
Université de Poitiers
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FICHE DE TRAVAUX DIRIGÉS NO 1

Il a été suggéré qu’une partie des enseignements de master s’effectue en anglais. Sans som-
brer dans le ridicule, on peut introduire un certain multilinguisme à travers la documentation
ou le matériel pédagogique. À titre d’essai, certains énoncés d’exercices, peut-être tous, de ces
fiches de travaux dirigés seront écrits en anglais. Un bénéfice immédiat et indiscutable sera
l’acquisition des termes usuels de la discipline dans la langue de Shakespeare.

Otherwise stated, R, Rn, and more generally topological spaces, are equipped with their
Borel measurable structure. So, the Borel σ-algebras B(R), B(Rn), B(E), will be usually
omitted in notations. General states spaces will be denoted by (E, E), (F,F), etc.

Exercice 1. — Let (Ω,A,P) be a probability space. Suppose that X : Ω → R is a function
which assumes only countably many values a1, a2, . . . ∈ R.

(i) Show that X is a random variable if and only if

X−1{ak} ∈ A for all k = 1, 2, . . . (∗)

(ii) Suppose that the former property (∗) holds. Show that

E[|X|] =
∞∑

k=1

|ak|P{X = ak}.

(iii) If (∗) holds and E[|X|] < ∞, show that

E[X] =
∞∑

k=1

ak P{X = ak}.

(iv) If (∗) holds and f : R → R is a bounded Borel measurable function, show that

E[f(X)] =
∞∑

k=1

f(ak)P{X = ak}.

Answer. — (i) The condition (∗) is necessary: since X−1(B) ∈ A for every Borel measurable
set B ∈ B(R), it is also the case for every B = {ak}. Conversely, if (∗) holds, then for every
B ⊂ R, especially B ∈ B(R), one has X−1(B) = X−1{ak : ak ∈ B} = X−1(

⋃
ak∈B{ak}) =⋃

ak∈B X−1{ak} ∈ A since it is a countable union of A-measurable sets.

(ii) The sets ({X = ak})∞k=1 form a countable measurable partition of Ω, thus 1 = 1Ω =
1∪∞

k=1{X=ak} =
∑

k 1{X=ak}. Then it is a simple use of Fubini–Tonelli’s theorem to the non-
negative measurable function (ω, k) ∈ Ω ×N∗ 7→ 1{X=ak}(ω)|X(ω)| integrated with respect
to the σ-finite product measure P⊗ (

∑∞
k=1 δ{k}) :

E[|X|] =
∫

Ω

|X(ω)|P(dω) =
∫

Ω

1× |X(ω)|P(dω) =
∞∑

k=1

∫
Ω

1{X=ak} × |X(ω)|P(dω)

=
∞∑

k=1

∫
Ω

1{X=ak} × |ak|P(dω) =
∑

k

|ak|
∫

Ω

1{X=ak}P(dω) =
∞∑

k=1

|ak|P{X = ak}.
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This result is a such usual corollary of Fubini–Tonelli’s theorem, it is invoked by saying that
expectaction is additive with respect to countable sums of non-negative random variables.
(iii) When one of the three (double or multiple) integrals is finite, all of them are so and one
can remove safely absolute values: that’s Fubini’s theorem. Here, E[|X|] < ∞ if and only if∑∞

k=1 |ak|P{X = ak} < ∞ and then

E[X] =
∞∑

k=1

ak P{X = ak}.

(iv) Consider f : R → R a bounded Borel measurable function, or more generally any
bounded function (since we consider in fact f |{ak:1≤k<∞} : {ak : 1 ≤ k < ∞} → R there
is no real measubility condition). Since f is bounded E[|f(X)|] is finite, then Once again,
by Fubini’s theorem applied to the non-negative measurable function (ω, k) ∈ Ω × N∗ 7→
1{X=ak}(ω)f(X(ω)) integrated with respect to the σ-finite product measure P⊗(

∑∞
k=1 δ{k}),

we have

E[f(X)] =
n∑

k=1

f(ak)P{X = ak}.

Remark. — The results of the previous exercice are obvious when X takes only finitely many
values.

Exercice 2. — Let X : (Ω,A,P) → R be a random variable. The distribution function FX

of the law or distribution of X is defined by

FX(x) = P{X ≤ x}, x ∈ R.

(i) Prove that FX has the following properties:
a) 0 ≤ FX ≤ 1, limx→−∞ FX(x) = 0, limx→+∞ FX(x) = 1 ;
b) FX is increasing, i.e. non decreasing ;
c) FX is right continuous, i.e. FX(x) = limh↓0 FX(x + h).

(ii) Let g : R → R be a Borel mesurable function such that E[|g(X)|] < ∞. Prove that

E[g(X)] =
∫ +∞

−∞
g(x) dFX(x),

where the integral on the right is interpreted in the Lebesgue–Stieljes sense.
(iii) Let p : R → R+ be a non negative measurable function on R. We say that the law of
X admits the density p if

FX(x) =
∫ x

−∞
p(y) dy for all x ∈ R.

We know that the law at time t of a 1-dimensional Brownian motion started from 0, Bt, has
the density

p(x) =
1√
2πt

e−x2/2t, x ∈ R.

Find the density of B2
t .

Answer. — (i) a) Obvious, use continuity properties of probablity measures along mono-
tone sequences of measurable sets.
b) Obvious, probability measures are monotone.
c) Once again, this is the continuity property of probability measures along decreasing
measurable sets.
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(ii) By definition ∫ +∞

−∞
g(x) dFX(x) =

∫ +∞

−∞
g(x)µX(dx)

which is equal to E[g(X)] by transfert theorem. More precisely, dFX must be seen as the
unique probability measure whose FX is the distribution function, that is to say µX .

(iii) The random variable B2
t is non-negative, it distribution function is 0 over R∗

− and for
x ≥ 0, FB2

t
(x) = P{B2

t ≤ x} = P0{Bt ∈ [−
√

x,
√

x]} = 2P0{Bt ≤
√

x} − 1 = 2FBt
(
√

x)− 1.
This shows that FB2

t
is quite regular over R∗

+ with derivative

p(x) =
1√
x

F ′
Bt

(
√

x) =
1√

2πtx
e−x/2t

Thus,

p(x) =
1R+(x)
√

2πtx
e−x/2t, x ∈ R

is a density of the law of B2
t when the initial value is 0 (it is a bit more complicated when

B0 6= 0 since the symmetry argument used in computation is no longer true).

Exercice 3. — Let (Hi)i∈I be a family of σ-algebras on Ω. Prove that

H =
⋂
i∈I

Hi =
{
A ⊂ Ω : A ∈ Hi for all i ∈ I

}
is again a σ-algebra on Ω.

Answer. — This is absolutely obvious. It is always funny to look at the case where I is an
empty set. What should be H in this case? Since the infimum of the empty set in an ordered
set should the the natural supremum, if any, of this set, one should take H = P(Ω).

Exercice 4. — (i) Let X : (Ω,A,P) → R be a random variable such that

E
[
|X|p

]
< ∞ for some 0 < p < ∞.

Prove the Markov(–Chebychev) inequality

P{|X| ≥ λ} ≤ 1
λp

E
[
|X|p

]
for all λ ≥ 0.

(Hint. — We have
∫
Ω
|X|p dP ≥

∫
A
|X|p dP, where A = {|X| ≥ λ}.)

(ii) Suppose that there exists k > 0 such that

M = E[exp(k|X|)] < ∞.

Prove that P{|X| ≥ λ} ≤ M e−kλ for all λ ≥ 0.

Answer. — (i) For λ ≥ 0, we have

P{|X| > λ} = P{|X|p > λp} =
∫
{|X|p>λp}

1P(dω)

≤
∫
{|X|p>λp}

|X|p

λp
P(dω) ≤

∫
Ω

|X|p

λp
P(dω) =

1
λp

E
[
|X|p

]
.

Note that we allow λ to be 0 since there is no 0/0 case in this computation.

(ii) One has

P{|X| > λ} = P{exp(k|X|) > exp(kλ)} ≤ 1
exp(kλ)

E[exp(k|X|)] ≤ M exp(−kλ),
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bry the former inequality.

Exercice 5. — Let X, Y : (Ω,A,P) → R be two independent random variables and assume
for simplicity that X and Y are bounded. Prove that

E[XY ] = E[X]E[Y ].

(Hint. — Assume that |X| ≤ M , |Y | ≤ N . Approximate X and Y by simple random variables
Xm(ω) =

∑m
i=1 xi1Ai(ω), Ym(ω) =

∑n
j=1 yj1Bj (ω) respectively, where Ai = X−1([xi, xi+1[),

Bj = Y −1([yj , yj+1[), −M = x0 < x1 < · · · < xm−1 < xm = M , −N = y0 < y1 < · · · <
yn−1 < yn = N . Then

E[X] ≈ E[Xm] =
∑

0≤i≤m

xi P(Ai), E[Y ] ≈ E[Yn] =
∑

0≤j≤n

yi P(Bi)

and
E[XY ] ≈ E[XmYn] =

∑
0≤i≤m
0≤j≤n

xiyj P(Ai ∩Bj)

and so on. . .)

Answer. — We skip the reduction of the from integrable variables to bounded ones: replace
X by 1{|X|≤M}X and Y by 1{|Y |≤N}Y which are still independent variables and whose
expectations are close to X and Y ones for M and N sufficiently large. The case of the
products may be a little more delicate, so, forget about it.

Discretization allows that ‖X−Xm‖∞ ≤ ε and ‖Y −Ym‖∞ ≤ ε. Then |E[X]−E[Xm]| ≤ ε,
|E[Y ]−E[Yn]| ≤ ε, and

|E[X]E[Y ]−E[Xm]E[Yn]| = |E[X]E[Y ]−E[X]E[Yn] + E[X]E[Yn]−E[Xm]E[Yn]|
≤ |E[X]E[Y ]−E[X]E[Yn]|+ |E[X]E[Yn]−E[Xm]E[Yn]|
≤ Mε + Nε = (M + N)ε.

Moreover,

‖XY −XmYm‖∞ = ‖XY −XYm + XYm −XmYm|∞
≤ ‖XY −XYm‖∞ + ‖XYm −XmYm|∞ ≤ Nε + Mε = (M + N)ε

and E[XY ]−E[XmYn]| ≤ (M + N)ε. Finally, since E[XmYn] = E[Xm]E[Yn],

|E[XY ]−E[X]E[Y ]| = |E[XY ]−E[XmYn] + E[XmYn]−E[X]E[Y ]|
≤ |E[XY ]−E[XmYn]|+ |E[XmYn]−E[X]E[Y ]|
≤ |E[XY ]−E[XmYn]|+ |E[Xm]E[Yn]−E[X]E[Y ]|
≤ (M + N)ε + (M + N)ε = 2(M + N)ε.

Thus |E[XY ]−E[X]E[Y ]| is arbitrarily close too zero, so E[XY ] = E[X]E[Y ].

Exercice 6. — Let (Ω,A,P) be a probability space and let A1, A2, . . . be sets in A such
that

∞∑
k=1

P(An) < ∞.

Prove the weak sense of the Borel–Cantelli lemma:

P
( ∞⋂

n=1

∞⋃
k=n

Ak

)
,= 0,

that is to say: the set of all ω ∈ Ω such that ω belongs to infinitely many A′
ks has probability

zero.
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Answer. — This is obvious: for every N ≥ 1, on has
∞⋂

n=1

∞⋃
k=n

Ak ⊂
∞⋃

k=N

Ak and P
( ∞⋂

n=1

∞⋃
k=n

Ak

)
≤ P

( ∞⋃
k=N

Ak

)
≤

∞∑
k=N

P(Ak).

The term on the right being the remainder of a convergent series, it tends to zero as N →∞.
This also proves that if P

(⋂∞
n=1

⋃∞
k=n Ak

)
> 0, then

∑∞
n=1 P(An) = ∞.

Let us see the strong sens of the Borel–Cantelli lemma. Suppose moreover that (An)n≥1

are independent events. Then, if
∑

n P(An) = ∞, P
(⋂∞

n=1

⋃∞
k=n Ak

)
= 1 (it is also a strictly

positive probability).
For 1 ≤ n ≤ N ,

P
( ⋃

n≤m≤N

Am

)
= 1−P

( ⋂
n≤m≤N

Ac
m

)
= 1−

∏
n≤m≤N

P(Ac
m) = 1−

∏
n≤m≤N

(
1−P(Am)

)
.

Since 1− x ≤ e−x for every x ≥ 0,

P
( ⋃

n≤m≤N

Am

)
≥ 1− exp

(
−

N∑
m=n

P(Am)
)

.

By hypothesis, when N goes to infinity,
∑N

m=n P(Am) tends, for every n, to infinity and then

P
( ⋃

n≤m

Am

)
= 1

for every n, then the conclusion follows by decreasing limit.

Exercice 7. — Let Ω be non empty set.
(i) Suppose that A1, . . . , Am are disjoints subset of Ω such that Ω =

⋃m
k=1 Ak. Prove that

the family A consisting of all unions of some, none, or all A1, . . . , Am is a σ-algebra on Ω.
(ii) Prove that any finite σ-algebra A on Ω is of the type described in the former question.
(iii) Let A be a finite σ-algebra on Ω and let X : Ω → R be a A-measurable function. Prove
that X assumes only finitely many possible values. More precisely, there exists a disjoint
family of subsets B1, . . . , Bn ∈ A and real numbers x1, . . . , xm such that

X =
m∑

i=1

xi1Bi .

Answer. — (i) Let (Ak)m
k=1 be a finite partition of the set Ω and let A = {

⋃
k∈K Ak : K ⊂

{1, . . . ,m}. We shall prove that A is a σ-algebra on Ω :
a) taking K = {1, . . . ,m}, one has Ω ∈ A (and taking K = ∅, one has ∅ ∈ Ω);
b) if A =

⋃
k∈K Ak ∈ A, then

Ac = Ω \A =
( ⋃

k∈{1,...,m}

Ak

)
\

( ⋃
k∈K

Ak

)
=

⋃
k∈{1,...,m}\K

Ak =
⋃

k∈Kc

Ak

which is in A;
c) if B` =

⋃
k∈K`

Ak ∈ A, ` = 1, 2, . . ., then⋃
`

B` =
⋃
`

( ⋃
k∈K`

Ak

)
=

⋃
k∈K

Ak, with K =
⋃

` K`,

which is in A.
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(ii) Let A a finite σ-algebra on Ω. For ω, ω′ ∈ Ω we set ω R ω′ if and only if, for every
A ∈ A, ω ∈ A implies ω′ ∈ A. It is easy to prove that R : Ω × Ω → {true, false} is an
equivalence relation (reflexivity, symmetry, transitivity). Its equivalence classes A1, . . . , Am

form a partition of Ω and, moreover, each Ak is in A: for any ω ∈ Ak, ω̇ = Ak =
⋂

A∈A,ω∈A A.
Furthermore, if A ∈ A and ω ∈ A then ω̇ = Ak ⊂ A, thus A is a (finite) union of Ak.

(iii) Let PX = {X−1{x} : x ∈ R}. Since X is A/B(R)-measurable, PX ⊂ A and is finite.
This shows that there is only finitely many x ∈ R such that X−1{x} 6= ∅, i.e. X assumes
only finitely many possible values. Let x1, . . . , xn be these values, Bi = X−1{xi}, and then

X =
n∑

i=1

xi1Bi
.

One should notice that, since X is constant over each Ak,

X =
m∑

k=1

x′k1Ak

where x′k is the value taken by X on Ak.

Remark. — The last question can be setted with X : (Ω,A) → (E, E) where (E, E) is a
measurable space such that all singletons belong to E , but one would have to write anew the
last formula since the sum may have no meaning if E is not a vector space. Moreover, one
can take Bi = Ai if there is no need for x1, . . . , xn to be distincts.

Exercice 8. — Let B = (Bt)t≥0 be a Brownian motion on R with B0 = 0, and put E = E0.

(i) Show that
E

[
eiθXt

]
= exp(−θ2t/2) for all θ ∈ R.

(Hint. — Compute the characteristic function of the standard normal distribution N (0, 1) by
solving an ordinary differential equation and deduce the result from this computation.)

(ii) Use the power series expansion of the exponential function on both sides, compare the
terms with the same power of θ and deduce that

E
[
B4

t

]
= 3t2

and more generally that

E
[
B2k

t

]
=

(2k)!
2kk!

tk, k ∈ N.

(iii) If you feel uneasy about the lack of rigour in the method in (ii), you can proceed as
follows: we have

E0[f(Bt)] =
1√
2πt

∫
R

f(x) e−x2/2t dx

for all function f such that the integral on the right converges ; apply this to f(x) = x2k and
use integration by parts and induction on k.

(iv) Suppose that B is a n-dimensional Brownian motion. Prove that

Ex
[
‖Bt −Bs‖4

]
= n(n + 2)|t− s|2

by using (ii) and induction on n. Answer. — (i) Let Z : (Ω,A,P) → R a random variable
with standard normal distribution. Its characteristic function is defined by

φ(θ) = E
[
eiθZ

]
=

∫
R

eiθx e−x2/2 dx√
2π

, θ ∈ R.
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We can differentiate φ to obtain

φ′(θ) =
∫
R

ix eiθx e−x2/2 dx√
2π

=
∫
R

ix eiθx e−x2/2 dx√
2π

= −i
∫
R

eiθx
(
−x e−x2/2

) dx√
2π

= −i
∫
R

eiθx d
dx

(
e−x2/2

) dx√
2π

= −i
[
eiθx e−x2/2

√
2π

]+∞

−∞
− θ

∫
R

eiθx e−x2/2 dx√
2π

= −θφ(θ)

The differential equation φ′(θ) = −θφ(θ), φ(0) = 1 admits a unique solution on R. We check
that θ 7→ exp(−θ2/2) is a solution, hence the solution: φ(θ) = exp(−θ2/2) for all θ ∈ R.

Let’s consider Bt. We know that Bt/
√

t has standard normal distribution, then

ϕBt
(θ) = E

[
eiθBt

]
= E

[
ei(θ

√
t)(Bt/

√
t)
]

= φ
(
θ
√

t
)

= exp(−θ2t/2), θ ∈ R.

(ii) On one side

E
[
eiθBt

]
= E

[ ∞∑
n=0

(iθBt)n

n!

]
=

∞∑
n=0

(iθ)n

n!
E[Bn

t ],

on the other side,

exp(−θ2t/2) =
∞∑

n=0

(−θ2t)n

2nn!
.

By identifying the different powers, one has for every n ≥ 0

E[B2n+1
t ] = 0 and E[B2n

t ] =
(2n)!
2nn!

tn,

in particular, for n = 2, E[B4
t ] = 24/4/2× t2 = 3t2.

(iii) Note that Bt has N (0, t) distribution when the initial value is 0. Then call Mn(t) =
E[Bn

t ]. One has, for n ≥ 1,

Mn(t) =
∫
R

xn e−x2/2t dx√
2π

= −t

∫
R

xn−1
(
−x/t e−x2/2t

) dx√
2π

= −t

[
xn−1 e−x2/2t

√
2π

]∞
−∞

+ (n− 1)t
∫
R

xn−2 e−x2/2t dx√
2π

= 0 + (n− 1)tMn−2(t).

Then,

M2n(t) = (2n− 1)(2n− 3)× · · · × 3× 1× tnM0(t)

=
2n(2n− 1)(2n− 2)(2n− 3)× · · · × 4× 3× 2× 1

2n × n(n− 1)× · · · × 2× 1
tnM0(t) =

(2n)!
2nn!

tn

and
M2n+1(t) = (2n)(2n− 2)× · · · × 4× 2× tnM1(t) = 2nn!tnM1(t) = 0

since M0(t) = 1 and M1(t) = 0.

(iv) Set τ = |t−s|. Whatever is the initial value, we know that Z = Bt−Bs = (Z1, . . . , Zn) has
N (0, τ Idn) n-dimensional normal distribution: Zi are independent and each Zi has N (0, τ)
normal distribution. Then ‖Z‖2 = Z2

1 + · · ·+ Z2
n and

‖Z‖4 =
n∑

i=1

Z4
i + 2

∑
1≤i<j≤n

Z2
i Z2

j ,



8 Continuous Time Processes. — Fiche de travaux dirigés no 1

then, by linearity and independance,

E[‖Z‖4] =
n∑

i=1

E
[
Z4

i

]
+ 2

∑
1≤i<j≤n

E
[
Z2

i

]
×E

[
Z2

j

]
= nE

[
Z4

1

]
+ 2

n(n− 1)
2

E
[
Z2

1

]2 = 3nτ2 + n(n− 1)τ2 = n(n + 2)τ2.

Exercice 9. — To illustrate that the (finite-dimensional) distributions alone do not give
all the information regarding the continuity properties of a process, consider the following
example:

Let (Ω,A,P) = (R+,B(R+), µ) where µ is a probability measure on R+ with no mass on
single points. Define

Xt(ω) =
{ 1 if t = ω

0 otherwise
and

Yt(ω) = 0 for all (t, ω) ∈ R+ ×R+.

Prove that x = (Xt)t≥0 and y = (Yt)t≥0 have the same (finite-dimensional) distributions and
that X is a version of Y . And yet we have that t 7→ Yt(ω) is continuous for all ω ∈ Ω, while
t 7→ Xt(ω) is discontinuous for all ω ∈ Ω.

Answer. — For every t ≤ 0, P{Xt = 1} = P{ω ∈ Ω : Xt(ω) = 1} = P{ω ∈ Ω : ω = t} =
µ{t} = 0. Thus, since all possible values of X are {0, 1}, for every 0 ≤ t1 < t2 < · · · < tn,
P{Xt1 = 0, . . . , Xtn = 0} = 1 which is the same as Y . This shows that X and Y have the
same finite dimensional distributions. We recall that X and Y are versions of each others if
and only if P{ω ∈ Ω : Xt(ω) = Yt(ω)} = 1 for all t ≥ 0. Here for a given t ≥ 0, we have
P{ω ∈ Ω : Xt(ω) 6= Yt(ω)} = µ{t} = 0. Thus X and Y are also versions of each others.

Exercice 10. — A stochastic process X = (Xt)t≥0 is called stationary if X has the same
distribution as (Xt+h)t≥0 for all h ≥ 0. Prove that the Brownian motion B = (Bt)t≥0 has
stationary increments, i.e. that the process (Bt+h −Bt)h≥0 has the same distribution for all
t ≥ 0.

Answer. — Immediate. Use (∗∗) for instance. More generally, if X is a homogeneous Markov
process with values in R whose transition function P satisfies Pt(x,B) = µt(B−x) where µt

is a probability measure on R, then X as stationary increments.

Exercice 11. — Prove that, if B = (B(1), . . . , B(n)) is a n-dimensional Brownian motion
with independent initial coordinates (B(1)

0 , . . . , B
(n)
0 ), then the 1-dimensional processes B(i) =

(B(i)
t )t≥0, 1 ≤ i ≤ n, are independent 1-dimensional Brownian motions.

Answer. — Il suffit de regarder la caractérisation en terme de processus à accroissements
indépendants gaussiens et de voir que toutes les variables réelles obtenues sont indépendantes
et ont la loi qui convient. (C’est trop lourd pour etre ecrit. Passer par les fonctions car-
actéristiques ? Ça laisse les étudiants très sceptiques.

Exercice 12. — Let B = (Bt)t≥0 be a Brownian motion and fix t0 ≥ 0. Prove that

B̃t = Bt0+t −Bt0 , t ≥ 0,

is a Brownian motion.

Answer. — Il suffit de regarder la caractérisation en terme de processus à accroissements
indépendants gaussiens.

Exercice 13. — Let B = (Bt)t≥0 be a 2-dimensional Brownian motion and put

D% = {x ∈ R2 : |x| < %} for % > 0.
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Compute P0{Bt ∈ D%}.

Answer. — We have

P0{Bt ∈ D%} =
∫

D%

e−((x2+y2)/2t
dxdy

2πt
=

∫ %

0

∫ 2π

0

r

t
e−r2/2t dr = −

[
e−r2/2t

]%

0
= 1− e−%2/2t.

Exercice 14. — Let B = (Bt)t≥0 be a n-dimensional Brownian motion and let K ⊂ Rn

have zero n-dimensional Lebesgue measure. Prove that the expected total time spent in K by
B is zero. (Potential theoritical remark. — This implies that the Green measure associated
with B is absolutely continuous with respect to the Lebesgue measure.)

Answer. — By Fubini’s theorem, we have

Ex

[∫ ∞

0

1{Bt∈K} dt

]
=

∫ ∞

0

Ex
[
1{Bt∈K}

]
dt

=
∫ ∞

0

∫
Rn

1{y∈K} e−‖y−x‖2/2t dy

(2πt)n/2
dt =

∫ ∞

0

0 dt = 0.

This result simply use the fact fact the law of each Bt, t > 0, is absolutely continuous with
respect to the Lebesgue measure. Many other processes share the same property (uniform
motion on R, compensated Poisson process, . . .).

Exercice 15. — Let B = (Bt)t≥0 be a n-dimensional Brownian motion started from 0 and
let O ∈ Rn×n be a (constant) orthogonal matrix, i.e. OOt = Idn. Prove that

B̃t = OBt, t ≥ 0,

is also a Brownian motion.

Answer. — C’est clairement un processus à accroissements indépendants. Ces accroissements
sont des images par une application linéaire de vecteurs gaussiens, ce sont donc des vecteurs
gaussiens. Leur vecteur moyen est nul comme il se doit et leur matrice de covariance est
inchangée (il suffit de l’écrire).

Exercice 16 (Brownian scaling property). — Let B = (Bt)t≥0 be a 1-dimensional
Brownian motion and let c > 0 be a constant. Prove that

B̂t =
1
c
Bc2t, t ≥ 0,

is also a Brownian motion.

Answer. — C’est encore un processus à accroissements indépendants. Il suffit de déterminer
la loi des accroissements, ce qui est presque immédiat.

Exercice 17 (à revoir !). — If Xt : (Ω,A,P) → R, t ≥ 0, is a continuous stochastic
process, then, for p > 0, the p’th variation process of X, 〈X, X〉(p) is defined by

〈X, X〉(p)
t = lim

∆tk→0

∑
0=t1<t2<···<tn=t

∣∣Xtk+1 −Xtk

∣∣p,
where ∆tk = tk+1−tk, as a limit for the convergence in probability taken over all subdivisions
of [0, t].

In particular, if p = 1 this process is called the total variation process of X, and if p = 2
this is called the quadratic variation process.

For 1-dimensional brownian motion B we now prove that the quadratic variation process
is simply

〈B,B〉t(ω) = 〈B,B〉(2)t (ω) = t almost surely.

Proceed as follows:
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(i) Define ∆Bk = Btk+1 −Btk
and put

Yt(ω) =
∑

0=t1<t2<···<tn=t

(
∆Bk(ω)

)2

.

Show that
E

[
(Yt − t)2

]
= 2

∑
0=t1<t2<···<tn=t

(∆tk)2

and deduce that Yt → t in L2(Ω,A,P) as ∆tk → 0.
(ii) Use (i) to prove that almost surely paths of Brownian motions do not have a bounded
variation on [0, t], i.e. the total variation of Brownian motion is infinite almost surely.

Exercice 18. — Let Ω = {1, 2, 3, 4, 5, } and U be the collection

U =
{
{1, 2, 3, }, {3, 4, 5}

}
of subsets of Ω. Find the smallest σ-algebra containing U (i.e. the σ-algebra σ(U) generated
by U).
(i) Define X : Ω → R by

X(1) = X(2) = 0, X(3) = 10, X(4) = X(5) = 1.

Is X measurable with respect to σ(U)?
(ii) Define Y : Ω → R by

Y (1) = 1, Y (2) = Y (3)Y (4) = Y (5) = 1.

Find the σ-algebra σ(Y ) generated by Y .

Exercice 19. — Let (Ω,A,P) be a probability space and let p ∈ [1,∞]. A sequence (fn)∞n=1

of functions in Lp(P) = Lp(Ω,A,P;R) is called a Cauchy sequence if

‖fn − fm‖p as m,n →∞.

The sequence is called convergent if there exists f ∈ Lp(P) such that fn → f in Lp(P).
Prove that every convergent sequence is a Cauchy sequence.
A fundamental theorem in measure theory states that the converse is also true: every

Cauchy sequence in Lp(P) is convergent. A normed linear space with this property is called
complete. Thus, the Lp(P) spaces are complete.

Exercice 20. — Le B be a 1 dimensional Brownian motion, σ ∈ R a constant and 0 ≤ s ≤ t.
Use (∗∗) to prove that

E
[
exp

(
σ(Bs −Bt)

)]
= exp

(
1
2σ2(s− t)

)
.


