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Abstract. The parareal algorithm is a numerical method to integrate evolution problems on parallel computers. While this
algorithm is effective for diffusive problems, its convergence properties are much less favorable for hyperbolic problems. We
analyze in this paper a recently proposed variant of the parareal algorithm for hyperbolic problems for the case of systems of
second order ordinary differential equations.
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INTRODUCTION

The parareal algorithm is a time parallel time integration method for evolution problems introduced by Lions, Maday
and Turinici in [1]. It can be used to compute in parallel an approximate solution of the system of ordinary differential
equations (ODEs)

u′(t) = f (u(t)), t ∈ (0,T), u(0) = u0, (1)

where f : RM → RM andu : R → RM. First, the time domain(0,T) is decomposed intoN-time subdomainsΩn =
(Tn−1,Tn), n = 1,2, . . . ,N, and we set for simplicityTn−Tn−1 = ∆T. Then, using a coarse propagatorG(Tn,Tn−1,v),
which gives a rough approximation of the solutionu(Tn) of (1) with initial conditionsu(Tn−1)= v, and a fine propagator
F(Tn,Tn−1,v), which gives a more accurate approximation, the algorithm starts with an initial approximationU0

n ,
n = 0, . . . ,N, obtained for example from the coarse propagator,

U0
n = G(Tn,Tn−1,U

0
n−1), U0

0 = u0, (2)

and then performs fork = 0,1, . . . the correction iteration

Uk+1
n+1 = G(Tn+1,Tn,U

k+1
n )+F(Tn+1,Tn,U

k
n)−G(Tn+1,Tn,U

k
n). (3)

Gander and Vandewalle showed in [2] that the parareal algorithm is a multiple shooting method for initial value
problems with a coarse grid approximation for the Jacobian in Newtons method. They also showed that when the
method is applied to linear, diffusive problems, it converges linearly on long time intervals and superlinearly on short
time intervals. Gander and Hairer showed in [3] the following general convergence result for the non-linear case:

Theorem 1 If the coarse propagator G is a numerical method of order p satisfying

|G(t + ∆T, t,v)−G(t + ∆T,t,w)| ≤ (1+C∆T)|v−w|, (4)

the fine propagator F is exact, and their difference can be expanded for∆T small,

F(Tn,Tn−1,v)−G(Tn,Tn−1,v) = cp+1(v)∆T p+1+cp+2(v)∆T p+2+ . . . , (5)

then the error at step k of the parareal algorithm (3) satisfies the convergence estimate

|u(Tn)−Uk
n| ≤C1

(C2Tn)
k+1

(k+1)!
eC(Tn−Tk+1)∆T p(k+1). (6)

In [3], [4], [5], the authors showed that the parareal algorithm produces a speed-up for first order ODEs, but the method
does not have the same potential for second order ODEs, see also [2].



THE MODIFIED PARAREAL ALGORITHM

We are interested in solving in parallel systems of second order ODEs of the form

Mq′′ +Dq′+Kq = f (t), q(t0) = q0, q′(t0) = q′0, (7)

whereM,D,K ∈RN′×N′
represent the mass, the damping and the stiffness matrices.We first consider the homogeneous

case, and rewrite (7) as a first order system,
u′ = Au, u(t0) = u0, (8)

to which the parareal algorithm (3) can now be applied. The inefficiency of this algorithm for second order ODEs is
caused by a beating phenomenon, as explained in [6], due to the use of the coarse propagatorG in (3) when computing
G(Tn+1,Tn,Uk+1

n −Uk
n) in this linear case. Farhat and collaborators proposed in [6] to use the fine propagatorF for

the part ofUk+1
n −Uk

n in the subspace for which the evolution is already known fromprevious evaluations of the fine
propagatorF , and to only propagate the rest with the coarse propagator. Defining

Sk = span{U l
n}, 0≤ l ≤ k, 0≤ n≤ N,

and replacingG(Tn+1,Tn,Uk+1
n −Uk

n) in (3) byK(Tn+1,Tn,Uk+1
n −Uk

n) defined by

K(Tn+1,Tn,V) = F(Tn+1,Tn,PkV)+G(Tn+1,Tn,(I −Pk)V), (9)

wherePk is the orthogonal projection into the spaceSk, we obtain the modified parareal algorithm

Uk+1
n+1 = F(Tn+1,Tn,PkU

k+1
n )+G(Tn+1,Tn,(I −Pk)U

k+1
n ), (10)

where we used linearity again, and the fact thatPkUk
n = Uk

n and(I −Pk)Uk
n = 0. To obtain the next approximation at

stepk+1 of this new algorithm, one first has to computeF(Tn+1,Tn,Uk
n) in parallel for alln, to know the fine evolution

of the initial conditionsUk
n of the current step. Now that their evolution is known, the spaceSk can be extended by

adding these initial conditions,

Sk = Sk−1∪span{Uk
n}, S0 = span{U0

n},

and a basis ofSk is computed using the QR-factorization. LetSk be the matrix formed by the orthogonal basis column
vectors ofSk. The projectionPk is then defined by

Pk = Sk(S
T
k QSk)

−1ST
k Q, Q =

(

M 0
0 K

)

. (11)

Now the cheap sequential step in (10) over indexn is performed, starting withUk+1
0 = U0

0 , by calculating for eachn
the projectionPkUk+1

n , for which the fine evolution is known and no extra computation is necessary, and the remaining
part(I −Pk)Uk+1

n is then propagated using the coarse propagatorG.
Note that in the linear case, the spaceSk can be interpreted as a Krylov space for the linear propagator F with

multiple right hand sides corresponding to the number of time intervals of the method.

CONVERGENCE ANALYSIS

We assume that the initial condition of the problem is a linear combination of eigenmodes of the linear operatorA,
Aφ j = λ jφ j , and excitesl of those natural modes,U0 = α1φ1 + ...+ αl φl . Our first result shows that the new parareal
algorithm converges in a finite number of steps, and is very much related to the convergence behavior of Krylov
methods.

Theorem 2 The new parareal algorithm (10) converges as soon asSk−1 = Sk. Furthermore, we have thatSn ⊂
span{φ1, ...,φl} for all n.



Our second convergence result for the modified parareal algorithm includes the use of an approximate fine propagator.
We denote byF̃ the exact solution of the equation, and we assume that the difference between the exact solution and
the coarse approximation obtained fromG can be expanded for∆T small,

F̃(Tn,Tn−1,v)−G(Tn,Tn−1,v) = cp+1(v)∆T p+1+cp+2(v)∆T p+2+ . . . . (12)

The fine propagatorF is now a numerical method defined on each time subdomainΩn. For simplicity, we assume that
eachΩn is discretized by the same time step of size∆t = ∆T/M, and thus on the fine mesh we have∆t = tm− tm−1,
m= 1,2, . . .M. We furthermore also assume that the difference of the exactsolutionF̃ and the fine propagatorF can
be expanded for∆t small,

F̃(tm, tm−1,v)−F(tm,tm−1,v) = c′p+1(v)∆t p+1+c′p+2(v)∆t p+2+ .... (13)

We also assume that both the coarse propagatorG and the fine propagatorF satisfy the Lipschitz condition (4). We
can then prove the following result:

Theorem 3 Let | · | be the norm onRN associated with the metric given by the matrix Q (the metric of the projector
Pk). If the propagators F and G are of order p, then the hybrid propagator K is also of order p, and satisfies

|F̃(Tn+1,Tn,v)−K(Tn+1,Tn,v)| ≤C(∆t p+1+ ∆T p+1)|v|. (14)

Our second convergence result gives an estimate on the convergence rate of the new algorithm.

Theorem 4 If F and G are two propagators of order p, then the error of the new parareal algorithm (10) satisfies at
iteration k the estimate

|u(tn)−Uk
n| ≤C1

(C2Tn)
k+1

(k+1)!
eC(Tn−Tk+1)∆T p(k+1) +C3TeC4∆T∆t p. (15)

INHOMOGENEOUS CASE

We have so far only considered the homogeneous case in (8). Ifthe problem is inhomogeneous, we can however first do
a precomputation step by evaluatingF(Tn+1,Tn,0) for all n, and then at each iteration we computeF(Tn+1,Tn,PkUk+1

n )
as follows, see [6]: letα l

j be the coefficients of the projected vectorUk+1
n , PkUk+1

n = ∑l , j α l
jU

l
j . We then evaluate

F(Tn+1,Tn,PkU
k+1
n ) = F(Tn+1,Tn,∑

l , j

α l
jU

l
l )

= ∑
l , j

α l
j

(

F(Tn+1,Tn,U
l
j )−F(Tn+1,Tn,0)

)

+F(Tn+1,Tn,0),

which again does not involve any evaluation ofF .

NUMERICAL EXPERIMENTS

We consider the simple model problemu′′ = −u with initial conditionsu(0) = 1 andu′(0) = 0. We transform the
equation into a system of the form (8) with two components, and perform the simulations on the time interval[0,20].
We choose for the coarse time step∆T = 1, and for the fine time step∆t = 1/6. In Figure 1, we show the first
few iterations of the original parareal algorithm, on the left for the first component, and on the right for the second
component, together with the fine grid solution. One can see that the algorithm is converging slowly, and that the
convergence early in the time interval is significantly better than later in the time interval.

In Figure 2, we show the initial guess and the first iteration of the modified parareal algorithm, which converges with
the first iteration. This illustrates our first convergence result, see Theorem 2, since in this low dimensional problem,
the fine solution is already contained in the subspace after one iteration.



0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

Initial approximation
First iteration      
Second iteration     
Fine solution       

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

Initial approximation
First iteration      
Second iteration     
Fine solution       

FIGURE 1. First few iterations of the original parareal algorithm forthe model problem.
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FIGURE 2. Initial approximation and first iteration of the modified parareal algorithm for the model problem.

CONCLUSIONS

We presented two new convergence results for a variant of theparareal algorithm adapted to the solution of hyperbolic
problems by Farhat and collaborators [6]. The new algorithmcan not only be used for hyperbolic problems, the reuse
of the subspace where the evolution is known with high accuracy should be beneficial for other problems as well. It
would also be of interest to find a sharper convergence estimate than the one presented in Theorem 4, using the fact
that the approximation is now sought in a Krylov space, whichwe are currently investigating.
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