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Abstract. The parareal algorithm is a numerical method to integratduéion problems on parallel computers. While this
algorithm is effective for diffusive problems, its converge properties are much less favorable for hyperboliclenod We
analyze in this paper a recently proposed variant of thereakralgorithm for hyperbolic problems for the case of systef
second order ordinary differential equations.
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INTRODUCTION

The parareal algorithm is a time parallel time integratiagtimod for evolution problems introduced by Lions, Maday
and Turiniciin [1]. It can be used to compute in parallel apragimate solution of the system of ordinary differential
equations (ODESs)

u'(t) = f(ut)), te(0,T), u(0)=ug, 1)

wheref : RM — RM andu: R — RM. First, the time domairi0, T) is decomposed intdl-time subdomain§, =
(Th-1,Th), n=1,2,...,N, and we set for simplicityi, — T,_1 = AT. Then, using a coarse propaga®Ty, T,_1,V),
which gives a rough approximation of the solutig(T,) of (1) with initial conditionsu(T,-1) = v, and a fine propagator
F(Tn, Tn_1,V), which gives a more accurate approximation, the algorittarts with an initial approximatiok?,
n=0,...,N, obtained for example from the coarse propagator,

UR = G(Tn, Ta-1,Un-1), UG = U, 2
and then performs fdc= 0,1, ... the correction iteration
UL = G(Tos 1, T, Us™™) 4 F (T, T, Ug) = G(Tag 1, T, Ug).- 3

Gander and Vandewalle showed in [2] that the parareal dlgoris a multiple shooting method for initial value
problems with a coarse grid approximation for the JacobiaNéwtons method. They also showed that when the
method is applied to linear, diffusive problems, it comvesrgjnearly on long time intervals and superlinearly on shor
time intervals. Gander and Hairer showed in [3] the follogviieneral convergence result for the non-linear case:

Theorem 1 If the coarse propagator G is a numerical method of order fisfging
|G(t+AT,t,v) — G(t+AT,t,w)| < (14+CAT)|v—w|, 4
the fine propagator F is exact, and their difference can beaegpd forAT small,
F(Tn, Tao1,V) — G(Tn, Ta_1,V) = Cpr 1 (VAT P 4 cp o(V)AT P24 (5)
then the error at step k of the parareal algorithm (3) satstige convergence estimate

CT )k+l

UM < G ot ARl

In [3], [4], [5], the authors showed that the parareal aldyoni produces a speed-up for first order ODEs, but the method
does not have the same potential for second order ODEs,se {24l



THE MODIFIED PARAREAL ALGORITHM
We are interested in solving in parallel systems of secoddrd®@DEs of the form
Mq”+Dd +Ka= f(t), q(to) =00, d (to) =0, @)

whereM, D, K € RNV *N' represent the mass, the damping and the stiffness matied#st consider the homogeneous
case, and rewrite (7) as a first order system,

U = Au, u(to) = U, (8)
to which the parareal algorithm (3) can now be applied. Tleffitiency of this algorithm for second order ODEs is
caused by a beating phenomenon, as explained in [6], due testhof the coarse propaga®in (3) when computing
G(Thi1, Tn, UK —UK) in this linear case. Farhat and collaborators proposed]ito[@se the fine propagatér for

the part ofUf*1 — UK in the subspace for which the evolution is already known fprevious evaluations of the fine
propagatof, and to only propagate the rest with the coarse propagatdining

S=spafU]}, 0<I<k 0<n<N,
and replacings(Th, 1, To, UK —UX) in (3) by K (Ty, 1, Th, UKL — UX) defined by
K(Tnt1, Tn,V) = F(Tnia, Tn, AV) 4+ G(Taia, Tn, (I = ROV), 9)
whereP is the orthogonal projection into the spagg, we obtain the modified parareal algorithm
Uit = F (Tosa, T BURT™) + G(Thia, To, (1 = RQUET), (10)

where we used linearity again, and the fact tRatk = UX and (I — R,)UX = 0. To obtain the next approximation at
stepk+ 1 of this new algorithm, one first has to compBteT;,, 1, Ty, UX) in parallel for alln, to know the fine evolution
of the initial conditiondJX of the current step. Now that their evolution is known, tha@@¥ can be extended by
adding these initial conditions,

F = F1U spar{Ur‘f}, = spar{U,?},

and a basis of# is computed using the QR-factorization. ISthe the matrix formed by the orthogonal basis column
vectors of.%. The projectiorf is then defined by

r-ses e o=( "5 ). a1

Now the cheap sequential step in (10) over indég performed, starting withJ(‘}+1 = Ug, by calculating for each
the projectiorRUK*2, for which the fine evolution is known and no extra computationecessary, and the remaining
part(l — R)US+ is then propagated using the coarse propagator

Note that in the linear case, the spagg can be interpreted as a Krylov space for the linear propagateith
multiple right hand sides corresponding to the number oéfimtervals of the method.

CONVERGENCE ANALYSIS

We assume that the initial condition of the problem is a lingambination of eigenmodes of the linear operatpr
A = Ajg@;, and excites$ of those natural modep = a1y + ... + oy @. Our first result shows that the new parareal
algorithm converges in a finite number of steps, and is verghmelated to the convergence behavior of Krylov
methods.

Theorem 2 The new parareal algorithm (10) converges as soon%as; = .%«. Furthermore, we have tha¥;, C
spaf@,...,q } for all n.



Our second convergence result for the modified parareatittignincludes the use of an approximate fine propagator.
We denote by the exact solution of the equation, and we assume that tfexeatice between the exact solution and
the coarse approximation obtained fr@rtan be expanded f&T small,

F(Tn,Tho1,V) — G(Tn, Th_1,V) = Cpr 1(VATPTL ¢ o(WATPT2 . (12)

The fine propagatdf is now a numerical method defined on each time subdo@agiffror simplicity, we assume that
eachQ, is discretized by the same time step of site= AT /M, and thus on the fine mesh we ha\te= ty, — tm-_1,
m=1,2,...M. We furthermore also assume that the difference of the escdationF and the fine propagatét can
be expanded foht small,

F (tm tm-1,V) — F (tm, tm-1,V) = Cpy 1 (VAP 4 €5 p(V)ALPH2 4 (13)

We also assume that both the coarse propadatmd the fine propagatét satisfy the Lipschitz condition (4). We
can then prove the following result:

Theorem 3 Let| - | be the norm orRN associated with the metric given by the matrix Q (the meffithe projector
R). If the propagators F and G are of order p, then the hybridgagator K is also of order p, and satisfies

IF (Thit, TnoV) — K(Thi1, T V)| < CAEPTL L ATPH) ). (14)
Our second convergence result gives an estimate on thergaemee rate of the new algorithm.

Theorem 4 If F and G are two propagators of order p, then the error of tlewparareal algorithm (10) satisfies at
iteration k the estimate

k+1
u(ta) —UK| < Cl%ecﬁﬂkﬂ)m PIHL) | CaTeAT AP, (15)

INHOMOGENEOUS CASE

We have so far only considered the homogeneous case in{{#.pffoblem is inhomogeneous, we can however first do
a precomputation step by evaluatiR@T, 1, Tn, 0) for all n, and then at each iteration we compBi@h 1, Tn, ARUX ™)
as follows, see [6]: letr] be the coefficients of the projected vedttlf™, RUK"™ = 3, ; ajU|. We then evaluate

F(Tai1, Tn, RUKY) = F(TnH,Tn,;a,'-UN)
N

> ) (F(Toen T U]) = F(Toe1. T 0)) 4 F (Toss, To O),
)

which again does not involve any evaluatiorof

NUMERICAL EXPERIMENTS

We consider the simple model problami = —u with initial conditionsu(0) = 1 andu’(0) = 0. We transform the
equation into a system of the form (8) with two componentd, perform the simulations on the time intery@20].
We choose for the coarse time stBp = 1, and for the fine time stept = 1/6. In Figure 1, we show the first
few iterations of the original parareal algorithm, on th# fer the first component, and on the right for the second
component, together with the fine grid solution. One can katthe algorithm is converging slowly, and that the
convergence early in the time interval is significantly eethan later in the time interval.

In Figure 2, we show the initial guess and the first iteratibthe modified parareal algorithm, which converges with
the first iteration. This illustrates our first convergenesult, see Theorem 2, since in this low dimensional problem,
the fine solution is already contained in the subspace afieiteration.
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FIGURE 1. First few iterations of the original parareal algorithm fbe model problem.
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FIGURE 2. Initial approximation and first iteration of the modified pegal algorithm for the model problem.

CONCLUSIONS

We presented two new convergence results for a variant gfdheaeal algorithm adapted to the solution of hyperbolic
problems by Farhat and collaborators [6]. The new algorithmnot only be used for hyperbolic problems, the reuse
of the subspace where the evolution is known with high aayusaould be beneficial for other problems as well. It
would also be of interest to find a sharper convergence eithan the one presented in Theorem 4, using the fact
that the approximation is now sought in a Krylov space, whiehare currently investigating.
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