Céline Righi Le Petit Fief Clairet 86280 Saint-Benoit, France Tel: 00 33 (0)5 49 50 11 46 e-mail: righi@math.univ-poitiers.fr

Research project

My research areas are the theory of Lie algebras and their representations. More precisely, I study the following problems related to ad-nilpotent ideals of a parabolic subalgebra of a complex simple Lie algebra :

- Characterization and enumeration of ad-nilpotent and abelian ideals.
- Combinatorial objects related to these ideals, for example certain labeled diagrams, Dyck paths, antichains.
- Index of the quotient of a Borel subalgebra by an ad-nilpotent ideal.

Characterizations of ad-nilpotent ideals

The study of ad-nilpotent ideals of a Borel subalgebra have been motivated by a result of D. Peterson. He stated that the number of abelian ideals of a Borel subalgebra of a simple Lie algebra \mathfrak{g} of rank l is 2^l . A proof of this result can be found in [6] and involves the affine Weyl group associated to \mathfrak{g} . In that paper, Kostant indicated connections of these abelians ideals with discrete series and made a link with his old (1965) results on the structure of $\wedge \mathfrak{g}$ in terms of commutative subalgebras of \mathfrak{g} .

The affine Weyl group plays an important role in the different characterizations of the ad-nilpotent ideals established by P. Cellini and P. Papi in [3] and [4]. Moreover, in [4], the ad-nilpotent ideals are parametrized by certain points of a canonical simplex. This description allowed them to find a formula for the number of ad-nilpotent ideals which depends on the Coxeter number, the cardinality and the exponents of the Weyl group. This formula also counts several other objects like real hyperplan arrangements ([2]), or the number of clusters which correspond to an irreducible root system ([5]).

On the other hand, when \mathfrak{g} is of classical type, the ad-nilpotent ideals can be encoded by certain subdiagrams of a (suitably shifted) Young diagram (see [15] and [3]). Others combinatorial objects are linked with ad-nilpotent ideals, like Dyck paths, Chebyshev polynomial, or Catalan and Motzkin numbers. Let us also mention the works of Panyushev, Sommers, and Suter ([9],[16],[17]) among others on this subject.

In [12], I generalized the characterization obtained by Paola Cellini and Paolo Papi on ad-nilpotent ideals of a Borel subalgebra to parabolic subalgebras. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and Δ the associated root system. Fix a system of positive roots Δ^+ and denote by $\Pi = \{\alpha_1, \ldots, \alpha_l\}$ the corresponding set of simple roots. Let $I \subset \Pi$. Denote by \mathfrak{p}_I the corresponding standard parabolic subalgebra of \mathfrak{g} . Observe that when $I = \emptyset$, then $\mathfrak{p}_{\emptyset} = \mathfrak{b}$ is a Borel subalgebra. Since ad-nilpotent ideals of a parabolic subalgebra are Borel-stable, we have the encoding of these ideals via certain elements of the affine Weyl group \widehat{W} (see [3]) called *Borel-compatible*. If an element of \widehat{W} corresponds to an ad-nilpotent ideal of a parabolic subalgebra \mathfrak{p}_I , we say that it is *I-compatible*. I gave in [12] a complete characterization of these ideals. Let $\widehat{\Pi} = \{\alpha_0\} \cup \Pi$ be the set of affine simple roots. In particular, an element in $w \in \widehat{W}$ is *I*-compatible if and only if it is Borel-compatible and satisfies :

$$w^{-1}(I) \subset \widehat{\Pi}$$

I established another characterization of ad-nilpotent ideals of a parabolic subalgebra in terms of faces in the alcove of the corresponding element in the affine Weyl group. Consequently, I obtained a generalization of Peterson's result. Let

 $\mathcal{A}b_I = \{ w \in \widehat{W}; w \text{ corresponds to an abelian ideal of } \mathfrak{p}_I \}.$

Set $n_0 = 1$ and let n_i , i = 1, ..., l, be the strictly positive integers such that the highest positive root $\theta = \sum_{i=1}^{l} n_i \alpha_i$. For $J \subset \widehat{\Pi}$, set $n_J = \prod_{\alpha_j \in J} n_j$. Let $w \in \widehat{W}$ be *I*-compatible, by the above consideration, $w^{-1}(I) \subset \widehat{\Pi}$, and so $n_{w^{-1}(I)}$ has a sense. By considering the volume of the faces of the fundamental alcove, I proved the following theorem :

Theorem [12]. Let $I \subset \Pi$, then

$$\frac{1}{n_I}\sum_{w\in\mathcal{A}b_I}n_{w^{-1}(I)}=2^{l-\sharp I}.$$

Since in type A and C the integers n_i , i = 0, ..., l depend only on the length of the α_i , one obtains as a corollary :

Theorem [12]. Let $I \subset \Pi$, if \mathfrak{g} is of type A_l or C_l , then the parabolic subalgebra \mathfrak{p}_I has exactly $2^{l-\sharp I}$ abelian ideals.

Combinatorial objects related to ad-nilpotent ideals

Young diagrams

To determine the number of abelian ideals when \mathfrak{g} is of type B or D, and the number of ad-nilpotent ideals in the classical case, I adapted the case by case encoding of these ideals by diagrams as in [15] and reformulated in [3]. The idea is to display the set of positive roots in a diagram of suitable shape. The shape and the filling of the diagrams in each type are chosen such that we obtain a bijection between ad-nilpotent ideals and north-west flushed subdiagrams. In the exceptional cases, the enumeration is obtained using GAP (see [12], [13]). Part of my current research project is to find a uniform formula like in the Borel case.

Dyck paths

A Dyck path of length 2n can be defined as a word of 2n letters u or d, having the same number of u and d, and such that there is always more u's than d's to the left of a letter. When \mathfrak{g} is of type A_l , there is a natural bijection between ad-nilpotent ideals of a Borel subalgebra and Dyck paths of length 2l + 2.

Let i be an ad-nilpotent ideal of a parabolic subalgebra \mathfrak{p}_I . Let

$$\mathfrak{i}^1 = \mathfrak{i}$$
 and $\mathfrak{i}^{k+1} = [\mathfrak{i}^k, \mathfrak{i}],$

for $k \ge 0$, be its central descending series. Recall that the index of nilpotence of i is the smallest integer k such that $i^{k+1} = \{0\}$ (i.e. the number of non zero terms in the central descending series). In [11, 13], I enumerated the number of ad-nilpotent ideals of \mathfrak{p}_I having a fixed index of nilpotence when \mathfrak{g} is of type A or C. The idea is to construct a map between root systems of different ranks and use the tools introduced in [1] related to Dyck paths.

Another interesting invariant of an ad-nilpotent ideal i of \mathfrak{p}_{\emptyset} is the maximal element I_i of the set $\{I \subset \Pi; i \text{ is an ad-nilpotent ideal of } \mathfrak{p}_I\}$. In type A_l , I established a bijection between the ad-nilpotent ideals i such that $\sharp I_i = r$ and Dyck paths of length 2l + 2 having r udu. These combinatorial results are published in [11].

Looking at some calculation with GAP on the other classical types, it seems that the number of ad-nilpotent ideals \mathfrak{i} of \mathfrak{p}_{\emptyset} such that $\sharp I_{\mathfrak{i}} = r$ are the same in type B and C. It could mean that this number depends on the exponents of the Weyl group associated to \mathfrak{g} . I am studying this question currently.

Antichains

Recall the definition of the following partial order on the set of positive roots Δ^+ : $\alpha \leq \beta$ if $\beta - \alpha$ is a sum of positive roots. An *antichain* is a subset of Δ^+ containing roots which are pairwise non comparable for \leq .

There is a natural bijection between ad-nilpotent ideals of a Borel subalgebra and antichains (see [9],[16], [4]). Panyushev established in [9] a duality between antichains of cardinality p and of cardinality l - p, in types A_l and C_l . By considering the natural bijection between ad-nilpotent ideals of a Borel subalgebra and the Dyck paths of length 2l + 2 in type A given in [9] and the bijection of [1], I established in [12] another duality. Part of my current work is to understand more deeply the sense of these dualities.

For any antichain Γ , let $\mathcal{I}(\Gamma)$ be the set of positive roots which are bigger than an element of Γ . In [10], D. Panyushev defines the map \mathfrak{X} between the set of antichains of Δ^+ : for an antichain Γ , $\mathfrak{X}(\Gamma)$ is the set of maximal elements for \leq of $\Delta^+ \setminus \mathcal{I}(\Gamma)$. He stated that \mathfrak{X} conserves his duality and established several conjectures on \mathfrak{X} and on the \mathfrak{X} -orbits. Since the definition of \mathfrak{X} is quite natural, one can expect that the properties of \mathfrak{X} are close to some properties of Δ^+ . Part of my research project is to study these conjectures using the tools developed from the study of ad-nilpotent ideals or using more combinatorial tools like Dyck paths.

Index of the quotient of a Borel subalgebra by an ad-nilpotent ideal

Let \mathfrak{g} be a complex finite-dimensional Lie algebra. For $f \in \mathfrak{g}^*$, we denote by $\mathfrak{g}^f = \{X \in \mathfrak{g}; f([X,Y]) = 0 \text{ for all } Y \in \mathfrak{g}\}$, the annihilator of f for the coadjoint representation of \mathfrak{g} . The index of \mathfrak{g} , denoted by $\chi(\mathfrak{g})$ is defined to be

$$\chi(\mathfrak{g}) = \min_{f \in \mathfrak{g}^*} \dim \mathfrak{g}^f.$$

It is well known that if \mathfrak{g} is an algebraic Lie algebra and G denotes its algebraic adjoint group, then $\chi(\mathfrak{g})$ is the transcendence degree of the field of G-invariant rational functions on \mathfrak{g}^* . For example, the index of a semisimple Lie algebra \mathfrak{g} is equal the rank of \mathfrak{g} . This can be obtained easily from the isomorphism between \mathfrak{g} and \mathfrak{g}^* via the Killing form.

Recently, the index of the quotient of a Borel subalgebra \mathfrak{b} by an adnilpotent ideal is considered in the works of P. Damianou, H. Sabourin and P. Vanhaecke on problems related to Toda-lattices and integrable systems. More precisely, let \mathfrak{g} be a simple complex Lie algebra. Denote by \mathfrak{g}_{α} the root space of \mathfrak{g} relative to a root α . Let $\Phi \subset \Delta^+$ be such that $\Pi \subset \Phi$. Then one can deduce from Φ an Hamiltonian system if and only if $\bigoplus_{\alpha \in \Delta^+ \setminus \Phi} \mathfrak{g}_{\alpha}$ is an ad-nilpotent ideal of \mathfrak{b} . The problem is to determine whether this system is integrable.

For any ad-nilpotent ideal \mathfrak{i} of \mathfrak{b} , $(\mathfrak{b}/\mathfrak{i})^*$ is a Poisson submanifold of \mathfrak{b}^* . Its Poisson rank L is equal to the dimension of $\mathfrak{b}/\mathfrak{i}$ minus the index of $\mathfrak{b}/\mathfrak{i}$. Since the number of equations required for the previous Hamiltonian system to be integrable is dim $((\mathfrak{b}/\mathfrak{i})^*) - L/2$, the calculation of the index of $\mathfrak{b}/\mathfrak{i}$ is involved in this problem.

I am currently working with R.Yu on the determination of the index of the quotient of a Borel subalgebra \mathfrak{b} by an ad-nilpotent ideal \mathfrak{i} . Inspired from the results of A.Panov [8] and of P.Tauvel and R.Yu [18], we have obtained an upper bound for the index of $\mathfrak{b}/\mathfrak{i}$ which is excat in certain cases. However, we have an example in type C where the bound is not exact. Our present task is to find conditions for the bound to be exact. We believe to have a proof that the bound is exact in type A.

References

 G. E. ANDREWS, C. KRATTENTHALER, L. ORSINA AND P. PAPI. Ad-nilpotent bideals in sl(n) having a fixed class of nilpotence : combinatorics and enumeration. Trans. Amer. Math. Soc. 354, 3835-3853.

- C.A. ATHANASIADIS. On noncrossing and nonnesting partitions for classical reflection groups. Electronic J. of Comb. 5 (1998) #R42
- [3] P. CELLINI, P. PAPI. Ad-nilpotent ideals of a Borel subalgebra. J. Algebra 225 (2000), 130-140.
- [4] P. CELLINI, P. PAPI. Ad-nilpotent ideals of a Borel subalgebra II. J. Algebra 258 (2002), 112-121.
- [5] S. FOMIN, A. ZELEVINSKY. Y-systems and generalized associahedra. Ann. of Math. 158 (2003), 977-1018.
- [6] B. KOSTANT. The set of Abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations. Int. Math. Res. Not. 5 (1998), 225-252.
- [7] B. KOSTANT. Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra. Invent. Math. 158 (2004), 181-226.
- [8] A.N. PANOV. On index of certain nilpotent Lie algebra. arXiv:0801.3025v1
- [9] D.I. PANYUSHEV. Ad-nilpotent ideals of a Borel subalgebra : generators and duality. J. Algebra 274 (2004), 822-846.
- [10] D.I. PANYUSHEV. On orbits of antichains of positive roots. arXiv:0711.3353v1
- [11] C. RIGHI. Number of "udu" of a Dyck path and ad-nilpotent ideals of parabolics subalgebra of $sl_{l+1}(\mathbb{C})$. Séminaire Lotharingien de Combinatoire 59 (2008), article B59c.
- [12] C. RIGHI. Ad-nilptent ideals of a parabolic subalgebra. J. Algebra 319 (2008) 1555-2584.
- [13] C. RIGHI. Characterization and enumeration of ad-nilpotent ideals of a parabolic subalgebra of a simple Lie algebra. PhD thesis. (2007)
- [14] C. RIGHI. Enumeration of ad-nilpotent ideals of parabolic subalgebras for exceptional types, available on arXiv math.RT/0804.2404v1 (2008).
- [15] J.Y. Shi. The number of \oplus -sign types. Quart. J. Math. Oxford 48 (1997), 93-105.
- [16] E. SOMMERS. B-Stable Ideals in the Nilradical of a Borel Subalgebra. Canadian Mathematical Bulletin 48 (2005), 460-472.
- [17] R. SUTER. Abelian ideals in a Borel subalgebra of a complex simple Lie algebra. Invent. Math. 156 (2004), 175-221.
- [18] P. TAUVEL, R.W.T.YU. Sur l'indice de certaines algbres de Lie. Ann. Inst. Fourier (Grenoble) 54 (2004), no. 6, 1793-1810 (2005).