
THE FANO VARIETY OF LINES

OF A CUSPIDAL CYCLIC CUBIC FOURFOLD
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Abstract. We prove that the Fano variety of lines of a cuspidal cyclic cubic

fourfold is a symplectic variety with transversal A2-singularities and we study
the properties of the nonsymplectic order three automorphism induced by the

covering automorphism on the irreducible holomorphic symplectic manifold

obtained by blowing up the singular locus.

1. Introduction

The classification of the automorphisms and birational transformations of ir-
reducible holomorphic (IHS) manifolds is an intensive area of research that uses
the global Torelli theorem of Markmann–Verbitsky [28, 34] and the recent results
of Bayer–Macr̀ı [5] to describe the nef and movable cones. Cuspidal cyclic cubic
fourfolds are contructed as triple coverings of nodal cubic threefolds. Their Fano
varieties of lines are important since their periods are limit points under nodal
degenerations of smooth cubic threefolds. They have been studied in [10] in the
framework of the construction of moduli spaces, period maps and period domains
of nonsymplectic automorphisms on IHS manifolds deformation equivalent to the
Hilbert square of a K3 surface, as a hyper-Kähler interpretation of the theory de-
veloped by Allcock–Carlson–Toledo [1]. The meaning of the degeneracy of the au-
tomorphism is that when the period point goes to the closure of the period domain,
the automorphism of the family jumps to another family with a bigger invariant
lattice. In [9, 10] the limit family is constructed using Hilbert squares of K3 surfaces
with natural automorphisms, following the classification of Artebani–Sarti [3].

Starting from a nodal cubic threefold C ⊂ P4, the triple covering of P4 ramified
along C defines a cuspidal cyclic cubic fourfold Y . We denote by σ the automor-
phism of its Fano variety of lines F(Y ) induced by the covering automorphism ι.
The singular locus Σ of F(Y ) is a K3 surface with an automorphism τ induced by ι.
Theorem 4.1 is the main result of this note. We describe the singularities of the
Fano variety of lines of a cuspidal cyclic cubic fourfold, its symplectic resolution and
the corresponding divisorial contraction of the Hilbert square of the underlying K3
surface. We are mostly interested in the behavior of the automorphisms induced
by the covering automorphism:

Theorem. (Theorem 4.1) Let Y be a cuspidal cyclic cubic fourfold with one cusp ς.

(1) There exists a birational map φ : Σ[2] 99K F(Y ) which commutes with the
actions of τ [2] and σ. If Y contains no plane through ς, then φ is everywhere
defined and it contracts a divisor Ψ to the surface Σ.
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(2) The variety F(Y ) has symplectic singularities, they are A2-transversal along
the surface Σ and BlΣ(F(Y )) is a symplectic resolution of F(Y ).

(3) Assume that Y contains no plane through ς. The blowup ρ of Σ in F(Y ) is
an elimination of the indeterminacies of the rational map φ−1:

BlΣ(F(Y ))

ρ

��

φ̃−1

$$
F(Y )

φ−1

// Σ[2]

The morphism φ̃−1 is an isomorphism which maps isomorphically the ex-
ceptional divisor of the blowup to the prime divisor Ψ.

(4) The automorphism σ goes up to an order three nonsymplectic automor-
phism σ̃ on BlΣ(F(Y )). If Y contains no plane through ς, the isomor-

phism φ̃−1 commutes with the actions of σ̃ and τ [2].

In Remark 4.1 we describe the fix locus of σ̃ and in §4.2 we interpret the result in
the context of nodal degenerations of cubic threefolds and holomorphic extensions
of period maps: the pairs (BlΣF(Y ), σ̃) and

(
Σ[2], τ [2]

)
are equivariantly birational

to each other and nonseparated in moduli space M◦
L of 6-polarized IHS manifolds,

so both can be defined as limit points under a nodal degeneration of the underlying
cubic threefold.

To better understand the peculiarity of the birational geometry of the Fano va-
riety of lines on a cuspidal cyclic fourfold, it is instructive to take a step backwards
to study first the birational geometry of the Fano variety of lines on a nodal cubic
fourfold, leaving apart for an instant the degeneration of automorphisms. Their ge-
ometry appears many times in the literature. Let us briefly recall two main reasons
why the nodal setup has become so popular. First, it provides a nice example of
symplectic singularity, in the sense defined by Beauville [6]: its nonsingular locus
admits a holomorphic symplectic form whose pullback extends to a holomorphic
2-form on any resolution of singularities of F(Y ), and it admits a symplectic res-
olution, where the extended holomorphic 2-form remains nondegenerate, obtained
by a single blowup of its singular locus, which is generically a K3 surface Σ. This
has been first proved by Hassett [17, Lemma 6.3.1] by constructing a birational
map from Σ[2] to F(Y ). The result is recalled by Gounelas–Ottem [16, p.13] and
is generalized by Lehn [26, Theorem 3.6] to the case when the K3 surface Σ is

singular, by considering its minimal resolution Σ̃. Yamagishi [37] further developed
this study by proving that F(Y ) has the same analytic type of singularity as the
Hilbert scheme of two points on Σ and that F(Y ) has only one symplectic reso-
lution up to isomorphism. Assuming that Y has only simple singularities and no

plane, he observed that the indeterminacy of the birational map Σ̃[2] → Σ[2] can be
resolved by a sequence of flops to produce a symplectic resolution of Σ[2], hence of
F(Y ) since the birational map Σ[2] → F(Y ) is regular when Y contains no plane.
Secondly, from the point of view of the variety Σ[2], this setup provides an example
of an irreducible holomorphic symplectic manifold with two divisorial contractions
that generically describe its cone of numerically effective (nef) divisors. These con-
tractions appear for instance in Hassett-Tschinkel [18, 19, 20], Bayer–Macr̀ı [5] and
Debarre–Macr̀ı [12].
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The geometry of the Fano variety of lines on a cuspidal cyclic fourfold is more
subtle than the nodal case, but it can be treated by a slight modification of the
arguments. Since the nodal case is more familiar, we chose to develop the proof in
the nodal case and to focus on the main changes needed in the cuspidal one. Our
objective in Theorem 3.1 is to summarize all the geometric properties in the nodal
setup, with emphasis on the properties of the birational maps involved, and to give a
new and self-contained proof based on the stratification theorem of Kaledin [24] and
using, as much as possible, only elementary geometric arguments. The benefit of
our method is that it permits to have a deep control on the geometry of the blowup:
this will be needed in the second part of this note to control the birational geometry
and the automorphisms in the cuspidal cyclic setup considered in Theorem 4.1.

As a byproduct, we recover in §3.2, using the geometric description used in the
proof of Theorem 3.1 and direct geometric computations, the description of the
extremal rays of the nef cone of Σ[2], in accordance with the results of [5] (see
also [12, Example 5.3]).

The authors warmly thank Lucas Li Bassi, Chiara Camere, Bert van Geeemen,
Franco Giovenzana, Luca Giovenzana and Gianluca Piacenza for helpful discussions
during the preparation of this note.

2. Geometry of the Fano variety of lines of a cubic fourfold

2.1. Definition. Let Y ⊂ P5 be a complex cubic fourfold, that is the zero locus of
a degree three homogeneous polynomial F . We denote by F(Y ) the Fano scheme
of lines contained in Y , considered as a closed subscheme of the Grassmannian
Gr(1,P5) of lines in P5. For any line ℓ ⊂ P5, we denote by |ℓ] the corresponding
point in Gr(1,P5). Set-theorerically:

F(Y ) := {[ℓ] ∈ Gr(1,P5) | ℓ ⊂ Y } = {[ℓ] ∈ Gr(1,P5) |F |ℓ = 0}.

Following Altman–Kleiman [2], we define the scheme structure of F(Y ) as follows.
Let V be a six-dimensional complex vector space. We put P5 = P(V ), the equa-
tion F of Y is an element of the symmetric power Sym3 (V ∗). Consider the incidence
variety:

S := {([ℓ], v) ∈ Gr(1,P5)× V | v ∈ ℓ}.
Any line ℓ ⊂ P5 is identified with the plane Πℓ ⊂ V such that ℓ = P(Πℓ). The
fiber of the projection S → Gr(1,P5) over the point [ℓ] is the plane Πℓ and this
projection makes S a rank two vector bundle over Gr(1,P5). The restriction of F to
the line ℓ defines an element of Sym3 (Π∗

ℓ ). We thus construct a regular section sF
of the vector bundle Sym3 (S∗):

sF : Gr(1,P5) → Sym3 (S∗) , [ℓ] 7→ F|ℓ.

The Fano scheme F(Y ) is defined as the subscheme of zeros of this section (see [2,
Theorem 1.3]):

F(Y ) := Z(sF ).

2.2. Singularities. Throughout this paper, we consider a cubic fourfold Y with
one single simple isolated singularity of type either A1 or A2. In this geometric
setup, by results of Altmann-Kleiman [2], the scheme F(Y ) is a locally complete
intersection, it is reduced, normal, connected and irreducible (see also [26, Propo-
sition 3.5]). As a consequence, F(Y ) has Gorenstein singularities.
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The variety F(Y ) is smooth at every point [ℓ] corresponding to a line ℓ ⊂ Y
which does not pass through its singular point. This is a general and classical
result on Fano schemes, true in greater generality than ours (see for instance [2,
Corollary 1.11], [11, Lemma 7.7] or [21]). Assuming that Y does not contain a
plane, the subspace Σ ⊂ F(Y ) parametrizing those lines through the singular point
is a normal surface of degree 6 in P4, whose minimal resolution is a K3 surface.
The surface Σ is contained in the singular locus of F(Y ) and, in good situations, it
is itself smooth and it is exactly the singular locus of F(Y ) (see [26, Lemma 3.3]).

3. The Fano variety of lines of a nodal cubic fourfold

Let Y be a cubic fourfold with one single ordinary double point ϑ. In a suitable
homogeneous coordinate system (x0 : . . . : x5) of P5, the equation of Y may be
written as:

F (x0, . . . , x5) = x0q(x1, . . . , x5) + k(x1, . . . , x5),(3.1)

where q is a nondegenerate quadratic form and is k is a cubic form. The node ϑ
has coordinates [1 : 0 : . . . : 0]. The zero loci of q and k define in the hyper-
plane H0 := {x0 = 0} of P5 respectively a smooth quadric threefold Q and a cubic
threefold K. Any line ℓ ⊂ Y passing through ϑ cuts the hyperplane H0 at a point
of Q∩K. Since Y has no other singularity than ϑ, the intersection Q∩K is nonsin-
gular. In the sequel, we thus identify the locus Σ ⊂ F(Y ) of those lines through ϑ
with the K3 surface Q ∩K.

The cubic fourfold Y contains a plane passing through ϑ if and only if the K3
surface Σ contains a line. Indeed, if Y contains a plane P through ϑ, then the lines
through ϑ inside the plane P cut the hyperplane H0 along a line which is contained
in Σ by construction. Conversely, if Σ contains a line ℓ, then the lines Span(x, ϑ)
for x ∈ ℓ generate a plane contained in Y . Degtyarev [13, Theorem 1.2] proved that
the maximum number of lines on such K3 surfaces, or of planes in Y through ϑ, is
the famous number 42 (see [36]).

3.1. Symplectic resolution of F(Y ).

Theorem 3.1. Let Y be a cubic fourfold with one single ordinary double point ϑ.

(1) There exists a birational map φ : Σ[2] 99K F(Y ). If Y contains no plane
through ϑ, then φ is everywhere defined and it contracts a divisor Ψ to the
surface Σ.

(2) The variety F(Y ) has symplectic singularities, they are A1-transversal along
the surface Σ and BlΣ(F(Y )) is a symplectic resolution of F(Y ).

(3) Assume that Y contains no plane through ϑ. The blowup ρ of Σ in F(Y ) is
an elimination of the indeterminacies of the rational map φ−1:

BlΣ(F(Y ))

ρ

��

φ̃−1

$$
F(Y )

φ−1

// Σ[2]

The morphism φ̃−1 is an isomorphism which maps isomorphically the ex-
ceptional divisor of the blowup to the prime divisor Ψ, which is a conic
bundle over Σ.
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Proof.
Proof of assertion (1). We construct the birational map φ : Σ[2] 99K F(Y ) as fol-
lows. First take two distinct points x1, x2 ∈ Σ. By definition of Σ, the lines
ℓi = Span(ϑ, xi), i = 1, 2 are contained in Y . If the plane P := Span(ℓ1, ℓ2) is not
contained in Y , it cuts Y along a residual line ℓ3 and we define φ({x1, x2}) = [ℓ3].
Note that ℓ3 may go through the node ϑ. Now take a reduced subscheme of
length two on Σ, determined by a closed point x ∈ Σ and a tangent direction
v ∈ TxΣ = TxQ ∩ TxK. Denote by ℓ0 = Span(ϑ, x) the line contained in Y , by ℓ1
the line defined by x and v, and consider the plane P := Span(ℓ0, ℓ1). Assuming
that P is not contained in Y , let us prove that ℓ0 is a double line for the plane P .
We may choose coordinates such that ℓ0 has equations x2 = · · · = x5 = 0. Equa-
tion (3.1) thus decomposes as follows:

(3.2)
q = x1h1(x2, x3, x4, x5) + q1(x2, x3, x4, x5),

k = x21h2(x2, x3, x4, x5) + x1q2(x2, x3, x4, x5) + k1(x2, x3, x4, x5),

where h1, h2 are linear forms, q1, q2 are quadratic forms and k1 is a cubic form.
We may further assume that ℓ1 has equation x0 = x3 = x4 = x5 = 0. We denote
by x̂ the projection of x to H0 by the point ϑ. In the hyperplane H0, we thus
have the tangent space Tx̂Q = ker(h1) and Tx̂K = ker(h2). In particular, since
Q and K meet transversally, h1 and h2 are not proportional. By assumption,
ℓ1 ⊂ Tx̂Q ∩ Tx̂K, so h1 and h2 vanish along ℓ1: we deduce that their equations do
not depend on the variable x2. The plane P has equation x3 = x4 = x5 = 0. Since
P is not contained in Y , we get that the equation of P ∩Y is nonzero and factorizes
by x22: this means that the plane P cuts Y along the double line ℓ0 and a residual
line ℓ2, and we define ϕ({x, v}) = [ℓ2].

Let us describe the birational inverse φ−1 : F(Y ) 99K Σ[2]. Let [ℓ] ∈ F(Y ) \ Σ.

Consider the quadratic cone Q̂ ⊂ P5 with base Q and vertex ϑ and the plane

P := Span(ϑ, ℓ). Either P is contained in Q̂, or the intersection P ∩ Q̂ is a plane
conic singular at ϑ.

• First case : P ∩ Q̂ is the union of two distincts lines ℓ1, ℓ2 through ϑ. Put
xi = ℓ ∩ ℓi and x̂i ∈ H0 the projection of xi through ϑ, for i = 1, 2. We
have F (xi) = 0 and q(x̂i) = 0, so k(x̂i) = 0. This means that the lines
Span(ϑ, xi) are contained in Y and φ−1([ℓ]) = {x̂1, x̂2}.

• Second case : P ∩ Q̂ is a double line ℓ0. Similarly we put x = ℓ ∩ ℓ0
and x̂ denotes the projection of x on H0 by ϑ. As above, x̂ ∈ Σ. Let
ℓ′ be the intersection of P with H0: it is the projection of the line ℓ to H0

by ϑ. Similar computations as above convince that ℓ′ ⊂ TxΣ. We thus put
φ([ℓ]) = {x, ℓ′} as a length two subscheme of Σ.

• Third case : P ⊂ Q̂. For any point x ∈ P , x ̸= ϑ, with projection x̂ ∈ H0,
the same argument as above shows that the line Span(ϑ, x̂) is contained
in Y , so P ⊂ Y .

Assume now that Y contains no plane through ϑ. The morphism φ is an iso-
morphism between the open locus of Σ[2] of subschemes ξ such that the plane
P = Span(ϑ, ξ) cuts Y along a third line that does not pass by ϑ, and the open
locus F(Y ) \ Σ. It contracts to the surface Σ the “trident” divisor:

Ψ := {ξ ∈ Σ[2] |Span(ϑ, ξ) ∩ Y consists in three lines through ϑ}.(3.3)
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We can also describe Ψ as the set of those subschemes ξ ∈ Σ[2] such that the
projective line ℓξ generated by ξ cuts Σ in three points. Since ℓξ already cuts the
cubic K in three points, this is equivalent to say that ℓξ cuts the quadric Q in three
points. Finally, Ψ is the set of those ξ such that the line ℓξ is contained in Q.

Let us compute the fibres of the restricted morphism φ : Ψ → Σ. Take [ℓ] ∈ Σ and
choose coordinates as above so that equations (3.2) hold. Any plane containing ℓ
cuts the three-dimensional space plane x0 = x1 = 0 at a unique point (0 : 0 : a2 :
a3 : a4 : a5) with a := (a2 : a3 : a4 : a5) ∈ P3 and we denote this plane by Pa. The
intersection Pa ∩ Y is the plane cubic in P2 with coordinates (t0 : t1 : t2), given
by the equation F (t0, t1, t2a) = 0. The fiber of φ over [ℓ] is the locus of points
a ∈ P3 that parametrizes those planes Pa such that Pa ∩ Y is the union of three
non-necessarily distinct lines though ϑ. Let us show that this locus is a nonsingular
plane conic. The line ℓ has equation t2 = 0 in this plane and we compute that the
residual conic Ca has equation:

h1(a)t0t1 + q1(a)t0t2 + h2(a)t
2
1 + q2(a)t1t2 + k1(a)t

2
2 = 0.(3.4)

The fibre of φ over [ℓ] is described by those planes Pa whose singular residual
conic Ca is the union of two lines through ϑ. This is equivalent to the conditions:

h1(a) = q1(a) = 0.(3.5)

This defines a plane conic φ−1([ℓ]). Let us check that it is nonsingular. Assume
that a point a ∈ P3 is a singular point of φ−1([ℓ]). Then the gradients vectors ∇h1
and ∇q1(a) are proportional, but ∇h1 ̸= 0 otherwise q would be degenerate by
Equation (3.2), so there exists α ∈ C such that ∇q1(a) = α∇h1. Using the equation
q = x1h1 + q1, we get q(−α, a) = 0 and ∇q(−α, a) = 0: this is impossible since
q is nondegenerate. We conclude that the fibres of φ are isomorphic to nonsingular
plane conics of equation (3.5) whose points a parametrize those planes Pa such that
Pa ∩ Y is the union of three non-necessarily distinct lines though ϑ.

Proof of assertion (2). Let us first recall why F(Y ) has symplectic singularities,
following Lehn [26, Theorem 3.6]. By assertion (1), the map φ−1 is regular and
bijective on the open set U of F(Y ) \ Σ consisting of those lines not contained in
any plane of Y passing through its node. For each such plane, the locus of these
lines form a P1 in F(Y ), so the complementary of U in F(Y ) has codimension two.
The open subset U is thus isomorphic to an open subset V of Σ[2], so U admits
a symplectic form inherited from those of V . This form extends to F(Y ) \ Σ by
Hartog’s theorem. Consider an elimination of the indeterminacies of the birational
map φ−1, where W can be further assumed to be nonsingular. We have birational
morphisms g, h and a commutative diagram:

W

g

||

h

!!
F(Y )

φ−1

// Σ[2]

The pullback by h induces an isomorphism between the spaces of global sections of
the canonical sheaves (see [32, III.6.1]):

H0(W,ωW ) ∼= H0(Σ[2], ωΣ[2]) = H0(Σ[2],OΣ[2]) = C,



CUSPIDAL CYCLIC CUBIC FOURFOLD 7

so the canonical divisor KW is effective. Since F(Y ) is irreducible and normal
and since its smooth locus admits a symplectic structure, its canonical line bundle
is trivial, so in particular it is of index one. So KF(Y ) = 0 as a Cartier divisor.
We have trivially KW − g∗KF(Y ) = KW and we proved that KW is effective:
by definition this means that F(Y ) has canonical singularities. By Elkik–Flenner
theorem (see [31, §3(C) & p.363]) we deduce that F(Y ) has rational singularities.
By Namikawa theorem [29, Theorem 6], F(Y ) has symplectic singularities.

By the stratification theorem of Kaledin [24, Theorem 2.3], as explained in
Mongardi–Lehn–Piacenza [27, Proposition 2.2] we deduce in our situation that
F(Y ) has transversal ADE singularities along the surface Σ: for any point x ∈ Σ,
there exists an analytic neighborhood U of x in F(Y ) that is isomorphic to V × S,
where V is an open neighborhood of the origin in C2 and S is an ADE surface
singularity. It remains to determine the nature of the singularity of S. This is a
local computation, we use the notation of the proof of assertion (2). By the Plücker
embedding Gr(1,P5) ↪→ P14, the Grassmannian of lines in P5 is locally isomorphic
to the affine space C8. The Plücker coordinates in an affine neighbourhood of the
point [ℓ0] characterize those lines passing through the points:

(1 : 0 : −p1,2 : −p1,3 : −p1,4 : −p1,5), (0 : 1 : p0,2 : p0,3 : p0,4 : p0,5).

We put pj := (pj,2, pj,3, pj,4, pj,5) for j = 0, 1, so that such a line, that we denote
by ℓp0,p1 , is parametrized by:

x0 = λ, x1 = µ, (x2, x3, x4, x5) = −λp1 + µp0, ∀[λ : µ] ∈ P1.

By replacing in Equation (3.2) and extracting the coefficients in λiµ3−i, we get that
F(Y ) is defined in this chart C4 × C4 of coordinates (p0, p1) as the zero locus Z of
the following four equations:

(3.6)

ψ3,0 = q1(p1) + k1(p1),

ψ0,3 = h2(p0) + q2(p0) + k1(p0),

ψ2,1 = −h1(p1)− 2b1(p1, p0) + q2(p1) + k2,11 (p1, p0),

ψ1,2 = h1(p0)− h2(p1) + q1(p0)− 2b2(p1, p0) + k1,21 (p1, p0),

where bi are the bilinear forms associated to the quadratic forms qi and k
u,v
1 are the

terms of bidegree (u, v) in k1 considered here as a cubic form in the variables λ, µ.
In this chart, the surface Σ∩Z has equation p1 = 0. The Jacobian matrix of F(Y )
at the point [ℓ0] of coordinates p0 = p1 = 0 is thus:

JF(Y )([ℓ0]) =

(
0 ∇h2 0 ∇h1
0 0 −∇h1 −∇h2

)
.

As we observed above, since Q and K meet transversally, the linear form h1 and h2,
or equivalently their gradients vectors ∇h1 and ∇h2, are not proportional. By a
linear change of variables in the variables x2, . . . , x5 only, we may thus assume,
without loss of generality, that h1(x2, . . . , x5) = x2 and h2(x2, . . . , x5) = x3. The
Jacobian submatrix of the functions ψ0,3, ψ1,2 with respect to the variables p0,2, p0,3
is thus the identity matrix. By the holomorphic implicit function theorem, we may
thus express the variables p0,2, p0,3 locally at the origin as holomorphic functions
p̃0,2, p̃0,3 in the variables p0,4, p0,5, p1,2, p1,3, p1,4, p1,5. In our affine chart, the vari-
ety F(Y ) is thus locally biholomorphic, for p0 ∈ C4 in a neighborhood of the origin,
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to the subvariety X ⊂ C2 × C4 of coordinates p0,4, p0,5, p1,2, p1,3, p1,4, p1,5 given by
the following two holomorphic equations:

ψ̃3,0(p1) = q1(p1)− k1(p1),

ψ̃2,1(p0, p1) = −h1(p1)− 2b1(p1, p0) + q2(p1) + k2,11 (p1, p0),

where in the second equation, the coordinates p0,2 and p0,3 are replaced by their
holomorphic expressions p̃0,2, p̃0,3 in terms of the other variables. The coordinates
(p0,4, p0,5) are local coordinates of Σ at [ℓ0], so over the origin (p0,4, p0,5) = (0, 0)
we have p0 = 0. Since we know that F(Y ) has transversal singularities along Σ, the
type of the singularity is those of the fibre over the origin of the projection X → C2

to the coordinates p0,4, p0,5. This fibre is the surface X0 of C4 of coordinates p1
given by the two equations:

ψ3,0(p1) = q1(p1)− k1(p1),

ψ2,1(p1) = −h1(p1) + q2(p1).

We observed in the proof of assertion (1) that the zero loci of h1 and q1 intersect
transversally, so the restriction of the quadratic form q1 to the hyperplane ker(h1)
has rank three. This means that X0 has an A1-singularity at the origin. We thus
proved that F(Y ) has transversal A1-singularities along Σ. The blowup BlΣ(F(Y ))
is thus a crepant resolution of F(Y ) (see for instance Perroni [30, Proposition 4.2]),
and this is equivalent to be a symplectic resolution (see for instance [15, Proposi-
tion 1.6]).

Proof of assertion (3). This is a local computation, we still use the notation of
the proof of assertion (2) to compute the equations of the blowup of Σ in an affine
neighborhood of the line ℓ0 of equation x2 = · · · = x5 = 0. Since Z∩Σ has equation
p1 = 0 (see Equation (3.6)), this blowup is given locally as the closure of the image
of the regular morphism:

Z \ (Σ ∩ Z) → Z × P3, (p0, p1) 7→ ((p0, p1), (p1,2 : p1,3 : p1,4 : p1,5)) .

We denote by a := (a2 : a3 : a4 : a5) the homogeneous coordinates of the 3-
dimensional projective space occuring in this blowup. Assuming for instance a5 ̸= 0,

let us put ã =
(

a2

a5
, a3

a5
, a4

a5
, 1
)
. The blowup gives the relations p1,i =

ai

a5
p1,5 and we

make the change of variables x = −λp1,5ã + µp0. Computing as above, we obtain
the local equations of BlΣ(F(Y )) over Z:

(3.7)

ψ3,0 = q1(ã)− p1,5k1(ã),

ψ0,3 = h2(p0) + q2(p0) + k1(p0),

ψ2,1 = −h1(ã)− 2b1(ã, p0) + p1,5q2(ã) + p1,5k
2,1
1 (ã, p0),

ψ1,2 = h1(p0) + q1(p0)− p1,5h2(ã)− 2p1,5b2(ã, p0)− p1,5k
1,2
1 (ã, p0).

The fibre of ρ over [ℓ0] is obtained by putting p0 = 0 and p1,5 = 0. We obtain after
homogeneization:

ρ−1([ℓ0]) = {a ∈ P3 | q1(a) = h1(a) = 0}.
We recover Equation (3.5). This means that the blowup parametrizes the planes Pa

containing ℓ0 and such that the residual conic Ca is the union of two lines by ϑ.
By the construction of φ−1 explained in the proof of assertion (1), the blowup
thus eliminates the indeterminacies of φ−1, since by assumption Y contains no
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plane through ϑ. We obtain a morphism φ̃−1 which means geometrically that the
coordinate a selects one plane Pa to determine the image length two subscheme

on Σ by the construction explains in the proof of assertion (1). The morphism φ̃−1

is thus birational and bijective, so it is an isomorphism by Zariski main theorem. By
construction, it maps isomorphically the exceptional divisor of the blowup, which
is a conic bundle over Σ, to the divisor Ψ. □

Remark 3.1. Let ℓ ⊂ Y be a line passing through ϑ. The planes containing ℓ and
such that the residual intersection with Y is a degenerate conic (non necessarily
passing through ϑ) are parametrized by a quintic surface T in P3: this is a special
case of a Togliatti surface, the difference here is that the line ℓ is not generic (we
refer to [33, §2] for a recent and selfcontained synthesis on Togliatti surfaces). Using
Equation (3.4), we get that the equation of T is:

det

 0 h1(a) q1(a)
h1(a) 2h2(a) q2(a)
q1(a) q2(a) 2k1(a)

 = 0.

It is a non-normal surface, whose singular locus is generically the curve of equations
h1(a) = q1(a) = 0. The key geometric ingredients of the proof of Theorem 3.1 are
the properties of the singular curve of this non-normal Togliatti surface.

3.2. Two divisorial contractions. We observed above two divisorial contractions
of Σ[2], contracting a divisor to a locus isomorphic to the K3 surface Σ ⊂ P4, on
two varieties with transversal A1-singularities along Σ: the first one is the Chow
quotient Σ(2), obtained by contracting the “exceptional divisor” E of nonreduced
subschemes, the second one is F(Y ) obtained by contracting the “trident” divisor Ψ
defined in Equation (3.3). In particular Σ[2] is their unique crepant, hence sym-
plectic resolution. These divisorial contractions have been studied by many authors
from different point of views, see for instance [5, 16, 19, 20, 25, 35]. Our method
gives a direct and geometric computation of the cone of numerically effective di-
visors of Σ[2], in accordance with the general results stated in the literature (see
for instance in [12, Example 5.3] and references therein), and it gives a concrete
realization of the so-called “second divisorial contraction”.

Consider the generic situation where the Néron–Severi group of the K3 surface Σ
is NS(Σ) = Z[H], with H = OΣ(1) of self-intersection 6. We get:

NS(Σ[2]) ∼= Zh⊕ Zδ,
where [2δ] = E and h is the image of [H] by the natural group homomorphism
NS(Σ) → NS(Σ[2]). For the Beauville–Bogomolov–Fujiki quadratic form on NS(Σ[2])
we have δ2 = −2 and h2 = 6.

Lemma 3.2. The class of the divisor Ψ in NS(Σ[2]) is [Ψ] = h− 2δ.

Proof. Choose a general curve C ∈ |H| and a point x ∈ Σ \ C and consider the
curve Γ of Σ[2] defined by the subschemes ξ = (x, a) where a varies in C. Clearly∫
Γ
h = 6 and since Γ ∩ E = ∅ we have

∫
Γ
δ = 0. We may assume that x has

coordinates (0 : 1 : 0 : . . . : 0) and that C has equation x1 = 0, hence Γ ∩ Ψ is
the locus of subschemes ξ = (x, a) such that a ∈ C and Span(ξ, ϑ) consists in three
lines through ϑ. We repeat the computation done after Equation (3.3): the line
Span(ϑ, a) has equation t1 = 0 and is contained in the residual conic Ca, so looking
at Equation (3.4) we get q1(a) = k1(a) = 0. The locus Γ ∩ Ψ is thus the set of
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points a ∈ C such that h1(a) = q1(a) = k1(a) = 0, so
∫
Γ
[Ψ] = 6. Consider now the

curve Λ := P(TxΣ) ⊂ Σ[2] parametrizing nonreduced subschemes supported at the
point x. Clearly

∫
Λ
h = 0 and the formula of Ellingsrud–Strømme [14, Theorem 1.1]

gives
∫
Λ
δ = −1. We compute Λ∩Ψ as above: this time Span(ϑ, x) is the double line

of equation t2 = 0 so h1(a) = h2(a) = 0 and the residual line Span(ϑ, a) imposes
q1 = 0, so

∫
Λ
[Ψ] = 2. It follows that [Ψ] = h− 2δ. □

The Hilbert–Chow morphism Σ[2] → Σ(2) contracts the divisor E, whose orthog-
onal class in NS(Σ[2]) is the ray Zh. The divisorial contraction φ : Σ[2] → F(Y )
contracts the divisor Ψ, whose orthogonal class in NS(Σ[2]) is, by a straighforward
computation, the ray Z(2h − 3δ). The Nef cone of Σ[2] is thus generated by the
classes h and 2h− 3δ, as stated in [12, Example 5.3] following Bayer–Macr̀ı [5]. A
different interpretation of this divisorial contraction is given in [25, Example 5.4].

4. The Fano variety of lines of a cuspidal cyclic cubic fourfold

Let C ⊂ P4 be a cubic threefold with one single ordinary double point ϑ. In a
suitable homogeneous coordinate system (x0 : . . . : x4) of P4, the equation of C
may be written as:

f(x0, . . . , x4) = x0q(x1, . . . , x4) + g(x1, . . . , x4),(4.1)

where q is a nondegenerate quadratic form and g is a cubic form. The node ϑ
has coordinates [1 : 0 : . . . : 0]. Consider the cubic fourfold Y ⊂ P5 defined as
the triple covering of P4 branched along C and denote by ι ∈ Aut(Y ) the covering
automorphism. Using the same convention as above, the equation of Y may be
written as:

F (x0, . . . , x5) = x0q(x1, . . . , x4) + g(x1, . . . , x4) + x35,(4.2)

and ι(x0 : . . . : x5) = (x0 : . . . : x4 : ξx5), where ξ is a primitive third root of unity.
The node ϑ of C induces an isolated singular point ς of type A2 on Y . We call Y
a cyclic cuspidal cubic fourfold.

We denote k(x0, . . . , x5) := g(x0, . . . , x4) + x35. The zero loci of q and k define
in the hyperplane H0 := {x0 = 0} ⊂ P5 respectively a quadratic cone of dimension
three Q and a cubic threefold K. Note that the vertex of Q is not in K.

Any line ℓ ⊂ Y passing through ς cuts the hyperplane H0 at a point of Q ∩K.
Since Y has no other singularity than ς, the intersection Q∩K is nonsingular. We
identify the locus Σ ⊂ F(Y ) of those lines through ς with the K3 surface Q ∩K.
As in the nodal case, the cubic fourfold Y contains a plane passing through ς if and
only if the K3 surface Σ contains a line and the number of such lines is at most 42
(see [13, Theorem 1.2]).

The homography ι of P5 acts naturally of Gr(1,P5) and restricts to an order
three automorphism σ of F(Y ) which is nonsymplectic [8, Lemma 6.2]. Similarly,
ι produces a nonsymplectic order three automorphism τ on Σ which is simply
the restriction of the homography ι(x1 : . . . : x5) = (x1 : . . . : x4 : ξx5) to the
hyperplane H0. It induces a natural order three nonsymplectic automorphism τ [2]

on Σ[2].

4.1. Symplectic resolution of F(Y ). If Y has an equation as (3.1), but where
the quadratic form has rank four, we may assume that it does not depend on the
variable x5, so the point ϑ defines a cusp in Y . In this setup, assuming that the K3
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surface Σ is nonsingular, analogous statements as in Theorem 3.1 can be proven us-
ing the same lines, with the following changes: in assertion (2) the variety F(Y ) has
transversal A2-singularities along Σ and in assertion (3) the fibres of the divisor Ψ
over a point of Σ are the union of two rational curves intersecting transversally. We
will state this result only in the more restrictive setup which is of interest for us in
this note, where Y is obtained as a cyclic covering, since we are mostly interested
in the behaviour of the symmetries induced by the covering automorphism.

Theorem 4.1. Let Y be a cuspidal cyclic cubic fourfold with one cusp ς.

(1) There exists a birational map φ : Σ[2] 99K F(Y ) which commutes with the
actions of τ [2] and σ. If Y contains no plane through ς, then φ is everywhere
defined and it contracts a divisor Ψ to the surface Σ.

(2) The variety F(Y ) has symplectic singularities, they are A2-transversal along
the surface Σ and BlΣ(F(Y )) is a symplectic resolution of F(Y ).

(3) Assume that Y contains no plane through ς. The blowup ρ of Σ in F(Y ) is
an elimination of the indeterminacies of the rational map φ−1:

BlΣ(F(Y ))

ρ

��

φ̃−1

$$
F(Y )

φ−1

// Σ[2]

The morphism φ̃−1 is an isomorphism which maps isomorphically the ex-
ceptional divisor of the blowup to the divisor Ψ.

(4) The automorphism σ goes up to an order three nonsymplectic automor-
phism σ̃ on BlΣ(F(Y )). If Y contains no plane through ς, the isomor-

phism φ̃−1 commutes with the actions of σ̃ and τ [2].

Proof. The proof follows the same lines as those of Theorem 3.1 : we thus only
write the main changes.

In the proof of assertion (1), Equation (3.2) becomes:

(4.3)
q = x1h1(x2, x3, x4) + q1(x2, x3, x4),

k = x21h2(x2, x3, x4) + x1q2(x2, x3, x4) + k1(x2, x3, x4) + x35

and Equation (3.4) becomes:

h1(a)t0t1 + q1(a)t0t2 + h2(a)t
2
1 + q2(a)t1t2 + k1(a)t

2
2 + a35t

2
2.(4.4)

Equation (3.5) defines this time two lines meeting at (0 : 0 : 0 : 1) ∈ P3. Let us check
that the plane {h1(a) = 0} is not tangent to the quadratic cone {q1(a) = 0}. If this
occurs, then there exists a point b := (b2 : b3 : b4) ∈ P2 such that q1(b) = h1(b) = 0
and ∇q1(b) = α∇h1 with α ̸= 0. Then ∇q(−α, b, 0) = 0 this is impossible since Q
nonsingular away from the point (0 : . . . : 0 : 1) ∈ H0. We conclude that the fibres
of φ are two distinct meeting lines whose points a parametrize those planes Pa such
that Pa ∩ Y is the union of three non-necessarily distinct lines though ς. Note that
at the point a = (0 : . . . : 0 : 1), the residual conic Ca has equation t22 = 0: the
line ℓ is a triple line with tritangent plane Pa.

In the proof of assertion (2), To determine the nature of the singularity, after a
linear change of variables in the coordinates x2, x3, x4 only, we see that the fibre X0
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is given by the two equations:

ψ3,0(p1) = q1(p1,2, p1,3, p1,4) + p31,5 − k1(p1,2, p1,3, p1,4),

ψ2,1(p1) = −h1(p1,2, p1,3, p1,4) + q2(p1,2, p1,3, p1,4).

Since h1(x2, x3, x4) = x2, using the second equation we may express p1,2 locally at
the origin as a holomorphic function p̃1,2 in the variables p1,3, p1,4 and we observe
that its power expansion contains no linear term. Replacing in the first equation,
we see that the quadratic term is then equal to q1(0, p1,3, p1,4). This means that
the surface singularity in C3 of coordinates (p1,3, p1,4, p1,5) starts with a quadratic
term in the variables p1,3, p1,4 and a cubic term in p1,5. This quadratic term is
nothing else than the intersection of the quadradic cone q1(x2, x3, x4) = 0 with the
hyperplane h1(x2, x3, x4) = 0. We proved during the proof of assertion (1) that
this intersection is the union of two distinct lines, so it is a quadratic form of rank
two: this shows that X0 has an A2 singularity at the origin.

Proof of assertion (4). By construction, σ([ℓ]) = [ι(ℓ)] for any [ℓ] ∈ Gr(1,P5)
and τ(x) = ι(x) for any x ∈ Σ. For any ξ ∈ Σ[2], the image by ι of the plane
P = Span(ς, ξ) is ι(P ) = Span(ς, τ [2](ξ)) so φ(τ [2](ξ)) = σ(φ(ξ)). This shows that
φ commutes with the actions induced by ι. Since τ [2] acts nonsymplectically on Σ[2]

and since we defined the symplectic form on the smooth locus of F(Y ) by pulling
back of those of Σ[2], we deduce that σ acts nonsymplectically on F(Y ) \ Σ. In
our local Plücker coordinates, σ acts by pj,k 7→ pj,k and pj,5 7→ ξpj,5 for k = 2, 3, 4
and j = 0, 1. The blowup relations p1,i =

ai

a5
p1,5 impose that the automorphism σ̃

on BlΣ(F(Y )) that makes ρ equivariant is defined by putting a5 7→ ξa5. Since
ρ is an equivariant symplectic resolution, σ̃ acts nonsymplectically. For any point
a ∈ ρ−1[ℓ0] in an exceptional fiber, since σ̃ sends a5 to ξa5, we have ι(Pa) = Pσ̃(a)

so φ̃−1 is equivariant on the exceptional locus. □

Corollary 4.2. Under the assumptions of Theorem 4.1, if Y contains no plane
through ς, then generically:

Pic(BlΣ(F(Y ))) ∼= Pic(Σ[2]) ∼= ⟨6⟩ ⊕A2(−1).

The divisor Ψ has two reducible components that generate the factor A2(−1).

Proof. The computation of the Picard groups is a direct consequence of Theo-
rem 4.1, using the results of [10, §4.3]. Since Pic(F(Y )) ∼= ⟨6⟩, the morphism φ
has relative Picard rank 2, hence Ψ has two irreducible components. Note that the
A2-contraction φ is is agreement with [4, Proposition 6.10, Corollary 6.11]. □

Remark 4.1. The fix locus of τ on Σ is the genus four curve C4 given by the
equation x5 = 0. The fix locus of τ [2] on Σ[2] is thus the surface defined by the

Hilbert square C
[2]
4 , which is nothing else than the nonsingular Chow quotient C

(2)
4

(see for instance [8, §6.1]). On the other side, the fix locus of ι on Y is its cusp ς and
the cubic threefold C. The fix locus of σ on F(Y ) is thus the surface F(C), which is
a nonnormal surface singular along the lines contained in C and passing through its
node: similarly as above, this locus is isomorphic to C4 and we have F(C)∩Σ = C4.
Using the same computations as above, it is easy to see that F(C)\C4 is isomorphic

to the open subset of C
(2)
4 obtained by removing its intersection with the divisor Ψ

defined in Equation (3.3). The equivariant diagram proven in Theorem 4.1 shows
that, when Y contains no plane through is cusp, the fix locus of σ̃ on BlΣF(Y )
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is the strict transform F̃(C) of F(C) by ρ and the equivariant isomorphism φ̃−1

induces an isomorphism F̃(C) ∼= C
(2)
4 .

4.2. Nodal degenerations of cubic threefolds and nonseparated limits.
Let us give an interpretation of Theorem 4.1 in the context of nodal generations
of cubic threefolds as studied in [10, §4]. We recall briefly the context, refering to
the paper for more details. The Fano variety of lines of a smooth cubic fourfold is
a 6-polarized IHS manifold deformation equivalent to the Hilbert square of a K3
surface (see [7]). The second cohomology space of these varieties, equipped with
the Beauville–Bogomolov–Fujiki biinear form, is isometric to the lattice:

L := U⊕3 ⊕ E8(−1)⊕2 ⊕ ⟨−2⟩.
We denote byM◦

L a connected component of the moduli space of marked IHS mani-
folds belonging to this deformation class, with its surjective period map PL : M◦

L →
ΩL as in [21, Theorem 8.1]. Consider a one parameter family {Ct}t̸=0 of smooth
cubic threefolds in P4, degenerating to a nodal cubic C0. We consider the family
of cubic fourfolds Yt obtained by triple covering of P4 branched over Ct and the
associated family of Fano variety of lines F(Yt), equipped with their order three
nonsymplectic automorphism σt induced by the covering automorphism. If t ̸= 0,

the pairs (F(Yt), σt) live in a moduli space Mρ,ξ
6 , where ρ ∈ O(L) is the isometry

class defined by σ∗
t up to the choice of a marking and ξ is the primitive third root

of unity such that σt
∣∣
H2,0(F(Yt)) = ξ id (we refer to [10, §3.5] for the details on the

adequate lattice-theoretical choices needed to fix the algebraic data). The restric-

tion of the period map PL gives a surjective period map Pρ,ξ
6 : Mρ,ξ

6 → Ωρ,ξ
6 \ H,

where Ωρ,ξ
6 is isomorphic to a 10-dimensional complex ball and H is a hyperplane

arrangement. We have a commutative diagram:

Mρ,ξ
6

Pρ,ξ
6

��

� � //M◦
L

PL

����
Ωρ,ξ

6
� � // ΩL

We assume as above that the cubic C0 has one single ordinary double point, so
that the fourfold Y0 has one single cusp. The locus of lines through the cusp defines
a smooth K3 surface Σ ⊂ F(Y0) with an order three nonsymplectic automorphism τ
induced by the covering automorphism. The limit of the period points of the pairs
(F(Yt), σt), when t goes to zero, belongs to H (see [10, §4.1]):

lim
t→0

Pρ,ξ
6 (F(Yt), σt) = ω0 ∈ H.

The proof of [10, Proposition 4.6] shows that the choice of the IHS manifold Σ[2]

in M◦
L over the period point ω0, equipped with the automorphism τ [2], permits

to extend holomorphically the period map Pρ,ξ
6 over the hyperplane parametrizing

the nodal degenerations. For this, is it necessary to change the representation ρ as
in [10, Proposition 4.4] since the invariant lattice of the automorphism, that is ⟨6⟩
when t ̸= 0, becomes after this degeneration:

U(3)⊕ ⟨−2⟩ ∼= ⟨6⟩ ⊕A2(−1)

(see [10, Lemma 4.3]). The choice of the pair
(
Σ[2], τ [2]

)
was motivated by Hodge

theoretic arguments, based on the work of Allcock–Carlson–Toledo, but it has the
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little drawback that it hides the geometry of the singularity behind the abstract
isometry of lattices above. Theorem 4.1 shows that the blowup of F(Y0) along Σ,
equipped with the automorphism σ̃, is a more intuitive choice since F(Y0) has a
transversal A2-singularity along Σ. If Y0 contains no plane through its cusp, both
choices are equivariantly isomorphic so the change is only for esthetic reasons. If
Y0 contains some planes through its cusp, the K3 surface Σ contains some lines and
the pairs (BlΣF(Y0), σ̃) and

(
Σ[2], τ [2]

)
are equivariantly birational to each other, so

they are nonseparated points for the topology of M◦
L (see [22, Theorem 4.7], [23,

§4.4]): there is no harm to choose one or the other. Our slogan may be summarized
as: (

Σ[2], τ [2]
)
= lim

t→0
(F(Yt), σt) = (BlΣF(Y0), σ̃) .

From the point of view of [9, §5], the period map of the moduli space parametris-
ing such pairs of IHS fourfolds with an order three automorphism as above is not
injective and each choice of a limit point corresponds to the choice of a different
choice of chamber ofK(T )-generality. Assuming that the hyperplane section x5 = 0
is an irreducible genus four curve, this situation can happen only if Σ contains at
least three lines permuted by the automorphism, for the following reason. The
automorphism τ fixes pointwise its hyperplane section x5 = 0. Would Σ contain
an invariant line (this happens for instance when Σ has only one or two lines), it
would be globally invariant. Either this line would contain two isolated fix points
or it would be pointwise fixed, both are not possible.
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