicit one, and determine its singular
fibers.

First, let ¢ : X2\ {a],a; } = PY(C), [w2: 3 : 24 : j] > [#3 : 23]. This map is
indeed well-defined on X%°\ {aj,a; } and induces a map

¢ X2\ (rHaf) UnHag)) — PY(O).

Our elliptic fibration is obtained by extending ¢:

Proposition 4.7. The map ¢ : X\ (7= (a}) Un(a;)) — P(C) extends to
a morphism of algebraic varieties X*° — P'(C).

Proof. Let 7 : X29 — X9 denote the minimal resolution of X2° only at the points
af and ay . In particular, X2 is still singular (it has singularities A; +3 Ay + Dy).
Let ¢ = po7 : X2\ (7 Yaf) U7 '(ag)) — P'(C). Since the resolution
7 X2 - X2 factors through X29, it is sufficient to show that ¢ extends to X2°.

We will now use the results (and the notation) of Appendix A with (k,1) = (2, 3).
Let ay = [0:0: 1] € P(2,3,5): it is the image of a] (or a; ) through the quotient
morphism X% — P(2,3,5). Now, the map ¢ : X?°\ {af,a;} — P(C) is
the composition of the quotient X2°\ {a},a;} — P(2,3,5) \ {as} and the map
o3 : P(2,3,5) \ {aa} — P!(C) defined in Appendix A. Therefore, ¢ is the
composition

X2\ (71 (af) UF(a)) ———> B(2,3,5) \ {ms} — o P(C),
where the first map is the quotient by the lift of o. So the result follows from the
fact that ¢ 3 extends to P(2,3,5) (see (A.1)). O

Remark 4.8. Let us describe two sections of the elliptic fibration ¢. For this, keep
the notation X2, ¢ of the proof of Proposition 4.7. The map ¢ factors through

P23

X > P(2,3,5) P'(C),

the first map being the quotient by the action of . We denote by Ay,..., Ay the
g . E

smooth rational curves defined in Appendix A and by Al*,..., Aj* the smooth

rational curves of the exceptional divisor of X2 above af. Since X2 — P(2,3,5)

is unramified above [0 : 0 : 1], we can number those last curves so that A?‘* — A
is an isomorphism.
Now, by Remark A.4, the map @o 3 admits a section 6 : P(C) — P(2,3,5)
whose image is Ay. This yields two sections 6% : P}(C) — X?9 whose image is
+ - N
A" . Now, X% is obtained from X2° by successive blow-ups of points not lying in
+ - ~ ~ ~ ~ ~
Ay' U A, so 0F lifts to a section §F : PY(C) — X2%, note that 6~ =00 0*. R
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Let [u : v] € P}(C). We denote by X2 the Zariski closure of ¢~ ([u : v])

u,v
(endowed with its reduced structure) in X2° and by X2, its strict transform in
X?9. Note that X29 @ H([u : v]) and that
Xz?v = <{[x2 cag iy j] € X | vl = ux%}) |
re:

= ¢ Y[u:v))U{af,ar},
where Yieq denotes the reduced subscheme of Y (this is necessary only if uv = 0).

Corollary 4.9. The elliptic fibration ¢ has singular fibers Eo+ Dg+2 Ay + A

Proof. Since the map ¢ factorizes through the quotient X2°/(c), it follows from
Proposmon A3 that the 1ntersect10n graph of the family of smooth rational curves

(C’z7 Cs, Alll“ AL Ag‘* JAY A(ll‘* A Ag“ A ) is given by

a+ a+ a+ a+
AP AYE AN AN
M) M)
5 o/ o/
Cs
(4.10) - - -
A‘ll4 A;4 Ag4
M) )
N N

+ - + + -
Moreover, Proposition A.3 also shows that AJ* and Aj4 (resp. Az', Ayt At

and AZZ ) are the only rational curves among the A}*’s which are contained in

“H([1:0]) (resp. ¢7H([0: 1])).
This shows that ¢~ 1([1: 0]) and @~ 1([0 : 1]) are singular fibers. Let us determine
their type. Note that

C3=X7, and  Cy=Xg9.
As the only singular points of X2 belonging to C3 (resp. Cs) are af, a; and dy

(resp. af, a; and as), this shows that

4
5L 0)) = G5 UA™ UAM U ( U Al

4 2
and @*1([0;1]):02u(U(Ag4 UA ))u(U A?).

k=3

+ +
But AZ“ -Af“ = AZ“ A% =0, so the Kodaira-Néron classification of singular fibers
forces that, with a suitable numbering of the AZ“S and the A}?’s, the intersection
graphs inside @~ 1([1: 0]) and ¢~1([0 : 1]) are respectively given by
+ + +
Al AG AY

(4.11)
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In other words, they are of type Dg and Eg respectively.

Let us now study the fibers of ¢ at [a® : 82] and [a3 : 8], where «, B, o+ and
B+ are defined in Remark 4.3. This amounts to understand the fibers of ¢ passing
through a1, aj and a;. Let us first determine their irreducible components (we
treat only the cases of a; and aj, as the case of a, is isomorphic to the case of
ay). Note that

g2 g 4 e B —36+16V6

- - = d + _ —
a®  (af)® 135 an of (ayBy)? 45

Working inside the affine chart X7}, a MAGMA computation [7, §4.4] shows that
ay (resp. aj) is an Aj-singularity of X755, (resp. stg —36+16\/6)' In particular,
29 ’

45 —36—0—16\/6) at a; (resp. a2+) consists

the projective tangent cone of X12395,4 (resp. X

. . 029 $-29 ay ay afy
in two points, so Xig5 4 (resp. X —36+16\/€) meets A7 (resp. A2 U A,%) in
two points. Moreover, again by using MAGMA computations [7, §4.4], we can check

that X%39574 and ng,_%ﬂ&/g are irreducible of genus 0. This shows that p~*([135 :

~ ~ + +
4) = X35 4 UAT (resp. ¢~ 1([45 : —36 + 161/6]) = Xf;_%ﬂﬁ\/é UAT? UAS?) is

a singular fiber of type A; (resp. As).

So we have found that the elliptic fibration ¢ has at least 5 singular fibers of
respective types Ay, Ay, Ay, Dg and Fg. Since the sum of the Euler characteristic
of these singular fibers is equal to 24, the elliptic fibration ¢ has no more singular
fiber. O

4.4. Transcendental lattice. We aim to prove that Pic(X??) is generated by the
classes of the 21 smooth rational curves described in the previous subsection. The
intersection numbers between these 21 smooth rational curves have been determined
in the proof of Corollary 4.9 (see (4.10) and (4.11)). They are gathered in the
following proposition.

Proposition 4.12. The intersection graph of the above 21 smooth rational curves
s given by

We can then compute the lattices Pic(X?%) and T g
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Theorem 4.13. The Picard group Pic(X?°) admits

+ +

(A7 1 [A57 ], [AT2 ], [A52 ], [AT], [AY], [A%], [AS], [AT], [Cs),
(AT [AS] [AS] [AST] [AS ] [AST] [AST] [AS], (Gl [A])

as a Z-basis. The transcendental lattice of X2° is given by
6 0
T = <0 60) '

Proof. Let us denote by (D1, Da, ..., D) the elements written in the statement of
the theorem, in the same order. Let I° = (D;-Dy)1 < j,k < 20- Then det(I°) = —360
(see |7, §4.7]). This shows that the family (Dy); < 1 < 20 is Z-free and, as p(X?) =
20 by Corollary 4.2, this shows that (D)1 < » < 20 is a Q-basis of Pic(X??)®Q. We
denote by A the sublattice of Pic(X?°) generated by (D)1 < & < 20- Its dual lattice
AY in Pic(X?) ® Q satisfies |[AY/A| = det(I°) = 360 and A C Pic(X??) c AV.

Let m denote the order of Pic(X?°)/A. We must show that m = 1. Assume that
there exists a prime number p dividing m. Then m? divides |AY /A|, so p € {2, 3}.

Assume first that 2 divides m. Then Pic(X?2%)/A contains an element of order
2 and a computation with MAGMA shows that this implies that Pic(X2?) contains
one of the elements

1 1w 1 1 an o rds 1
305 =3IA1, 5D+ Dr) = 5([AT] +[A3"]) or 5(Ds + Dg + Dr)

(see |7, §4.7]). But any element D in this list satisfies D - D ¢ 2Z: this contradicts
the fact that Pic(X2%) is an even lattice. So m is not divisible by 2.

Assume finally that 3 divides m. Then Pic(X??)/A contains an element of order
3 and a computation with MAGMA shows that this implies that Pic(X?°) contains
one of the elements
a b a, . at af b . as as
2(Dy~ Da) + 3(Ds - Da) = H(AF] - [AF ) + L(AF] - [AF))
for some a, b € {0,1,2} and (a,b) # (0,0) (see |7, §4.7]). But Lo Lap = 2/3(a® +
b?) ¢ Z, so we also get a contradiction. This shows that m is not divisible by 3.
Consequently, m = 1, as expected.

La,b =

Let us now turn to the computation of the transcendental lattice of X29. First,
as there is a finite rational map Xy, --» X292, the transcendental lattice of X29 is
proportional (by some rational number) to the one of Xy, by [14, Proposition 1.1].
But the transcendental lattice of Xy, is given by

40
T, = <o 4o>

(see for instance [8, Proposition 4.4(1)]). As the discriminant of T ., is equal to
the discriminant of Pic(X??), this shows that disc(T gs0) = 360, and so the only

possibility is
6 0
Txz = <0 60) ’

as expected. (Il
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Remark 4.14. Note that one can write

a2 d4 d4 d4 d4 aj{ aZ
[A52] = [AT] + [AF] + 2[A5] + 2[AL] +2[Cs) + [A7*] + [A7]
GI ay a4 ay ~ asz
— (83" ] = [Ag" ] = 2[A5" ] - 2[Ag" | - 3[Co] — 2[AT°]. m
We conclude this section by determining the Mordell-Weil group of ¢, with
respect to the section 67:

Proposition 4.15. MW, () = Z[A;‘I] ~ 7.

Proof. First, it follows from [26, Nr. 2493| that the torsion group of MW, (@)
is trivial. By the description of the singular fibers of the fibration ¢ given in
Corollary 4.9, the rank of the group Trivy, (@) is equal to 19. Hence MW, (@) ~ Z.
To determine the generators, one just needs to notice that Pic(f( 29) is generated
by all the classes given in Theorem 4.13 while Triv;, () is generated by all these

— +
classes except [A5*] (see Remark 4.14) and we fix AJ* as the zero section of the
fibration. 0

4.5. Complements: conics in Xpr,. As explained in [8, Proposition 4.3], the K3
surface Xy, is the Kummer surface of the abelian surface éz\/ﬁ X cg’ﬁ, where &,
denotes the elliptic curve C/(Z&®Za). Therefore, there exists a Nikulin configuration
in Xy (i-e., 16 two by two disjoint smooth rational curves). Since [8] appeared, it
has been shown by Degtyarev [11, Theorem 1.1 and Introduction] that Xy, contains
800 irreducible conics (note that 320 conics were already found in [8, Remark 4.4]
but this set of conics contains no Nikulin configuration). Later, Naskrecki found
explicit equations for the 800 conics, and showed that one can extract from this set
a Nikulin configuration, [19]. Let us describe them here. For this, let

V5 \f

2

Co={[z:y:2:1 ePC) |z 2% 4+ 2V2zxy + y? 43t Vo 2 = 0},

3
01:{[$yZt]GPB(C)‘x+y+z:y2+yz+Z2+ +\/7 _0}

\ﬁ

and C'g:{[a::y:z:t]EIP’3((C)|ax—|—y+z:y2—|—yz—|—22+ t* =0}.

Then Cy, C7 and Cy are conics contained in Xy, and belonging to different Gag-
orbits. Moreover, the Gag-orbit of Cy (resp. C1i, resp. Cs) has cardinality 480
(resp. 160, resp. 160).
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5. THE GROUP G3g = W(H4)

Hypothesis. We assume in this section, and only in this
section, that W = Gso = W(Hy).

Recall that Ggg is the Coxeter group W(Hy) of type Hy. In other words, we
have G39 = (s1, 82, 83, 84) in its natural representation of dimension 4 associated
with the Coxeter graph of type Hy, i.e. given by

51 5 52 53 54

O O O O
(see [10, Chapter IV] for the definition of a Coxeter graph and [10, Chapter V, §5]
for the definition of its associated representation). Explicit matrices may be found
in [4]. We refer to [5, Table I] for the numerical informations used here. First, recall
that G5, = G5j and that G39/G5y ~ p,. As the group is a Coxeter group, there
exists a real vector subspace Vg of V' such that V = C®g Vg and which is stabilized
by G3o. This also implies that Gy admits an invariant f; of degree 2, which is the
scalar extension of a positive definite quadratic form on Vg. We fix a fundamental
invariant fs of degree 12. If A € C, we set fa = fo + AfP: this describes (up to
scalar) all the fundamental invariants of degree 12. We set

X3 = Z(f20)/Gho

We proved in [5, Theorem 5.4] that X3 is a K3 surface with ADE singularities
(retrieving a result of Barth and the second author [1]). Let my : X350 — X3°
denote its minimal resolution: it is a smooth K3 surface. As this example was
already studied in [1], we will not compute again the singularities of X3 as well as
the transcendental lattices given in Table II. We will just give some complementary
informations coming from the general theory of complex reflection group (equations,
base locus, ramification) as well as a description of an elliptic fibration together with
its singular fibers in most cases.

5.1. Singular dodecics. If 1 < k < 4, we denote by W}, the subgroup of G3g gen-
erated by {s1, $2, 83,54} \ {sx}. Then

W1 ~ 64, W2 ~ <51> X 63,

W3 ~ W(I3(5)) x (s4) and Wy ~ W(Hs).

Here, I5(5) (resp. H3) denotes the complete subgraph of H, whose vertices are s;
and so (resp. s1, s2 and s3) and W(I2(5)) = (s1,s2) (resp. W(Hs) = (s1, $2,53))
is its associated Coxeter group. Note that W(I3(5)) is the dihedral group of order
10. Each maximal parabolic subgroup is conjugate to one of the Wj’s, and only
to one of them because they are two by two non-isomorphic. Let v, € Vg \ {0}
be such that VW = [v;]. We denote by Qj the W-orbit of [v;] in P(V). Since
—1Idy € W by [5, Table I] and Ng,, (W})/Wy acts faithfully on Vy"* = Ruy (which
is of dimension 1), it follows that

NGso (Wk) = Wk X <7 Idv>
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Since Ny (W},) = Wi, by [5, Remark 2.5], we get

300 if k=1,

600 if k = 2,
(5.1) Q% = .

360 if k=3,

60 ifk=4.

Now, fi(vg) # 0 because f; is positive definite and v € Vg, and we can define
Mg = — fa(vk)/ f1(vi)8. Therefore, [5, Corollary 2.4] shows that

(5.2) The singular locus of the surface Z(fa,5,) contains .

An explicit computation shows that Ay # \; if k # [. So this example explains by
general theory and simple counting arguments the construction of the four singular
dodecics constructed by the second author [21]. It also explains why the singular
points are real. However, it does not explain why there is no more singular point,
why they are all nodes, or why there is no more value of A such that 2°(fs ) is
singular. All these later facts were explained in [21].

As a consequence of the above discussion, we get:

Lemma 5.3. Ifv € V\{0} is such that [v] is a singular point of Z(f2.1) for some
A € C, then W, is a mazimal parabolic subgroup of W (in particular, W, # 1).

5.2. Equations. It follows from [5, Proposition 3.11] that
X309 = {[zy s w3 24 1 §] € P(2,20,30,60) | 5% = Pr(xy, —\aS, 23, 24)}.

But P(2,20,30,60) = (1,10, 15,30) = P(1,2,3,6). Through this sequence of iso-
morphisms, there exists a polynomial r in variables y1, y3, y4 which is homogeneous
of degree 12 if we assign to y1, y3, ys4 the weights 1, 2, 3 respectively, and such that
Py(z1, =28, w3, 24) = ry(23, 3, 24). Therefore,

(5.4) X3 ={ly1 1 ys :ya: 4] €P(1,2,3,6) | 52 = ra(yr,ys ya)}-

We denote by o the unique non-trivial element of Gsg/G5; ~ py: through the
model of X3Y given by (5.4), the action of o is described by

o(lyr :yz :ya:j]) = [yr s yz s ya s —J].
Note moreover that
(5.5) Z(fan)/Gao = X3 /1y = P(2,20,30) ~ P(1,2,3)

(see [5, Proposition 3.3]). The branch locus Ry of the quotient morphism &) :
X39 — P(1,2,3) is the zero set of ry.
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5.3. Base locus. Let B denote the base locus of the family of dodecic surfaces
(Z(f2,1))aec, that is, the subvariety of P(V') which is contained in all the members
of this family. Namely,

B={peP(V)]| filp) = f2(p) = 0}.

Note that 6(10) = 6*(10) = 2, so that dim V' (10) = 2. We denote by Lj¢ the line
P(V(10)) in P(V). The next result was already obtained by Barth and the second
author [1], but we give a proof that makes it an application of Lehrer-Springer
theory.

Proposition 5.6. The stabilizer W (10) of L1g in W is equal to Cy (w19) and has
order 600. Moreover,
B = U J,‘(Llo)
zeW
consists of 24 lines, which split into two GYy-orbits of cardinality 12.

Proof. This is mainly a consequence of [5, Theorem 3.13|. Indeed, the fact that

B= U J,‘(Llo)
zeW

follows from [5, Theorem 3.13(d)]. Moreover, by [5, Theorem 3.13(f)], we have that
W(10) = Cw(w10) is a reflection group for its action on V(10), and admits (20, 30)
as list of degrees. So |W(10)| = 20 - 30 = 600 by [5, (3.1)].

The only fact that is not covered by [5, Theorem 3.13] is that the 24 lines forming
B split into two G4y-orbits of cardinality 12: but this follows from the fact that
W(10) C G%, (which can be checked for instance with MAGMA). O

Let B’ denote the image of B in P(V))/W’. Then it follows from Proposition 5.6
that B’ is the union of two irreducible components B™ and B~. We denote by BT
and B~ their respective strict transforms in X3'.

Let us examine some particular points of B. First, note that B does not contain
a singular point of Z(f2,x) since we have seen in §5.1 that f1(v) # 0 for any
v € V'\ {0} such that [v] is a singular point of Z(f2,5).

Now, let k& € {20,30}. Examining Table I, we see that d(k) = §*(k) = 1. By
Springer Theory [5, Theorem 3.13], this implies that dim V (k) = 1, that W(V(k)) =
1 and that W(k) = (wg). Let z, denote the image of V(k) in P(V). Then the
stabilizer of 2z in W is W (k) and since det wy, = ¢, °° = 1 (see [5, Theorem 3.13(f)]),
this implies that the W-orbit Qj of z; has cardinality 14400/k and splits into two
W'-orbits. We denote by a(;/10y—1 the image of 2z in Z(f2x)/W ~ P(1,2,3): it
follows from [5, Theorem 3.13(d)] that

a; =1[0:1:0] and ax=1[0:0:1].

Note that a, is an A, singularity of P(1,2,3). Now, the morphism X3° — P(1,2,3)
is unramified above a, because W (20) and W (30) are contained in W’. So let a:F
denote the two points of X3° above a,: in the model given in §5.2, we have

aF=[0:1:0:451] and af=[0:0:1: %7,
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for some j, € C*. They are both A, singularities of X3" (note that this is true for
any value of A). We choose the value of j, so that a} € BT (and then a € B™).
Recall from [1] that

(5.7) (XX)sing VB = {af a1, a3, a5 }.

Again, this fact holds for any value of \.

Lemma 5.8. Let x € X3°\ {af,af}. Then x is singular if and only if £x(x) is a
singular point of the branch locus Ry. In this case, the singularity x is of the same
type as the singularity x(x) of the curve Ry.

Proof. Since the only singular points of P(1,2,3) are a1 and ag, the result follows
from [5, Proposition 4.4]. O

5.4. Elliptic fibration. With the model of X3 given in §5.2, we can define a map
er: XP\{af,a5} — PYC)
i:ysiya:g] v 47 : ys).

Since this map factorizes through the quotient P(1,2, 3) of X3°, the same argument
as in the proof of Proposition 4.7 shows that:

Proposition 5.9. The map pyomy : X530\ (73 ' (af )Umy ' (ay)) — PY(C) extends
to a morphism of algebraic varieties

@y 1 X30 — PHC).

Remark 5.10. By the same argument as in Remark 4.8, the elliptic fibration @) :
X3 —; P(C) admits two sections 6 : P!(C) — X3 which satisfy 6~ = gof*. B

Note that the above result is independent of \. However, we will see in the next
corollary that the singular fibers of the elliptic fibration @, depend on A\. We will
not determine the fiber in all cases, but only whenever the following hypothesis is
satisfied:

Hypothesis (H)). If x and y are two different singular points of

X:;O \ {alia a2i}7 then @)\('x) 7é 90)\(2/)
Note that Hypothesis (Hy) holds for all but a finite number of values of \. Moreover,
an explicit computation with MAGMA shows that it holds for A € {A1, Ao, Az, Ag}.

Corollary 5.11. Let A EN(C be such that (Hy) holds. Then the singular fibers of
the elliptic fibration ¢y : X3° — PY(C) are given by Table III.
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Proof. Let us first examine the fiber at [0 : 1]. For this particular fiber, the descrip-
tion will not depend on A. Note that

o M([0:1])=B"=BtuUB~.
We now apply results from Appendix A in the case where (k,I) = (1,2). Let
A; and A, denote the lines in P(1,2,3) described in the Appendix A and let

@12 : P(1,2,3) — P'(C) denote the map constructed in (A.1). It follows from
Proposition A.3 that

(%) P15(0:1]) = A UAW
where A®M = {[y; : y3 : ya] € P(1,2,3) | y1 = 0} and A is the strict transform
of AW in P(1,2,3). By the argument in Remark 4.8, the two smooth rational

+ +
curves A} and A3 above the point a3 can be numbered so that A} is mapped
isomorphically to Ay through the quotient morphism X§O — P(1,2,3), moreover,

the inverse image of A(M in X, is BT U B~. So, if we denote by A%’ the smooth
rational curve above the points ali and by B (resp. BT) the strict transform of B’
(resp. B¥) in X3, then it follows from (&) and the construction of @y that

~_1 at a” a;’ ay, H+ 5 —
(0:1]) = A% UAY UA2 UA,2 UBTUB™.

Since BT N B~ # @, since A% N B" # & if and only if € = 7, since Ag; NB"+ o
e n

if and only if € = 1 and since A%1 N A;z = @, the Kodaira-Néron classification of

singular fibers implies that

() @5 ([0 : 1]) is of type Ds.

Note that ({) holds for any value of A. We will now start the discussion according
to the value of A.

Assume that A\ & {\1, X2, A3, As}. Then X350\ {a,af} has 6 singular points
Z1,-.., Tg, of respective type Ay, Ay, A1, As, As and A4. Let = be one of these 6
points and let m denote its Milnor number. Then 75 !(z) is the union of m smooth

rational curves A%,..., A% . Let E* denote the closure of ¢} ' (px(x)) and let E”
denote its strict transform in X3°. Then
(@) &y pa(x) = E"UATU---UAT,.

So @y ' (pa(r)) is a singular fiber. Let us determine its type.

Note that g&f%((px(ac)) is a projective line by Proposition A.3 and Remark A.5.
Therefore, its double cover E® has at most two irreducible components. Note
also that the multiplicity of A in the singular fiber 35 ' (pa(2)) is equal to one.
Therefore, according to the Kodaira-Néron classification of singular fibers, () gives
the following possibilities:

o If x = x1, 29 or x3 is an A; singularity, then @} (cpA( )) is of type Ay
or A% if E* is irreducible or of type Ay or A¥ if E” has two irreducible
components.

e If x = x4 or x5 is of type Ag, then @} Ypa(z)) is of type A, or flf if E7 is
irreducible or of type Ag if E* has two irreducible components.

o If x = x¢ is of type A4, then @) Ypa(z)) is of type Ay if E* is irreducible
or of type As if E* has two irreducible components.
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Zing(f2,2) singularities of Xf\m TXi“ singular fibers of @y MW@ (@)
o Ay+4Ay+5A4; | Theorem 1.2 | Ds + Ay +2 A, + 3 AV z
60 Ay Fg+3A, +4A, (4 2 34) | Es+Ds+ Ax+24, Z
300 A, Eg+As+2As+4A; | (12 6 58) | Eg+Ds+ As+24, 7
360 A, Dy +4A, +34, (6 0 132) | D7+ Ds+245+ 44 Z
600A; | Ds+As+3A2+3A; | (6 0 220) | 2Ds+ As+ Ay + 4, /

TABLE III. Some numerical data for the family of K3 surfaces (X3°)yec
() Only for \ generic

Let xi denote the Euler characteristic of the singular fiber above zj. Since the
Euler characteristic of ¢} '([0 : 1]) is equal to 7 by (<), we have

(®)

X1 +tX2t+ X3+ Xat+ X5+ X6 <

24

But it follows from the above discussion that

X1>27

X2>27 X3>27

X4>31

X5 2

- 7=17.

3 and x6=>5.

Therefore, (M) forces x1 = x2 = x3 = 2, xa = x5 = 3 and xg = 5. And so the
singular fibers are of the types described in the first line of Table III.

The cases mentioned in the last four lines of Table III follow from a similar
discussion, the conclusion using the same argument based on the Euler character-

istic.

6. THE GROUP (331

Hypothesis.
section, that W = G3;.

We assume in this section, and only in this

Let

S3 =

0100
100 0
S1=10 0 1 0]
000 1
10 0 0
01 0 0
00 -1 of @and
00 0 1

S9 =

oo o

—_

1 -1
2| -1
-1

Sq4 =

Then W(Fy) = Gag = (s1, s2, s3, 54). We set

0

—1

S5 — 0
0

S O O =
o= O O
_ o O O

0 0 O

0 1 0

10 0)°

0 01
-1 -1 -1
1 -1 -1
-1 1 -1
-1 -1 1

O
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Then G31 = (s1, S92, 83, 84, $5). Note that, even though Gs; is of rank 4, it cannot be
generated by only 4 reflections. Note also that |Gs1 /G5, | = 2 and that G%; = G3}.

Recall from [5, Table I] that Deg(W) = (8,12,20,24) = (dy,d2,d3,ds) and we
denote by f = (f1, f2, f3, f4) a family of fundamental invariants such that deg(f;) =
d;. Then f; and f5 are uniquely determined (up to a scalar). We have

fi = 2(2%) + 145 (a*y?) + 16822y 2%

fo = 2(2'?) — 338 (28y*) + 7928 (2%y22%1) + 3308 (zty*24).

We will make a special choice for f3 as follows. First, let N denote the normalizer
of Gag in G31. Then N has index 10 in G3; and we denote by [G31/N] a set of
representatives of the cosets in Gg1/N. Then 22 + 12 + 22 +12 is Gag-invariant (but
not N-invariant) and it turns out that

fs= I @+ +22+8)
9€[Gs1/N]

is a fundamental invariant of degree 20 of G3;. Of course, Z(f3) is not irreducible
(it is the union of 10 quadrics). We choose the set of representatives [G31/N] such
that the coefficient of 2'4y?22¢% in f3 is equal to 648. Then

f2 = 648(S(x'1y22%2) — B(212yt2t) — D(210y0:22)

+25 (288 24) 4+ 138(28y* 24t*) — 143 (2%9%25¢2)).
Finally, we set
fa = 3888(D(x'8y22%?) 4+ 28(x 0yt 2t) — 128(x 02247 — 28 (212 2Y)

+76% (21 2y 24 h) + 228 (210910 2%42) — 525 (21090 25¢2)

+36% (2%y%2%) + 365 (28824 t1) — 825¢0261%).
Then £ = (f1, f2, f3, f4) is a family of fundamental invariants of G3;. Note that

the coefficients 648 (for f3) and 3888 (for f4) are just for simplifying the general
equation of the surfaces studied in this section.

If X € C, we set f35x = f3 + Af1f2. Recall from [3] that there are only 6 values
of X such that Z(fs5 ) is singular: one of them is 0, which is the only value of A
for which 2°(fs,) is not irreducible. We set

Xil = ff(fB,A)/Gél

(it is a K3 surface with ADE singularities by [5, Theorem 5.4]) and we denote by
X3! its minimal resolution (it is a smooth K3 surface). We aim in this section to
prove the results stated in Table II, namely compute the singularities of X3!, the
Picard number and the transcendental lattice of X3'. We will also provide some

more informations about the geometry of 2°(f3 ) and X3! (lines, branch locus of
the double cover X3! — 2(f3.,)/Gs1 = P?*(C),...).

6.1. Equations, branch locus. Let &, : X3! — Z(f3,)/Gs1 = P?(C) be the
natural map. This is a double cover, whose branch locus Ry C P?(C) is a sextic
that will be described below. First [5, Proposition 3.11].

Xi’l ={[z1:22: 24 7] € P(8,12,24,60) | j2 = Pe(x1, 22, —A\x122,24) }.
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But P(8,12,24,60) ~ P(2,3,6,15) ~ P(2,1,2,5). So there exists a polynomial
qx € Cly1,y2,v4] which is homogeneous of degree 10 if we assign to y1, ya2, ys the
degrees 2, 1, 2 respectively, and such that

X3 =A{ly1 1 y2 i ya: 4] €P(2,1,2,5) | % = qx(y1, 92, ya)}-

But P(2,1,2) ~ P(1,1,1) = P?(C), so there exists a polynomial ry(z1,22,24) €
Clz1, 22, 24], which is homogeneous of degree 5 if we assign to z1, 2o, 24 the degrees
1, 1, 1 respectively, and such that

(6.1) X3V ={lyr: y2 1y 4] € P(2,1,2,5) | % = ra(yr, 43, 9a)}-
Through this description, the action of the unique non-trivial element o of G31/G%;
is given by

olyr 2 ryacj)) =y cy2iya:—jl = [y —y2 1 ya 1 ],

and the morphism X3' — P?(C) is given explicitly by
[yr:y2 tya s 4] — (Y11 ¥3 : yal.

So the branch locus of &) is

(6.2) Ry = {[z1: 20 : 24) €PP(C) | zo7r(21, 22, 24) = O}.

In other words, the sextic Ry is the union of the projective line By defined by 2z, = 0
and of the quintic R} = Z°(r)).

6.1.1. Other model. Let
Iy ={lz1: 2024 : 1] €P(1,1,1,3) | 2 = zo7x (21, 22, 24) }.

Then 23 — P*(C), [z1: 22 : 24 : t] = [21 : 22 : z4] is & double cover of P*(C)
ramified on the sextic Ry = By U R). The rational map

L P(2,1,2,5) — P(1,1,173)
[yl Y2 1 Y4 :j}2,1,2,5 — [yl : y% tYs y2j]1,1,1,3

is well-defined outside of [0: 0 : 0 : 1]21 25 and is birational (it is for instance an
isomorphism between the open subsets defined respectively by ys # 0 and 25 # 0).
But note that [0 : 0 : 0 : 12125 ¢ X3! and that «(X3') = 23, Also X3!
(resp. Z)) is contained in the open subsets defined by (y; # 0)ic(1,2,4) (resp.
(2i # 0)ieq1,2,4}). An immediate computation in all these open subsets show that ¢
induces an isomorphism X3' —s 2. As this second model is somewhat simpler to
work with, we will now identify X3 with 2 and so view X3' in the more classical
model for double covers of P?(C) ramified above a sextic:

(6.3) X3 ={[z1 12924 : 1) €P(1,1,1,3) | 12 = zora(21, 22, 24) }-

Through this model, the double cover morphism &) : X3! — P?(C) is just given
by &x([z1: 22: 24 1 t]) = [21: 22 ¢ 24]-
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6.1.2. Value of ry. The explicit value of the polynomial r) is given below (recall
that it depends on our special choice of the family f of fundamental invariants and
a suitable normalization for J):

o= —432X3(\+1) 2825 — 108 N2 252024
+(12500 A + 22500 A° + 10800 A* + 864 \?) 2725
(4125 X* + 3420 A3 + 216 A?) 22224 + 222 0% 232927 + 2723
—432 )% 2125 + (900 \* — 108 \?) 212524 + (=500 X3 + 210 \?) 212525
F(—=150 2% — 24\ — 2) 212025 — 22125 + 2225 — 22028 + 25.

Remark 6.4. Assume in this remark, and only in this remark, that A = 0. Then
X3 ={[z1: 20 24 : ) €EP(1,1,1,3) | 2 = 23 (27 + 22 + 22 — 22120 — 22124 — 22024) }.
The singular locus is a union of the point [1 : 0 : 1 : 0] and the smooth rational

curve defined by z4 =t = 0. So the singular locus has dimension 1 and the surface
X3! will not be considered in this section. B

Hypothesis. From now on, and until the end of this section,
we assume that X # 0.

6.2. Singular icosics. As explained in the introduction of this section, it follows
from [3] that there are 5 values of A € C* such that 2(fs ) is singular. We
explain here what are these special values, and how we can recover the singularities
of Z(fs x)/G%; thanks to [5, Proposition 4.4] and MAGMA computations.

First, we set

Wias = (51, 84,55), Waas = (52,54,85) and Wiazq = (s1, 82,53, 84).
Note that these are representatives of conjugacy classes of maximal parabolic sub-
groups of W. If k € {145,245,1234}, we denote by v, a generator of the line
VWe and we set 2, = [vg] = VV* € P(V) = P3(C). We also set N = Ny (Wy)
and we denote by € the W-orbit of z,: it follows from [5, Remark 2.5] that
|Qk| = |W]/|Ng|. Concretely, we have:

960 i k = 145,
(6.5) Q] = {480 if k = 245.

60 if kK =1234.
A MAGMA computation shows that
(6.6) Z(f1) and Z(f2) are smooth.

In particular, v, € Z(f1) U Z(f2) by [5, Corollary 2.4]. So we can define Ay =
—fs(vk)/(fif2)(vk). It turns out that Ajgga = 0, so that f3,,, = f3 is not
irreducible: this case does not lead to a K3 surface and will not be studied here.
Therefore, we have found in this way two values of A, namely A\145 and Aoys5, such
that 2°(fs ) is irreducible and singular. But there are three more values of X such
that Z°(f3 ) is irreducible and singular [3]: this shows that, by opposition with the
cases of Gag (in degree 8) and G (in degree 12), [5, Corollary 2.4] is not sufficient to
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explain all the singular icosics that can be constructed from fundamental invariants
of G31 of degree 20. With our choice of the family f of fundamental invariants of
G31, we have

8 81
A5 = o5 and A5 = 175
We set
1 1
)\1:17 )\2:—5 and )\3:—5.

Then A145, A2as, A1, A2, Az are the five values of A such that Z°(fs ) is irre-
ducible and singular. By [3, Proposition 3.6 and Table 4] and the correction state-
ment at https://doi.org/10.1080/10586458.2018.1555778, the singularities of
Z(f3x,) are given by

960 A, if k = 145,

480 A, if k = 245,
(6.7) Zing(fan,) = {19204, if k=1,
1440 Ay if k =2,
640 Ay if k= 3.

6.3. Springer theorem, base locus. Recall from [5, Table I] that

Deg(W) = (8,12,20,24),
Codeg(W) = (0,12, 16, 28).

The following facts can be deduced immediately from this and from [5, Theo-
rem 3.13]:
(a) 0(8) = d*(8) = 2, so dim V(8) = 2. We denote by Lg the line P(V(8)) C
P(V) = P3(C). Then W (8) = Cy (wg) is a reflection group for its action
on V(8), and its degrees are (8,24). So [W(8)| = 8-24 =192 by [5, (3.1)],
and so the W-orbit of Lg contains 240 lines.

(b) §(12) = 6*(12) = 2, so dimV(12) = 2. We denote by Li the line
P(V(12)) € P(V) = P3(C). Then W (12) = Cy (w12) is a reflection group
for its action on V'(12), and its degrees are (12,24). So |W(12)| =12-24 =
288 by [5, (3.1)], and so the W-orbit of L2 contains 160 lines.

(c) 8(20) = 6*(20) = 1, so dim V(20) = 1. We denote by 239 € P3(C) the point
defined by the line V(20). Then W (20) = Cy (wa0) = (wag) is cyclic of
order 20.

(d) 6(24) = 6*(24) = 1, so dim V(24) = 1. We denote by 224 € P3(C) the point
defined by the line V(24). Then W(24) = Cw(w24) = (wa4) is cyclic of
order 24.

It follows from the above discussion and [5, Theorem 3.13(f)] that, if e € {8, 12,20, 24},
then the eigenvalues of w, are (77, (11, (-1 and (72?3 and so

—1 ifee{8,24},

__ »—60 _
(68) det(we) - Ce - {1 lf e c {12, 20}
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Proposition 6.9. With the above notation, we have that zos € Z(f3 ), that Lg
and Lo are contained in Z(f3 ) and that zo0 & Z(f3,5).

Proof. The facts that zo4 € Z°(f3,2) and that Lg and L are contained in Z°(f3 5)
follow from [5, Lemma 2.2].

Again by [5, Lemma 2.2], we have f1(2:20) = fQ(ZQQ) = f4(220) = O, so that
we cannot have f3(z90) = 0 since 0 is the only common zeros of the fundamental
invariants (fx)1 < & < 4. Hence 290 & Z(f3.)). O

This shows in particular that 2(f5 ) contains at least 400 lines (the W-orbit
of Lg of length 240 and the W-orbit of Lo of length 160): it can be shown that,
for X\ generic, these are the only lines contained in Z(f3 ).

Now, let
B=2(f:)nZ(f1f)
denote the base locus of the family (Z(f3.1))accx. We write

By =Z(fs)NZ(f) and By = Z(f3) N Z(fa),

so that
B =B, UB,.
By [5, Theorem 3.13(d)], we have
(6.10) By= J a(Liz) and  By= [ x(Ls).
zeW zeW

We denote by B’ the image of B in P(V)/W’ (it is the base locus of the family
(X$M)xec). Then

B' = B, UB),
where B} denotes the image of B;. It can be checked that the stabilizers Cyy (ws)
and Cy (wi2) of Lg and Ly in W respectively are not contained in W'. So Bj
(resp. Bj) is also the image of Lio (resp. Lg), hence it is a (possibly singular)
rational curve.

Proposition 6.11. The rational curve BY is smooth, while the rational curve Bj
has singularities A1 + As.

Proof. From the explicit formula for ) given in §6.1.2, we have

By ={[z1:22: 24 : 1] €P(1,1,1,3) | 21 = 0 and t* = 2p23 (22 — 24)?}

and By={[z1:22:24:1 €P(1,1,1,3) | 20 =t =0}

So B, =P(1,1) = P}(C) as expected.

Let us now consider the case of B]. An easy computation in the affine charts
defined by 2z # 0 and z4 # 0 gives two singular points [0:1:0:0] and [0:1:1:0]
which are singularities of type A and A; respectively. O
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Note that the set theoretic intersection of Bf and B} consists of only one point
(let us call it z5, as it is the image of 204 € 27(f3,2) C P(V)). Its coordinates are
given by

2y =1[0:0:1:0] € X3' CP(1,1,1,3).
Its image Zo4 = [0: 0 : 1] € P?(C) is a smooth point of the branch locus R (for all
values of A, because 75(0,0,1) =1 # 0).

Remark 6.12. Let By and B, denote the respective images of Bf and Bj in X3! /(o) =
P2(C). Then By (resp. Ba) is the line defined by the equation z; = 0 (resp. 2z = 0).
Note that the morphism B — By is an isomorphism (as Bj is contained in the
ramification locus) while the morphism B} — B is a morphism of degree 2.

Recall that the branch locus of X3 — P2?(C) is the union of By and R} = Z(r)).
So

BoN R\ ={[z1:0: 2] € P*(C) | 2}(21 — 2z4)* = 0}.

The set By N R’ contains two points dg and a3 of respective multiplicity 3 and 2
and whose coordinates are given by

dg =11:0:0] and az=1[1:0:1].

They do not depend on A. We will see in Corollary 6.14 and Proposition 6.15 that,
if A # 0, then dg is always a Dg singularity of Ry while ag is an Aj singularity
except whenever A = Ay (in which case it is a Dy singularity). B

6.4. Singularities. We wish to determine the list of singularities of X$!. We
gather in the next proposition some helpful general facts, from which we can deduce
the list of singularities of X3! thanks to a few computations with MAGMA.

Proposition 6.13. Let v € V' \ {0} and let z = [v]. We assume that z is a smooth
point of Z(f3\) and we denote by 2’ its image in X3'.
(a) If |[W,| =1 or 2, then 2’ is smooth.
(b) If z € B and W, has rank 2, then T,(Z(f3.)) together with its action of
W, does not depend on ).
(c) If P is a parabolic subgroup of rank 2 and if = € (Z(f3.») \ B) NP(VP),
then W, = P and W, = P{wy).

Proof. (a) Assume first that W,, = {1}. Then W, =< w,_ > and 4 divides e, (see [5,
§4.1, Fact (a)]). Since e, divides one of the degrees, we have e, € {4,8,12,20,24}.
Note that e, # 20 by Proposition 6.9.

If e, = 4, then (PW), = {1} and so 2’ is smooth. If e, € {8,12,24}, then
d(ey) = d*(e;) and the eigenvalues of w., on the tangent space T,(Z(f3)) are
given by [5, Corollary 3.15(b)] and the determinant of w._ is given by (6.8). So we
get:

e Ife, =8, then det(w,.) = —1 and so W, = (w3) = (w4). So (PW’), = {1},
which implies that 2’ is smooth.

o If ¢, = 12, then det(w.,) = 1 and the eigenvalues of w., on T,(Z(f5))
are (5> and (5" = 1, so w,, acts as a reflection on T,(Z(fs)). This
implies that 2’ is smooth.
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o If e, = 24, then det(w._ ) = —1 so W, = (w? ). Moreover, the eigenvalues
of w2 on T.(Z(fs)) are (5;'° and (3,** =1, so w? acts as a reflection
on T,(Z(f3)). This implies that 2’ is smooth.

This shows (a) whenever W,, = {1}.

Let us now assume that |W,| = 2. Since w,, normalizes W,, this means that we,_
commutes with the non-trivial element of W,,, which is a reflection. But a MAGMA
computation shows that w. does not commute with any reflection if e € {8,12, 24}.
So e, = 4, which means that (PW'), = {1}. So 2’ is smooth.

(b) Assume that z € B and that W, hasrank 2. Then T,(Z(f3,)) is a dimension
2 subspace of T, (P(V')) which is stable under the action of W,: but T,(P(V)) = V/z
endowed with the natural action of W,, which is of rank 2, so there is a unique W,-
stable dimension 2 subspace of T,(IP(V')). This shows (b).

(c) Assume that P is a parabolic subgroup of rank 2 and that z € (Z(f3x) \
B) NP(VF). The fact that = ¢ B implies that e, ¢ {8,12,24} by (6.10). This
shows that W, = W, (w4). On the other hand, P = W, by (4.2). ]

Corollary 6.14. If A € C is such that Z°(f5) is smooth, then X3 has singulari-
ties D6 +A3 +3A2 +2A1.

Proof. The previous proposition shows that it is sufficient to determine a set of
representatives of conjugacy classes of parabolic subgroups P of rank 2 and to
determine the action of W, on T,(Z(fs)) for all z € Z(f3.,) NP(VF). Let

Wiq = (s1,54), Wis = (s1,85) and Wiaz = (51, S2,53).

We set N, = Ny (W) and Ly, = P(VW*) for k € {14,15,123}. Computations with
MAGMA show that:

o Wiy, Wis, Wiag are representatives of conjugacy classes of parabolic sub-
groups of rank 2.
e Wiy is a Coxeter group of type Ag and |Ni4/Wis{ws)| = 6. Moreover:

— Li4 N By contains 2 elements which form a single Ny4-orbit. If z €
L4 N By, then the action of W, on T,(Z(f5,1)) can be computed for
a single value of A thanks to Proposition 6.13(b), and it can be checked
that it acts as a reflection group, so the image of z is smooth.

— LiyNBy=0.

— So it remains 18 points in (Z°(fs,x) \ B) N L14: since the stabilizers of
these points are equal to Wi4({w4) by Proposition 6.13(c), their Ny4-
orbits have cardinality 6, so there are 3 such orbits, each leading to an
As-singularity because Wiy is of type As.

e W5 is a Coxeter group of type A; x Ay and |Ny5/Wi5{ws)| = 8. Moreover:

- L15 N Bl = J.

— Li5 N By contains 4 elements which form a single Njs-orbit. If z €
L15 N By, then the action of W, on T,(Z(f5,)) can be computed for
a single value of A thanks to Proposition 6.13(b), and it can then be
checked that the image of z is an As-singularity.
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— So it remains 16 points in (Z(f5,x) \ B) N L15: since the stabilizers of
these points are equal to Wy5(ws) by Proposition 6.13(c), their Nys-
orbits have cardinality 8, so there are 2 such orbits, each leading to an
Aj-singularity because W5 is of type A; x Aj.

e Wiy3 is a complex reflection group of type G(4,2,2) and |Ny23/Wiaz(ws)| =
24. Moreover:

— Ly23 N By contains 8 elements which form a single Njs3-orbit. Again,
Proposition 6.13(b) allows an easy computation which implies that the
image of z is smooth.

— Ly23 N Bs contains 12 elements which form a single Nyo3-orbit. Again,
Proposition 6.13(b) allows an easy computation which implies that the
image of z is a Dg-singularity.

— It remains no point in (Z'(f3 ) \ B) N Lias.

The proof of the corollary is complete. a

Proposition 6.15. If k € {145,245,1,2,3}, then the singularities of Xfi are given
by Table II, i.e.
(a) The surface X3, = X% o
) The surface Xi;s = Xils1/175 has singularities Fg + Dg + Az + Ag + A
(c) The surface X3! = X7 has singularities D + As + As + Ay +2 A;.
(d) The surface Xi; = X3 . has singularities Dg + D5 + 3 Ay + A;.
)

1/3
The surface Xi; = X3 _ has singularities Dg + 2 A3 +2 A5 + 2 A;.

—1/2

has singularities Dg + D5 + Az + 2 As.

Proof. Using the formula for ) given in the previous subsection, one can can easily
obtain the equation of the branch locus R}, for the five values of k. The singularities
of the curve Ry, are then easily determined thanks to MAGMA and we conclude
thanks to [5, Proposition 4.4]. O

This has the following consequence, which confirms some of the results of Ta-
ble II:

Corollary 6.16. Let A € C*. Then:
(a) If A & { M, Aaas, Ay Az, Az}, then p(X31) > 18.
(b) For generic \, we have p(X3') = 18.
(C) If>\ S {A1457>\245a)‘1) A27>\3}7 then p(Xil) = 19

Proof. Let A € C*. We denote by m the sum of the Milnor numbers of the singu-
larities of X3! (i.e., m is the number of smooth rational curves in the exceptional
divisors of the resolution 7y : X3! — X31). Then p(X3') > 14 m since X3! is
projective, so one can check from Corollary 6.14 and Proposition 6.15 the following
two facts:

(#) >

>1
> 19.

If A & {A145, A2as, A1, A2, As}, then p(X31)
If A € {Mias, A2as, A1y A2, Az}, then p(X3)
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Note that (&) proves the inequality stated in (a).

Let us now prove the equalities stated in (b) and (c). We shall use the meth-
ods developed by van Luijk [30] and Elsenhans and Jahnel [12, §3.3.1], based on
the Artin-Tate Conjecture (proved by Nygaard and Ogus for K3 surfaces [20] in
characteristic > 5), but we adapt them to the singular case. For this, assume that
A € Q and let &2, denote the set of prime numbers p such that:

(1) p>5 and p does not divide any denominator of any coefficient of ry. (so
that we can define a reduction of X3! modulo p, which will be defined over
F, and will be denoted by (X3}'),: we also denote by (R)), the reduction
modulo p of the ramification locus of ).

(2) If O) is the ring of integers of the minimal number field K containing the
coordinates of all the singular points of X3! and if p, is a prime ideal of &
lying over p, then ) /py = F, and all the singular points of (X3!), have
coordinates in [, and are the reduction modulo py of the singular points of
X3

(3) If x € X3! is a singular point, then its reduction modulo p is an ADE
singularity of (X3'), of the same type as .

So let p € #5. We denote by (Xil)p the minimal resolution of the K3 surface
(X3'),. Then (X3'), is the reduction modulo p of X3! by (1), (2) and (3), because
(X31), is obtained from X3! by the same sequence of blow-ups. This shows in
particular that X3! has good reduction modulo p (i.e. remains smooth) and that
its reduction modulo p is exactly (X3'),.

We denote by Py, € Z[T] (resp. Py, € Z[T]) the Weil polynomial of (X31),
(resp. (Xj\“)p), namely the characteristic polynomial of the Frobenius map on the
second f-adic cohomology group of (X3'), (resp. (X3'),). Note that the poly-
nomial Py, can be computed explicitly (and efficiently!) thanks to the command
WeilPolynomialOfDegree2K3Surface in MAGMA and that

(<) Prp= (T —p)"Pxp,

where we recall that m is the number of irreducible components of the exceptional
divisors of the minimal resolution of X3! (or of (X3!),, as they are all defined
over F, by (2) and (3)). Let py, denote the (I' — p)-valuation of Py, and let
Qxp = Prp/(T —p)P>r. Let pf , denote the number of root of Qx, of the form
¢p, where ( is a root of unity (note that piyp > pap). Also, we denote by Dy € Q%
the discriminant of the Picard group of X3}'.

We denote by Pic,((X3'),) the geometric Picard group of (X3'),, namely the
Picard group of F, xp, (X3'),. Then Artin-Tate Conjecture and ({) say that

(V) m+pa,p = rkPic((X3),) and m+p3 , =1k Picy ((X31),).

Reduction modulo p induces an injective map Pic X3! < Pic,((X3'),) (see [29,
Proposition 6.2]). Hence

(W) p(X3) <m+pd.,.

Moreover, if these two groups have the same rank, then their discriminant are equal
modulo Q*2. By Artin-Tate Conjecture and (), this forces

(W) T p(X3 ) =m + p{ ,=m + prp, then Dy = p™#32721Q; ,(p) mod Q*2.
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With all these tools in hand, we proceed as follows (numerical results stated below
are obtained with MAGMA).

(b) By (), p(f(fwl) > 18. Note that m = 17 in this case. On the other hand,
193 € 9,1/4 and

P_y/4193 = (T —193)(T* +212T° + 10422 T2 + 7896788 T' + 1387488001).

This shows that Q_1/4105 = T* + 2127 + 1042272 + 7896788 T + 1387488001.
Since this polynomial has no root of the form 193¢ with ¢ a root of unity, we get
that p_y /4103 = p{1/47193 =1 and so p(X_11/4) < 18 by (#). This proves (b) for
A = —1/4 and so this proves (b) for A generic.

(c) We explain how to prove (c) whenever A = Ai45 = —8/25, the other cases
being treated similarly. Note first that m = 18 in this case. By (&), p(X_g/25) €
{19,20}. Note that 23 and 47 belong to &_g,95. We have

P—8/25,23 = (T — 23)2(T2 + 38T + 529) and Q—8/25,23(23)/23 =21 mod QX2,
P—8/25747 = (T — 47)2(T2 + 2271 + 2209) and Q—8/25,47(47)/47 =29 mod QX2.

Assume that p(X_g/25) = 20. Then
20 = P(X—8/25) =m-+ p_g/o523 =M+ 038/25723 =m+ p_g/e547 =M+ 038/25,47,

so it follows from (#7T) that 21 = 29 mod Q*?2, which is impossible. So p(Xilg/%) =
19, as expected. (Il

Remark 6.17 (Supersingular surfaces). Keep the notation of the proof of Corol-
lary 6.16. For each exceptional value of A (i.e. A € {145, Aass, A1, A2, As}) there
exist prime numbers p such that X’i’l has good reduction modulo p and (Xi’l)p
is a supersingular variety (i.e. has geometric Picard number 22). We give here
a (non-exhaustive) list of examples. So assume that (\,p) is a pair where \ €
{A145, A2a5, A1, A2, A3} and p is a prime number such that:

o If A = 45 = —8/25, then p € {59,73,89}.

o If A = A\gy5 = —81/175, then p € {31,47,73}.

o If A\=X; =1, then p =43.

o If \ =)y = —1/3, then p = 337.

o If A= X3 =—1/2, then p € {73,79}.
(

Then (X31), is supersingular. B

Remark 6.18. Note that, generically, 7y is irreducible. However, ry, and r), are
not irreducible*:
e The quintic R}, = R} is the union of a smooth irreducible conic and an
irreducible cubic. More detail about this case will be given in §7.4.2.
e The quintic R’)\3 =R, /2 is the union of a line and an irreducible quartic.
More detail about this case will be given in §7.4.3. l

4We do not know if there are other values of \ such that r) is not irreducible.



32 CEDRIC BONNAFE AND ALESSANDRA SARTI

6.5. Complements. The experienced reader might have noticed that
fi = 32(z®) + 145 (2 y?) + 16827y 2%
is the polynomial which defines the smooth octic containing 352 lines constructed

by Boissiére and the second author [2]. We will revisit here this example.
Let

-1 0 0 -1
,_V2|l0 1 1 0
2 0 1 -1 0
-10 0 1

Then o(s;) = s5—; if i € {1,2,3,4} and (so € G31. Moreover, (go normalizes the
subgroup Gas. In [2], the polynomial f; was constructed as a particular invariant
of the one-parameter family of fundamental invariants of degree 8 of the group
(o) x G55 (which is contained in ((s)G31), but it turns out that this is exactly the
one which is invariant by Gs;.

The 352 lines on Z(f1) are divided into two G3i-orbits: one of size 160 and one
of size 192. We explain here how to construct these two orbits.

First, as 12 does not divide 8, the G31-orbit of L15 is contained in Z(f;) by [5,
Lemma 2.2|, so this explains the first orbit with 160 lines. For constructing the
second orbit, one requires some more material. Let # = G3; = W(Es) acting
on a vector space Vg of dimension 8. The list of degrees (resp. codegrees) of
W s (2,8,12,14, 18, 20,24, 30) (resp. (0,6,10,12,16,18,22,28)). Applying Theo-
rem 3.13 with # and e = 4 shows that there exists an element ws € # such that
dim Vg (wy, i) = 4, #'(Va(ws, 1)) = {1} and #i; (w, ;) acts on Vg(wy, ) as a reflection
group whose list of degrees is (8, 12,20, 24): in fact, #y;(u, ;) ~ G31 (as a reflection
group). Therefore, we may identify V' with Vg(wy,i) and Gz1 with #y; (w,,i)-

Now, let ¢ = (1 4 v/5)/2 be the golden ratio. By [15, §3], there exists an
automorphism ¢ of Vg satisfying p? = ¢+ Idy, and such that dim Vs(y, ¢) = 4 and
Wy (p.0) acts faithfully on Vs(p, @) as the complex reflection group W(Hy) = Gsp.
Using again Theorem 3.13 with #y,(, 4) =~ G30, we see that we may choose the
above element v as belonging to #y,(,,4). Moreover, E = Vg(v,i) N Vg(p, ¢) has
dimension 2, and its stabilizer #% acts faithfully on E as the complex reflection
group Gag, whose list of degrees is (12,20) (as they are the only degrees of W which
are divisible by 4). Hence, the restriction of f; to E having degree 8 and being
invariant under #5 = Cy (wy), this implies that f; vanishes on E. So, if we let
L' =P(FE), then L' is a line contained in Z(f1), whose stabilizer in G3; has order
12 x 20 = 240. This shows that the G3q-orbit of L’ contains 192 lines which are all
contained in Z(f1).

7. THE GROUP G3; (CONTINUED): ELLIPTIC FIBRATIONS

We will use here the constructions of Appendix B. Let x be a singular point of
the branch locus Ry. Since x belongs to the branch locus, there is a unique point
i € X3! above z. Let p, : P?(C) \ {z} — P!(C) be the projection from the point
z. We denote by P2(C) the blow-up of P?(C) at  and by X¥ the blow-up of X3!
at @. Then:

e The projection p, lifts and extends to a morphism p, : P2(C) — P'(C).
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e Since X3! has only ADE singularities, the map &, : X3! — P?(C) lifts to a
map ff\” : X§ — P2(C) (see Proposition B.1).

e Since X§1 has only ADE singularities, its minimal resolution is obtained
by successive blow-ups of singular points. In particular, the morphism
7y 0 X3 — X3! factorizes through 7% : X3! — X¢.

Altogether, this gives a well-defined morphism of varieties
PR =peofody: X{' — PY(C),
i.e. an elliptic fibration.

This gives lots of elliptic fibrations, and the particular values Ax of A must also
be treated separately. For this reason, we will not compute the singular fibers in all
cases. We will just provide general facts about sections, use them to determine the
intersection graph of the curves contained in 7y *(Bj) and just focus on singular
fibers of the fibration gbf\l‘*.

Question. Are there other elliptic fibrations on the surface X3 ?

7.1. Sections. Let us first discuss the question of sections of the elliptic fibration
associated with ¢%, using Proposition B.3. For this, let E, denote the exceptional
divisor of the blow-up P2(C) (it is isomorphic to P!(C) and maps isomorphically to
P!(C) through p,). If we denote by m the Milnor number of i and by A?,..., A%
the smooth rational curves of the exceptional divisor of X/f, then Proposition B.3
implies that:

e If m >2 and z is an A,,-singularity (and if we assume that the smooth
rational curves A7 are numbered so that the extremal vertices of their
intersection graph are A{ and AY , then A7 and A? are exchanged by
o and are mapped isomorphically to E,. This gives two sections 0 :
P'(C) — X3 of the elliptic fibration 3% satisfying 6, = o o 6;.

e If z is not of type A, then only one of the smooth rational curves A7 maps
isomorphically to E,. This leads to a section 6, : P'(C) — X3! of %.

Note also that any line L of P?(C) not containing z maps isomorphically through
the projection p,, so its inverse image L ~ L in P2(C) maps isomorphically to
P!(C) through p,. Applied to the line Bs, and using the fact that By lies in the
branch locus (and so the map B) — By is an isomorphism), we see that, if z & Bs,
then the elliptic fibration ¢% admits a section 02 : P1(C) — X’il whose image is
the strict transform Bj of B} in Xﬁl. We summarize the above discussion in the
next proposition:

Proposition 7.1. Let x be a singular point of Ry. Then:

(a) If m > 2 and if x is an A, singularity, then the elliptic fibration $% admits
two sections 0 whose images are the two extremal smooth rational curves
of the exceptional divisor 7, ' ().

(b) If = is not a type A singularity, then the elliptic fibration ¢% admits a
section whose image is one of the smooth rational curves of the exceptional
divisor ﬁ;l(x)

(c) If x & By (ice. if x & {as,dg}), then the elliptic fibration @5 admits a
section whose image is BY.
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7.2. Intersection graph in 71';1(B;) and the elliptic fibration ($}°. Recall
that a3 and dg are the only singular points of Ry belonging to Bj. It will be
interesting for computing Picard numbers and transcendental lattices to determine
the intersection graph between the smooth rational curves of 7r;1(d.6), the ones of
7y *(a3) and the strict transform Bj of B} in X3'. This will be done thanks to the
elliptic fibrations constructed in this section. We need some notation. The point
ds € X3 is always a Dg singularity. We assume that the 6 smooth rational curves
(Agﬁ)l < k < 6 of the exceptional divisor W;l(d(;) are numbered in such a way that
the intersection graph is given by

d
Al
dg de dg de
Al A Al Al
) ) O
4 / /
AG
2

We denote by ms(A) the Milnor number of the singularity as. If A # Ao =
—1/3 (resp. A = Xg), then a3 is an As (resp. a Dj;) singularity, so mz(\) =
3 (resp. mg3(A) = 5) and we assume that the ms(A) smooth rational curves
(A¥®)1 < k < ms(n) Of the exceptional divisor 77;1((13) are numbered in such a way
that the intersection graph is given by

as as
A1 A1

Ag?
(resp.
AS?

Now, if z is a singular point of X3! different from a3 and dg (there always exists such
a point), then (¢%) ™ (p.(ds)) and (%) ! (ps(as3)) are two singular fibers (because
they contain 7, *(dg) and 7 *(a3)). Since Bj is a section of the elliptic fibration
@% by Proposition 7.1, B} meets 7r;1(d.6) and 7y '(a3) transversally at only one
curve with multiplicity 1. Recall that the multiplicity 1 curves of F;l(de) (resp.
7y (az)) are Ao, A%e and A% (resp. AY?, A® and AZ’;"S()\), where m3()\) denote
the Milnor number of the singularity as).

Since o(Bj) = Bh and o(A{*) = A%?, this forces that Bj meets 7, ' (a3) transver-
sally at AZ%(A)' .

To determine which curve of 7 *(ds) meets Bj, we use the elliptic fibration
@5, First, ($5*) " (pas(ds)) contains 7y ' (ds) and Bj. Moreover, G (AN () s
a point by Proposition B.3, so it must be the same point as ¢$*(Bj), which is
@5 (ds) = pas(ds). Therefore,

6
(852) 7 (pa (ds)) = A2 U By U (| Af).
k=1
The Kodaira-Néron classification of singular fibers then shows that the only possi-

bility is that ($°) ™" (pas (ds)) is of type E7 and Bj meets A% (by exchanging A%
and A% if necessary). So we have shown most of the following lemma:
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Lemma 7.2. The intersection graph of curves contained in 71';1(B§) is as follows.
If X\ #£ )Xo it is given by

as as D/ de dg ds ds ds
S m st st ot s

O O / / / /
Ay g Ay g

and if A = Ay it is given by

AW AP AP AB B Al A Al Ad Al

O—O—"O0— 00— C0C—"C0O0—"0O—0—"C—=0
5 dg

AQSg A26

Moreover:
(a) The singular fiber ($5*) " (pa,(ds)) is of type Er.
(b) The singular fiber ((ﬁﬁlf’)_l(p% (a3)) is of type D7 if X # \o and of type Dy
ifA=X=-1/3.

Proof. Only the statement (b) has not been proved. First, m; '(a3) and Bj are
contained in ($¢)~!(pa,(az)). Moreover, it follows from Proposition B.3 that the
curves (A%); ¢ < 4 are sent, through cﬁfff, to a single point of P1(C). Since B}
meets A‘fﬁ, this point is necessarily pq,(as). So

(35¢) " (pay (as)) = w3 (as) U By U (U Ad6)

and the result follows from the description of the intersection graph. O

7.3. The elliptic fibration @$°. Since dg = [1 : 0 : 0], the maps pg, : P*(C) \
{dg} — PY(C) and g4, : X3\ {ds} — P'(C) are easily described by

pag([21: 220 za]) = [22 1 24]  and @ ([21 1 221 20 1 H]) = [22 1 24].

Since dg is a Dg-singularity of X3!, the reduced fiber (79°)~'(dg) is isomorphic to

P!(C) and contains two singular points of X31. one, which we denote by a, is an
Aj singularity and the other, which we denote by b, is a Dy4-singularity. A MAGMA
computation shows that

Pag(a) = [L: =4AA+ 1) and  @4s(b) = [0: 1] = @ag(as)-

The singular fiber above [0 : 1] has been described in Lemma 7.2(b) so we concen-
trate now on the fiber above [1: —4A\(A + 1)].

We denote by Ay the closure of ¢ '([1: —4A(A + 1)]) in X$: if we denote by
sx(z1, 22) the quadratic form

sa(z1,22) = 27 + (=TLA% =52\ — 8) 2120 + (8A* + 28 A3 + 36 A2 + 20\ + 4) 23,
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we have
Ay = {[z1:20:24:t] € X3 | 24 = —4ANA + 1) 20}
{[z1: 20 : 1] €P(1,1,3) | t2 = zo7a (21, 20, —4A(\ + 1)20)}
{[21: 22 : 1] €P(1,1,3) | t* = =16 A*(2X + 1)® 2385 (21, 22) }-

Note the following fact:

Lemma 7.3. If A # 0, —1/2, —8/17, then the closed subvariety Ay meets the
singular locus of X3 at only one point (the point dg).

Proof. This is a MAGMA computation. O

Let Ay denote the strict transform of Ay in X3!, recall that A% = (75¢)~1(a)
and let & denote the fiber (@%)~1([1 : —4A(A + 1)]). Then it follows from
Lemma 7.3 that:

Corollary 7.4. If A\ #0, —1/2, —8/17, then &, = Ay U AgG.

However, it must be noticed that A, is not necessarily irreducible. Indeed,
1A% 452X 17X 3
7 +25 +822)27)\( 74+8) 2

So A, is irreducible if and only if A # 0, —8/17 (we retrieve the same special value
as in Lemma 7.3). We deduce from this the following result:

sx= (21—

Corollary 7.5. If A\ #0, —1/2, —8/17, then &) is a singular fiber of type I

Proof. The hypothesis implies that &\ contains two irreducible components, namely
A, and Ad5 It then follows from the classification of singular fibers that &) is of
type Is or III

Now, let Ay denote the strict transform of Ay in X3'. From the equation of
A\, we see that dg is an A3 singularity of Ay so that, after blowing- up, a is an
A; singularity of A,. So, after blowmg—up a, we see that A, meets A 5 in two
different points, so that &) is of type A;. (I

Proposition 7.6. Let A\ € C*. Then the singular fibers of 95§6 are given by Ta-
ble 1V.
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Proof. Assume first that A # —1/2, —8/17. Then a MAGMA computation shows
that, if z and y are two different singular points of X3\ {dg}, then @g, () # @a, (y)-
Then the result follows from Lemmas 7.2(b) and 7.3 and the same argument based
on Euler characteristic in the proof of Corollary 5.11 to distinguish between the
different possibilities.

The case where A = —1/2 will be treated in §7.4.3. So it remains to check the
case where A = —8/17. The numerical facts in what follows can be checked with
MAGMA [7, ?7]. Whenever A = —8/17, then A_g/;7 is not irreducible and contains
one of the A, singularities of X®§ ;. (let us call it a2), the singularity dg and no
other singular points of Xilg ire and splits into two irreducible components 'WhiCh
we call Al J17 and A% /17~ Their intersection contains only the points dg and
az. One can check that they are both smooth at a3 and that the tangent line of
A£8/17 at G is different than the one of Ais/n- Therefore, &_g/17 is the union of
five irreducible components Agﬁ, Al—s/na A2_8/17, Af? ~and AZ? an(i the last four
form an A4 configuration whose extremal curves are A1_8/17 and A2_8/17. Since
these extremal curves both meet AgG, the only possibility for the singular fiber

(@;lG)’l(tpdG (a2)) is to be of type A4. The other singular fibers are obtained as in
the previous case, using again Euler characteristic to remove ambiguities. d

Recall from Proposition 7.1(b) that the elliptic fibration aﬁi‘* admits a section
whose image is Agﬁ:

Proposition 7.7. Let A € C*. Then the Mordell-Weil group MW((,B‘){G) is given by
Table IV.

Proof. In all cases, the rank of the Mordell-Weil group is equal to 0. The torsion
is given by [26]. O

We summarize all the datas collected in this section and the previous one in
Table IV. Observe that in all the cases except when the Mordell-Weil group has tor-
sion, the Picard group of the K3 surface is U+(Dynkin diagram of the singular fibers),
i.e. in the generic cas is U + D7 + 345 + 3A;. In the case when the Mordell-Weil
group is Z/27 then one has to add the 2-torsion section to get the whole Picard

group.

7.4. Three particular cases. We study here the cases where A € {—8/17,1,—1/2},
which are all particular in their own way.
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A Zing (fan) singularities of X3! p(X3Y) | singular fibers of @ie MVV(c,Ei6

# A\, —8/17 %) De+ A3 +3A,4+24;, | =181 D7+ 34, +34, 0

—8/17 %) Dg+ A3 +3A5 +2 A, 19 | Dr+As+2A,+2A4, 0

g5 = —8/25 960 A, D¢+ D5 + As +2 A,y 19 D7+ Ds+245 + A 0

Aaas = —81/175 | 480 A, Eg¢+ Dg+ Az + Ay + A, 19 Es+ D7+ Ay +24, 0
AN =1 1920 4; | Do+ As + As + Ay + 2 A4 19 D;+ As + Ay + 3 Ay 7.)27

Ay =—1/3 1440 Ay Dg + D5 + 3 Ay + Ay 19 Dy +3A4;,4+2A4, 0

A3 =—1/2 640 A3 De+2A3+2Ay 4+ 24, 19 D7+ Ds +2 A4, + Ay 0

TABLE IV. Some numerical data for the family of K3 surfaces (X3')xcox
() With equality for A generic
(#) Only for \ generic

7.4.1. The case A = —8/17. We assume here, and only here, that A = —8/17. As
shown in Proposition 7.6, the elliptic fibration gp‘iﬁg )17 of the K3 surface X 3% 7
has the property that A, contains a singular point of X?} j17 different from dg
and the corresponding singular fiber &_g/,7 is of type A,. This has the following
consequence for its Picard number, which makes Xilg /17 @ special member of the
family obtained from minimal resolutions of quotients by G%; of the smooth family

of icosics (g(-f&)\))/\@cx\{)\1457)\2457)\1)\2,/\3}:

Proposition 7.8. p(Xilg/N) =19.

Proof. For proving that p(X?} /17) > 19, we shall use the elliptic fibration @f\lG.

Indeed, this fibration admits a section, so p(Xils/N) > 2+ m’, where m’ is the
rank of the subgroup of Pic(X3} /17) generated by irreducible components of the
singular fibers (here, 2 comes from the section and a general smooth fiber of @jﬁ)
It follows from Table IV that m’ = 17, so

P(Xils/n) = 19.

Now, proving that p(X’ils/N) = 19 is done as in the proof of Corollary 6.16, thanks
to MAGMA computations and the Artin-Tate Conjecture. O

7.4.2. The case A = A\; = 1. We assume here, and only here, that A = A; = 1. We
set,
q1 = 2120 — 1/108 23 +1/54 2924 — 1/108 23

and c1= 2320 — BAz123 +1/82324 — 9212024 — 1 /42123 +1/825.
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Then ¢; and ¢, are irreducible and
T = 7864(]161.

So, if we denote by Q1 = Z(¢1) and C; = Z(c1), then Q1 is a smooth conic while
C1 is a cuspidal cubic. Then

(79) Ry = B2 U@ UCh.
The singular points of R; are given by
dg=1[1:0:0], az=[1:0:1], as=[1:3:21], ag=][1:1/27:-1/3],

ai‘r — [1 . 231\/354—1327, 165 \/323+949] and al_ — [1 . —231\/334—1327’ —165 \/233+949].

It is easily checked that
ds € BNQ1NCy, a3 e (BNCi)\Q,
ay € C1\ (B2 UQ1), as,ay € (Q1NCy)\ By.
We denote by @) the preimage of Q1 in X!, endowed with its reduced structure

(so that Q) ~ Q1) and we denote by Q' the strict transform of Q' in X?!. Since
Q' is a smooth rational curve, we get that

(7.10) Q& = Q/1 ~ Q1.

Since the smooth conic Q1 goes through the point dg, we get that Q’l is a section
of the elliptic fibration @‘116. By Table IV, we get:

Proposition 7.11. The smooth rational curve Q’l is a section of the elliptic fibra-
tion ¢ It is 2-torsion and generates the Mordell-Weil group MW ($9%).

7.4.3. The case A = A3 = —1/2. We assume here, and only here, that A = —1/2.
We set

1%y = 272020+ 947/16 2725 + 54 2125 — 113/2 27202
—1T1/2 212324 — 2223 + 59/2 212025 + 22125 + 2025 — 2}
Then r°, /2 is irreducible and
(7.12) T 172 = (22 — Z4)T31/2-

Let L denote the line in P?(C) defined by 2(22 — 24) and let R®, ), = Z(r°, ,) C
R,1/2. Then

(713) R71/2 :BQULURil/Q.
The singular points of R_; /5 are
dsg=1[1:0:0], az=[1:0:1], ak=1[0:1:1],
a;r — [1 . 52 \/237—184 . 13\/1;3737]7 a; — [1 . —52@—184 . 713\/Gﬁ737]'
al =[1:-16:-16] and  a;=[1:1/32:7/8],
With this notation, dg is a Dg singularity, a3 and a} are As singularities, aj and

a; are A, singularities and a; and alL are A; singularities of R_; /5. Note that, as
sets,

(7.14) BoNL={ds}, BaNR®, ), ={ds,as} and LNR®,,, ={ds a¥,ai}.
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Let L' denote the preimage of L in X°} , endowed with its reduced structure.
Then

L'={[z1:290:23:t] € P(1,1,1,3) | t = zp — 24 = 0} ~ P*(C).
We denote by L' its strict transform in X’illp. Then (@iﬁl/z)*l(wA(ag)) contains

Agﬁ, L’ and the exceptional divisors above the singularities @& and a%: the smooth
rational curve L’ meets Ag"’, the exceptional divisor above ¥ and at least one of
the exceptional divisors above @%, so the only possibility is that (@i"l/z)_l(go)\ (as))

is a singular fiber of type Ds.
The other singular fibers are now determined easily and fit with the data in
Table IV. Note also that L’ provides another section of all the fibrations ¢} /20

%i ~as3
P2 and P o
Appendix: Morphisms to P!(C)

We describe here two basic contructions of morphisms to P!(C) which are used
in the body of the article for constructing elliptic fibrations on our K3 surfaces.

A. WEIGHTED PROJECTIVE SPACE

Notation. We fix two natural numbers k and | such that
ged(k,l) = 1, we set m = k + 1 and we denote here by p
the point [0 : 0 : 1] of P(k,l,m). It is an A,,—1-singularity of
P(k,l,m). We denote by 7 : P(k,l,m) — P(k,1,m) the mini-
mal resolution of the singularity p.

Note that we have only resolved the singularity p, so that #—1(P(k,l,m) \ {p})
may still have two singular points (above [1:0:0] and [0:1:0]). Let

erys Pk Lm)\{p} — PYC)
[z:y: 2] — [zt gk

Then there exists a unique morphism of varieties
@k,l : HAD(I{;7 la m) — Pl ((C)

making the diagram

P(k,1,m) \ {p} — L~ P(C)

commutative.
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Proof. The uniqueness is trivial, so let us prove the existence. It is sufficient to
work in the affine chart U, = {[z : y : 2] € P(k,l,m) | = # 0} of P(k,l,m). We
denote by U, its minimal resolution of singularities. Through the variables a = 2™,
b= xy and ¢ = y™ (and setting z = 1), we have
U. = {(a,b,c) € A*(C) | b™ = ac}

and p corresponds to the point 0 of U, while the restriction of ¢ ; to U, \ {0} is
given by

a: b if (a,b 0,0),

ora(a,b,¢) [Z ] _ (a,b) # (0,0)
[b":c] if (b,c) # (0,0).

A model for the minimal resolution of U, is given by®

U, = {((a,b,c), [ug s ug : -+ : up)) € U, x PP7HC) |

<m, auj; = bj’luj_l,
<m—1, cuj =" Iy, }.
j<j <m, UjUjr = bj/_j_l’u,j+1’u,j/,1
Note that the last equation is automatically fulfilled if j" = j + 1.

We then define ¢y : U, — P!(C) by
[ :bFJu; 1] if uj # 0 and j
b1 Fu;_uy) if uj # 0 and j

k,

(A.2) @k,g((a,b,c),[ulqu;...:um]):{ .

<
>

An immediate computation from the equations of U, shows that ¢y, ; is well-defined
and satisfies the required property. (Il

Let Aq,..., A,,_1 be the smooth projective lines in the exceptional divisor
77 Y(p) and we assume that they are numbered so that, in the open subset U,
described in the proof of (A.1),

Aj={0} x {[ur s up) € PPHC) |V r e {1,2,...,m}\ {4,7 + 1}, u, = 0}
Let
Ay ={lz:y:2]€P(k,l,m)| =0} and A, ={[z:y:2] €Pk,I,m)|y=0}

Then A, and A, are smooth rational curves and A, N A, = {p}. Let A, and A,
denote the respective strict transforms of A, and A, in P(k, 1, m).

Proposition A.3. The fiber @;}([1 : 0]) (resp. @;}([0 : 1])) is the union of
the smooth rational curves Ay, Av,.., Dy (resp. Dpii,e. .y A, Ax) The
intersection graphs are given respectively by

Ay Al Ak—l
Ak+1 Am—l Az

and O— - —0—=0

SFor 0 < j < m—1, let Jj denote the ideal of the algebra C[U.] = C[A, B,C]/(B™ — AC) gen-
erated by A and B?. Then U, is the blowing-up of JoJi - - - Jin—1 = (AT BIG-1/2)) 5 )
the variable u; corresponds to the generator A™ 7 BJ(G—1)/2,
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Proof. One only needs to determine the intersections of the fibers cﬁ,;}([l :0]) and

4,5,:}([0 : 1]) with the open set U, of P(k,I,m). But this can be done from the
explicit model and formula (A.2) given in the proof of (A.1). O

Remark A.4. Tt follows from from (A.2) that the restriction of ¢y ; to the smooth
rational curve Ay, is an isomorphism: this provides a section P*(C) — P(k, 1, m)
to the morphism @y : P(k,l,m) — P}(C). B

Remark A.5. Let p € P(C) \ {[1:0],[0: 1]}. Then ¢, ;(p) is a smooth rational
curve. Indeed, write p = [1 : o] with @ # 0 (and assume that k < [, the other case
being similar). Then

eri(p) ={le:y: 2] € Bk, Lm) | y* = aa').
Working first in the affine chart U,, we get
i) NU. = {(a,b,c) € A*(C) | ™ = ac, ¢ = abl and a = b} ~ AL(C).
Working now in the affine chart U, = {[z : y : 2] € P(k,I,m) | = # 0}, we have
U = {(uo,u1, ... ur) € ATHC) | V1 < <5 <k, vjvy =vj 10511}
(here, the variable v; stands for y/2*=7). Therefore,

801;}(1’) mU”c = {(u07u17"'7uk) € U"c ‘ Uy = O[} 2AI(C)v

the isomorphism A!(C) — gol;}(p) N U, being given by u + a(1,u,u?,... uF1).

Since ¢, ;(p) is contained in U, UU,, we conclude that ¢, | (p) is a smooth rational
curve. il

B. DOUBLE COVER OF P?(C)

Hypothesis and notation. We fix a non-zero natural num-
ber m and a square-free homogeneous polynomial F € Cla, b, c|
of degree 2m, where a, b and c are of degree 1. We denote by
Z the surface

X ={la:b:c:t] €P(1,1,1,m) | t* = F(a,b,c)}

and by € : X - P2(C), [a:b:c:t]—[a:b:c]. Leto
denote the involutive automorphism of P(1,1,1,m) defined by
o(la:b:c:t])=[a:b:c:—t].

Then o stabilizes 2" and ¢ is the double cover of P?(C) associated with . We
denote by # C P?(C) its branch locus

% ={la:b:c €P*C)| F(a,b,c) =0}.

Ifex=1la:b:c € %, wedenote by & = [a : b : ¢ : 0] its unique preimage
in 2. We also define p, : P2(C) \ {z} — P1(C) to be the projection from z
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and let 3, : P2(C) — P2(C) denote the blow-up of P?(C) at . Then the map
Pz 0 Bz : P2(C) \ B, () — P1(C) extends uniquely to a morphism

s 1 P2(C) — PY(C),

which admits a section 8, : P}Y(C) — P2(C) whose image is 8;'(z) ~ P(C).
Finally, we denote by 7, : 2, — Z  the blow-up of Z" at .

Proposition B.1. Assume that x is a singular point of the branch locus Z. Then
the morphism & : 2 — P2(C) lifts uniquely to a morphism &, : 2, — P2(C)
making the diagram

Ty B T

commautative.

Remark B.2. The reader can easily check that, if x is not a singular point of R,
then the conclusion of proposition fails. H

Proof. The uniqueness is clear, we only need to show the existence. By a linear
change on the coordinates a, b, ¢, we may assume that = [0: 0 : 1]. It is sufficient
to work in the open subsets % and U of 2" and P?(C) defined by ¢ # 0 (and
we denote by %, and U, their respective blow-up at i and x). We set F.(a,b) =
F(a,b,1). Then, since z is a singular point of R, this means that F.(0,0) = 0 and
that the homogeneous component of degree 1 of F. is zero. We can then write
uniquely

F.(a,b) = a®*X(a, b) + abu(b) + b*v/(b)
with A € C[a,b] and u, v € C[b]. Therefore:
Uy = {((a,b,t),[A: B:T]) € A*(C) x P*(C) | (a,b,t) €[A: B: T]
and T? = A*X\(a,b) + ABu(b) + B*v(b)}

and U, = {((a,b),[A: B]) € A%(C) x P1(C) | (a,b) € [A: B]}.
Then the map fx : U, —> U, defined by

ém((avba t)a [A 1B T]) = ((avb)a [A : B])

is well-defined and satisfies the requirements of the proposition. O
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Proposition B.1 allows to define a morphism
$u =Py o0&+ Xy — PY(C).

We now investigate the question of sections of this morphism, whenever x is an
ADE singularity of the branch locus % (by [5, Proposition 4.4], this implies that &
is a simple singularity of the surface 2" of the same type as x). First, note that,
if s, : P1(C) — 2, is a section of ¢, then &, o s, is a section of p,. Therefore,
the question amounts to study sections of the morphism &, : 7, *(¢) — B (z) ~
P!(C). Here, we endow 7, (i) with its reduced structure. A first answer is given
in the next proposition:

Proposition B.3. Let x be an ADE singularity of #. Then:

(a) If z is an A, singularity, then 7, ' (i) ~ PY(C) and the morphism &, :
774 (1) — B (x) is a double cover admitting no section.

(b) If x is an A, singularity with m > 2, then 7, '(%) is the union of two
smooth rational curves (~ P'(C)) intersecting transversally at one point,
and both smooth rational curves map isomorphically to 3;1(x). This gives
two sections of éz, each one being obtained from the other by composing
with the involution o.

(c) If x is a DE singularity, then n;'(i) ~ P'(C) mapping isomorphically on
B (x). This gives one section of &,.

Proof. As in the proof of the previous Proposition B.1, we may assume that x =
[0:0: 1] and we keep the notation introduced in this above proof. In particular,

7, H(#) ~{[A: B:T] € P*(C) | T? = a(0,0)A% + B(0)AB + ~(0)B*}
and &,([A: B:T]) = [A: B]. Let us examine the different cases.

(a) If = is an A; singularity, then a linear change of coordinates in a, b allows to
assume that «(0,0) =~(0) = 0 and 3(0) = 1. Then

n, (&)~ {[A: B:T) € P*(C) | T*> = AB}
and the result follows.

(b) If = is an A,, singularity with m > 2, then a linear change of coordinates in
a, b allows to assume that a(0,0) = 1 and 5(0) = v(0) = 0. Then

(@) ~{[A:B:T]€P*(C) | T? = A’} = AL UA_,
where Ay = {[A: B:T] € P*(C) | A= +T}. The result follows.
(c) If z is a DE singularity, then «(0,0) = 5(0) = v(0) = 0, so
(&) ~{[A: B:T] € P*(C) | T =0} ~ P(C),

so the result follows. O

Let us go on with the case where x is an ADE singularity of Z. We denote
by 7y : Zy —> 2 the resolution of 2" only at the point &. It factorizes through
2y — Xy — 2. Let m denote the Milnor number of . Then 7, (i) is the
union of m smooth rational curves whose intersection graph is denoted by T',. If
x is not of type A;, we denote by I'# the graph obtained from ', by removing



COMPLEX REFLECTION GROUPS AND K3 SURFACES II 45

the smooth rational curves which are mapped isomorphically to P!(C) under @,.
According to the discussion of Proposition B.3, easy computations give the following
consequences about the behaviour of ¢, and the action of ¢ on the corresponding
intersection graph (here, type Do means type A; x A; and type D3 coincides with
type Asz):

Corollary B.4. All the smooth rational curves belonging to the same connected
component of % are mapped to the same point of P*(C) under ¢,. If two smooth
rational curves do U7 do not belong to the same connected component, then they
are mapped to different points of P*(C) under p,. Moreover:

10.

11.
12.

13.
14.

15.

16.

(a) If x is an Ay singularity, then ¢, : AY — PY(C) is a double cover corre-
sponding to the quotient by the action of o.

(b) If x is an A,, singularity with m > 2, then T'% is of type A,,_o and o acts
on Iy by the unique non-trivial involutive automorphism.

(c) If z is a D, singularity with m > 4, then T'¥ is of type D,,_o x A;. More-
over, o acts on the intersection graph as the identity if m is even and as
the unique non-trivial involutive automorphism if m is odd.

(d) If x is an Eg singularity, then T is of type As and o acts on T', as the
unique non-trivial involutive automorphism.

(e) If x is an E; (resp. Eg) singularity, then U7 is of type D¢ (resp. E;) and
o acts on Iy as the identity.
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