
THE BERGLUND-HÜBSCH-CHIODO-RUAN MIRROR

SYMMETRY FOR K3 SURFACES

MICHELA ARTEBANI, SAMUEL BOISSIÈRE, AND ALESSANDRA SARTI

Abstract. We prove that the mirror symmetry of Berglund-Hübsch-Chiodo-

Ruan, applied to K3 surfaces with a non-symplectic involution, coincides with
the mirror symmetry described by Dolgachev and Voisin.

1. Introduction

Berglund and Hübsch in [2] described a very concrete construction of mirror pairs
of Calabi-Yau manifolds given as hypersurfaces in some weighted projective spaces.
Later, Chiodo and Ruan in [5] proved that the transposition rule of Berglund-
Hübsch provides pairs of Calabi-Yau manifolds whose Hodge diamonds have the
symmetry required in mirror symmetry. In this paper we apply the transposition
rule to certain K3 surfaces carrying a non-symplectic involution and we relate this
to a mirror construction between families of lattice polarized K3 surfaces due to
Dolgachev and Nikulin [11, 19, 10], Voisin [23] and Borcea [3]. Since in particular
the results of [10] and [23, Lemma 2.5 and §2.6] were fundamental for our Theorem
1.1 (see subsection 4.2) we will refer to such families as “Dolgachev-Voisin mirror
families”. Our main theorem is that the transposition rule by Berglund and Hübsch,
in this case, provides pairs of K3 surfaces which belong to the Dolgachev-Voisin
mirror families.

Let W denote a Delsarte type polynomial, i.e. a polynomial having as many
monomials as variables (this will be called “potential” in the sequel, following the
terminology of physicists). Assume that the matrix of exponents of W is invertible,
that {W = 0} has an isolated singularity at the origin and that it defines a well-
formed hypersurface in some normalized weighted projective space. We denote by
Aut(W ) the group of diagonal symmetries of W , by SL(W ) the group of diagonal
symmetries of determinant one, and by JW the monodromy group of the affine
Milnor fibre associated to W . For any subgroup G ⊂ Aut(W ), we denote by GT

the “transposed” group of automorphisms of the “transposed” potential WT (see
section 2 for their definition). The main result of this paper is the following.

Theorem 1.1. Let W be a K3 surface defined by a non-degenerate and invertible
potential of the form:

x2 = f(y, z, w).

in some weighted projective space. Let GW be a subgroup of Aut(W ) such that

JW ⊂ GW ⊂ SL(W ). Put G̃W := GW /JW and G̃TW := GTW /JWT . Then the
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Berglund-Hübsch-Chiodo-Ruan mirror orbifolds [W/G̃W ] and [WT /G̃TW ] belong to
the mirror families of Dolgachev and Voisin.

The Berglund-Hübsch-Chiodo-Ruan (BHCR for short) mirror symmetry applies
to Calabi-Yau varieties in weighted projective spaces which are not necessarily
Gorenstein. As remarked by Chiodo and Ruan in [5, Section 1], this is the main
difference with Batyrev mirror symmetry [1]. Most of our K3 surfaces are not
contained in a Gorenstein weighted projective space.

The paper is organized as follows. In section 2 we give some preliminaries about
hypersurfaces in weighted projective spaces, potentials and the Berglund-Hübsch
construction. In section 3 we describe the group Aut(W ) of diagonal automor-
phisms of a potential and we define the transposed group GT of a subgroup G
of Aut(W ). Section 4 contains preliminary facts about non-symplectic involutions
on K3 surfaces and introduces the Dolgachev-Voisin mirror construction. Section
5 deals with K3 surfaces defined by a potential as in the statement of Theorem
1.1: we study their singularities and we determine the basic invariants of the non-
symplectic involution x 7→ −x. In section 6 we give the proof of Theorem 1.1.

Aknowledgements. We thank Alessandro Chiodo and Antonio Laface for many
helpful discussions.

2. The Berglund-Hübsch-Chiodo-Ruan construction

2.1. Hypersurfaces in weighted projective spaces. We start recalling some
basic facts about hypersurfaces in weighted projective spaces, see for example [13].
Let x1, . . . , xn be affine coordinates on Cn, n ≥ 3, and let (w1, . . . , wn) be a sequence
of positive weights. The group C∗ acts on Cn by

λ(x1, . . . , xn) = (λw1x1, . . . , λ
wnxn)

and the weighted projective space P(w1, . . . , wn) is the quotient (Cn\{0})/C∗. The
weighted projective space is called normalized if

gcd(w1, . . . , ŵi, . . . , wn) = 1 for i = 1, . . . , n.

Weighted projective spaces are singular in general and the singularities arise only on
the fundamental simplex ∆ with vertices in the points Pi := (0, . . . , 0, 1, 0, . . . , 0),
i = 1, . . . , n. The vertices are singularities of type 1/wi(w1, . . . , ŵi, . . . , wn) and
they are not necessarily isolated, since the higher dimensional toric strata of ∆ can
be singular too. For example, if hi,j := gcd(wi, wj) > 1, then the generic point
of the edge PiPj is a singularity of type 1/hi,j(w1, . . . , ŵi, . . . , ŵj , . . . , wn). The
weighted projective space P(w1, . . . , wn) has Gorenstein singularities if and only if
wj |
∑n
i=1 wi for all j. This is also equivalent to say that the weighted projective

space is Fano or finally, regarding P(w1, . . . , wn) as toric variety, that its associated
polytope is reflexive [8, Section 3.5].

A quasihomogeneous polynomial W (x1, . . . , xn) of total degree d defines a hy-
persurface in P(w1, . . . , wn), which is also denoted by W in the sequel.

Definition 2.1. The hypersurface W is called

• well-formed if P(w1, . . . , wn) is normalized and

gcd(w1, . . . , ŵi, . . . , ŵj , . . . , wn) divides d

for all i, j = 1, . . . , n;
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• quasismooth if it is well-formed and the polynomial W is non-degenerate,
i.e. its affine cone is smooth outside its vertex (0, . . . , 0);
• Calabi-Yau (K3 surface in the two-dimensional case) if it has canonical

singularities (in particular W is Gorenstein), its canonical bundle is trivial
and Hi(W,OW ) = 0 for all i = 1, . . . , n− 3.

Observe that by [7, Lemma 1.12] a well-formed and quasismooth hypersurface
W in P(w1, . . . , wn) is Calabi-Yau if and only if d =

∑n
i=1 wi. Reid in [21] and

Yonemura in [25] give a list of all possible families of K3 surfaces in weighted
projective spaces. These are 95 in total and only 14 of the weighted projective
spaces are Gorenstein. For each type Reid describes the singularities of the K3
surface. By [7] the 95 projective spaces have canonical singularities, and in fact
one can determine 104 families of weights such that the weighted projective spaces
have canonical singularities. However in 9 cases one can not obtain K3 surfaces
with canonical singularities [7, Theorem 1.17].

Finally, we recall that the genus of a smooth curve Cd of total degree d in
P(w1, w2, w3) is given by the formula:

g(Cd) =
1

2

 d2

w1w2w3
− d

∑
i>j

gcd(wi, wj)

wiwj
+

3∑
i=1

gcd(d,wi)

wi
− 1

 .(1)

2.2. Invertible potentials. We briefly recall the mirror construction of Berglund-
Hübsch in [2] and Chiodo-Ruan in [5]. Consider a potential:

W (x1, . . . , xn) =

n∑
i=1

n∏
j=1

x
aij
j ,

that is a polynomial in n variables containing n monomials. Since we have n
monomials it is not a restriction to consider all the coefficients to be equal to 1,
so that a potential is identified by the matrix A := (aij)i,j=1,...,n. The potential
is called invertible if the matrix A is invertible over Q. In this case we denote by
A−1 := (aij)i,j=1,...,n the inverse matrix and define the charge qi :=

∑n
j=1 a

ij as

the sum of the entries of the i-th row of A−1. Clearly the charges qi satisfy:

A

 q1

...
qn

 =

 1
...
1

 .

Let d be the least common denominator of the charges and let wi := dqi. Then
{W = 0} defines a hypersurface W in P(w1, . . . , wn) of total degree d, which we
assume to be well-formed and quasismooth. Observe that, by [7, Lemma 1.12],
W is Calabi-Yau if and only if

∑
i qi = 1. By [9, Proposition 6], if the weighted

projective space is normalized and the hypersurface is quasismooth of dimension
≥ 3, then it is well-formed. In the case of K3 surfaces this is also true and can be
verified by checking in Reid’s list.

By [16, Theorem 1] a potential W is invertible and non-degenerate (i.e. the
corresponding hypersurface is quasismooth) if and only if it can be written as a
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sum of invertible potentials of atomic types:

Wfermat := xa,
Wloop := xa11 x2 + xa22 x3 + . . .+ x

an−1

n−1 xn + xann x1,
Wchain := xa11 x2 + xa22 x3 + . . .+ x

an−1

n−1 xn + xann .

If W is a fermat type polynomial (i.e. sum of Wfermat) then {W = 0} defines a
hypersurface in a Gorenstein weighted projective space. In the other cases this is
not true in general.

2.3. The Berglund-Hübsch-Chiodo-Ruan construction. Given an invertible
and non-degenerate potential W as in the previous subsection, we consider the
group of diagonal automorphisms:

Aut(W ) := {γ = (γ1, . . . , γn) ∈ (C∗)n |W (γ1x1, . . . , γnxn) = W (x1, . . . , xn)}
and its subgroup

SL(W ) := Aut(W ) ∩ SLn(C).

To each column of A−1 we associate the diagonal matrix

ρj := diag(exp(2πia1,j), . . . , exp(2πian,j)) ∈ Aut(W )

and we define the matrix jW to be the product

ρ1 · · · ρn = diag(exp(2πiq1), . . . , exp(2πiqn)).

Observe that the group JW generated by jW is cyclic of order d and acts trivially
on the hypersurface W , since it acts trivially on the weighted projective space
P(w1, . . . , wn). In what follows we assume the hypersurface W to be Calabi-Yau.
Then

∑
i qi = 1, so that JW ⊂ SL(W ).

Let GW be a group of diagonal automorphisms such that JW ⊂ GW ⊂ SL(W )

and let G̃W := GW /JW . We will now construct a potential WT and a group GTW .
The potential WT is defined by transposing the matrix A:

WT := WT (x1, . . . , xn) =

n∑
i=1

n∏
j=1

x
aji
j .

Similarly as before, we denote by qTj the charge of WT , which is the sum of the

entries of the j-th column of A−1. Observe that
∑
j qj =

∑
j q

T
j =

∑
i,j a

i,j = 1.

Since the potentialWT is non-degenerate by the classification in [16] and the charges
satisfy

∑
j q

T
j = 1, then it is easy to show that the equation {WT = 0} defines a

variety in a normalized weighted projective space. By [9, Proposition 6], if n ≥ 5
the hypersurface is well-formed, so that the potential WT defines a Calabi-Yau
variety. This is true also if n = 3, 4, as can be checked by a quick case-by-case
analysis.

Remark 2.2. Without the condition
∑
i qi = 1 it is not true that the equa-

tion {WT = 0} defines a variety in a normalized projective space. For example
W = x5

1x2 + x2
2x3 + x3

3x4 + x9
4 defines a surface in P(7, 19, 16, 6) and WT defines a

surface in P(9, 18, 9, 4), which is clearly not normalized.

The group GTW is defined by Krawitz in [15] as:

GTW =


n∏
j=1

(ρTj )mj |
n∏
j=1

x
mj
j isGW -invariant

 ,
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where the definition of the automorphisms ρTj of WT is similar to the definition of ρj
using the matrix AT . Equivalent definitions for the group GTW will be given in the

next section. The group satisfies JWT ⊂ GTW ⊂ SLWT . Putting G̃TW := GTW /JWT ,
we have the following result.

Theorem 2.3. [5, Theorem 2] The Calabi-Yau orbifolds [W/G̃W ] and [WT /G̃TW ]
form a mirror pair, i.e. we have

Hp,q
CR([W/G̃W ],C) ∼= Hn−2−p,q

CR ([WT /G̃TW ],C)

where HCR(−,C) stands for the Chen-Ruan orbifold cohomology.

The previous result clearly gives no information in the case of K3 surfaces, since
all K3 surfaces have the same Hodge diamond. However, it is a strong motivation
for considering this as a good mirror correspondence even in the two-dimensional
case.

We now show that the action of SL(W ) is symplectic.

Proposition 1. Let W be a non-degenerate potential defining a Calabi-Yau man-
ifold in P(w1, . . . , wn). Then the action of SL(W ) on the volume form is trivial.

Proof. We can write the volume form locally for x1 6= 0 and ∂W
∂xn
6= 0 as

ξ :=
dx2 ∧ . . . ∧ dxn−1

∂W
∂xn

.

Let g = (exp(2πiα1), . . . , exp(2πiαn)) ∈ SL(W ). We can normalize g multiplying
by exp(2πi(−α1/w1)), so that we obtain g = (1, exp(2πiβ2), . . . , exp(2πiβn)) with
βi = αi − (wi/w1)α1. If we apply this transformation to W , this is multiplied by
exp(2dπi(−α1/w1)). We have that

g
∂W

∂xn
= exp(2πi(−βn − (α1/w1)d))W.

Hence the form ξ is multiplied by exp(2πiδ), with

δ = β1 + . . .+ βn +
α1

w1
d = α1 + α2 + . . .+ αn ∈ Z. �

3. The group of diagonal automorphisms

3.1. Description of Aut(W ). Let W : Cn → C be a non-degenerate, invertible
potential and let A = (aij)i,j ∈ GL(n,Q) be the associated matrix. In this sec-
tion we will describe the group Aut(W ) of diagonal automorphisms of W and its
subgroups. We start observing the following:

Lemma 1. Aut(W ) is finite.

Proof. Since Aut(W ) is abelian, it is enough to prove that any of its elements has
finite order. If γ ∈ Aut(W ) then

∏n
j=1 γ

aij
j = 1 for any i ∈ {1, . . . , n}, in particular∏n

j=1 |γj |aij = 1. Thus, taking the logarithm we obtain that

(ln |γ1|, . . . , ln |γn|) ∈ ker(A) = {0},
which implies that |γi| = 1. Thus γi = exp(2πiai), ai ∈ R, and the previous
condition on γ can be translated as A ·a ∈ Zn, where a = (a1, . . . , an). Since A has
integral entries, then a ∈ Qn, so that γ has finite order. �
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After writing γ = (exp(2πia1), . . . , exp(2πian)) with ai ∈ Q, we can identify
Aut(W ) with

{a = (a1, . . . , an) ∈ (Q/Z)n|A · a ∈ Zn} = A−1Zn/Zn.
In particular, |Aut(W )| = |det(A)|. Similarly, we will identify Aut(WT ) with
(AT )−1Zn/Zn. We observe that, since A and AT have the same Smith normal
form, then Aut(W ) ∼= Aut(WT ).

By means of the previous description, since Aut(W ) is generated by the columns
of A−1, we obtain the following result (see also [15, Lemma 1.6]).

Proposition 2.

1) Aut(Wfermat) ∼= Z/aZ and a generator is 1
a ,

2) Aut(Wloop) ∼= Z/(a1 · · · an + (−1)n+1)Z and a generator is (ϕ1, . . . , ϕn),
where

ϕ1 :=
(−1)n

Γ
, ϕi :=

(−1)n+1−ia1 · · · ai−1

Γ
, i ≥ 2.

3) Aut(Wchain) ∼= Z/(a1 · · · an)Z and a generator is given by (ϕ1, . . . , ϕn),
where

ϕi :=
(−1)n+i

ai · · · an
.

A subgroup G of Aut(W ) is given by C−1Zn/Zn, where C ∈ M(n,Z) is a matrix
invertible over Q such that the columns of C−1 ∈ M(n,Q) are spanned by the
columns of A−1, i.e. C−1 = A−1B for some B ∈ M(n,Z).

Remark 3.1. Let JW = 〈q〉, where q = (q1, . . . , qn) is the vector of charges and let
C0 ∈ M(n,Z) be such that JW = C−1

0 Zn/Zn. In this case the columns of C−1
0 are

a basis of the lattice L generated by the canonical basis e1, . . . , en and the vector
q. Such a basis can be obtained as follows: let w = (w1, . . . , wn) be the vector
of weights and let M ∈ GL(n,Z) such that Mw = e1 (this is possible since w is
primitive), then a basis of L is given by q,M−1e2, . . . ,M

−1en:

C−1
0 =

(
q M−1e2 . . . M−1en

)
In what follows e will be the column vector with all entries equal to 1.

Lemma 2. JW ⊂ G if and only if B−1e ∈ Zn and G ⊂ SL(W ) if and only if
(CT )−1e ∈ Zn.

Proof. Recall that JW is generated by q = A−1e. Thus JW ⊂ G if and only
if CA−1e = B−1e ∈ Zn. The group G is contained in SL(W ) if and only if∑n
i=1 ai = a · e ∈ Z for all a = (a1, . . . , an) ∈ G. Equivalently

(C−1u)T e = uT (CT )−1e ∈ Z
for all u ∈ Zn, i.e. (CT )−1e ∈ Zn. �

3.2. Description of GTW . Given a subgroup G = C−1Zn/Zn of Aut(W ), where
C = A−1B ∈ M(n,Z), we define the transpose group GT in Aut(WT ) as:

GT := (BT )−1Zn/Zn.
As a consequence of the previous description of the group G we have the following

properties.

Proposition 3.
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1) |G| = |det(C)| and |GT | = |det(B)|,
2) (GT )T = G,
3) {0}T = Aut(WT ) and Aut(W )T = {0},
4) JTW = SL(WT ),
5) if G1 ⊂ G2, then GT2 ⊂ GT1 and G2/G1

∼= GT1 /G
T
2 .

Proof. We will prove statement 4), the remaining ones follow easily from the def-
inition. Let C−1

0 be a matrix corresponding to JW as in Remark 3.1 and let
B0 = AC−1

0 . By Lemma 2, JTW is contained in SL(WT ) if B−1
0 e ∈ Zn. Equiv-

alently:
C0A

−1e = C0q ∈ Zn,
which clearly holds since q = C−1

0 e1.
Conversely, let a = (AT )−1v = (BT0 )−1(CT0 )−1v ∈ Aut(WT ), v ∈ Zn, such that

a · e ∈ Z. We show that (CT0 )−1v ∈ Zn. The condition a · e ∈ Z is equivalent to:

aTAq = aTAC−1
0 e1 = vTC−1

0 e1 ∈ Z,
i.e. (CT0 )−1v · e1 ∈ Zn. Since the columns of C−1

0 , except for the first one, have
integral entries, this is enough to prove that (CT0 )−1v ∈ Zn. Thus a ∈ JTW . �

Remark 3.2. By Proposition 3 it follows that JW ⊂ G if and only if GT ⊂ SL(WT )
and JWT ⊂ GT if and only if G ⊂ SL(W ). Moreover, SL(WT )/JWT is isomorphic
to SL(W )/JW , so that SL(WT ) = JWT if and only if JW = SL(W ).

3.3. The group SL(W ). We will now determine the order of the subgroup SL(W ) =
Aut(W ) ∩ SLn(C).

Corollary 1. The order of SL(W ) is equal to |det(A)|/dT , where dT is the least
common denominator of the charges of WT .

Proof. By Proposition 3, SL(WT ) = JTW and |SL(WT )| = |det(B0)| where B0 =

AC−1
0 and C0 is given in Remark 3.1. Observe that

MC−1
0 =

(
e1/d e2 . . . en

)
since Mq = M(w/d) = e1/d. Thus

|SL(WT )| = |det(A) det(C−1
0 )| = |det(A) det(MC−1

0 )| = |det(A)|
d

.

Changing W with WT we get the statement. �

Proposition 4. Let W : C4 → C be a well-formed potential of the form

W (x, y, z, w) = x2 − f(y, z, w)

and let A = (aij)i,j=1,2,3 be the matrix associated to f .

• If f is of chain type, then |SL(W )| = 2 gcd(a1a2a3, 1− a1 + a1a2).

• If f is of loop type, then |SL(W )| = 2 gcd(1 + a1a2a3, 1− a1 + a1a2).

• If f is of fermat type, then |SL(W )| = 2a1a2a3
lcm(a1,a2,a3) .

• If f is of chain+fermat type, then |SL(W )| = 2a3 gcd(a1a2, a1 − 1) if a3 is
odd and |SL(W )| = a3 gcd(a1a2, a1 − 1) otherwise.

• If f is of loop+fermat type, then |SL(W )| = 2a3 gcd(a1a2 − 1, a2 − 1) if a3

is odd and |SL(W )| = a3 gcd(a1a2 − 1, a2 − 1) otherwise.
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Proof. In all cases we will apply Corollary 1. We denote by A the matrix associated
to the potential W , by wT = (wT1 , w

T
2 , w

T
3 , w

T
4 ) the weight vector of WT and by dT

the degree of the hypersurface WT in P(wT ).
If f is of chain type, then det(A) = 2a1a2a3. From the linear system

(2) AT · wT = dT e

we obtain that
2a1a2a3

dT
wT4 = 2(1− a1 + a1a2).

Let m := gcd(dT , wT4 ). Observe that m divides wT2 , w
T
3 , w

T
4 by (2). Since W is

well-formed, this implies that m = 1, so that |SL(W )| = det(A)
dT

= 2 gcd(a1a2a3, 1−
a1 + a1a2). The case when f is of loop type is similar to the previous one.

If f is of chain+fermat type, then looking at the equation of the linear system
(2) coming from the chain part we obtain that

a1a2

dT
wT3 = a1 − 1.

Let m := gcd(dT , wT3 ). Observe that m divides wT2 , w
T
3 , 2wT1 and a3w

T
4 . Thus,

since W is well-formed, m is either 1 or 2. Moreover, again since W is well-formed,
m = 2 if and only if a3 is even. If m = 1, then |SL(W )| = 2a3 gcd(a1a2, a1 − 1),
otherwise |SL(W )| = a3 gcd(a1a2, a1− 1). The case when f is of loop+fermat type
is similar. �

Remark 3.3. The formulas given in Proposition 4 for the chain, loop and fermat
case can be easily generalized to the case of a higher dimensional well-formed po-
tential of type x2 = f(x1, . . . , xn). Let Θ = 1 +

∑n−1
j=1 (−1)ja1 · · · aj . In the chain

case |SL(W )| = 2 gcd(a1 · · · an,Θ), in the loop case |SL(W )| = 2 gcd((−1)n−1 +
a1 · · · an,Θ) and finally in the fermat case |SL(W )| = 2a1···an

lcm(a1,...,an) .

3.4. Relation with Borisov’s description. In this subsection we relate the def-
inition of transpose group with the one given in [4]. Let M∗0 = N0 = Zn and
ξ : N0 →M∗0 , u 7→ Av. We have an exact sequence

0→ N0
ξ→M∗0

f→ Aut(W )→ 0,

where f(ei) = A−1ei. Thus f induces an isomorphism Aut(W ) ∼= M∗0 /ξ(N0) =
Zn/AZn. The dual of ξ gives the exact sequence

0→M0
ξ∗→ N∗0

fT→ Aut(WT )→ 0,

where fT (ei) = (A−1)T ei, giving isomorphisms

Aut(WT ) ∼= Ext1(Aut(W ),Z) ∼= N∗0 /ξ
∗(M0) = Zn/ATZn.

Let G be a subgroup of Aut(W ). Then there is a submodule N = BZn of M∗0
containing ξ(N0) such that G ∼= N/ξ(N0) ∼= BZn/AZn. Observe that we can write
A = BC, where B,C are integral matrices invertible over Q. Consider the chain of
inclusions

ξ(N0) = AZn ↪→ N = BZn ↪→ Zn = M∗0 ,

and its dual

M0 = Hom(Z,Zn)→ N∗ = Hom(BZn,Z)→ ξ(N0)∗ = Hom(AZn,Z).
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We identify Hom(AZn,Z) with Zn via the homomorphism given by the dual of
ξ : N0 → ξ(N0):

h : Hom(AZn,Z)→ Zn, (AT )−1ei 7→ ei.

Thus h(N∗) = CTZn and h(M0) = ATZn. According to Borisov’s definition

GT := N∗/M0

h∼= CTZn/ATZn
fT∼= (BT )−1Zn/Zn,

which agrees with the definition given in the first section.

3.5. G and GT as orthogonal groups. Consider the bilinear form b : Qn×Qn →
Q given by b(u, v) = uTAv. Observe that this induces a bilinear form

b̄ : Aut(WT )×Aut(W )→ Q/Z,

where we recall that Aut(WT ) = (AT )−1Zn/Zn and Aut(W ) = A−1Zn/Zn. In fact
b̄ is well defined since, if u, v ∈ Zn, then

b(u,A−1v) = uTAA−1v = uT v ∈ Z, b((AT )−1u, v) = uTA−1Av = uT v ∈ Z.

Let G = C−1Zn/Zn be a subgroup of Aut(W ). We show that GT is the orthogonal
of G with respect to b̄.

Lemma 3.

GT = {x ∈ Aut(WT ) : b̄(x, y) = 0, ∀y ∈ G}.

Proof. Let u ∈ Zn and x = (AT )−1u ∈ Aut(WT ). We have that

b̄(x,C−1v) = uTA−1AC−1v = uTC−1v = 0

for all v ∈ Zn, if and only if (CT )−1u ∈ Zn, i.e. (AT )−1u ∈ (AT )−1CTZn =
(BT )−1Zn, which means that x ∈ GT . �

This remark relates our definition of transpose group with the one given in [12].

3.6. Relation with Krawitz’s description. According to Krawitz’s definition
in [15] the transpose group is

GT =


n∏
j=1

(ρTj )mj :

n∏
j=1

x
mj
j is G-invariant

 .

Observe that
∏n
j=1(ρTj )mj corresponds, in Aut(WT ), to

∑
jmj(A

T )−1ej = (AT )−1m,

where m = (m1, . . . ,mn) ∈ Zn. Moreover,
∏n
j=1 x

mj
j is G-invariant if and only if∑

jmjaj ∈ Z for all a = (a1, . . . , an) ∈ G, i.e.∑
j

mjaj = (mTA−1)Aa = b̄((AT )−1m, a) = 0.

Thus GT is the orthogonal complement of G with respect to b̄, in agreement with
Lemma 3.
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4. The Dolgachev-Voisin mirror symmetry for K3 surfaces

4.1. K3 surfaces with non-symplectic involutions. We briefly recall the clas-
sification theorem for non-symplectic involutions on K3 surfaces given by Nikulin
in [17, §4] and [20, §4]. Let X be a K3 surface and ι be non-symplectic involution
of X. The local action of ι at a fixed point is of type:(

1 0
0 −1

)
,

so that the fixed locus Xι is the disjoint union of smooth curves and there are no
isolated fixed points. The invariant lattice:

H2(X,Z)+ := {x ∈ H2(X,Z) | ι∗x = x}
is 2-elementary, i.e the discriminant group (H2(X,Z)+)∨/H2(X,Z)+ is isomorphic
to (Z/2Z)⊕a for some non negative integer a. According to Rudakov-Shafarevich
in [22], the isometry class of such lattice is determined by the invariants r, a and
δ, where r = rkH2(X,Z)+ and δ ∈ {0, 1} is 0 if and only if x2 ∈ Z for any
x ∈ (H2(X,Z)+)∨. Equivalently, by [17, §4], δ = 0 if and only if the class of the
fixed locus of ι is divisible by two in H2(X,Z).

• δ = 1
∗ δ = 0
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Figure 1. Nikulin classification

Theorem 4.1. [17, Theorem 4.2.2] The fixed locus of a non-symplectic involution
on a K3 surface is

• empty if r = 10, a = 10 and δ = 0,
• the disjoint union of two elliptic curves if r = 10, a = 8 and δ = 0,
• the disjoint union of a curve of genus g and k rational curves otherwise,

where g = (22− r − a)/2, k = (r − a)/2.

Figure 1 shows all the values of the triple (r, a, δ) which are realized and the
corresponding invariants (g, k) of the fixed locus.

We now assume that X carries a symplectic automorphism σ of prime order
commuting with ι. The minimal resolution Y of X/〈σ〉 is known to be a K3 surface
and ι lifts to a non-symplectic involution j on Y . The following proposition relates
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the invariants of ι and j. We denote by δ(ι) and δ(j) the δ-invariants of the invariant
lattices of ι and j. We recall that the order of a symplectic automorphism of prime
order p on a K3 surface is either 2, 3, 5 or 7 by [18].

Proposition 5. Let X be a K3 surface carrying a non-symplectic involution ι and
a symplectic automorphism σ of prime order p > 2 commuting with ι. Then ι
induces a non-symplectic involution j on the minimal resolution Y of X/〈σ〉 such
that δ(ι) = δ(j).

Proof. Let π : X → X/〈σ〉 be the natural quotient map. Since σ is symplectic, the
set F of its fixed points is finite and the quotient X/〈σ〉 has singular points of type
Ap−1 at S = π(F ) (see [18]). We denote by r : Y → X/〈σ〉 the minimal resolution
of X/〈σ〉 and by Eq1 , . . . , E

q
p−1 the irreducible components of r−1(q), q ∈ S, with

Eqi · E
q
i+1 = 1, i = 1, . . . , p− 2.

Since ι commutes with σ, it induces an involution on X/〈σ〉 which lifts to a non-
symplectic involution j on Y . Let Xι be the fixed locus of ι and Y j be the fixed
locus of j. Since the orders of ι and σ are relatively prime, the fixed locus of the
involution induced by ι on X/〈σ〉 coincides with π(Xι). Observe that in general
this is not a Cartier divisor since it passes through the singular points of X/〈σ〉.
Taking the pull-back of π(Xι) to Y we obtain the following Q-divisor:

(3) r∗(π(Xι)) = X̃ι +
1

p

∑
q∈S∩π(Xι)

p−1∑
i=1

iEqi ,

where X̃ι is the proper transform of π(Xι) and it only intersects Eqp−1 for any

q ∈ S∩π(Xι). Since j leaves invariant the exceptional divisors over S∩π(Xι) and,
being non-symplectic, it only fixes smooth disjoint curves, we have

(4) Y j = X̃ι +

p−1
2∑

k=1

∑
q∈S∩π(Xι)

Eq2k−1.

Observe that the natural inclusions induce isomorphisms Cl(X) ∼= Cl(X − F ) and
Cl(X/〈σ〉) ∼= Cl(X/〈σ〉 − S) since F and S have codimension two. Moreover π0 :
X − F → X/〈σ〉 − S is an unramified covering. Now assume that α := [Xι] is
divisible by two in H2(X,Z) or, equivalently in Cl(X), and let β := [π0(Xι)]. Then
by projection formula π0∗(α) = π0∗π

∗
0(β) = pβ is also divisible by two. From

equalities (3) and (4) we get:

r∗(pβ) ≡ [Y j ] (mod 2).

Thus [Y j ] is divisible by two. Conversely, if [Y j ] is divisible by two, the same is
true for r∗(pβ) by the previous congruence. By projection formula β is divisible by
two in Cl(X/〈σ〉), thus the same is true for π∗0(β) = α. �

Remark 4.2. Equation 3 can be checked by means of a local computation at an
Ap−1 singularity, for example computing the pull-back of the invariant divisors
of the toric variety associated to the fan with rays (p, 1 − p), (0, 1) by means of
MAGMA [24].
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4.2. The Dolgachev-Voisin mirror symmetry. LetM be an even non-degenerate
lattice of signature (1, ρ− 1), 1 ≤ ρ ≤ 19.

Definition 4.3. An M -polarized K3 surface is a pair (X, j) where X is a K3 surface
and j : M ↪→ Pic(X) is a primitive lattice embedding.

Dolgachev in [10] constructs a (coarse) moduli space KM parametrizing M -
polarized K3 surfaces, which has dimension 20− ρ. Assume now that

M⊥ ∩H2(X,Z) ∼= U ⊕ M̄,

where U is a copy of the hyperbolic plane. As described in [10] one can define the
mirror moduli space of KM as the moduli space KM̄ of M̄ -polarized K3 surfaces:
one can use the primitive embedding M̄ ↪→M⊥ ⊂ H2(X,Z) to get a primitive even
non-degenerate sublattice of signature (1, (20−ρ)−1) of the K3 lattice U3⊕E8(−1)2.
Observe that for generic K3 surfaces XM ∈ KM and XM̄ ∈ KM̄ we have

dim KM = 20− ρ = rk Pic(XM̄ ), dim KM̄ = ρ = rk Pic(XM ).

We now consider the special case whenX is a K3 surface admitting a non-symplectic
involution and M = H2(X,Z)+. We denote the anti-invariant lattice by

H2(X,Z)− := (H2(X,Z)+)⊥ ∩H2(X,Z).

Proposition 6. [23, Lemma 2.5, §2.3] Assume that (r, a, δ) 6= (14, 6, 0) and g ≥ 1.
Then:

• H2(X,Z)− ∼= U ⊕ M̄ ;
• the generic K3 surface XM̄ ∈ KM̄ has a non-symplectic involution;
• if XM ∈ KM has invariants (r, a, δ) then the invariants of XM̄ ∈ KM̄ are

(20− r, a, δ).

Remark 4.4.

• In Figure 1 one can see the mirror couples making a reflection with respect
to the axis through r = 10 and 1 ≤ g ≤ 10 and deleting the axis with g = 0
and the point (r, a, δ) = (14, 6, 0).
• Since K3 surfaces with a non-symplectic involution are projective the in-

variant lattice contains an ample class. One can then consider instead of
KM the moduli space Ka

M of ample M -polarized K3 surfaces and do the
same construction of mirror moduli spaces as above [10].

5. K3 surfaces in weighted projective spaces with non-symplectic
involutions

In this section we will consider K3 surfaces obtained as desingularizations of
hypersurfaces of the following type in some weighted projective space:

(5) W (x, y, z, w) = x2 − f(y, z, w) = 0.

Observe that any such surface carries the non-symplectic involution ι : x 7→ −x.
We will describe their singularities and we will explain how to compute the triple
of invariants (r, a, δ) of ι introduced in section 4. We recall that hij := gcd(wi, wj).

Lemma 4. Let W be a quasismooth and Gorenstein hypersurface in P(w1, w2, w3, w4)
defined by an invertible potential as in (5). Then the singular points of W are Du
Val singularities of type Ak and can only occur at the vertices P2, P3, P4 or along
the edges PiPj with 1 ≤ i, j ≤ 4. More precisely:
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a) if wi > 2, i = 2, 3, 4, then Pi ∈ W if and only if wi 6 |d and in this case it
is a singular point of type Awi−1;

b) if i, j > 1, wi, wj > 2 and hij > 1, then W intersects PiPj − {Pi, Pj} at

b dhijwiwj
c singular points of type Ahij−1;

c) if i, j > 1, wi = 2 and wi|wj, then W intersects PiPj − {Pj} at b dwj c
singular points of type A1;

d) if h1i > 1, then Pi 6∈W and W intersects P1Pi at two points if wi|w1 and at
one point otherwise. In both cases the intersection points are singularities
of type Ah1i−1.

Proof. We recall that, since W = 0 is quasismooth, then it is well-formed and W is
non-degenerate. This implies that the singularities of W can only appear along the
vertices Pi or the edges PiPj , where the singular points of the ambient projective
space occur. Since W is Gorenstein and quasismooth, then it has only cyclic,
canonical singularities [7], i.e. its singular points are Du Val of type Ak. More
precisely, a vertex Pi ∈ W is a singular point of type Awi−1 and an intersection
point of W with an edge PiPj (outside of the vertices) is a singularity of type Ahij−1

where hij = gcd(wi, wj).
We first observe that P1 = (1, 0, 0, 0) 6∈ W . Moreover, if w2 does not divide the

degree d of W , then clearly P2 = (0, 1, 0, 0) ∈ W . Now assume that w2 > 2, w2

divides d and P2 ∈ W . Thus f is of one of the following types up to a change of
coordinates:

yaz + zbw + wc, yaz + zbw + wcy, yaz + zb + wc, yaz + zby + wc.

In the first case, the linear system
2w1 = d
aw2 + w3 = d
bw3 + w4 = d
cw4 = d

implies that w2 divides w3, w4, contradicting the fact that W is well-formed. Simi-
larly, the second case does not occur. In the third case the analogous linear system
gives that w2 divides w3 and 2w1. Since W is well-formed, this implies that w2 = 2,
giving a contradiction. The last case is similar. Thus, in case w2 divides d and
w2 > 2, then P2 6∈W . This proves a).

If w2 = 2, then P2 can be either on W or not, but in any case its singular
type is the same of the generic point of the singular edges containing it. A similar
discussion holds for P3 and P4.

Now assume that w2, w3 > 2 and h23 = gcd(w2, w3) > 1. The number of
intersection points of W with the edge P2P3

∼= P(w2, w3) ∼= P(v2, v3), where vi :=
wi
h23

, only depends on the weights. In fact, assume that P2, P3 ∈ W and let d′ :=

d/h23. Then f̄ := f(0,y,z,0)
yz is of the form

f̄ = y
d′−v2−v3

v2 + z
d′−v2−v3

v3 .

Thus we obtain that f̄/z
d′−v2−v3

v3 = (y
v3

zv2 )
d′−v2−v3
v2v3 + 1, so that, since yv3/zv2 is an

affine coordinate, f has d′−v2−v3
v2v3

distinct points outside of the vertices. Observe
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that such number equals b dh23

w2w3
c. In fact

dh23

w2w3
− d′ − v2 − v3

v2v3
=
a2 + a3

a2a3
,

where ai := wi/h23, i = 2, 3. If a2 > 2 and a3 > 2, then the right hand side is
clearly smaller than one. Otherwise, since a2 and a3 are relatively prime, one of
them would be equal to one, for example w2 = h23. This contradicts the fact that
w2 does not divide d, since P2 ∈W , by the first point in the proof.

The case when either P2 or P3, or both, do not belong to W is similar (see also
the proof of [13, Lemma I.6.3]). This proves b) and c).

Finally, assume that h12 = gcd(w1, w2) > 1. It can be easily proved that P2 6∈W
since W is well-formed. In this case the intersection of f with the edge P1P2 is given
by the solutions of an equation of type x2 − ya = 0 in P(w1, w2) ∼= P(v1, v2), where
vi := wi/h12. Observe that w2 divides 2w1 in this case. The previous equation has
two solutions if w2 divides w1, since in this case x

y1/2
is a coordinate. Otherwise,

w2 = 2 gcd(w1, w2), and the equation has a unique solution since a coordinate

function is x2

ya . This proves d). �

Example 5.1. Consider a quasismooth and invertible potential W (x, y, z, w) =
x2 − f(y, z, w) defining a degree 18 hypersurface in P(9, 4, 3, 2). Observe that W
has a singular point of type A3 at P2 since w2 does not divide 18. On the other
hand, P3 6∈ W since w3 > 2 and w3 divides 18. The point P4 can be either in
W or not, depending on f . The surface W intersects the edge P1P3 in 2 points,
exchanged by ι, since w3 divides w1. These are singularities of type A2. Finally,
we consider the intersection of W with the edge P2P4

∼= P(2, 1). Observe that in
this case we obtain a degree 9 equation f ′(y, w) = 0. If P4 ∈W , then W intersects
the edge in 9−1

2 = 4 points outside the vertices. Otherwise, if P4 6∈ W , then W

intersects the edge in 9−1−2
2 = 3 points outside the vertices. In any case we have

exactly one singular point of type A3 and four singular points of type A1 along the
edge.

Let W ⊂ P(w1, w2, w3, w4) be defined by an equation of type (5) and let γ : X →
W be its minimal resolution. We will denote by ι both the involution x 7→ −x
on W and the involution induced by this on X. We will consider the following

commutative diagram, where P := P(w2, w3, w4) and γ1 : P̃ → P is its minimal

resolution, π and π̃ are the quotients by ι and γ2 is the blow up of P̃ at the singular
points of the pull-back of the branch locus of π.

X
γ //

π̃

��

W

π

��
Y

γ2 // P̃
γ1 // P

Lemma 5. Assume that the fixed locus of ι on X is of the form

C ∪ E1 ∪ · · · ∪ Ek,

where g(C) ≥ 1 and g(Ei) = 0. Then the invariant lattice H2(X,Z)+ is generated
by π̃∗ Pic(Y ) and the classes of E1, . . . , Ek.
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Proof. We first observe that π̃∗ Pic(Y )⊗Q = H2(X,Q)+. In fact, if x ∈ H2(X,Z),
then π̃∗π̃∗(x) = x + ι∗x. This proves that π̃∗ Pic(Y ) ⊂ H2(X,Z)+ and that 2x ∈
π̃∗ Pic(Y ) for any x ∈ H2(X,Z)+. Let r = rkH2(X,Z)+ = rk Pic(Y ).

Since ι is a non-symplectic involution, then Y = X/〈ι〉 is a smooth rational sur-
face. In particular Pic(Y ) = H2(Y,Z) is a unimodular lattice, thus the determinant
of the lattice π̃∗ Pic(Y ) = Pic(Y )(2) equals ±2r. Let xi be the class of Ei, then
xi 6∈ π̃∗ Pic(Y ) and 2xi = π̃∗(yi), where yi is the class of its image in Y . The lattice
generated by π̃∗ Pic(Y ) and x1, . . . , xk has determinant ±2r/2k = ±2r/2r−a = ±2a

by Theorem 4.1, thus it coincides with H2(X,Z)+. �

In order to compute the triple (r, a, δ) for the lattice H2(X,Z)+ we follow these
steps:

• we identify the irreducible components of the fixed locus of ι in W and
the number of their intersection points: W ι always contains the curve C
defined by x = 0 and possibly one more curve, defined by the vanishing of
another coordinate;

• denoting by B the branch locus of π, we identify the singularities of P on
B;

• we compute r = rk Pic(Y ) as the sum of the Picard number of P̃ with the
number s of singular points of γ∗1B;

• we recall that a = 22−r−2g by Theorem 4.1, thus to obtain a it is enough
to compute the genus of the curve x = 0 by means of the formula given in
§2.1;

• in order to identify δ, we compute the invariant lattice of X as follows: we
observe that π̃∗ Pic(Y ) = M(2) ⊕ (−2)s, where M = Pic(P̃), and we add
to this lattice the classes of the rational curves in the ramification locus of
π̃ (their classes can be computed by looking at their intersection with the
generators of π̃∗ Pic(Y )).

The invariant r can also be computed as follows: let Exc(γ) be the lattice generated
by the exceptional divisors of γ. Then r = 1+rk Exc(γ)ι, where 1 = rkH2(W,Z)+ =
rk Cl(P) and rk Exc(γ)ι equals the number of ι-orbits in the exceptional locus of γ.

Remark 5.2. We observe that the triple (r, a, δ) only depends on the weight vector
w = (w1, w2, w3, w4). In fact, the configuration of the irreducible components of
W ι (i.e. their number and mutual intersections) only depends on w, and the same
holds for the singularities of W by Lemma 4.

Example 5.3. We now compute the triple (r, a, δ) for the surface W in Example
5.1. The projective plane P = P(4, 3, 2) ∼= P(2, 3, 1) has a singular point of type A1

at (1, 0, 0) and one of type A2 at (0, 1, 0). Its minimal resolution is a toric variety

P̃ whose fan has six rays:

r1 = (−1, 1), r2 = (0,−1), r3 = (2, 1), r4 = (1, 1), r5 = (0, 1), r6 = (1, 0),

where r6 corresponds to the exceptional divisor over the A1 singularity, r4, r5 to
the two components of the exceptional divisor over the A2 singularity and r3 to the
proper transform of the line through the two singular points of P. A basis of Pic(P̃)
is given by the classes v1, v2, v3, v4 of the last four rays. With respect to this basis,
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the classes of the six rays are given by the columns of the following matrix
0 1 0 0 1 0
1 1 0 0 0 1
1 2 0 1 0 0
2 3 1 0 0 0

 .

An easy computation shows that the Picard lattice of P̃ has intersection matrix:

M :=


−1 1 0 1
1 −2 1 0
0 1 −2 0
1 0 0 −2


The branch locus B of π is the union of the curves

B1 : f(y, z, w) = 0 B2 : z = 0.

Observe that B1 and B2 intersect at (1, 0, 0) and at 4 = b d·h24

w2w4
c other points (see

the second point in Lemma 4). The pull-back γ∗1B in P̃ has three irreducible

components: the proper transforms B̃1, B̃2 and the exceptional divisor E over the
singular point, with B̃1 · B̃2 = 4 and B̃i ·E = 1, i = 1, 2. The surface Y is the blow-

up of P̃ at the six singular points of γ∗1B, thus its Picard lattice has intersection

matrix M ⊕ (−1)6. We still denote by B̃1, B̃2 the proper transforms of the curves
in Y .

Let v5, . . . , v8 be the classes of the exceptional divisors over the points in B̃1∩B̃2,
v9 the one over E ∩ B̃1 and v10 over E ∩ B̃2. We now compute H2(X,Z)+: this
is obtained by adding to the lattice π̃∗ Pic(Y ) = M(2) ⊕ (−2)6 the classes of the

rational curves in the fixed locus, in this case π̃∗([B̃2])/2 = (3v1 + 2v2 + v3 + v4 −
v5 − v6 − v7 − v8 − v10)/2 and π̃∗([E])/2 = (v4 − v9 − v10)/2. Computing the
discriminant group of the lattice by means of a computer algebra program, we see
that δ = 1. Thus (r, a, δ) = (10, 6, 1).

6. The Berglund-Hübsch-Chiodo-Ruan mirror symmetry for K3
surfaces

In this section we prove Theorem 1.1 by means of a classification of K3 sur-
faces defined by a non-degenerate invertible potential of the form W (x, y, z, w) =
x2 − f(y, z, w) in some weighted projective space. The possible decompositions of
the polynomial f(y, z, w) as a sum of atomic types are the following, up to a per-
mutation of the variables y, z, w:

i) chain: Wc = x2 − ya1z + za2w + wa3 ,

ii) loop: Wl = x2 − ya1z + za2w + wa3y,

iii) fermat: Wf = x2 − ya1 + za2 + wa3 ,

iv) chain+fermat: Wcf = x2 − ya1z + za2 + wa3 ,

v) loop+fermat: Wlf = x2 − ya1z + za2y + wa3 .
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Borcea in [3, Tables 1, 2, 3] and Yonemura in [25, Table 2.2] classified equations
of K3 surfaces in weighted projective 3-spaces, but these are not always of Delsarte
type. Thus our first aim is to identify which weights w admit a quasi-homogeneous
equation of type x2 = f(y, z, w), where f is as in i), ii), iii), iv) or v), and then to
write the possible equations for a given weight. The result of this classification is
contained in the first two columns of Tables 1, 2, 3, 4, 5.

We briefly explain the notation in the tables. In the first column we number
the K3 surface W : x2 − f(y, z, w) = 0 following [3] and we put in parenthesis
the number corresponding to the transposed K3 surface WT . In the fourth column
appear the Nikulin’s invariants (r, a, δ) of the involution ι on the resolution X of
W , computed as explained in section §5. In the last two columns we compute the
orders of the groups SL(W ) (by means of Proposition 4) and JW .

6.1. Trivial S̃L(W ). Observe that in every case, except for the ones marked with
∗, we have that the group SL(W )/JW is trivial, so that W and WT are BHCR-
mirror of each other. As the tables show, for such pairs the invariants (r, a, δ) are
mirror in the sense of Dolgachev-Voisin (i.e. they are (r, a, δ) and (20 − r, a, δ)),
thus the theorem is proved in these cases.

Example 6.1. We consider the case of the weight vector w = (5, 3, 1, 1). In order
to determine which f can appear in this weight, we need to solve the linear system

Aw = 10e,

where e is the column vector with all entries equal to 1 and A is the matrix asso-
ciated to one of the potentials Wc,Wl,Wf ,Wcf ,Wlf (and the ones obtained from
them by a coordinate change).

No. 3a and 28 in Table 5. If A is associated to the potential Wc, the only
solution is (a1, a2, a3) = (3, 9, 10), which gives the surface No. 3a in Table 5. This
has only one A2 singularity and g = 9 so that (r, a, δ) = (3, 1, 1) (here δ is uniquely
determined, see Figure 1). The surface WT is No. 28 in Table 5. Its configuration of
singular fibers is A1 +A3 +A4 +A8, so that (r, a, δ) = (17, 1, 1). By Proposition 4
we find that JWT = SL(WT ), so W and WT are BHCR-mirror and belong to
Dolgachev-Voisin mirror families.

No. 3b and 5 in Table 5. If we consider the potential Wc with the variables
y ad z exchanged, we find another solution with (a1, a2, a3) = (7, 3, 10). This gives
case No. 3b in Table 5, which has again (r, a, δ) = (3, 1, 1). The surface WT is No. 5
in Table 5 and has 3A1+A3 singular points invariant for ι, so that (r, a, δ) = (7, 3, 1).
Here SL(W )/JW ∼= Z/3Z, so that W and WT are not BHCR-mirror.

No. 3 and 23 in Table 2. If A is of loop type then the only solution is
(a1, a2, a3) = (3, 9, 7), which gives the surface No. 3 in Table 2. This surface has
again (r, a, δ) = (3, 1, 1) (see Remark 5.2). The surface WT is No. 23 in Table 2.
Here again JW = SL(W ), so that W and WT are BHCR-mirror and belong to
Dolgachev-Voisin mirror families.

No. 3 and 18 in Table 4. In the chain+fermat case we obtain as a unique
solution (a1, a2, a3) = (3, 10, 10), which gives No. 3 in Table 4. The surface WT is
given by No. 18 in the same table, but in this case SL(W )/JW ∼= Z/2Z, so that W
and WT are not BHCR-mirror.

No. 3 in Table 3. We obtain the solution (a1, a2, a3) = (3, 7, 10) in the
loop+fermat case. Here W = WT and SL(W )/JW ∼= Z/4Z.

We will discuss the last cases in the next subsection.
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6.2. Non trivial S̃L(W ). In this case the BHCR-mirror pairs are given by the

minimal resolutions of W/G̃ and WT /G̃T , where G̃T = SL(WT )/JWT by Propo-

sition 3. We recall that, by Proposition 1, the group G̃ acts symplectically on W
and its minimal resolution X. Moreover, since it is finite and abelian it appears in
the list of the 15 possible finite symplectic abelian groups given by Nikulin in [18].

Since the involution ι commutes with G̃ (which is generated by diagonal automor-

phisms), then ι clearly induces a non-symplectic involution j on X/G̃ and on its
minimal resolution Y . We are thus interested in computing the triple (r, a, δ) for
such involution on Y . We have a commutative diagram:

X
γ //

��

W

q

��
Y

η2 // X/G̃
η1 // W/G̃

(6)

where we still denote by G̃ its lifting to X, η2 is the minimal resolution of X/G̃

and η2 ◦ η1 the minimal resolution of W/G̃, whose singular locus is the image of
the singular locus of W and of the points with non trivial stabilizer for G. The
rank r of the invariant lattice H2(Y,Z)j equals 1 plus the number of j-orbits of the
exceptional locus in Y and the curve of maximal genus in Fix(j) is isomorphic to
q(C), thus its genus g can be computed by means of the Riemann-Hurwitz formula.
Finally a can be computed by means of the formula in Theorem 4.1.

If G̃ is cyclic of prime order p > 2, then the invariant δ of (Y, j) equals the
one of (X, ι) by Proposition 5. Otherwise, we need a deeper analysis to compute
explicitely a basis of H2(Y,Z)+ as explained in section §5.

Example 6.2. We now show that the surfaces No. 3b and No. 5 in Table 5 are
Dolgachev-Voisin mirror.

No. 3b in Table 5. By Proposition 2 and Corollary 1 a generator for SL(W ) and

G̃ ∼= Z/3Z is g̃ := (1, 14/15, 7/15, 3/5), with respect to the coordinates x, z, y, w.
A local analysis in the charts shows that the point (0 : 1 : 0 : 0) ∈ W is an A2

singularity fixed by g̃, hence it induces an A8 singularity in the quotient W/G̃. The
remaining fixed points of g̃ are (0 : 0 : 1 : 0), (1 : 0 : 1 : 0) and (−1 : 0 : 1 : 0), which

give 3 singularities of type A2 in the quotient W/G̃, two of them interchanged by ι.
Thus X contains 12 j-orbits of exceptional curves and r = 13. The automorphism
g̃ clearly preserves the curve C and it fixes two points on it (corresponding to the
A8 singularity and to the first A2 singularity). By Riemann-Hurwitz formula, its
image q(C) has genus 3. In conclusion the invariants of j are (r, a, δ) = (13, 3, 1)
(here δ is uniquely determined, see Figure 1), thus Y and the surface No. 5. in
Table 5 are BCHR-mirror and belong to Dolgachev-Voisin mirror families.

No. 5 in Table 5. We recall that W has one A3 and 3A1 singularities fixed
by ι. By Proposition 2 and Corollary 1 a generator for SL(W )/(JW ) is g̃ :=
(1, 20/21, 10/21, 4/7) ∈ SL(W ). A local analysis in the charts shows that the point
(0 : 1 : 0 : 0) ∈W is an A3 singularity fixed by g̃, which gives an A11 singularity in

W/G̃. Moreover, the points (1 : 0 : 1 : 0), (0 : 0 : 0 : 1) are smooth points in W fixed
by g̃, thus giving two A2 singularities of the quotient. The 3 singularities of type
A1 are permuted by g̃ and give a point of type A1 in the quotient. Thus Y contains
11 + 2 · 2 + 1 = 16 orbits of exceptional curves. Moreover, the genus of the curve of
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maximal genus is 2, so that the invariants of j are (r, a, δ) = (17, 1, 1), so Y and the
surface No. 3b in Table 5 are BCHR-mirror and belong to Dolgachev-Voisin mirror
families.

Example 6.3. We now show that the surfaces No. 3 and No. 18 in Table 4 belong
to Dolgachev-Voisin mirror families.

No. 3 in Table 4. In this case we need a deeper analysis to determine the
invariant δ. The involution σ induces the involution σ̄(y, z, w) = (y, z,−w) in
P := P(3, 1, 1) and the involution ι induces an involution ῑ on W/〈σ〉 and Y . We
observe that we have the following commutative diagram. The map Y →W/〈σ〉 is
the minimal resolution and b ◦ r : Z → P/〈σ̄〉 is obtained composing the minimal
resolution r of P/〈σ̄〉 with the blow-up b of the singular locus of r∗B, where B is
the branch locus of π̄.

W //

π

��

W/〈σ〉

π̄

��

Yoo

π̄

��
P // P/〈σ̄〉 Zoo

(7)

Observe that P/〈σ̄〉 ∼= P(3, 1, 2) and B is the union of the curves B1, B2 defined
by f(y, z, w) = 0 and w = 0, which intersect at three smooth points and at the
singular point Q1 := (1 : 0 : 0). The projective plane P(3, 1, 2) has a singular point
of type A2 at Q1 and a point of type A1 at Q2 = (0 : 0 : 1), thus its resolution is
a toric variety with Picard number 4. Moreover r∗B has 6 double points, thus the
surface Z has Picard number 10 and its Picard lattice can be explicitely computed
as in Example 5.3. The invariant lattice H2(Y,Z)+ has rank 10 and, by Lemma
5, it is the lattice obtained by adding to π∗ Pic(Z) the classes of the two rational
curves in Fix(ῑ). An explicit computation, following the method explained in §5,
gives that δ = 0.

We discuss one more case in detail, since here the group acting on the surface
WT is not cyclic.

Example 6.4. No. 1 in Table 1. The equation x2 = y6+z6+w6 defines a smooth
K3 surface W of degree d = 6 in P(3, 1, 1, 1) and (r, a, δ) = (1, 1, 1). The group

G̃ = SL(W )/JW is of order 12. By Nikulin’s classification [18] of finite abelian

groups acting symplectically on a K3 surface we have that G̃ ∼= Z/2Z × Z/6Z.
The group JW is generated by the element (1/2, 1/6, 1/6, 1/6) and observe that

the elements (1/2, 1/2, 1, 1) and (1, 1/6, 5/6, 1) generate G̃. Denote by (1, 0) the
generator of order 2 and by (0, 1) the generator of order 6. Again by [18] we know
that we have the following configuration of fixed points:

H2
(0,3)(6) H6

(0,1)(2) H3
(0,2)(0) H6

(1,2)(2) H2
(1,0)(6)

H6
(1,1)(2) H2

(1,3)(6)

where we follow the notation of [18] denoting by Hm
x (t) the cyclic group of order m

with generator x, and t denotes the number of fixed points having Hm
x as stabilizer.

Looking at the diagram and by a local analysis one sees that it is enough to
study the fixed points of the elements (1, 0), (0, 3) and (1, 3). The fixed points of
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(1, 0) are (1 : 1 : 0 : 0), (−1 : 1 : 0 : 0) and (0 : 0 : 1 : ξj), with ξ = exp(2πi/12)
and j = 1, 3, 5, 7, 9, 11. The first two points are interchanged by ι and have in
fact stabilizer of order 6. The computation for the elements (0, 3) and (1, 3) is

similar. We find that the quotient W/G̃ has in total 3A5 and 3A1 singularities
which gives r = 19. Finally, by an easy computation, one sees that the curve
C contains 18 points with stabilizer group of order 2 hence by Riemann-Hurwitz
formula the curve C1 has genus 1. In this case δ = 1 by Figure 1, thus the invariants
for Y are (r, a, δ) = (19, 1, 1). This shows that the surfaces Y and W belong to
Dolgachev-Voisin mirror families.

In Table 1 and 3 there are cases where SL(W )/JW has non trivial proper sub-

groups G̃ = G/JW . By making similar computations of the Nikulin invariants

(r, a, δ) for W/G̃ and W/G̃T one obtains that the corresponding minimal resolu-
tions are mirror K3 surfaces, proving Theorem 1.1 also in these cases. We specify
however one more case, in which the method for computing δ uses a fake weighted
projective plane.

Definition 6.5. A fake weighted projective space is a Q-factorial toric variety with
Picard number one.

By [6, Proposition 4.7] (see also [14, Corollary 2.3]) every fake weighted projective
space is a quotient of a weighted projective space by a finite group acting freely in
codimension one.

Example 6.6. No. 30 in Table 1. Let W = x2−y4−z8−w8 = 0 in P(4, 2, 1, 1).
The surface has two A1 singular points at (1 : 1 : 0 : 0), (−1 : 1 : 0 : 0) which
are exchanged by ι and ι fixes a curve C of genus 9, so that (r, a) = (2, 2) and
by Nikulin’s table δ = 0 . Moreover SL(W )/JW ∼= Z/2Z × Z/4Z and it is gener-
ated by (1/2, 1/2, 1, 1), (1, 1/4, 3/4, 1), which for simplicity we will call (1, 0) and
(0, 1) respectively. By the results of the previous sections one can easily compute

the values for (r, a) for the surface W and for its quotients by subgroups of G̃.

To compute the invariant δ of the quotient W/G̃, one has a similar diagram as
diagram (7), just replace 〈σ̄〉 by the induced group on P := P(2, 1, 1) generated
by 〈(1/2, 1, 1), (1/4, 3/4, 1)〉. The quotient of P by this group is a fake weighted
projective plane, with fan of its minimal resolution defined by 8 rays (computation
with MAGMA [24]):

(−1, 0), (1,−2), (1, 2), (0,−1), (0, 1), (1, 1), (1, 0), (1,−1)

One thus proceeds as described in the previous sections to compute δ. The results
are resumed in Table 7.
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7. Tables

No. (w1, w2, w3, w4) f(y, z, w) (r, a, δ) |SL(W )| |JW | SL(W )/JW
∗1 (3, 1, 1, 1) y6 + z6 + w6 (1, 1, 1) 72 6 Z/2Z× Z/6Z
∗2 (5, 2, 2, 1) y5 + z5 + w10 (6, 4, 0) 50 10 Z/5Z
∗8 (9, 6, 2, 1) y3 + z9 + w18 (6, 2, 0) 54 18 Z/3Z
18 (15, 10, 3, 2) y3 + z10 + w15 (10, 4, 0) 30 30 1
26 (21, 14, 6, 1) y3 + z7 + w42 (10, 0, 0) 42 42 1
∗30 (4, 2, 1, 1) y4 + z8 + w8 (2, 2, 0) 64 8 Z/2Z× Z/4Z
∗34 (10, 5, 4, 1) y4 + z5 + w20 (6, 4, 0) 40 20 Z/2Z
∗41 (6, 3, 2, 1) y4 + z6 + w12 (4, 4, 1) 48 12 Z/2Z× Z/2Z
∗42 (6, 4, 1, 1) y3 + z12 + w12 (2, 0, 0) 72 12 Z/6Z
∗45 (12, 8, 3, 1) y3 + z8 + w24 (6, 2, 0) 48 24 Z/2Z

Table 1. The fermat mirror cases

No. (w1, w2, w3, w4) f(y, z, w) (r, a, δ) |SL(W )| |JW |
∗(1)1 (3, 1, 1, 1) y5z + z5w + w5y (1, 1, 1) 6 42
(23)3 (5, 3, 1, 1) y3z + z9w + w7y (3, 1, 1) 10 10

(13)11 (11, 7, 3, 1) y3w + w19z + z5y (9, 1, 1) 22 22
(11)13 (13, 7, 5, 1) y3z + z5w + w19y (11, 1, 1) 26 26
(3)23 (19, 11, 5, 3) y3z + z7w + w9y (17, 1, 1) 38 38

Table 2. The loop mirror cases

No. (w1, w2, w3, w4) f(y, z, w) (r, a, δ) |SL(W )| |JW | SL(W )/JW
∗1 (3, 1, 1, 1) y5z + z5y + w6 (1, 1, 1) 48 6 Z/8Z
∗2 (5, 2, 2, 1) y4z + z4y + w10 (6, 4, 0) 30 10 Z/3Z
∗3 (5, 3, 1, 1) y3z + z7y + w10 (3, 1, 1) 40 10 Z/4Z
∗5 (7, 4, 2, 1) y3z + z5y + w14 (7, 3, 1) 28 14 Z/2Z
6 (9, 4, 3, 2) y4w + w7y + z6 (10, 6, 1) 18 18 1

10 (11, 6, 4, 1) y3z + z4y + w22 (10, 2, 1) 22 22 1
∗30 (4, 2, 1, 1) z7w + w7z + y4 (2, 2, 0) 48 8 Z/6Z
∗31 (8, 4, 3, 1) z5w + w13z + y4 (6, 4, 0) 32 16 Z/2Z
∗32 (8, 5, 2, 1) y3w + w11y + z8 (6, 2, 0) 32 16 Z/2Z
36 (14, 9, 4, 1) y3w + w19y + z7 (10, 0, 0) 28 28 1
∗42 (6, 4, 1, 1) z11w + w11z + y3 (2, 0, 0) 60 12 Z/5Z
47 (18, 12, 5, 1) z7w + w31z + y3 (10, 0, 0) 36 36 1

Table 3. The loop+fermat mirror cases
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No. (w1, w2, w3, w4) f(y, z, w) (r, a, δ) | SL(W )| |JW |
∗(15)1 (3, 1, 1, 1) y5z + z6 + w6 (1, 1, 1) 12 6
∗(33b)2a (5, 2, 2, 1) y4z + z5 + w10 (6, 4, 0) 20 10

(39)2b (5, 2, 2, 1) w8y + y5 + z5 (6, 4, 0) 10 10
∗(18)3 (5, 3, 1, 1) y3z + z10 + w10 (3, 1, 1) 20 10
(35a)4 (7, 3, 2, 2) y4z + z7 + w7 (10, 6, 0) 14 14
(24)5 (7, 4, 2, 1) y3z + z7 + w14 (7, 3, 1) 14 14

∗(41a)6 (9, 4, 3, 2) y4w + w9 + z6 (10, 6, 0) 36 18
∗(8a)7 (9, 5, 3, 1) y3z + z6 + w18 (7, 3, 1) 36 18
∗(7)8a (9, 6, 2, 1) z6y + y3 + w18 (6, 2, 0) 36 18
(46)8b (9, 6, 2, 1) w12y + y3 + z9 (6, 2, 0) 18 18
(48)8c (9, 6, 2, 1) w16z + z9 + y3 (6, 2, 0) 18 18
∗(1)15 (15, 6, 5, 4) w6y + y5 + z6 (12, 6, 1) 60 30

(34a)16 (15, 7, 6, 2) y4w + w15 + z5 (14, 4, 0) 30 30
(19)17 (15, 8, 6, 1) y3z + z5 + w30 (11, 1, 1) 30 30
∗(3)18 (15, 10, 3, 2) w10y + y3 + z10 (10, 4, 0) 60 30
(17)19 (15, 10, 4, 1) z5y + y3 + w30 (9, 1, 1) 30 30
(5)24 (21, 14, 4, 3) z7y + y3 + w14 (13, 3, 1) 42 42

(45b)25 (21, 14, 5, 2) z8w + y3 + w21 (14, 2, 0) 42 42
(36)26a (21, 14, 6, 1) w28y + y3 + z7 (10, 0, 0) 42 42
(47)26b (21, 14, 6, 1) w36z + y3 + z7 (10, 0, 0) 42 42
(42b)29 (33, 22, 6, 5) w12z + z11 + y3 (18, 0, 0) 66 66

∗(35b)30a (4, 2, 1, 1) z7w + w8 + y4 (2, 2, 0) 16 8
∗(43)30b (4, 2, 1, 1) z6y + y4 + w8 (2, 2, 0) 16 8
∗(31a)31a (8, 4, 3, 1) z4y + y4 + w16 (6, 4, 0) 32 16
∗(34b)31b (8, 4, 3, 1) z5w + w16 + y4 (6, 4, 0) 32 16
∗(45a)32 (8, 5, 2, 1) y3w + w16 + z8 (6, 2, 0) 32 16
∗(41b)33a (10, 5, 3, 2) z6w + w10 + y4 (8, 6, 1) 40 20
∗(2a)33b (10, 5, 3, 2) z5y + y4 + w10 (8, 6, 1) 40 20
(16)34a (10, 5, 4, 1) w15y + y4 + z5 (6, 4, 0) 20 20
∗(31b)34b (10, 5, 4, 1) w16z + z5 + y4 (6, 4, 0) 40 20

(4)35a (14, 7, 4, 3) w7y + y4 + z7 (10, 6, 0) 28 28
∗(30a)35b (14, 7, 4, 3) w8z + z7 + y4 (10, 6, 0) 56 28
(26a)36 (14, 9, 4, 1) y3w + w28 + z7 (10, 0, 0) 28 28
(2b)39 (20, 8, 7, 5) z5w + y5 + w8 (14, 4, 0) 40 40

∗(6)41a (6, 3, 2, 1) w9y + y4 + z6 (4, 4, 1) 24 12
∗(33a)41b (6, 3, 2, 1) w10z + z6 + y4 (4, 4, 1) 24 12
∗(44)42a (6, 4, 1, 1) z8y + y3 + w12 (2, 0, 0) 24 12
(29)42b (6, 4, 1, 1) z11w + w12 + y3 (2, 0, 0) 12 12
∗(30b)43 (12, 5, 4, 3) y4z + z6 + w8 (10, 6, 1) 48 24
∗(42a)44 (12, 7, 3, 2) y3z + z8 + w12 (10, 4, 0) 48 24
∗(32)45a (12, 8, 3, 1) w16y + y3 + z8 (6, 2, 0) 48 24
(21)45b (12, 8, 3, 1) w21z + z8 + y3 (6, 2, 0) 24 24
(8b)46 (18, 11, 4, 3) y3w + w12 + z9 (14, 2, 0) 36 36

(26b)47 (18, 12, 5, 1) z7w + w36 + y3 (10, 0, 0) 36 36
(8c)48 (24, 16, 5, 3) z9w + w16 + y3 (14, 2, 0) 48 48

Table 4. The chain+fermat mirror cases
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No. (w1, w2, w3, w4) f(y, z, w) (r, a, δ) | SL(W )| |JW |
(27)1 (3, 1, 1, 1) y5z + z5w + w6 (1, 1, 1) 6 6
(37)2 (5, 2, 2, 1) w8z + z4y + y5 (6, 4, 0) 10 10

(28)3a (5, 3, 1, 1) y3z + z9w + w10 (3, 1, 1) 10 10
∗(5)3b (5, 3, 1, 1) z7y + y3w + w10 (3, 1, 1) 30 10
∗(30)4 (7, 3, 2, 2) y4z + z6w + w7 (10, 6, 0) 42 14
∗(3b)5 (7, 4, 2, 1) z7 + zy3 + yw10 (7, 3, 1) 42 14
(14)7 (9, 5, 3, 1) w13y + y3z + z6 (7, 3, 1) 18 18
(38)8 (9, 6, 2, 1) w16z + z6y + y3 (6, 2, 0) 18 18

(17)11 (11, 7, 3, 1) z5y + y3w + w22 (9, 1, 1) 22 22
(31a)12 (13, 6, 5, 2) z4y + y4w + w13 (14, 4, 0) 26 26
(19)13 (13, 7, 5, 1) y3z + z5w + w26 (11, 1, 1) 26 26
(7)14 (13, 8, 3, 2) w13 + wy3 + yz6 (13, 3, 1) 26 26

(31b)16 (15, 7, 6, 2) y4w + w12z + z5 (14, 4, 0) 30 30
(11)17 (15, 8, 6, 1) z5 + zy3 + yw22 (11, 1, 1) 30 30
(13)19 (15, 10, 4, 1) y3 + yz5 + zw26 (9, 1, 1) 30 30
(32)25 (21, 14, 5, 2) z8w + w14y + y3 (14, 2, 0) 42 42
(1)27 (25, 10, 8, 7) y5 + yz5 + zw6 (19, 1, 1) 50 50

(3a)28 (27, 18, 4, 5) y3 + yz9 + zw10 (17, 1, 1) 54 54

∗(4)30 (4, 2, 1, 1) y4 + yz6 + zw7 (2, 2, 0) 24 8
(12)31a (8, 4, 3, 1) y4 + yz4 + zw13 (6, 4, 0) 16 16
(16)31b (8, 4, 3, 1) y4 + yw12 + wz5 (6, 4, 0) 16 16
(25)32 (8, 5, 2, 1) z8 + zw14 + wy3 (6, 2, 0) 16 16
(47)36 (14, 9, 4, 1) y3w + w24z + z7 (10, 0, 0) 28 28
(2)37 (16, 5, 7, 4) w8 + wz4 + zy5 (14, 4, 0) 32 32
(8)38 (16, 9, 5, 2) w16 + wz6 + zy3 (14, 2, 0) 32 32

(42)40 (22, 13, 5, 4) y3z + z8w + w11 (18, 0, 0) 44 44

(40)42 (6, 4, 1, 1) y3 + yz8 + zw11 (2, 0, 0) 12 12
(36)47 (18, 12, 5, 1) y3 + yw24 + wz7 (10, 0, 0) 36 36

Table 5. The chain mirror cases

G̃ generators (r, a, δ) G̃T generators (r, a, δ)

Z/2Z (1/2, 1/2, 1, 1) (8, 6, 1) Z/6Z (1, 1/6, 5/6, 1) (12, 6, 1)

Z/2Z (1, 1/2, 1/2, 1) (8, 6, 1) Z/6Z (1/2, 1/3, 1/6, 1) (12, 6, 1)

Z/2Z (1/2, 1, 1/2, 1) (8, 6, 1) Z/6Z (1/2, 5/6, 2/3, 1) (12, 6, 1)

Z/3Z (1, 1/3, 2/3, 1) (7, 7, 1) Z/2Z× Z/2Z (1/2,1/2,1,1),
(1,1/2,1/2,1) (13, 7, 1)

Table 6. The subgroups in the fermat case No. 1

G̃ generators (r, a, δ) G̃T generators (r, a, δ)

0 0 (2, 2, 0) Z/2Z× Z/4Z (1, 0), (0, 1) (18, 2, 0)

Z/2Z (1, 0) (10, 6, 0) Z/4Z (1, 1) (10, 6, 0)

Z/4Z (0, 1) (10, 6, 1) Z/2Z (1, 2) (10, 6, 1)

Z/2Z (0, 2) (6, 6, 1) Z/2Z× Z/2Z (1, 0), (0, 2) (14, 6, 1)

Table 7. The subgroups in the fermat case No. 30



24 MICHELA ARTEBANI, SAMUEL BOISSIÈRE, AND ALESSANDRA SARTI

References

1. V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric
varieties, J. Algebraic Geom. 3 (1994), no. 3, 493–535.
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Departamento de Matemática, Universidad de Concepción, Casilla 160-C, Concepción,

Chile

E-mail address: martebani@udec.cl
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