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Abstract. We study generalized Kummer surfaces Km3(A), by which
we mean the K3 surfaces obtained by desingularization of the quotient
of an abelian surface A by an order 3 symplectic automorphism group.
Such a surface carries 9 disjoint con�gurations of two smooth rational
curves C,C′ with CC′ = 1. This 9A2-con�guration plays a role similar
to the Nikulin con�guration of 16 disjoint smooth rational curves on
(classical) Kummer surfaces. We study the (generalized) question of T.
Shioda: suppose that Km3(A) is isomorphic to Km3(B), does that imply
that A and B are isomorphic? We answer by the negative in general,
by two methods: by a link between that problem and Fourier-Mukai
partners of A, and by construction of 9A2-con�gurations on Km3(A)
which cannot be exchanged under the automorphism group.

1. Introduction

A Kummer surface Km(A) is the minimal desingularization of the quo-
tient of an abelian surface A by the standard involution [−1]. It is a K3
surface containing 16 disjoint (−2)-curves, which lie over the 16 singularities
of A/〈[−1]〉. Such set of curves is called a Kummer (or 16A1) con�gura-
tion. A well-known result of Nikulin [22] gives the converse: if a K3 surface
contains a 16A1-con�guration, then it is the Kummer surface of an abelian
surface A, such that the 16 (−2)-curves lie over the singularities of A/〈[−1]〉.

In 1977 Shioda [30] asked the following question: if two abelian surfaces
A and B satisfy Km(A) ' Km(B), is it true that A ' B ?

Gritsenko and Hulek [12] gave a negative answer to that question in
general. In [26, 27], we studied and constructed examples of two 16A1-
con�gurations on the same Kummer surface such that their associated abelian
surfaces are not isomorphic.

Kummer surfaces have natural generalizations to quotients of an abelian
surface A by other symplectic groups G ⊆ Aut(A). If G ∼= Z/3Z, then
the quotient surface A/G for the action of G on A has 9 cusp singularities,
in bijection with the �xed points of G. Its minimal desingularization, de-
noted by Km3(A), is a K3 surface which contains what we call a generalized
Kummer con�guration (or 9A2-con�guration), which means that the sur-
face contains 9 disjoint A2-con�gurations, i.e. pairs (C,C ′) of (−2)-curves
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such that CC ′ = 1. Barth [2] proved that if a K3 surface contains a 9A2-
con�guration, then there exists an abelian surface A and a symplectic order
3 automorphism group such that X = Km3(X). It is then natural to ask
the generalized Shioda's question: does an isomorphism Km3(A) ' Km3(B)
between two generalized Kummer surfaces implies that the abelian surfaces
A and B are isomorphic?

A generalized Kummer structure on a K3 surface X is an isomorphism
class of pairs (A,G) of abelian surfaces equipped with an order 3 symplec-
tic automorphism subgroup G ⊂ Aut(A), such that X ' Km3(A), where
Km3(A) is the minimal desingularization of A/G. Thus Shioda's question is
if there is only one generalized Kummer structure onX. In [25], we study the
number of such Kummer structures. In [14], we proved that there is a one-to-
one correspondence between Kummer structures on X and Aut(X)-orbits of
9A2-con�gurations. In the present paper, we obtain the �rst explicit exam-
ples of generalized Kummer surfaces which possess two distinct generalized
Kummer structures. For that aim, we construct two 9A2-con�gurations C, C′
on the Kummer surface, and prove that there is no automorphism sending
one con�guration to the other. A generalized Kummer surface X = Km3(A)
has a natural 9A2-con�guration

C = {A1, B1, . . . , A9, B9}.

We suppose that X is generic projective, so that its Picard number is 19. Let
L be the big and nef generator of the orthogonal complement of the curves in
the Néron-Severi group. By a result of Barth [2], one has either L2 = 6k+ 2
or L2 = 6k, for k an integer. We suppose that 6L2 is not a square, so that
the two Pell-Fermat equations

x2 − 12(3k + 1)y2 = 1 and x2 − 4ky2 = 1

have non-trivial solutions. Let us denote by (x0, y0) the fundamental solution
according to these cases and let us de�ne accordingly:

B′1 = 3y0L− (12(x0 + 1)A1 + x0B1) if L
2 = 6k + 2,

B′1 = y0L− (12(x0 + 1)A1 + x0B1) if L2 = 6k.

The class B′1 is a (−2)-class in the Néron-Severi group of X (i.e. B′21 = −2)
such that B′1A1 = B1A1 = 1. Our main result is

Theorem 1. Suppose L2 = 2 mod 6 or L2 6= 0 mod 18 or 3|y0. Then B′1 is
the class of a (−2)-curve such that B′1A1 = 1 and the 18 (−2)-curves

C′ = {A1, B
′
1, A2, B2, . . . , A9, B9}

form a 9A2-con�guration.
Suppose moreover that L2 = 2 mod 6 and x0 6= ±1 mod 2t, or L2 = 6 or 12 mod
18 and x0 6= ±1 mod 2k. There are no automorphisms sending C to C′. For
these cases, there are (at least) two generalized Kummer structures on the
generalized Kummer surface X.
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As pointed out in Example 4.1 the �rst values for which our theorem
produces new generalized Kummer structures are:

20, 44, 68, 84, 92, 104, 110, 116, 120, 126, 132, 140, 164, 168, 176, 188.

The paper is structured as follows: in Section 2, we give a precise descrip-
tion of the Néron-Severi group of a generalized Kummer surface and how a
divisor can be written in the Q-basis L,A1, B1, . . . , A9, B9. We also obtain
that Km3(A) ' Km3(B) if and only if A and B are Fourier-Mukai partners.
In Section 3, according to the cases L2 = 0 or 2 mod 6, we construct two gen-
eralized Kummer con�gurations. In Section 4, we give a su�cient condition
on which these Kummer con�gurations give rise to two Kummer structures.
In the last section we describe the projective model of the K3 surface deter-
mined by L and we recall some known constructions in the literature. We
describe more in details the case L2 = 20 which is the �rst case for which
our Theorem gives two non�equivalent generalized Kummer structures.

We aim to study more projective models in a forthcomig paper.

Acknowledgements. The second author is partially supported by the ANR
project No. ANR-20-CE40-0026-01 (SMAGP). We thank Olivier Ramaré for
interesting discussions and the Example 18. We also thank Alice Garbagnati
for a careful reading of the �rt version of the paper and useful comments.

2. The Néron�Severi lattice and its properties, Fourier-Mukai

partners

2.1. Construction of the Néron-Severi lattice of X. Let A be an
abelian surface with an action of a group G := Z/3Z that leaves invariant
the space H0(A,Ω2

A) (we call this action symplectic). It is well known that
the quotient A/G has 9A2 singularities. The minimal resolution denoted by
X := Km(A,G) is a K3 surface, called a generalized Kummer surface, which
carries a con�guration of rational curves with Dynkin diagram 9A2. Observe
that the abelian surface A has Picard number at least 3, see [2, Proposition
on p. 10] and the K3 surface X has generically Picard number 19. Let
K3 denotes the minimal primitive sub-lattice of the K3 lattice, ΛK3, that
contains the 9 con�gurations A2. This is a rank 18 negative de�nite even
lattice of discriminant 33, which is described as follows. Denote by Aj , Bj ,
j = 1, . . . , 9 the nine couples of (−2)-curves generating the nine A2. Then
by [3, Proof of Proposition 1.3] the lattice K3 is generated by the classes
A1, B1, . . . , A9, B9 and the three classes

v1 = 1
3(
∑9

i=1(Ai −Bi)),
v2 = 1

3((A2 −B2) + 2(A3 −B3) +A6 −B6 + 2(A7 −B7) +A8 −B8 + 2(A9 −B9)),
v3 = 1

3((A4 −B4) + 2(A5 −B5) +A6 −B6 + 2(A7 −B7) + 2(A8 −B8) +A9 −B9),
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with intersection matrix:  −6 −6 −6
−6 −10 −6
−6 −6 −10

 .

The discriminant group K∨3 /K3 is generated by the classes

w1 = 1
3(A5 −B5 +A7 −B7 +A8 −B8),

w2 = 1
3(2(A4 −B4) +A6 −B6 + 2(A7 −B7) +A8 −B8),

w3 = 1
3(A3 −B3 +A5 −B5 +A6 −B6),

with intersection matrix:  −2 −2 −2
3

−2 −20
3 −2

3
−2

3 −2
3 −2

 .

Theorem 2. Assume ρ(Km(A,G)) = 19 and let L be a generator of K⊥3 ⊂
NS(Km(A,G)), with L2 > 0. Then L2 ≡ 0 mod 6 or L2 ≡ 2 mod 6. We
denote by K6k the lattice ZL ⊕ K3 in the �rst case, and by K6k+2 the same
lattice in the second case. Then

(1) If L2 ≡ 0 mod 6 then

NS(Km(A,G)) = K′6k
where K′6k is generated by K6k and by a class L+v6k

3 where v6k
3 ∈

K∨3 /K3 with L2 = −v26k mod 18, moreover K6k is the unique even
lattice, up to isometry, such that [K′6k : K6k] = 3 and K3 is a primitive
sublattice of K′6k, so that we can assume that
(a) If L2 ≡ 0 mod 18 then v26k ≡ 0 mod 18.
(b) If L2 ≡ 12 mod 18 then v26k ≡ −12 mod 18.
(c) If L2 ≡ 6 mod 18 then v26k ≡ −6 mod 18.

(2) If L2 ≡ 2 mod 6 then

NS(Km(A,G)) = K6k+2.

Proof. The fact that L2 ≡ 0 mod 6 or L2 ≡ 2 mod 6 follows from [2, Section
2.2]. In the �rst case if L2 ≡ 0 mod 6 then the discriminant group of the

lattice K6k contains the generators w1, w2, w3 and L2

6k . Recall that for a K3
surface the discriminant group of the Néron-Severi group is the same as the
discriminant group of the transcendental lattice, with the quadratic form
which changes the sign. Since here the rank of the transcendental lattice is
three, the number of independent generators of the discriminant group does
not exceed three, hence a class of the discriminant group of the lattice K6k is
contained in the Néron-Severi group. This class is of the form L+v6k

n , where
v6k
n belongs to the discriminant group of K3. By the previous description

we necessarily have that n = 3. Moreover since the class L+v6k
3 is now in

the Néron-Severi group, then (L+v6k
3 )2 ∈ 2Z so that L2 + v26k ∈ 18Z since

L2 = 6k for some integer k, thus we get the cases for L and v6k listed in the
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statement. Moreover if
L+v′6k

3 is another class contained in the Néron-Severi

group as before then
v6k−v′6k

3 belongs to the Néron-Severi group and so to K3

but
v6k−v′6k

3 ∈ K∨3 /K3 so it must be a zero class.
For the unicity statement, we use a similar argument as in [17, Proposition

2.2]. First, one computes some generators of the isometry group O(K3) of the
negative de�nite lattice K3. These elements act on the discriminant group
K∨3 /K3 ' (Z/3Z)3 and one obtains that the image of O(K3) in O(K∨3 /K3)
is a group isomorphic to Z/2Z × S4, which has exactly 4 orbits: Oz =
{0}, O0, O1, O2, where the elements in Oi (i ∈ {0, 1, 2}) have square 2i

3 mod 2.
Therefore the isometry class of the gluing K′6k does not depend on the choice
of the element v6k and is unique for each of the respective cases (a), (b) or
(c).

In case that L2 = 6k + 2 with k an integer, observe that a class of the

form
L+v6k+2

3 must satisfy (L · L+v6k+2

3 ) = 6k+2
3 ∈ Z which is impossible, so

this class does not exist and we get that

NS(Km(A,G)) = K6k+2,

which �nishes the proof. �

Remark 3. The classes v6k can be chosen equal to be 3w1 or 3w3 if L2 ≡
0 mod 18; equal to 3w2 if L2 ≡ 6 mod 18 and equal to 3(w3 − w2) if L2 ≡
12 mod 18.

The following result is due to Barth:

Theorem 4. ([2, Section 2.2]). There exist a K3 surface X such that
NS(X) = K′6k (respectively NS(X) = K6k+2) for an integer k > 0 (respec-
tively k ≥ 0) and such a surface X is a generalized Kummer surface.

Remark 5. i) When the Picard number of X is 19, the integer L2 determines
uniquely the lattice NS(X). The knowledge of the discriminant group of
NS(X) also determines L2 and NS(X).
ii) Theorems 3 and 4 and their proofs (with L 6= 0) are also valid when A
is a complex non-algebraic torus, equivalently, when L2 ≤ 0. If L = 0, then
NS(X) = K3 is negative de�nite of rank 18, and the K3 surface X is also
non-algebraic.

2.2. Classes and polarizations in the Néron-Severi lattice of X.

2.2.1. Notations and divisibility of the classes. Let us denote the curves
forming the generalized Kummer con�guration by A1, B1, . . . , A9, B9, where
AjBj = 1 and denote by L the orthogonal complement of these 18 curves
in the rank 19 lattice NS(X), we recall that L2 = 2t, for t ∈ N∗. Let
a, αj , βj ∈ 1

3Z be such that the class

Γ = aL−
9∑

j=1

(αjAj + βjBj) ,
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is in the Néron-Severi lattice NS(X). The following Corollary is a direct
consequence of Theorem 2 and Remark 3:

Corollary 6. For j ∈ {1, . . . , 9}, one has αj ∈ 1
3Z \ Z⇔ βj ∈ 1

3Z \ Z.
Suppose L2 = 2 mod 6. Then a ∈ Z and if one coe�cient αj or βj is in
1
3Z \ Z, then there are 12 or 18 coe�cients that are in 1

3Z \ Z,
Suppose L2 = 0 mod 6, and a ∈ Z. If one coe�cient αj or βj is in 1

3Z \ Z,
then there are 12 or 18 coe�cients that are in 1

3Z \ Z,
Suppose L2 = 0 mod 18 (respectively L2 = 6 mod 18 and L2 = 12 mod 18),
and a ∈ 1

3Z \Z. Then there are at least 6 (respectively 8 and 10) coe�cients

αj or βj that are in 1
3Z \ Z.

The group L⊥/ 〈A1, . . . , B9〉 (where the orthogonal of L is taken in NS(X))
is isomorphic to (Z/3Z)3. The 27 elements of that group are: 24 elements
which are supported on 6 A2 blocs, an element S supported on the 9 blocs
A2, the element 2S, and the zero element.

Let Γ ∈ NS(X) be the class of a divisor and let us write

Γ = aL− 1

3

9∑
j=1

(ajAj + bjBj) .

with a ∈ 1
3Z, aj , bj ∈ Z. The intersection numbers ΓAj = 1

3(2aj − bj) and

ΓBj = 1
3(2bj − aj) are integers. Since 2aj − bj and 2bj − aj are divisible by

3, there exist integers uj , vj such that{
aj = uj + 2vj
bj = 2uj + vj

,

so that we can write

Γ = aL− 1

3

9∑
j=1

((uj + 2vj)Aj + (2uj + vj)Bj) ,

with uj , vj ∈ Z, which is also

Γ = aL− 1

3

9∑
j=1

(ujFj + vjGj)

for Fj = Aj + 2Bj , Gj = 2Aj +Bj . We have F 2
j = G2

j = −6, FjGj = −3, so
that

Γ2 = 2ta2 − 2

3

9∑
j=1

(
u2j + ujvj + v2j

)
.

Let us suppose moreover that Γ is the class of an irreducible curve which
is not among the 18 curves A1, . . . , B9. Then a ∈ 1

3N
∗ and the intersection

numbers ΓAj ,ΓBj are positive or zero:{
2aj ≥ bj
2bj ≥ aj

,
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these inequalities are equivalent to uj ≥ 0, and vj ≥ 0.

2.2.2. Polarizations. Let be u ∈ Z and de�ne

D = uL−
9∑

j=1

(Aj +Bj).

The 18 curves A1, B1, . . . , A9, B9 have degree 1 for D: DAk = DBk = 1.
With the same notations, we show:

Proposition 7. The minimal integer u0 such that for u ≥ u0 the divisor D
is ample is given in the following table (according to the cases of L2):
L2 = 2 mod 6 L2 = 2 L2 = 8 or 14 L2 ≥ 20

u0 4 2 1
L2 = 0 mod 18 L2 = 18 L2 ≥ 36

u0 2 1
L2 = 6 mod 18 L2 = 6 L2 ≥ 24

u0 3 1
L2 = 12 mod 18 L2 = 12 L2 ≥ 30

u0 2 1

Proof. We start by de�ning D = u0L −
∑9

j=1(Aj + Bj) with u0 as de�ned

in the Table. We check that D2 > 0 and D⊥ contains no vector with square
−2. Using that the ample cone is a fundamental domain for the Weyl group
(the re�ection group generated by re�ection by vectors of square −2), we
can choose D as an ample class. We have DAj = 1; if Aj = C + C ′ with
e�ective divisors C,C ′, then DC or DC ′ is 0 thus, since D is ample, C or C ′

is 0, which prove that Aj is a (−2)-curve. Using that fact, one easily check
that L is nef. Then for u ≥ u0, the divisor (u − u0)L + D is also ample,
which proves the result. �

2.3. Fourier-Mukai partners and generalized Kummer structures.

Recall that for a K3 surface (resp. an abelian surface) X, a Fourier-Mukai
partner of X is a K3 surface (resp. an abelian surface) Y such that there is
an isomorphism of Hodge structures

(T (Y ),CωY ) ' (T (X),CωX),

where ωX is a generator of H0(X,Ω2
X), and T (X) is the transcendental

lattice. The set of isomorphism classes of Fourier-Mukai partners of X is
denoted by FM(X).

Let A be an abelian surface and GA be an order 3 automorphism group
of A acting symplectically. We denote by X = Km3(A) (or sometimes
Km3(A,GA) or Km3(A, JA), where 〈JA〉 = GA) the minimal resolution of the
quotient surface A/GA; since GA is symplectic, X is a generalized Kummer
surface.

An isomorphism class of pairs (B,GB) where B is an abelian surface and
GB is an order 3 symplectic automorphism group such that Km3(B) ' X is
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called a generalized Kummer structure on X. Let us denote by K(X) these
isomorphism classes.

Theorem 8. Let (A,GA) and (B,GB) be two abelian surfaces with an order
3 symplectic automorphism group. We have Km3(B) ' Km3(A) = X (i.e.
{(B,GB)} ∈ K(X)) if and only if B is a Fourier-Mukai partner of A.

The proof is similar to [10, Theorem 0.1] for the classical Kummer surfaces.
Let us start with the following

Lemma 9. The canonical rational map

πA : A 99K Km3(A)

gives an Hodge isometry

πA,∗ : (T (A)(3),CωA)
'→ (T (Km3(A)),CωKm3(A)).

Here, for a lattice L := (L, ( , )) and a non-zero integer m, we de�ne the
lattice L(m) by L(m) := (L,m( , )).

Proof. (Of Lemma 9). The algebraic surfaces A and Km3(A) have equal
geometric genus. We can therefore apply [13, Proposition 1.1 & Remark
after the Proposition] of Inose to the degree 3 rational map πA, which gives
the result. �

Let us prove Theorem 8.

Proof. Let B be an abelian surface with an order 3 symplectic group GB

acting on it. From Lemma 9, there exists an isomorphism of Hodge structures

(T (B),CωB) ' (T (A),CωA)

if and only if there is an isomorphism of Hodge structures

(T (Km3(B)),CωKm3(B)) ' (T (Km3(A)),CωKm3(A)).

Therefore B is a Fourier-Mukai partner of A if and only if Km3(B) is a
Fourier-Mukai partner of Km3(A). By [11, Corollary 2.6], sinceX = Km3(A)
has Picard number 19 > 2 + ` (here ` is the length of the discriminant
group of NS(X), which is ≤ 3), one has {Km3(A)} = FM(Km3(A)) (which
means that the isomorphism class of Km3(A) is the unique Fourier-Mukai
partner of Km3(A)), therefore B is a Fourier-Mukai partner of A if and only
if Km3(B) ' Km3(A). �

By [6, Proposition 5.3], the number |FM(A)| of Fourier-Mukai partners of
A is �nite. So to �nd the generalized Kummer structures on X reduces to
�nd the number of conjugacy classes of order 3 symplectic groups G′ on a
�nite number of abelian surfaces B such that Km3(B,G

′) ' Km3(A).
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3. Constructions of Kummer structures

3.1. (−2)-classes with intersection one with A1. Let A1, B1, . . . , A9, B9

be a generalized Nikulin con�guration on a generalized Kummer surface X.
Let L be the big and nef generator of the orthogonal complement of these
18 curves and let t ∈ N such that L2 = 2t. According to the two possible
cases, L2 = 2mod 6 and L2 = 0 mod 6, we denote by k ∈ N the integer such
that t = 1 + 3k in the �rst case, and such that t = 3k in the second case.

Our aim is to construct a (−2)-curve B′1 6= B1 in the lattice L generated by
L,A1, B1 such that A1B

′
1 = 1, so that (A1, B

′
1) is another A2-con�guration.

As we will see in the next Section, under some conditions on t, such a curve
exists and is unique. In order to prove this result, we will study the properties
of L′, the orthogonal complement of A1, B

′
1 in L.

By Theorem 2, an element in the lattice generated by L,A1, B1 has the
form

B′1 = aL− (a1A1 + b1B1),

for integers a, a1, b1. The class B
′
1 satis�es B

′
1A1 = 1 if and only if 2a1−b1 =

1, which gives

B′1 = aL− (a1A1 + (2a1 − 1)B1).

Moreover since we search for a (−2)-curve, we have

B′21 = −2 = 2ta2 − 6a21 + 6a1 − 2,

which is equivalent to

3a1(a1 − 1)− ta2 = 0.

We can write that condition as

3
(
(2a1 − 1)2 − 1

)
− 4ta2 = 0,

which is equivalent to

(3.1) 3(2a1 − 1)2 − 4ta2 = 3.

3.1.1. Case t = 1 mod 3. Since we suppose that t = 1 mod 3, the integer a in
Equation (3.1) must be divisible by 3. Let us de�ne the integers x0, y0 by

x0 = 2a1 − 1, a = 3y0.

Equation (3.1) is then equivalent to the Pell-Fermat equation

(3.2) x20 − 12ty20 = 1.

Let us suppose that 12t is not a square, so that there exist non-trivial solu-
tions, and let us �x such a solution (x0, y0) (we observe that x0 is necessarily
odd). Then

B′1 = 3y0L− (a1A1 + (2a1 − 1)B1)

with 2a1 − 1 = x0 is such that B′21 = −2 and B′1A1 = 1, and conversely, all
(−2)-classes with these two properties are obtained in that way.
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Let us search for the class of L′ = αL− (β1A1 +β′1B1), α, β1, β
′
1 ∈ Z, such

that L′ generates the orthogonal complement of A1, B
′
1, A2, B2, . . . , A9, B9.

From L′A1 = 0, we obtain
β′1 = 2β1.

Since also L′B′1 = 0, we get

2αat = 3β1(2a1 − 1),

in other words:
2αty0 = β1x0.

Since by equation 3.2 the integers x0, y0 are co-primes and x0 is co-prime to
2t, we get:

β1 = 2ty0, α = x0,

and the class L′ = x0L−2ty0(A1 + 2B1) is primitive with L′L > 0, and such
that

L′2 = 2tx20 − 24t2y20 = 2t.

For any solution (x0, y0) of the Pell-Fermat equation (3.2), the classes

B′1 = 3y0L+ (12(x0 + 1)A1 + x0B1)
L′ = x0L− 2ty0(A1 + 2B1)

in L have the properties B′21 = −2, B′1A1 = 1, L′A1 = L′B′1 = 0, L′2 =
2t, L′L > 0 and all the classes (B,L0) with these properties are obtained in
that way.

3.1.2. Case t = 0 mod 3. Let us suppose that t = 0 mod 3, and let k ∈ N∗
such that t = 3k. Then the equation

3(2a1 − 1)2 − 4ta2 = 3

is equivalent to
(2a1 − 1)2 − 4ka2 = 1.

By de�ning x0 = 2a1−1, y0 = a, we are reduced to the Pell-Fermat equation

(3.3) x20 − 4ky20 = 1,

(x0 is necessarily odd). Let us �x such a solution (x0, y0). Then

B′1 = y0L− (a1A1 + (2a1 − 1)B1),

with 2a1 − 1 = x0 satis�es B
′2
1 = −2, B′1A1 = 1.

Let us search for the class of L′ = αL− (β1A1 +β′1B1), α, β1, β
′
1 ∈ Z, such

that L′ generates the orthogonal complement of A1, B
′
1, A2, B2, . . . , A9, B9.

From L′A1 = 0, we obtain
β′1 = 2β1,

and since L′B′1 = 0, we get

2αat = 3β1(2a1 − 1),

in other words:
2αky0 = β1x0.
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Since x0, y0 are co-primes, and L′ is primitive, we get:

β1 = 2ky0, α = x0

and L′ = x0L− 2ky0(A1 + 2B1), thus

L′2 = 2tx20 − 24k2y20 = 2t(x20 − 4ky20) = 2t.

For any solution (x0, y0) of the Pell-Fermat equation (3.3), the classes

B′1 = y0L+ (12(x0 + 1)A1 + x0B1)
L′ = x0L− 2ky0(A1 + 2B1)

have the properties we required: B′21 = −2, B′1A1 = 1, L′A1 = L′B′1 = 0
and all classes with these properties are obtained in that way.

3.2. Existence and unicity of B′1.

3.2.1. Case t = 1 mod 3. Let (x0, y0) be a non-trivial solution of the Pell-
Fermat equation (3.2). In Section 3.1.1, we de�ned the classes

L′ = x0L− 2ty0(A1 + 2B1),
B′1 = 3y0L− (12(x0 + 1)A1 + x0B1).

Let us prove the following result:

Proposition 10. Suppose that (x0, y0) is the fundamental solution of the
Pell-Fermat equation (3.2). The class L′ is nef, moreover L′Γ = 0 for a
(−2)-class Γ if and only if ±Γ ∈ {A1, B

′
1, A2, . . . , A9, B9}.

Proof. Let Γ be a (−2)-curve, we write it as (see Section 2.2.1)

Γ = aL− 1

3

9∑
j=1

((uj + 2vj)Aj + (2uj + vj)Bj) ,

with uj ≥ 0, vj ≥ 0 and uj , vj ∈ Z, a ∈ Z, so that

(3.4) Γ2 = 2ta2 − 2

3

9∑
j=1

(
u2j + ujvj + v2j

)
= −2.

Suppose that ΓL′ ≤ 0. This is equivalent to:(
aL− 1

3
((u1 + 2v1)A1 + (2u1 + v1)B1)

)
(x0L− 2ty0(A1 + 2B1)) ≤ 0

which is equivalent to

ax0 ≤ (2u1 + v1)y0.

By taking the square (recall that x0 > 0, y0 > 0 and a ≥ 0), we get

x20a
2 ≤

(
4(u21 + u1v1 + v21)− 3v21

)
y20,

which is equivalent to

−4(u21 + u1v1 + v21)y20 ≤ −x20a2 − 3v21y
2
0,
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thus

−2

3
(u21 + u1v1 + v21) ≤ − 1

6y20
(x20a

2 + 3v21y
2
0)

and using equality Γ2 = −2 in (3.4), we get

−2 ≤ 2ta2 − 1

6y20
(x20a

2 + 3v21y
2
0)− 2

3
S

where here we denote

S =
9∑

j=2

(
u2j + ujvj + v2j

)
≥ 0.

Thus we obtain
1
2v

2
1 + 1

6a
2(
x20
y20
− 12t) + 2

3S ≤ 2,

which is equivalent to

(3.5) 1
2v

2
1 + 1

6

a2

y20
+ 2

3S ≤ 2.

If a = 0, then Γ = A1 or Aj , Bj with j ≥ 2. We therefore suppose that
a 6= 0, and then a > 0 since Γ is e�ective. Let us suppose that one of the
coe�cients αj = 1

3(uj + 2vj), βj = 1
3(2uj + vj) of Γ is in 1

3Z \ Z. Then by
Corollary 6, at least 12 of the coe�cients αj , βj are non-zero, and therefore
at least 5 of the uj or vj (which are ≥ 0) with the condition j ≥ 2 are non-
zero. That implies that S ≥ 5, thus 2

3S ≥
10
3 > 2, which is a contradiction.

So all the coe�cients of Γ are integers. Suppose that S > 0. Since S < 3,
there exist one or two indices j ≥ 2 such that uj or vj is equal to 1 (and the
other coe�cients with index k ≥ 2 are 0). But then the coe�cients of Γ are
not integral: the only possibility is S = 0. Since a 6= 0, we have v1 ∈ {0, 1}.
Since Γ2 = −2, the integers a, u1, v1, t satis�es

2ta2 − 2

3

(
u21 + u1v1 + v21

)
= −2,

which is equivalent to

u21 + u1v1 + v21 = 3(ta2 + 1).

If v1 = 0, since t = 1 mod 3, ta2 + 1 = 1 or 2 mod 3. But then 3(ta2 + 1) is
not a square, and there is no such a solution. Therefore v1 = 1, and from
inequality (3.5), the integer a is in the range

1 ≤ a ≤ 3y0.

The equality
u21 + u1 + 1 = 3(ta2 + 1),

is equivalent to
(2u1 + 1)2 + 3 = 12(ta2 + 1),

thus to
(2u1 + 1)2 = 3(4ta2 + 3).
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Then 2u1 + 1 must be divisible by 3: let w be such that 3w = 2u1 + 1. The
above equation is equivalent to

3w2 = 4ta2 + 3,

which in turn, since t = 1 mod 3, implies that there exists an integer A such
that a = 3A, then the equation is equivalent to the Pell-Fermat equation

w2 − 12tA2 = 1.

Let w0, A0 be a solution of that Pell-Fermat equation, then a = 3A0, u1 =
1
2(3w0 − 1), v1 = 1 are such that Γ2 = −2. Since a ≤ 3y0, and we now
use that (x0, y0) is the fundamental solution of the Pell-Fermat equation to
conclude that a = 3y0 and u1 = 1

2(3x0 − 1), for which integers one has
Γ = B′1, and L

′B′1 = 0. That concludes the proof. �

We obtain:

Corollary 11. The divisor B′1 = 3y0L− (12(x0 + 1)A1 + x0B1) is the class
of a (−2)-curve.
The curves B1 and B

′
1 are the unique (−2)-curves in the lattice generated by

L,A1, B1 which have intersection 1 with A1.

Proof. A suitable multiple of the big and nef divisor L′ de�nes a map which
is generically one to one onto a projective model. It contracts the irreducible
curves subjacent to B′1 and the curves A1, A2, B2, . . . , A9, B9 to ADE singu-
larities. By the genericity assumption on the K3 surface X, the surface has
Picard number 19, which forces the image of A1 +B′1 to be a A2-singularity,
therefore the curve B′1 is irreducible.

Let us prove the unicity assumption. By Section 3.1, if B̃1 is the class
of a (−2)-curve such that B̃1A1 = 1, there exists a solution (x, y) of the
Pell-Fermat equation (3.2) such that

B̃1 = 3yL− (
1

2
(x+ 1)A1 + xB1).

Suppose B̃1 6= B1 ie (x, y) 6= (−1, 0). Then since B̃1 is e�ective, one has
x > 0, y > 0 and there exists k ∈ N∗ such that x = xk, y = yk for

xk +
√

12tyk = (x0 +
√

12ty0)
k = (x0 +

√
12ty0)(xk−1 +

√
12tyk−1),

where (x0, y0) is the fundamental solution of the Pell-Fermat equation (3.2)
(see e.g. [1]). One has

B̃1B
′
1 = (3yL− (12(x+ 1)A1 + xB1))(3y0L− (12(x0 + 1)A1 + x0B1))

= 18yy0t− 3
2xx0 −

1
2

,

therefore B̃1B
′
1 < 0 if and only if xx0 + 1

3 > 12yy0. Using an induction on k,
one can check that this is the case for all k ≥ 1. Thus if k > 1, the (−2)-class

B̃1 cannot be the class of an irreducible curve. We observe moreover that if
k = 1, then B̃1 = B′1, and that concludes the proof. �
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3.2.2. Case t = 0 mod 6. Suppose that L2 = 2t = 6k. Let (x0, y0) be the
fundamental solution of the Pell-Fermat equation (3.3). Let us search when
the (−2)-class

B′1 = y0L− (12(x0 + 1)A1 + x0B1),

is the class of a (−2)-curve. Recall that

L′ = x0L− 2ky0(A1 + 2B1),

generates in NS(X) the orthogonal complement ofA1, B
′
1, A2, B2, . . . , A9, B9.

Proposition 12. Suppose that L2 = 6 or 12 mod 18 or 3|y0. The class
L′ is nef. One has L′Γ = 0 for an e�ective (−2)-class Γ if and only if
Γ ∈ {A1, B

′
1, A2, . . . , A9, B9}.

Suppose that L2 = 0 mod 18 and 3|y0. Up to exchanging the curves A1 and
B1, the same result holds true.

Let us prove Proposition 12. Let Γ be an e�ective (−2)-class; we write it
as

Γ = aL− 1

3

9∑
j=1

((uj + 2vj)Aj + (2uj + vj)Bj) ,

with uj ≥ 0, vj ≥ 0, uj , vj ∈ Z, but that time, since t = 0 mod 6, we allow a
to be in 1

3Z, (moreover a > 0, since Γ is e�ective). As in Section 3.2.1, let
us study if L′ is nef. After computations similar to those of Section 3.2.1,
we obtain that ΓL′ ≤ 0 if and only if

(3.6)
1

2
v21 +

3a2

2y20
+

2

3
S ≤ 2,

where S =
∑9

j=2

(
u2j + ujvj + v2j

)
∈ N.

Suppose that one of the coe�cients of Γ is in 1
3Z \ Z. By Corollary 6, there

are at least 6, 8 or 10 coe�cients αj = 1
3(uj + 2vj), βj = 1

3(2uj + vj) that

are in 1
3Z\Z according if L2 = 0, 6 or 12 mod 18. Thus respectively, at least

3, 4 or 5 integers uj , vj are non-zero, and therefore the sum S (which is over
the indices j ≥ 2) is ≥ 2, 3 or 4 respectively. Since S < 3, by Corollary 6,
necessarily L2 = 0 mod 18, S = 2, a ∈ 1

3Z \ Z and

1

2
v21 +

3a2

2y20
≤ 2

3
.

Let us suppose that v1 = 1 and de�ne a′ ∈ Z such that a = a′

3 (since

a ∈ 1
3Z \Z, a

′ is coprime to 3). Inequality (3.6) implies a′ ≤ y0. Since S = 2
and v1 = 1, the (−2)-class Γ has the form:

Γ = 1
3a
′L− 1

3(u1F1 +G1 +H +H ′)

with H,H ′ in {Fj , Gj | j ≥ 2} such that HH ′ = 0. Equality Γ2 = −2 is
equivalent to

2

3
ka′2 − 2

3
(u21 + u1 + 1)− 2

3
− 2

3
= −2,
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which is equivalent to

(u21 + u1 + 1)− ka′2 = 1,

(observe here that since L2 = 0 mod 18, one has k = 0 mod 3, thus u21 +u1 =
0 mod 3) and �nally, to

(2u1 + 1)2 − 4ka′2 = 1.

Since a′ ≤ y0 and (x0, y0) is the fundamental solution of the Pell-Fermat
equation (3.3), we have a′ = y0, (thus a = 1

3y0) and u1 = 1
2(x0 − 1), so that

the class Γ is

Γ0 = 1
3y0L−

1
3

(
1
2(x0 − 1)F1 +G1 +H +H ′

)
.

By Corollary 6, this class can be in the Néron-Severi group only if y0 is
coprime to 3. Conversely, suppose y0 is coprime to 3, let us search when is
Γ0 in NS(X).

If such a pair {H,H ′} exists, it is unique, otherwise the di�erence between
the two obtained (−2)-classes Γ0 would have at least 2 and at most 8 coef-
�cients in 1

3Z \ Z, with the coe�cient of L in Z, but this is impossible by
Corollary 6.

Suppose that the (−2)-class

Γ′0 = 1
3y0L−

1
3

(
1
2(x0 − 1)G1 + F1 +H1 +H ′1

)
is also in the Néron-Severi group, for some classes H1, H

′
1 ∈ {Fj , Gj | j ≥ 2}.

Then

Γ0 − Γ′0 = 1
3((u1 − 1)(G1 − F1) +H +H ′ −H1 −H ′1)

has at least 2 (because u1 6= 1 mod 3) and at most 10 coe�cients in 1
3Z \ Z.

By Corollary 6, this is impossible, we thus obtain that either Γ0 or Γ′0 is
not in the Néron-Severi group. Thus up to exchanging A1 and B1, one can
suppose that Γ′0 is not in the Néron-Severi group.

Remark 13. If Γ0 ∈ NS(X), then

B′1 = 3Γ0 +B1 +H +H ′,

and the curve B′1 is not irreducible.

If 3 divides y0, there is no such class Γ0. One can check moreover that the
coe�cient v1 of Γ cannot be 0.
The case a ∈ 1

3Z \Z and v1 = 0 leads to L2 = 0 mod 18 and Γ has the form

Γ =
2

3
y0L−

1

3

(
x0(A1 + 2B1) +H +H ′

)
,

with H,H ′ in {Fj , Gj | j ≥ 2} such that HH ′ = 0.

Let us therefore assume that either L2 = 6 or 12 mod 18, or 3 divides y0
if L2 = 0 mod 18, or that Γ0 is not the class of a (−2)-curve. Then by the
previous discussion, the coe�cient a of Γ is an integer, and therefore all the
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coe�cients of Γ are integers by Corollary 6, moreover S = 0, v1 ∈ {0, 1},
and

Γ = aL− 1

3
(u1F1 + v1G1)

with

(3.7) 6ka2 − 2

3
(u21 + u1v1 + v21) = −2,

where we put L2 = 6k. Suppose v1 = 0, then Equation (3.7) is equivalent to
u21 = 3(1 + 3ka2), which has no solutions. Therefore v1 = 1, and by de�ning
U = 1

3(2u1 + 1), Equation (3.7) is equivalent to

U2 − 4ka2 = 1.

Since by (3.6), a ≤ y0 and (x0, y0) is the fundamental solution of the above
Pell-Fermat equation, we obtain that a = y0, u1 = 1

2(3x0 − 1) and

Γ = y0L− (12(x0 + 1)A1 + x0B1) = B′1.

That �nishes the proof of Proposition 12.
As for the case L2 = 2 mod 6, we get :

Corollary 14. Suppose that (x0, y0) is the fundamental solution of the Pell-
Fermat equation 3.3 and that L2 = 6 or 12 mod 18 or 3|y0. The divisor
B′1 = y0L− (12(x0 + 1)A1 + x0B1) is the class of a (−2)-curve.
The curves B1 and B

′
1 are the unique (−2)-curves in the lattice generated by

L,A1, B1 which have intersection one with A1.
Up to exchanging the role of the curves A1, B1, the same result holds true
for L2 = 0 mod 18.

Proof. For proving that B′1 is a (−2)-curve we use the same argument as

in the proof of Corollary 11. Let B̃1 be a (−2)-curve such that B̃1A1 = 1.

Suppose B̃1 6= B1, there exists (x, y) with x > 0, y > 0 solution of the
Pell-Fermat equation 3.3 such that

B̃1 = yL−
(

1

2
(x+ 1)A1 + xB1

)
.

One has B̃1B
′
1 < 0 if and only if

4kyy0 < xx0 +
1

3
.

We proceed as in the proof of Corollary 11 and obtain that this inequality
holds for any such (x, y), therefore (x, y) = (x0, y0). �

4. Existence of two Kummer structures

4.1. A theoretical approach. Let X be a generalized Kummer surface, we
keep the notations as before, in particular the polarization L generates the
orthogonal complement to the 18 curves A1, . . . , B9. Through this section
we suppose that 6L2 is not a square. For L2 = 2 mod 6 (respectively for
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L2 = 0 mod 6), let (x0, y0) be the fundamental solution of the Pell-Fermat
equation

x2 − 12ty2 = 1,

for t such that L2 = 2t (respectively

x2 − 4ky2 = 1,

for k such that L2 = 6k). We remark that x20 = 1 mod 12t (respectively
x20 = 1 mod 4k). Let B′1 be the (−2)-class

B′1 = 3y0L− (12(x0 + 1)A1 + x0B1),

(respectively

B′1 = y0L− (
1

2
(x0 + 1)A1 + x0B1)) ).

Let us suppose that B′1 is the class of a (−2)-curve. This is guarantied by
Corollaries 11 and 14 if L2 6= 0 mod 18, or if 3|y0, or up to exchanging the
role of A1 and B1 if L

2 = 0 mod 18. Then, we know two generalized Nikulin
con�gurations

C = {A1, B1, . . . , A9, B9}, C′ = {A1, B
′
1, A2, B2, . . . , A9, B9}.

Let us prove the following:

Theorem 15. Suppose that x0 6= ±1 mod 2t (respectively x0 6= ±1 mod 2k).
There is no automorphism sending the con�guration C to the con�guration
C′. As a consequence, there are (at least) two generalized Kummer structures
on the generalized Kummer surface X.

Proof. Let us suppose that such an automorphism g sending C to C′ exists.
The automorphism g induces an isometry on NS(X), it therefore sends the
orthogonal complement of C to the orthogonal complement of C′. Since L, L′
are the positive generators of these complements, it maps L to L′. Suppose
that L is such that L2 = 2 mod 6. We recall that L′ = x0L− 2ty0(A1 + 2B1)
and that by Section 2.1, the Néron-Severi lattice is

NS(X) = ZL⊕K3,

therefore 1
2tL is in the dual of NS(X) (we recall that L2 = 2t). Since we

know that g(L) = L′, the action of g on the class of 1
2tL in the discriminant

group is

g∗(
1

2t
L) =

x0
2t
L− y0(A1 + 2B1) =

x0
2t
L ∈ NS(X)∨/NS(X).

However, the action of an automorphism on the discriminant group must be
± identity (see e.g. [29, Section 8.1]). Since the hypothesis is that x0 6=
±1 mod 2t, such a g does not exist.
Suppose that L2 = 0 mod 6, i.e.L2 = 6k (k ∈ N∗), then L′ = x0L−2ky0(A1+
2B1). The Néron-Severi lattice is generated by the lattice ZL ⊕ K3 (see
section 2.1) and by a vector 1

3(L + v6k), v6k ∈ K3. The class 1
2kL is thus
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in the dual lattice of NS(X). The action of g on the class of 1
2kL in the

discriminant group is

g∗(
1

2k
L) =

x0
2k
L− y0(A1 + 2B1) =

x0
2k
L.

Again, since we supposed that x0 6= ±1 mod 2k, this is impossible. �

Remark 16. Suppose for simplicity that L2 = 2 mod 6. One could play again
the same game: pick-up an A2 con�guration C1, D1 in C′, then Corollary 11
implies that D′1 = 3y0L− (12(x0 + 1)C1 +x0D1) is irreducible and we obtain
in that way a new 9A2-con�guration C′′, with orthogonal complement L′′.
Again there is no automorphism sending C′ to C′′. However, the coe�cient
on L of L′′ will be x20, which is congruent to 1 modulo 2t, therefore there
could be an automorphism sending C to C′′, and in fact, in all the tested
cases, computations show that this always happens.

Example 17. The �rst values of L2 for which Theorem 15 provides two
Kummer structures on the generalized Kummer surface are:

(4.1) 20, 44, 68, 84, 92, 104, 110, 116, 120, 126, 132, 140, 164, 168, 176, 188.

The following in�nite series of examples was given to us by Olivier Ramaré:

Example 18. Let k be an integer, and let a = 8 + 12k. It is easy to check
that there exists t ∈ N such that a2 + a = 12t. The pair (2a + 1, 2) is
the fundamental solution of the Pell-Fermat equation x2 − 12ty2 = 1. Since
moreover 2a+ 1 6= ±1 mod 2t, we can apply Theorem 15 for such t's.

The next Section suggests that the criteria in Theorem 15 for having two
Kummer structures is quite sharp.

4.2. A computational approach. Suppose that the polarization L on the
generalized Kummer surface X is such that 6L2 is not a square and L2 6=
0 mod 18 so that the curve B′1 obtained in Corollaries 11 and 14 is irreducible.
Then, we know two generalized Nikulin con�gurations

C = {A1, B1, . . . , A9, B9}, C′ = {A1, B
′
1, A2, B2, . . . , A9, B9}.

Let L and L′ be the orthogonal complements of C and C′ respectively. Sup-
pose that there is an automorphism g sending C to C′. Then it induces an
isometry g∗ of the lattice NS(X), in particular it sends L to L′. Using the
Torelli Theorem for K3 surfaces, one can test all linear maps

ψ : NS(X)⊗Q→ NS(X)⊗Q
which satis�es to the following conditions:
i) it sends the Q-base {L} ∪ C to the Q-base {L′} ∪ C′ and sends A2-
con�gurations in C to A2-con�gurations in C′,
ii) it preserves the Néron-Severi lattice
iii) it acts on the discriminant group of NS(X) by ±Id,
iv) it sends an ample class to an ample class.
About that last point, we remark that it is always satis�ed by such a ψ.
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Indeed, the nef divisor L′ generates the orthogonal complement of a 9A2

con�guration C′, thus by Section 2.2.2, for u0 ≥ 4, the divisor

D′ = u0L
′ −

∑
C∈C′

C

is ample, butD′ is also the image by ψ of the ample classD = u0L−
∑

C∈C C.
There are

9!29 = 185794560

maps ψ satisfying i) and it can be quite long to sort among them the maps
that satisfy ii) and iii). However, recall that from Corollary 6, the divisors
supported only on the A2-blocs Aj , Bj (j ∈ {1, . . . , 9}) have restrictions:
they form in NS(X)⊗ Z/3Z a group isomorphic to (Z/3Z)3, each with sup-
port on 6 blocs of A2 (12 such words) or on 9 blocs (2 words) or 0 (thus a
total of 2× 12 + 2× 1 + 1 = 27 classes which are 3-divisible). It is simple to
obtain the 12 sets of 6 blocs which are 3-divisible. Since ψ is an isometry it
must send 3-divisible sets with support on C to 3-divisible sets with support
on C′, and one can check that in fact the number of permutations involved
is only 432 instead of 9!, and therefore the number of possibilities is divided
by 800, which makes the computation last a few minutes only.

By these computations, we obtain the following result which gives a more
precise result (with an independent proof) than Theorem 15, but only for
polarizations L such that L2 is below some bound:

Theorem 19. Let X be a generalized K3 surface polarized with L, such that
L2 < 200 and L2 6= 0 mod 18.
There is an automorphism σ sending the generalized Nikulin con�guration
C to C′ if and only if L2 is not in the list (4.1).

Note that one can often choose σ of order 2, but for cases L2 = 42, 48
all the automorphisms sending C to C′ have in�nite order. For the cases
L2 = 36 or 180, provided that the curve B′1 constructed in Section 3.2.2 is
irreducible, there are also two generalized Kummer structures.

5. Examples

5.1. A birational models of X with 9A2 singularities. We keep the
notations: X is a generalized Kummer surface with Picard number 19,
A1, . . . , B9 is a 9A2-con�guration, and L is the nef divisor that generates
the orthogonal complement of these 18 curves (see proof of Proposition 7).

Proposition 20. Suppose L2 > 2. The linear system |L| induces a mor-

phism ϕL : X → P
L2

2
+1 which is an embedding outside the (−2)-curves

A1, B1, . . . , A9, B9 and maps these curves to 9 cusps.

Proof. We know that L is nef and big. If |L| has base points, then

L = uF + Γ,
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where F is an elliptic curve and Γ is an irreducible (−2)-curve such that
FΓ = 1 (see [23, Section 3.8]). Moreover since L is big and nef we have

0 ≤ LΓ = u− 2

so that u > 0. If Γ 6= Ak, Bk we have FAk ≥ 0, ΓAk ≥ 0 and we compute

0 = LAk = uFAk + ΓAk

Since u > 0 we obtain FAk = ΓAk = 0 similarly FBk = ΓBk = 0 so that
Γ is in the orthogonal complement of A1, B1, . . . , A9, B9, which is clearly
impossible. If Γ = Ak we have L = uF +Ak hence

0 = LAk = u− 2

which gives u = 2, now L = 2F+Ak which has L
2 = 2, which contradicts the

assumption, similarly for Bk. In conclusion |L| is base-point-free. Suppose
that |L| is hyperelliptic (see [28]). Since L is primitive, one cannot have
L = 2D2 with D2

2 = 2. Suppose there is an elliptic curve F such that
FL = 2. Write

F = aL−
∑

αiAi + βiBi,

with a ≥ 0, a, αi, βi ∈ 1
3Z, then

2 = FL = aL2.

Since L2 > 2, this is possible only if L2 = 6. But in that case J. Bertin and
P. Vanhaecke [4] proved that ϕL is an embedding outside the (−2)-curves
A1, B1, . . . , A9, B9 (see the description below). �

5.2. Case L2 = 2. In this case the generalized Kummer surface X =
Km(A,G) is the double cover of the plane rami�ed on a sextic curve with
9A2 singularities. This double cover were �rst studied by Ch. Birkenhake
and H. Lange in [15] and then by the two authors of this paper and D. Kohel
in [14] where the authors determines several 9A2-con�gurations related to
a special con�guration of conics in the plane. If L2 = 2 by Section 3.2 we
have B′1 = 6L − (4A1 + 7B1). Since LB′1 = 12, the curve B′1 is sent to
a singular curve of degree 12 in the plane, which passes through the cusp
obtained by the contraction of A1, B1. Moreover as shown in [25] (see also
Corollary 19), up to automorphism of the K3 surface, there is only one 9A2-
con�guration, so that we have an automorphism sending the con�guration
C to the con�guration C′ observe that clearly this automorphism is not the
covering involution.

5.3. Case L2 = 6. The polarization L2 = 6 exhibits the K3 surface as a
complete intersection of a quadric and a cubic in P4 with 9A2 singularities,
see the paper by J. Bertin and P. Vanhaecke [4] for more details and the
equations. Observe that in this case the Pell�Fermat equation x2 − 4y2 = 1
has no solution so that we can not apply our construction. By [7] in this
case there is only one generalized Nikulin con�guration.
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5.4. Case L2 = 20. This is the �rst example for which our construction
gives two non�equivalent Kummer structures (see Example 4.1), so we study
it more in detail. As before let L be the class such that L2 = 20, let
A1, B1, . . . , A9, B9 be the 9A2-con�guration orthogonal to L. In this case
the class B′1 is

B′1 = 3L− (6A1 + 11B1)

and we have shown that C = {A1, B1, . . . , A9, B9} and C′ = {A1, B
′
1, . . . , A9, B9}

are not equivalent. The projective model determined by L is a surface in
P11, we describe here another projective model as a double plane rami�ed
on a special sextic curve. By Proposition 7, the class

D2 = L−
9∑

k=1

(Ak +Bk)

is ample with D2
2 = 2 and D2Ak = D2Bk = 1, k ∈ {1, . . . , 9}. The (−2)-

classes

Ek = D2 −Ak, Fk = D2 −Bk, k ∈ {1, . . . , 9}
are also of degree 1 for D2, hence are classes of (−2)-curves. Moreover one
can check easily that:

Proposition 21. The 18 (−2)-curves E1, F1, . . . , E9, F9 form a 9A2-con�guration.

Suppose that D2 has base points. Then there exist an elliptic curve F
and an irreducible (−2)-curve Γ, [23, Section 3.8] such that D2 = 2F + Γ
and FΓ = 1. But then ΓD2 = 0, which is a contradiction since D2 is ample.
Therefore, with the previous notations:

Proposition 22. The generalized Kummer surface is a double cover of P2

branched over a smooth sextic curve C6 which has 18 tritangent lines, which
are the images of the 18 couples of curves (Ek, Ak) and (Fk, Bk) for k ∈
{1, . . . , 9}.

Plane sextic curves with several tritangents were studied by A. Degtyarev
in [9]. Using the Néron-Severi lattice and Vinberg's algorithm [31], one can
compute moreover, that there are 1728 6-tangent conics to C6 and 67212
rational cuspidal curves which are tangent to C6, with a cusp on C6. Also
we have:

Proposition 23. The automorphism group G36 preserving the polarization
D2 is isomorphic to

Z2 × (Z3 o S3),

it has order 36. It is generated by the involution σ of the double cover and a
symplectic group of automorphisms G18 of order 18; σ generates the center
of G36.

Proof. This is obtained by a computation as explained in Section 4.2. �
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The involution σ is such that σ(Ak) = Ek, σ(Bk) = Fk, so that the
two 9A2-con�gurations E1, F1, . . . , E9, F9 and C = {A1, B1, . . . , A9, B9} are
equivalent.

The orbit of A1 under G36 is {Ak, Ek | 1 ≤ k ≤ 9} and the orbit of B1

is {Bk, Fk | 1 ≤ k ≤ 9}. Let Lk (respectively L′k) be the image of Ak (re-
spectively Bk) by the double cover map X → P2. The group Z3 o S3 acts
on the plane and the orbit of L1 (resp. L′1) is {Lk | 1 ≤ k ≤ 9} (resp.
{L′k | 1 ≤ k ≤ 9}).

The general abelian surfaces A such that X = Km3(A) are simple [25].
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