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Abstract. A Nikulin configuration is the data of 16 disjoint smooth
rational curves on a K3 surface. According to results of Nikulin, the exis-
tence of a Nikulin configuration means that the K3 surface is a Kummer
surface, moreover the abelian surface from the Kummer structure is de-
termined by the 16 curves. In the paper [15], we constructed explicitly
non isomorphic Kummer structures on some Kummer surfaces. In this
paper we generalize the construction to Kummer surfaces with a weaker
restriction on the degree of the polarization and we describe some cases
where the previous construction does not work.

1. Introduction

A (projective, as always in this paper) Kummer surface is obtained as
the desingularization of the quotient of an abelian surface by an involution
with 16 isolated fixed points. It is well known that Kummer surfaces are K3
surfaces and that their Picard number is at least 17, the rank 17 sub-group
being generated by the 16 rational curves in the resolution of the 16 nodes
and by the polarization. In [12], Nikulin showed the converse, i.e. that a K3
surface containing 16 disjoint smooth rational curves, or (−2)-curves, is the
Kummer surface associated to an abelian surface. Let X be a K3 surface; we
call a Kummer structure onX an abelian surface A (up to isomorphism) such
that X ' Km(A), and we call a Nikulin configuration a set of 16 disjoint
smooth rational curves on X. By the result of Nikulin we have a bijection:

{Kummer structures} ←→ {Nikulin configurations}/Aut(X)
In 1977, see [20, Question 5], T. Shioda raised the following question :
Is it possible to have non-isomorphic abelian surfaces A and B, such that

Km(A) and Km(B) are isomorphic?
Shioda and Mitani in [10, Theorem 5.1] answer negatively the question if

ρ(Km(A)) = 20, where ρ(Km(A)) is the Picard number of Km(A), i.e. the
rank of the Néron-Severi group of Km(A). The answer is also negative if
A is a generic principally polarized abelian surface, i.e. A is the jacobian of
a curve of genus 2 and ρ(A) = 1. Then in [7, Theorem 1.5], Gritsenko and
Hulek answered positively the question. They showed that if A is a generic
(1, t)-polarized abelian surface with t > 1 then the abelian surface A and its
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dual Â, though not isomorphic, satisfy Km(A) ∼= Km(Â). In [9, Theorem
0.1], Hosono, Lian, Oguiso and Yau, by using lattice theory, showed that the
number of Kummer structures is finite and for each integer N ∈ N∗, they
construct a Kummer surface of Picard number 18 with at least N Kummer
structures.

In [13, Example 4.16], Orlov showed that if A is a generic abelian surface
(i.e. ρ(Km(A)) = 17) then the number of abelian surfaces (up to isomor-
phism) with equivalent bounded derived categories is 2ν , where ν is the
number of prime divisors of 1

2M
2, for M an ample generator of the Néron-

Severi group of A. By [9, Theorem 0.1], there is a one-to-one correspondence
between these equivalent bounded derived categories of A and the Kummer
structures on the Kummer surface Km(A) associated to A. Thus, for exam-
ple if A is principally polarized we have that M2 = 2 so that ν = 0 and we
find again the fact that in this case there is only one Kummer structure on
Km(A). Observe that ν can be also defined as the number of prime divisors
of 1

4L
2, where L is the polarization induced by M on Km(A), (in particular

L is orthogonal to the 16 rational curves ; it is easy to see that by changing
the 16 rational disjoint curves, the number ν does not change).

In [15, Theorem 1], we constructed explicit examples of two Nikulin con-
figurations C, C′ on some K3 surface X such that the abelian surfaces A
and A′ associated to these two configurations are not isomorphic. This was
the first geometric construction of two distinct Kummer structures. These
examples are for generic Kummer surfaces, such that the orthogonal com-
plement of the 16 rational curves in C is generated by a class L such that
L2 = 2k(k + 1) for some integer k (we give a motivation for this restriction
in the Appendix of this paper).

The main goal of this paper is to provide a generalization of that result
to other Kummer surfaces. For that aim, let t ∈ N∗ be an integer and let X
be a general Kummer surface with a Nikulin configuration C such that the
orthogonal complement of the 16 (−2)-curves A1, . . . , A16 in C is generated
by L with L2 = 4t. A class C of the form C = βL − αA1 with β ∈ N∗ has
self-intersection C2 equals to −2 if and only if the coefficients (α, β) satisfy
the Pell-Fermat equation α2 − 2tβ2 = 1. There is a non-trivial solution if
and only if 2t is not a square. Let us suppose that this is the case. Then
there exists a so-called fundamental solution which we denote by (α0, β0).
Our main result is as follows:

Theorem 1. Suppose that β0 is even. Then β0L − α0A1 is the class of an
irreducible (−2)-curve A′1, which curve is disjoint from A2, . . . , A16.
The Nikulin configurations C =

∑16
i=1Ai and C′ = A′1 +

∑16
i=2Ai define the

same Kummer structure on the Kummer surface X if and only if the negative
Pell-Fermat equation α2 − 2tβ2 = −1 has a solution.
Suppose that this is the case. Then there exists a double cover map X → P2

branched over 6 lines L1, . . . , L6, contracting the 15 (−2)-curves Aj , j ≥ 2 to
the singularities of

∑6
i=1 Li, and such that the induced involution exchanges

the curves A1, A
′
1 and therefore the configurations C, C′.
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The integers t ∈ N such that β0 is even have density at least 3
4 ; among

these integers, at least 2
3 are such that the negative Pell-Fermat equation have

no solution, and therefore give examples of two distinct Kummer structures
(see Remark 6 for a precise meaning of that affirmation, and also the table
in the Appendix). As a by-product of our study, let us mention the following
result (see Proposition 17), which we believe can be of independent interest:
Suppose that the equation 2µ2 − tν2 = −1 has a solution. Then there exists
a model of the K3 surface X as a quartic surface in P3 with 15 nodes.

One could also raise a weaker question than Shioda’s question by asking
if Km(A) ∼= Km(B) implies A and B must be isogenous ? The answer is
positive and the result was surely known, but we could not find an explicit
proof in the literature, hence we recall it in Section 2 and we show how it can
be obtained as a direct consequence of a result of Stellari [21, Theorem 1.2].
In the rest of the paper, we point out why the construction in Theorem 1 can
not work for β0 odd, moreover we study examples of Nikulin configurations
in the case that β0 is odd or 2t is a square.
Acknowledgements: We thank P. Stellari for pointing out his paper

[21]. We also thank K. Hulek, H. Lange, K. Oguiso, M. Ramponi, J. Rivat
and T. Shioda for useful discussions. We are very grateful to the referee for
the many questions, remarks and comments that improved substantially this
article.

2. Construction of Nikulin configurations

2.1. Preliminaries: the Pell-Fermat equation and its negative. The
aim of this first sub-section is to recall results on Pell-Fermat equations. We
give various criteria when the fundamental solution (α0, β0) of it is such that
β0 is even, and when the negative Pell-Fermat solution has no solution.

2.1.1. The Pell-Fermat equation. For t ∈ N∗, the Pell-Fermat equation

(2.1) α2 − 2tβ2 = 1

has a non-trivial solution (α, β) ∈ Z2 if and only if 2t is not a square. Then
there exists a fundamental solution (α0, β0) ∈ N, such that for every other
solution (α, β), there exists k ∈ Z with α+ β

√
2t = ±(α0 +

√
2tβ0)

k.

Remark 2. For k ∈ Z, let (xk, yk) ∈ Z2 be such that

xk + yk
√

2t = (α0 +
√

2tβ0)
k.

Using that α0 ≥ 1, β0 ≥ 1 and an induction, one can check that the sequences
(xk)k∈N, (yk)k∈N are strictly increasing with k ∈ N. Therefore, if (α, β) ∈ N2

is a solution different from (1, 0) and with α ≤ α0 or β ≤ β0, then (α, β) is
the fundamental solution.
We observe moreover that for a solution (α, β) of equation (2.1), the integer
α is necessarily odd.

For t a positive integer such that 2t is not a square, we denote by (α0, β0)
the fundamental solution of α2 − 2tβ2 = 1. Part a) of the following Lemma
shows that the density of integers t such that β0 is even is at least 3

4 (we
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thank Joël Rivat for useful discussions on that question, and also Lemma 5
below):

Lemma 3. a) Suppose that t 6= 0 mod 4. Then β0 is even.
b) There is an infinite number of integers s such that the fundamental solu-
tion (α0, β0) of α2 − 8s2β2 = 1 has odd β0.
c) There is an infinite number of integers s such that the fundamental solu-
tion (α0, β0) of α2 − 8s2β2 = 1 has even β0.

Proof. Let (α, β) be a solution of equation α2− 2tβ2 = 1. Suppose that β is
odd. Then

β = ±1,±3 mod 8,

and one has β2 = 1mod 8. Since α2 − 2tβ2 = 1, one has α2 = 1 + 2t mod
8. Since α is also odd, α2 = 1mod 8, thus 2t = 0 mod 8 and therefore
t = 0 mod 4. That proves part a).

Let (x1, y1) be the fundamental solution of x2 − 2ty2 = 1. For n ∈ Z, the
integers ±xn,±yn defined by

xn + yn
√

2t = (x1 + y1
√

2t)n

are the solutions of equation x2− 2ty2 = 1. The sequence (yn)n≥1 is strictly
increasing and we see that the fundamental solution of

x2 − 2ty2ny
2 = 1

is (xn, 1). Using part a), we remark that always ty2n = 0 mod 4. Take now
t = 4, we therefore obtain result b). For n even, yn is even; let zn be such
that yn = 2zn. The fundamental solution of

x2 − 2tz2ny
2 = 1

is (xn, 2) ; taking t = 4 as in the previous case, one obtains result c). �

Example 4. For 1 ≤ s ≤ 100 such that 8s is not a square, i.e. for s 6∈
{2, 8, 18, 32, 50, 72, 98}, the fundamental solution (α0, β0) of equation α2 −
8sβ2 = 1 is such that β0 is even if and only if s is in

{7, 9, 14, 23, 30, 31, 33, 34, 46, 47, 56, 57, 62, 63, 69, 71, 73, 75, 77, 79, 81, 82, 89, 90, 94}.

2.1.2. The negative Pell-Fermat equation. The equation

(2.2) α2 − 2tβ2 = −1

is called the negative Pell-Fermat equation. If (x, y) is a solution, then
(α, β) = (x2−2ty2, 2xy) is a solution of the Pell-Fermat equation (2.1), with
β even. The negative Pell-Fermat equation can be solved by the method
of continued fractions and it has solutions if and only if the period of the
continued fraction has odd length. A necessary (but not sufficient) condition
for solvability is that t is not divisible by a prime of form 4k + 3. The fol-
lowing Lemma implies that the density of integers t such that the negative
Pell-Fermat equation (2.2) has no solution is at least 5

6 :

Lemma 5. Suppose that the negative Pell-Fermat equation (2.2) has a solu-
tion. Then t = 1mod 4 and t 6= 0mod 3, in other words: t = 1 or 5mod 12.
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Proof. Suppose that (α, β) is a solution of equation (2.2). Since α2− 2tβ2 =
−1, the integer α is odd, thus α2 = 1mod 8, and 2tβ2 = α2 + 1 = 2mod 8,
which implies that β is odd (otherwise 2tβ2 = 0mod 8), thus β2 = 1mod 8.
In that way 2t = 2mod 8 hence t = 1mod 4.
Since α2 = 0 or 1mod 3, one has 2tb2 = 1 or 2mod 3, thus t 6= 0mod 3. �

The first few numbers t for which equation (2.2) is solvable are

1, 5, 13, 25, 29, 37, 41, 53, 61, 65, 85, 101, 109...

Remark 6. From Lemmas 3 and 5, we conclude that the density of integers
t such that the negative Pell-Fermat equation (2.2) has no solution and the
Pell-Fermat equation (2.1) has a solution (α0, β0) with β0 even is at least 7

12 .

2.2. The general problem.

2.2.1. Isogenies. Before to state our results about the question of Shioda [20,
Question 5] recalled in the Introduction, we can generalize the problem to
the following question:

Given two abelian surfaces A and B such that Km(A) ∼= Km(B) are then
A and B isogenous ?

The answer is positive and certainly well known, in particular to people
working on derived categories on abelian surfaces. For convenience we give
here a short proof:

Proposition 7. Let A and B be abelian surfaces such that the associated
Kummer surfaces are isomorphic, then A and B are isogenous abelian sur-
faces.

Proof. Since Km(A) ∼= Km(B) then the derived categories Db(Km(A)) and
Db(Km(B)) are equivalent. Thus by [21, Theorem 1.2], the abelian surfaces
are isogenous. �

2.2.2. Notations and known results on the Néron-Severi group of a Kummer
surface. Let t ∈ N be an integer and let B be a generic Abelian surface with
(primitive) polarization M such that M2 = 2t. Let X = Km(B) be the
associated Kummer surface. Let A1, . . . , A16 be the 16 disjoint (−2)-curves
on X that are resolution of the singularities of the quotient B/[−1]. By [11,
Proposition 3.2], [6, Proposition 2.6], corresponding to the polarization M
on B, there is a primitive big and nef divisor L on Km(B) such that

L2 = 4t

and LAi = 0, i ∈ {1, . . . , 16}. The Néron-Severi group of X = Km(B)
satisfies:

ZL⊕K ⊂ NS(X),

whereK denotes the Kummer lattice (the saturated lattice containing the 16
disjoint (−2)-curves Ai, i = 1, . . . , 16) which is a negative definite lattice of
rank 16 and discriminant 26. For B generic among polarized Abelian surfaces
rk(NS(X)) = 17 and NS(X) is an over-lattice of index two of ZL⊕K which
is described precisely in [6, Theorem 2.7], in particular we will repeatedly
use the following result:
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Lemma 8. ([6, Remarks 2.3 & 2.10]) An element Γ ∈ NS(X) has the form
Γ = αL −

∑
βiAi with α, βi ∈ 1

2Z. If α or βi for some i is in 1
2Z \ Z, then

at least 4 of the βj’s are in 1
2Z \ Z. If α ∈ Z, then at least 8 of the βj’s are

in 1
2Z \ Z or ∀j, βj ∈ Z.

2.2.3. The Pell-Fermat equation and construction of (−2)-classes. We are
looking for a polarization L′ and a class A′1 of the form

A′1 = βL− αA1

L′ = bL− aA1
,

with α, β, a, b ∈ N \ {0} such that one has A′21 = −2, L′A′1 = 0 and L′2 =
L2 = 4t. These three conditions are respectively

(2.3)
α2 − 2tβ2 = 1

2tbβ = aα
a2 = 2t(b2 − 1)

,

the first expresses that A′1 is a (−2)-class, the second that this (−2)-class is
disjoint from the polarisation L′, the third that L2 = L′2. We will use the
divisor L′ and the property that L′A′1 = 0 in order to show that A′1 can be
represented by an irreducible curve.

Lemma 9. There are non-trivial solutions to the three equations (2.3) if
and only if 2t is not a square. In that case, if (α, β) is a solution of the first
equation in (2.3), one has

(a, b) = (2tβ, α).

Proof. In order that the Pell-Fermat equation (2.1) admits a solution, we
need that 2t is not a square. Let us suppose that this is the case and let
(α, β) be such a solution, which we can suppose with α > 0, β > 0. By
replacing a = 2tβαb in the third equation, one gets

4t2b2β2 = 2tα2(b2 − 1),

which is equivalent to
b2(α2 − 2tβ2) = α2,

since α2 − 2tβ2 = 1 and we search solutions with b > 0, we obtain b = α.
Then by the third equality, we get a2 = 2t(α2−1) and equality α2−1 = 2tβ2

implies a = 2tβ. �

2.3. The β0 odd case. Suppose 2t is not a square and let (α0, β0) be a
solution of equation (2.1). Let us suppose that β0 is odd and let us define

A′1 = β0L− α0A1,

which is a (−2)-class. Then

Proposition 10. The (−2)-class A′1 = β0L − α0A1 cannot be the class of
an irreducible rational curve.
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Proof. Suppose that A′1 is irreducible. Then we have two Nikulin configura-
tions

C =
16∑
i=1

Ai, C′ = A′1 +
16∑
i=2

Ai.

Since Nikulin configurations are 2-divisible (see [12]), the divisor A1 +A′1 is
2-divisible and

1

2
(A1 +A′1) =

β0
2
L− α0 − 1

2
A1

is an integral class. Since β0 is odd by assumption and α0 must be odd by
the equality α2

0 − 2tβ20 = 1, it follows that L
2 ∈ NS(X), which contradicts L

being a primitive class. �

We will come back to this case (when β0 is odd) in Subsection 3.1.

2.4. The β0 even case: β0L−α0A1 is the class of a (−2)-curve. Assume
2t is not a square. Let (α0, β0) be the fundamental solution of the Pell-Fermat
equation (2.1). We assume in this section that β0 is even and we define as
in Subsection 2.2.3 the classes:

A′1 = β0L− α0A1, L
′ = α0L− 2tβ0A1.

One has A′21 = −2, L′A′1 = 0, L′2 = L2 = 4t.

Proposition 11. Suppose that β0 is even. The class L′ is big and nef and
the classes A′1, A2 . . . , A16 are the only (−2)-classes contracted by L′.

Proof. The class L′ is nef if and only if for any (−2)-curves Γ, one has
ΓL′ ≥ 0. Let

Γ = uL−
16∑
i=1

viAi

be a (−2)-curve (thus
∑
v2i − 2tu2 = 1) ; we recall that by Lemma 8, if one

coefficient u or vi is in 1
2Z \ Z, then at least four of the vi’s are in 1

2Z \ Z.
Suppose that

ΓL′ ≤ 0,

this is equivalent to
uα0 ≤ v1β0,

in other words u ≤ β0
α0
v1, thus∑

i≥1
v2i = 2tu2 + 1 ≤ 2t

(
β20
α2
0

v21

)
+ 1 = 2tβ20

(
v21
α2
0

)
+ 1

and therefore using the relation α2
0 − 2tβ20 = 1, one obtains∑

i≥1
v2i ≤ (α2

0 − 1)

(
v21
α2
0

)
+ 1

and therefore ∑
i≥2

v2i ≤ 1− v21
α2
0

.
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Apart from the trivial cases of curves Γ = Ai for i > 1, one can suppose
u > 0. If v1 > 1

2α0 then
∑

i≥2 v
2
i <

3
4 , then by Lemma 8, one gets v2 = · · · =

v16 = 0, v1 = α0, u = β0, so that Γ = A′1, for which ΓL′ = 0. Thus one can
suppose that

(2.4) 0 < v1 ≤
1

2
α0

(if v1 = 0, then u = 0, which we already excluded) and, up to permutation of
the indices: v2 = v3 = v4 = 1

2 (since
∑

i≥2 v
2
i < 1 and by the structure of the

Néron-Severi group as described in Lemma 8). The relation
∑
v2i −2tu2 = 1

is now v21 − 2tu2 = 1
4 , which is

(2v1)
2 − 2t(2u)2 = 1.

Defining V = 2v1 ∈ N and U = 2u ∈ N, we see that (U, V ) is a solution of the
Pell-Fermat equation β2 − 2tα2 = 1. Moreover, by Equation (2.4) we know
that 0 < V ≤ α0. Since by hypothesis (α0, β0) is the primitive solution, and
V > 0, we have α0 ≤ V . Therefore, by remark 2: V = α0, which implies
that U = β0, thus v1 = 1

2α0, u = 1
2β0, and thus (for Γ 6= A2, . . . , A16) we

have
ΓL′ ≤ 0

if and only if ΓL′ = 0 and Γ has the form Γ = 1
2(β0L−α0A1−A2−A3−A4).

But by Lemma 8, in order for Γ to be in NS(X), the integer β0 must be odd,
which is impossible by our assumption on β0.

In conclusion, we obtain that L′ is big and nef, and if β0 is even, then the
only (−2)-classes Γ such that ΓL′ = 0 are A′1, A2, . . . , A16. �

Let us prove the following result:

Proposition 12. Suppose that β0 is even. The line bundle 3L′ (where L′ =
α0L − 2tβ0A1) defines a morphism φ3L′ : X → PN which is birational onto
its image and contracts exactly the divisor A′1 = β0L − α0A1 and the 15
(−2)-curves Ai, i ≥ 2.

Proof. By [14, Section 3.8] either |3L′| has no fixed part or 3L′ = aE + Γ,
where |E| is a free pencil, and Γ is a (−2)-curve with EΓ = 1. However if
EΓ = 1, then 3L′E = aE2 + 1, but since E2 = 0 this is impossible. Thus
|3L′| has no fixed part; moreover by [18, Corollary 3.2], it has then no base
points.

Let us prove that the morphism φ3L′ has degree one, i.e. that |3L′| is not
hyperelliptic (see [18, Section 4]). By loc. cit., |3L′| is hyperelliptic only if
there exists a genus 2 curve C such that 3L′ = 2C or there exists an elliptic
curve E such that (3L′)E = 2. Suppose we are in the first case. Since
C2 = 2, one has 9 · 4t = 8, which is impossible. The second alternative is
also readily impossible. Thus the morphism φ3L′ has degree one. Moreover
since 3L′A′1 = 3L′A2 = · · · = 3L′A16 = 0, the 16 divisors are contracted by
φ3L′ . �

We obtain:
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Corollary 13. Suppose that β0 is even. The divisor A′1 is an irreducible
(−2)-curve.

Proof. Since A′21 = −2 and LA′1 ≥ 0, by Riemann-Roch Theorem we can
assume it is effective. Let B be one of the divisors A′1, A2, . . . , A16. One has
3L′B = 0, thus the linear system |3L′| contracts B to a singular point. Since
the Picard number of the K3 surface X = Km(B) is 17, that singularity
must be a node and therefore A′1 is irreducible. �

2.5. Two Kummer structures in case β0 even and the negative Pell-
Fermat equation is not solvable. Suppose that 2t is not a square and
let (α0, β0) be the fundamental solution of the Pell-Fermat equation

(2.5) λ2 − 2tµ2 = 1.

We suppose that β0 is even, and we recall that A′1 = β0L−α0A1 in NS(X).
The aim of this Section is to prove the following:

Theorem 14. Suppose that t ≥ 2 and the negative Pell-Fermat equation

(2.6) λ2 − 2tµ2 = −1

has no solution. There is no automorphism f of X sending the configuration
C =

∑16
i=1Ai to the configuration C′ = A′1 +

∑16
i=2Ai.

Remark. We recall that the Nikulin configurations C and C′ define two dis-
tinct Kummer structures if and only if there is no automorphism sending C
to C′ (see [9]; a proof is given in [15, Proposition 21]).

In order to prove Theorem 14, let us suppose that such an automorphism
f exists. The group of translations by the 2-torsion points on B acts on X =
Km(B) and that action is transitive on the set of curves A1, . . . , A16. Thus,
up to changing f by f ◦t (where t is such a translation), one can suppose that
the image of A1 is A′1. Then the automorphism f induces a permutation of
the curves A2, . . . , A16. The (−2)-curve A′′1 = f2(A1) = f(A′1) is orthogonal
to the 15 curves Ai, i > 1 and therefore its class is in the group generated
by L and A1. Let λ, µ ∈ Z such that A′′1 = λA1 + µL, so that (λ, µ) is a
solution of the Pell-Fermat equation (2.5). Let us prove:

Lemma 15. Let C = λA1 +µL be an effective (−2)-class. Then there exists
u, v ∈ N such that C = uA1 + vA′1, in particular the only (−2)-curves in the
lattice generated by L and A1 are A1 and A′1.

Proof. If (λ, µ) is a solution of equation (2.5), then so are (±λ,±µ). We say
that a solution is positive if λ ≥ 0 and µ ≥ 0. Let us identify Z2 with Z[

√
2t]

by sending (λ, µ) to λ+µ
√

2t. The solutions of equation 2.5 are units of the
ring Z[

√
2t]. Let α0 + β0

√
2t (α0, β0 ∈ N∗) be the fundamental solution to

equation (2.5). The solutions with positive coefficients are the elements of
the form

λm + µm
√

2t = (α0 + β0
√

2t)m, m ∈ N.
An effective (−2)-class C = λA1 + µL either equals A1 or satisfies CL > 0
and CA1 > 0, therefore µ > 0 and λ < 0. Thus if C 6= A1, there exists m
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such that C = −λmA1 + µmL. Since A′1 = β0L − α0A1 corresponds to the
fundamental solution of equation (2.5), we have L = 1

β0
(A′1 + α0A1) and we

obtain

C = −λmA1 +
µm
β0

(A′1 + α0A1) =
µm
β0
A′1 + (

α0

β0
bm − λm)A1

and the Lemma is proved if the coefficients um = µm
β0

and vm = α0
β0
µm − λm

are both positive and in Z. Using the fact that

λm+1 + µm+1

√
2t = (α0 +

√
2tβ0)(λm + µm

√
2t),

we obtain
λm+1 = α0λm + 2tβ0µm
µm+1 = α0µm + β0λm

.

Then we compute that

um+1 =
µm+1

β0
= α0

µm
β0

+ λm, vm+1 =
α0

β0
µm+1 − λm+1 =

µm
β0

and by induction we conclude that um, vm are in N for any m ≥ 1. �

Lemma 15 implies that A′′1 = A1 i.e. f permutes A1 and A′1. Let us
continue the proof of Theorem 14:

Since the automorphism f preserves the set

B = {A′1, A1, . . . , A16},
it acts with finite order n0 on B. Since B is a Q-basis of NS(X) ⊗ Q, the
automorphism fn0 acts trivially on NS(X), thus it preserves an ample class,
and by [8, Proposition 5.3.3], the automorphism fn0 has finite order, which
proves that f has finite order. Up to taking an odd power of f , one can
suppose that f has order 2m for some m ∈ N∗. Suppose m = 1, i.e. f is an
involution. Then the integral class

D =
1

2
(A1 +A′1) =

β0
2
L− α0 − 1

2
A1

(recall that β0 is even and α0 is odd) is fixed by f . Let us define

d0 = GCD(β0, α0 − 1)/2,

then the class D′ = 1
d0
D is primitive in NS(X). We have

D′2 =
α0 − 1

d20
∈ Z,

and in fact, since NS(X) is an even lattice, D′2 is even, so that α0−1
2d20
∈ Z.

Let us define

W =
2d20

α0 − 1
D′.

Let NS(X)f be the sub-lattice of NS(X) fixed by f . By Lemma 8, for any
class E in NS(X)f , there exists a, b2, . . . , b16 ∈ Z such that

E =
1

2
(aD′ +

16∑
i=2

biAi).
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Since WD′ = 2, we get WE = a ∈ Z, therefore W is an element of the dual
of NS(X)f , and the discriminant group of NS(X)f contains the sub-group
isomorphic to Z/α0−1

2d20
Z generated by the class of W .

Case when f is a non-symplectic involution. Suppose that f is non-
symplectic. Then (see e.g. [1]) NS(X)f is a 2-elementary lattice, which
means that the discriminant group of NS(X)f is isomorphic to (Z/2Z)h for
some positive integer h. Since Z/α0−1

2d20
Z is a sub-group of the discriminant

group, and f is supposed to be non-symplectic, we get two cases:
α0 − 1

2d20
∈ {1, 2}.

Sub-case α0−1
2d20

= 1. If α0−1
2d20

= 1, then α0 = 1 + 2d20. Since d0|β0/2, there
exists e0 ∈ Z such that β0 = 2e0d0. From the relation α2

0 − 2tβ20 = 1, it
follows that d0 and e0 satisfy the negative Pell-Fermat equation

d20 − 2te20 = −1.

Conversely, suppose that (d0, e0) is the primitive solution to the equation
d2 − 2te2 = −1. The fundamental solution to the Pell-Fermat equation is

α0 + β0
√

2t = (d0 + e0
√

2t)2 = 2d20 + 1− 2d0e0
√

2t

and α0−1
2d20

= 1. Since, in the hypothesis of Theorem 14, we supposed that the

negative Pell-Fermat equation has no solution, the case α0−1
2d20

= 1 is excluded.

Remark 16. In [15], we studied the cases with 2t = k(k+1). ThenD = 2D′ =
2L− 2kA1, which gives d0 = 1 and α0 = 2k + 1. The proof of [15, Theorem
19] implies that the negative Pell-Fermat equation x2−k(k+ 1)y2 = −1 has
no solution for k ≥ 2.

Sub-case α0−1
2d20

= 2. If α0−1
2d20

= 2, then α0 = 1 + 4d20. Since d0|β0/2, there
exists e0 ∈ Z such that β0 = 2e0d0. From the relation α2

0 − 2tβ20 = 1, it
follows that d0 and e0 satisfy the relation

(2.7) 2d20 − te20 = −1,

(conversely, if (d0, e0) is a solution of (2.7), then α0 = 1+4d20 and β0 = 2e0d0
is a solution of the Pell-Fermat equation (2.5)). We have

D′ =
1

d0
D = e0L− 2d0A1,

with D′2 = 4, D′A1 = D′A′1 = 4d0, D
′Aj = 0 for j ∈ {2, . . . , 16}. Let us

prove that

Proposition 17. The divisor D′ is nef, the linear system |D′| is base point
free, non hyperelliptic and defines a morphism ϕ : X → P3 such that ϕ(X) =
Y is a quartic surface with 15 nodes, which are images of the disjoint curves
Aj , j ≥ 2.
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Proof. Let us prove that D′ is nef. Let Γ = αL−
∑16

i=1 βiAi be a (−2)-curve:

(2.8) 2tα2 −
16∑
i=1

β2i = −1

where α, βi ∈ 1
2Z are subject to the restrictions in Lemma 8. Suppose that

D′Γ ≤ 0, which is equivalent to
te0α

d0
≤ β1.

Using this relation in equation (2.8), we get

−1 ≤ 2tα2 −
(
te0α

d0

)2

−
16∑
i=2

β2i .

By using the relation (2.7), this is equivalent to

(2.9) −1 ≤ −α
2t

d20
−

16∑
i=2

β2i ⇐⇒
α2t

d20
+

16∑
i=2

β2i ≤ 1.

Suppose that α is an integer. Then from Lemma 8 and equation (2.9), we
have either ∀j ≥ 2, βj = 0 or ∃k ≥ 2, βk = 1 and ∀j ≥ 2, j 6= k, βj = 0.
In the first case Γ = αL − β1A1 with β1 ∈ Z, and from Lemma 15, either
Γ = A1 or Γ = A′1. Since D′A1 = D′A′1 = 4d0 > 0, this is impossible. In
the second case,

∑16
i=2 β

2
i = 1 implies α = 0 and Γ = Ak for k ≥ 2, and

indeed D′Ak = 0. It remains the case when α is an half-integer. Then three
of the βi with i > 1 are equal to 1

2 , the others are 0, and β1 is in 1
2Z \ Z.

Let a, b ∈ Z be the odd integers such that α = a
2 , β1 = b

2 . Equation (2.8)
becomes b2 − 2ta2 = 1. By hypothesis, the fundamental solution (α0, β0) of
that Pell-Fermat equation α2 − 2tβ2 = 1 is such that β0 is even. Then an
easy induction shows that every solution (α, β) is also such that β is even.
Hence that case is also impossible, and we obtain that D′ is nef with D′Γ = 0
for a (−2)-curve Γ if and only if Γ = Ak for k ≥ 2.

Let us prove that the linear system |D′| = |e0L− 2d0A1| is base point free.
Suppose that this is not the case. Then (see [18]) there exist an elliptic curve
E and a (−2)-curve Γ = αL−

∑16
i=1 βiAi, α, βi ∈

1
2Z, such that EΓ = 1 and

D′ = 3E + Γ. One has D′Γ = (3E + Γ)Γ = 1 but

D′Γ = (e0L− 2d0A1)(αL−
16∑
i=1

βiAi) = 2(2αe0t− 2β1d0) ∈ 2Z.

This is a contradiction, and we conclude that |D′| is base-point free.
Let us study the degree of the morphism defined by the linear system |D′|.

By [18], the morphism has degree 2 if and only if there exists en elliptic curve

E =
a

2
L−

16∑
i=1

bi
2
Ai, a, bi ∈ Z
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such that D′E = 2. Equality D′E = 2 is equivalent to

(2.10) ate0 − b1d0 = 1.

Since E is an elliptic curve, one has

(2.11) 2ta2 =
16∑
i=1

b2i .

Let us define S =
∑16

i=2 b
2
i ∈ N. The equations (2.10) and (2.11) give{

2a2t2 = 2
e20

(1 + b1d0)
2

2t2a2 = tb21 + tS
,

therefore
2(1 + b1d0)

2 = te20b
2
1 + te20S,

which is equivalent to

(2.12) (e20t− 2d20)b
2
1 − 4d0b1 + e20tS − 2 = 0.

Since e20t− 2d20 = 1, the reduced discriminant of equation (2.12) in b1 is

∆ = 4d20 + 2− e20tS = 4d20 + 2− (1 + 2d20)S = (1 + 2d20)(2− S).

Since b1 is an integral solution, that implies S ∈ {0, 1, 2}. Lemma 8 implies
that cases S = 1 and S = 2 are not possible. The case S = 0 is not possible
either since 2(1 + 2d20) is not a square. We thus proved that the morphism
defined by |D′| has degree 1 and that concludes the proof of Proposition
17. �

Using that model Y ↪→ P3, we can use the same reasoning as in [15, Proof
of Theorem 19] (which was made for the case t = 3, with d0 = e0 = 1) in
order to prove that sub-case α0−1

2d20
= 2 is also impossible if we suppose that

the non-symplectic automorphism f exists.

Case when f is a symplectic involution. Suppose f is a symplectic
involution. It fixes A1 +A′1, it permutes the classes Aj (j > 1) by pairs, thus
the number s of fixed Aj is odd. A symplectic automorphism acts trivially on
the transcendental lattice TX , which in our situation has rank 5. Therefore
the trace of f on H2(X,Z) equals 5 + rk(NS(X)f ) ≥ 6 + s > 6. But the
trace of a symplectic involution equals 6 (see e.g. [19, Section 1.2]). This
is a contradiction, thus f cannot have order 2 and the integer m (such that
the order of f is 2m) is larger than 1.

Remaining cases. We know that f has order 2m > 1. The automorphism
g = f2

m−1 has order 2 and g(A1) = A1, g(A′1) = A′1, thus g(L) = L. There
are curves Ai, i > 1 such that f(Ai) = Ai (say s of such curves, s is odd
since A1 is fixed) and the remaining curves Aj are permuted 2 by 2 (there
are s′ = 1

2(15− s) such pairs). Let L′ be the sub-lattice generated by L,A1

and the fix classes Ai, Aj + g(Aj). It is a finite index sub-lattice of the fixed
lattice NS(X)g and its discriminant group is

Z/4tZ× (Z/2Z)s+1 × (Z/4Z)s
′
.
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By the same reasoning as before, the involution g must be symplectic as soon
as t > 1. However the trace of g is 8 + s > 6, thus g cannot be symplectic
either. Therefore we conclude that such an automorphism f does not exist,
which conclude the proof of Theorem 14.

Remark 18. In the course of the proof of Theorem 14, using the divisor D′,
we obtained a model of our K3 surface as a quartic in P3 with 15 nodes,
as soon as Equation (2.7) has a solution. This is the case for example for
t = 3, 9, 11, 19, 27...

2.6. When the negative Pell-Fermat equation has a solution. Sup-
pose that the negative Pell-Fermat equation λ2 − 2tµ2 = −1 has a solution
and let (d0, e0) be the fundamental solution. Then (α0, β0) = (1+2d20, 2e0d0)
is the fundamental solution of the Pell-Fermat equation λ2 − 2tµ2 = 1, in
particular β0 is even. Moreover we have A1 + A′1 = 2d0D

′ (we keep the
notation of the previous Section) with

D′ = e0L− d0A1

such that D′2 = 2. Let us prove that

Proposition 19. The divisor D′ is nef. We have D′Γ = 0 for a (−2)-curve
Γ if and only if Γ = Aj , for j ∈ {2, . . . , 16}. The linear system |D′| is base
point free. It defines a double cover ϕ : X → P2 which contracts exactly the
15 curves Aj , j ≥ 2 to 15 singular points of a sextic curve which is the union
of 6 lines.
The involution σ defined by the double cover ϕ exchanges A1 and A′1 and
the two Nikulin configurations C, C′, which therefore give the same Kummer
structure.

Proof. Let us prove that D′ is nef. Let Γ = αL−
∑16

i=1 βiAi be a (−2)-curve:
2tα2 −

∑16
i=1 β

2
i = −1, where α, βi ∈ 1

2Z are subject to the restrictions in
Lemma 8. We suppose that D′Γ ≤ 0. This is equivalent to:

D′Γ = (e0L− d0A1)(αL−
16∑
i=1

βiAi) = 4tαe0 − 2β1d0 ≤ 0.

Then β1 ≥ 2tαe0
d0

, thus −
(
2tαe0
d0

)2
≥ −β21 . From the relation 2tα2 + 1−β21 =

S, where S =
∑16

i=2 β
2
i , we get

S ≤ 1 + 2tα2 −
(

2tαe0
d0

)2

.

By using the relation d20 − 2te20 = −1, we obtain

(2.13) S +
2tα2

d20
≤ 1.

We can then follow the same proof as for the divisor in Proposition 17, and
we conclude that D′ is nef, with D′Γ = 0 for a (−2)-curve Γ if and only if
Γ = Ak for k ∈ {2, . . . , 16}.
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Let us prove that the linear system |D′| = |e0L− d0A1| is base point free.
Suppose that this is not the case. Then (see [18]) there exist an elliptic
curve E and a (−2)-curve Γ such that D′ = 2E + Γ and EΓ = 1. Since we
have D′Γ = (2E + Γ)Γ = 0, there exists k ≥ 2 such that Γ = Ak. Thus
D′ = 2E + Ak, and then e0L − d0A1 − Ak = 2E, which is impossible by
Lemma 8. Therefore |D′| is base point free and defines a double cover of the
plane that contracts the 15 disjoint (−2)-curves Aj , j ≥ 2 to points. Since
A1 + A′1 = 2d0D

′, the divisor A1 + A′1 is the pull-back of a plane rational
cuspidal curve of degree 2d0, and the involution exchanges the two curves
A1, A

′
1. It is well-known that a sextic curve with 15 singular points is the

union of 6 lines in general position. �

3. Further examples

3.1. An example of a Nikulin configuration when β0 is odd. Let us
study the t = 4 case. Then the fundamental solution (α0, β0) equals (3, 1).
This is the first case with β0 odd (see Table in the Appendix). We have

A′1 = L− 3A1, L
′ = 3L− 8A1

and we already know that A′1 is not irreducible. In order to understand
better what is happening, let us define

A′′1 = 1
2(L− 3A1 −A2 −A3 −A4)

A′′2 = 1
2(L−A1 − 3A2 −A3 −A4)

A′′3 = 1
2(L−A1 −A2 − 3A3 −A4)

A′′4 = 1
2(L−A1 −A2 −A3 − 3A4)

,

where the classes A2, A3, A4 are chosen so that the classes A′′j exists in NS(X)

(which is possible by [6, Theorem 2.7], since t = 0 mod 2). We compute that
these are (−2)-classes i.e. A′′2j = −2. Moreover we have

A′1 = 2A′′1 +A2 +A3 +A4 and A′′1L
′ = 0,

(but A′′iL
′ 6= 0, for i = 2, 3, 4). Let us also define

L1 = 3L− 4(A1 +A2 +A3 +A4).

We remark that L2
1 = L2 = 16, L1A

′′
i = 0 and A′′iA

′′
j = 0 for i 6= j in

{1, 2, 3, 4}.

Lemma 20. The class L1 is big and nef. Moreover if Γ is an effective (−2)-
class, we have L1Γ ≥ 0 and L1Γ = 0 if and only if Γ is one of the classes
A′′1, ..., A

′′
4, A5, . . . , A16.

Proof. Let

Γ = aL−
16∑
i=1

biAi

be an effective (−2)-class (thus
∑
b2i − 8a2 = 1). One has

L1Γ ≤ 0
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if and only if
6a ≤ b1 + b2 + b3 + b4.

Suppose Γ 6∈ {A5, . . . , A16}. Then a > 0, bi ≥ 0 and equation L1Γ ≤ 0 is
equivalent to

a2 ≤ 1

36
(b1 + · · ·+ b4)

2.

Using
(b1 + · · ·+ b4)

2 ≤ 4(b21 + · · ·+ b24) ≤ 4(b21 + · · ·+ b216)

we get

a2 ≤ 1

9
(b21 + · · ·+ b216)

and since
∑
b2i = 8a2 + 1, we have

a2 ≤ 1

9
(8a2 + 1),

thus a2 ≤ 1 and a ∈ {12 , 1}. Suppose that a = 1
2 . Then

∑i=16
i=1 b2i = 3 and

either there are 12 bi’s equal to 1
2 or (up to permutation of the indices) b1 = 3

2 ,
b2 = b3 = b4 = 1

2 . The first case is impossible since 3 = 6a > b1+b2+b3+b4.
The second case corresponds to A′′1, . . . , A′′4, and then L1A

′′
j = 0.

It remains to study the case a = 1, then
∑
b2i = 9 and

6 ≤ b1 + b2 + b3 + b4.

That implies bi ≤ 5
2 . Up to permutation we can suppose that the largest

bi with i ∈ {1, 2, 3, 4} is b1. Suppose b1 = 5
2 , then

∑
i≥2 b

2
i = 11

4 and
b2 + b3 + b4 ≥ 7

2 . One can suppose that b2 is the largest among b2, b3, b4,
then there are two cases : b2 = 2 or b2 = 3

2 . The first case is impossible
since one would obtain

∑
i≥2 b

2
i >

11
4 . Suppose b2 = 3

2 , then b
2
3 + b24 = 1

2 and
b3 + b4 ≥ 2, but this is also impossible.
Suppose that b1 = 2. Then

∑
i≥2 b

2
i = 5 and b2 + b3 + b4 ≥ 4. The largest

bi among b2, b3, b4 (say it is b2) is 2 or 3
2 . If b2 = 2, then b23 + b24 = 1

and b3 + b4 ≥ 2, which is impossible. If b2 = 3
2 , then b3 + b4 ≥ 5

2 and
b23 + b24 = 11

4 ,thus b3 = 3
2 and b4 ≥ 1 gets a contradiction.

It remains b1 = 3
2 , but then b2 = b3 = b4 = 3

2 . That implies bj = 0 for j ≥ 5.
But L− 3

2(A1 +A2 +A3 +A4) is not in the Néron-Severi group of the surface
(see Lemma 8).
We thus proved that the only effective (−2)-classes Γ such that L1Γ ≤ 0 are
A′′1, . . . , A

′′
4, A5, . . . , A16 and moreover L1Γ = 0 for these classes. Thus L1 is

nef and big. �

As before, one can prove that the linear system 3L1 define a degree 1
morphism which contracts A′′1, . . . , A′′4, A5, . . . , A16 onto singularities. Since
we assume that the Kummer surface is generic, it has Picard number 17 and
we conclude that the divisors A′′1, . . . , A′′4 are irreducible. Therefore:
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Corollary 21. The 16 (−2)-curves A′′1, . . . , A
′′
4, A5, . . . , A16 form a Nikulin

configuration C′ on the K3 surface X. The (−2)-class A′1 is not irreducible
and A′1 = 2A′′1 +A2 +A3 +A4.

Remark 22. i) One can check that the class L′ is big and nef; the image of
X by the linear system |3L′| is a surface with 12 nodal singularities and one
D4 singularity obtained by contracting A′′1, A2, A3, A4.
ii) We do not know yet if C′ is another Kummer structure on the Kummer
surface X, we intend to study that problem in a forthcoming paper.

3.2. An example of a Nikulin configuration when 2t is a square. Let
us consider the case t = 2 i.e. A is a (1, 2)-polarized abelian surface. Then
2t is a square and the method in Section 2.4 does not apply. We start by
recalling the following

Remark 23. Since t is even, by [6, Theorem 2.7 and Remark 2.10], up to
re-labelling the 16 curves (−2)-curves Aj , we can suppose that the classes

F1 = 1
2(L−A1 −A2 −A3 −A4), F2 = 1

2(L−A5 −A6 −A7 −A8),
F3 = 1

2(L−A9 −A10 −A11 −A12), F4 = 1
2(L−A13 −A14 −A15 −A16)

are contained in NS(X). For j ∈ {1, ..., 4}, we define

Bj = F2 −Aj
and for j ∈ {5, ..., 8}, we define

Bj = F1 −Aj .
These are (−2)-classes; they are effective since LBj > 0. We check moreover
that

BjBk = −2δjk,

where δjk is the Kronecker symbol. Let us prove the following result:

Proposition 24. The classes B1, . . . , B8, A9, . . . , A16 are 16 disjoint (−2)-
curves.

Proof. We have BkAj = 0 for k ∈ {1, . . . , 8} and j ∈ {9, . . . , 16}. It remains
to prove that B1, . . . , B8 are irreducible. We compute that F 2

1 = 0 = F 2
2 ,

F1F2 = 2. Since LF1 = 4, the divisor F1 is effective. The fact that F1 is
nef can be found in [6, Proposition 4.6], but for completeness, let us prove it
here. Suppose that F1 is not nef. Then there exist a (−2)-curve Γ such that
F1Γ = −a < 0. By [8, Remark 8.2.13], the divisor E = F1 − aΓ is effective,
moreover

E2 = 0, EΓ = a, (and F1 = E + aΓ).
Let us write E = αL−

∑
βiAi with α ∈ 1

2Z, and α > 0 since E is effective
and the lattice L⊥ is negative definite. Since L is nef and

4 = F1L = 8α+ aLΓ

with a > 0, that forces α = 1
2 and LΓ = 0. Thus Γ is one of the curves

Aj . But for these curves F1Aj ∈ {0, 1} is not negative, a contradiction.
Therefore F1 is nef and the linear system |F1| has no base points. We prove
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similarly that all the linear system |Fk|, k ∈ {1, 2, 3, 4} have no base points,
and then defines a fibration ψk : X → P1. Since F1Aj = 1 for j ∈ {1, ..., 4},
the fibration ψ1 has connected fibers. By the same kind of argument so is
ψ2. For k ∈ {5, ..., 16}, let us define

Ck = F1 −Ak
(so that in fact Bk = Ck for k ∈ {5, ..., 8}). The divisor Ck is an effective
(−2)-class and the 12 divisors

Ck +Ak, k ∈ {5, . . . , 16}
are distinct singular fibers of ψ1, with AkCk = 2. We now use [3, Proposition
11.4, Chapter III]: the Euler characteristic of X (equal to 24) is the sum∑

s e(fs) of the Euler numbers of all the singular fibers. By the Kodaira
classification of singular fibers of elliptic fibrations (see e.g. [3, Table 3,
Chapter V, Section 7]), the reducible fibers fs = Ck + Ak for k ≥ 5 satisfy
e(fs) ≥ 2. Moreover, by the above cited Table, a singular fiber fs containing
a smooth rational curve satisfies e(fs) = 2 if and only if it is the union of two
(−2)-curves D1, D2 with D1D2 = 2 and meeting transversally. Computing
the Euler characteristic of X, we see that necessarily e(Ck+Ak) = 2, for k ∈
{5, . . . , 16} and therefore the curves Bk = Ck, k ∈ {5, ..., 8} are irreducible
(−2)-curves. We proceed in a similar way with ψ2 for the curves Bk with
k ∈ {1, ..., 4}, and we thus obtain the claimed result. �

Remark 25. i) By the Proposition 24, we see that the elliptic fibration defined
by F1 contains 12 fibers of type I2. By general results on elliptic K3 surfaces,
the rank ρ of the Néron-Severi group is 14 = 12 + 2 plus the rank of the
Mordell-Weil group, which is the group generated by the zero section (we
can take A1 as zero section) and the sections of infinite order. Since we know
that ρ = 17 we get that the rank of the Mordell-Weil group is three. That
group contains the disjoint sections A2, A3 and A4. The remark is similar
for the fibration defined by F2.
ii) On the K3 surface X we have two Nikulin configurations

C =

16∑
i=1

Ai, C′ =
8∑
i=1

Bi +

16∑
i=9

Ai.

We do not know if these configurations define two Kummer structures on X.
We intend to come back on the subject later.
iii) It is also possible to check that the divisor L′ = 3L− 2(A1 + · · ·+A8) is
big and nef, L′2 = 8 and L′Γ = 0 for an effective (−2)-class Γ if and only if
Γ is in {B1, . . . , B8, A9, . . . , A16}.

Appendix

Why it was natural to study the case t = 1
2k(k+1) in the paper [15].

Since α2 = 1+2tβ2, the integer α is odd. Let k ∈ N be such that α = 2k+1
(then one has A1A

′
1 = 4k+2). The integer β is then solution of the equation

(2k + 1)2 − 2tβ2 = 1,
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which is equivalent to
tβ2 = 2k(k + 1).

Then
a = 2tβ, b = 2k + 1

are solutions of the three conditions in (2.3). Since a2 = 2t(b2− 1), one gets

(3.1) a2 = 2t · 4k(k + 1).

Thus 2t ·4k(k+1) must be the square of an integer and it is therefore natural
to define

t =
1

2
k(k + 1).

Then one computes easily that a = 2k(k + 1) and β = 2. Then one has

GCD(β, α0 − 1) = GCD(2, 2k) = 2,

thus as soon as α0 > 5, i.e. k > 2, one can apply Theorem 14. That were
the cases we studied in [15].

A table. We resume in the following table the fundamental solutions (α0, β0)
of the Pell-Fermat equation α2 − 2tβ2 = 1 for 2t ≤ 60. Recall that there
are non-trivial solutions if and only if 2t is not a square. Observe that when
2t = k(k+1) the minimal solution is (2k+1, 2), these correspond to Nikulin
configurations studied in the paper [15], we put a ∗ close to these cases. We
put a box around the cases with β0 odd, and a prime ′ when β0 is even but
such that the negative Pell-Fermat equation has a solution: these cases are
left out in this paper.

Table 1. Fundamental solutions of the Pell-Fermat equations

2t 2* 4 6* 8 10’ 12* 14 16 18 20* 22 24 26’ 28 30*
α0 3 - 5 3 19 7 15 - 17 9 197 5 51 127 11
β0 2 - 2 1 6 2 4 - 4 2 42 1 10 24 2

2t 32 34 36 38 40 42* 44 46 48 50’ 52 54 56* 58’ 60
α0 17 35 - 37 19 13 199 24335 7 99 649 485 15 19603 31
β0 3 6 - 6 3 2 30 3588 1 14 90 66 2 2574 4
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