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1. Introduction

The objective of this article is to derive various results of existence and regularity
of solutions for the Primitive Equations of the ocean (PEs) in two space dimensions.
These results, besides their intrinsic interest, are needed in [9] which is another
motivation of this work.
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We consider the PEs in their nondimensional form (see Section 5) :
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∂t
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ε
v +
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ε
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∂x
= νv ∆u + Su,(1.1a)
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1

ε
u = νv ∆v + Sv,(1.1b)

∂p

∂z
= −ρ,(1.1c)

∂u

∂x
+

∂w

∂z
= 0,(1.1d)

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
− N2

ε
w = νρ ∆ρ + Sρ.(1.1e)

All the independent variables (t, x, z) and the dependent variables (u, v, w, ρ, p) are
dimensionless, as are the forcing and source terms (Su, Sv, Sρ). Here (u, v, w) are
the three components of the velocity vector and, as usual, we denote by p and ρ the
pressure and density deviations, respectively, from prescribed background states.
The (dimensionless) parameters are the Rossby number ε, the Burger number N ,
and the inverse (eddy) Reynolds numbers νv and νρ.

Some motivations on the physical background and the derivation of these equa-
tions are given in the Appendix (Section 5). The two spatial directions are 0x
and 0z, corresponding to the west–east and vertical directions in the so-called f -
plane approximation for geophysical flows (for details, see the Appendix); ∆ =
∂2/∂x2 + ∂2/∂z2.

The article is organized as follows: We start in Section 2 by recalling the vari-
ational formulation of problem (1.1) under suitable assumptions and we prove the
existence of weak solutions for the PEs. We continue in Section 3 by proving the
existence and uniqueness of strong solutions. Finally in Section 4 we prove the exis-
tence of more regular solutions, up to C∞ regularity. We thought that it is useful to
end the article with an Appendix (Section 5) containing some physical explanations
regarding the PEs and the derivation of (1.1).

We mention here the similar works of Bresch, Kazhikhov and Lemoine [2] and
of Ziane [13], who consider different boundary conditions and do not consider the
higher regularity results needed in [9]; see also [11]. For the non-dimensional form
of the PEs, we refer here for example to [4], [8], and [12] but a substantial amount
of literature is available on this subject.

2. Existence of the Weak Solutions for the PEs

We work in a limited domain

(2.1) M = (0, L1)× (−L3/2, L3/2),
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and, since this is needed in [9], we assume space periodicity with period M, that is,
all functions are taken to satisfy f(x + L1, z, t) = f(x, z, t) = f(x, z + L3, t) when
extended to R2. Moreover, we assume that the following symmetries hold:

u(x, z, t) = u(x,−z, t), Su(x, z, t) = Su(x,−z, t),

v(x, z, t) = v(x,−z, t), Sv(x, z, t) = Sv(x,−z, t),

ρ(x, z, t) = −ρ(x,−z, t), Sρ(x, z, t) = −Sρ(x,−z, t),

w(x, z, t) = −w(x,−z, t), p(x, z, t) = p(x,−z, t).

(Here u, v and p are said to be even in z, and w and ρ odd in z.)
We note that these conditions are often used in numerical studies of rotating

stratified turbulence (see e.g., [1]).
Our aim is to solve the problem (1.1) with initial data

(2.2) u = u0, v = v0, ρ = ρ0 at t = 0.

Hence the natural function spaces for this problem are as follows:

V = {(u, v, ρ) ∈ (Ḣ1
per(M))3,(2.3)

u, v even in z, ρ odd in z,
∫ L3/2

−L3/2
u(x, z′) dz′ = 0},

H = closure of V in (L̇2(M))3.(2.4)

Here the dot above Ḣ1
per or L̇2 denotes the functions with average in M equal to zero.

These spaces are endowed with Hilbert scalar products; in H the scalar product is

(2.5) (U, Ũ)H = (u, ũ)L2 + (v, ṽ)L2 + κ(ρ, ρ̃)L2 ,

and in Ḣ1
per and V the scalar product is (using the same notation when there is no

ambiguity):

(2.6) ((U, Ũ)) = ((u, ũ)) + ((v, ṽ)) + κ((ρ, ρ̃));

where we have written dM for dx dz, and

(2.7) ((φ, φ̃)) =

∫

M

(∂φ

∂x

∂φ̃

∂x
+

∂φ

∂z

∂φ̃

∂z

)
dM.

The positive constant κ is defined below. We have

(2.8) |U |H ≤ c0‖U‖, ∀U ∈ V.

where c0 > 0 is a positive constant related to κ and the Poincaré constant in Ḣ1
per(M).

More generally, the ci, c′i, c′′i will denote various positive constants. Inequality (2.8)
implies that ‖U‖ = ((U, U))1/2 is indeed a norm on V .
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We first show how we can express the diagnostic variables w and p in terms of
the prognostic variables u, v and ρ. For each U = (u, v, ρ) ∈ V we can determine
uniquely w = w(U) from (1.1d),

(2.9) w(U) = w(x, z, t) = −
∫ z

0

ux(x, z′, t) dz′,

since w(x, 0) = 0, w being odd in z. Furthermore, writing that w(x,−L3/2, t) =
w(x, L3/2, t), we also have

(2.10)

∫ L3/2

−L3/2

ux(x, z′, t) dz′ = 0.

As for the pressure, we obtain from (1.1c),

(2.11) p(x, z, t) = ps(x, t)−
∫ z

0

ρ(x, z′, t) dz′,

where ps = p(x, 0, t) is the surface pressure. Thus, we can uniquely determine the
pressure p in terms of ρ up to ps.

It is appropriate to use Fourier series and we write, e.g., for u,

(2.12) u(x, z, t) =
∑

(k1,k3)∈Z
uk1,k3

(t)ei(k′1x+k′3z),

where for notational conciseness we set k′1 = 2πk1/L1 and k′3 = 2πk3/L3. Since u is
real and even in z, we have u−k1,−k3 = ūk1,k3 = ūk1,−k3 , where ū denotes the complex
conjugate of u. Regarding the pressure, we obtain from (1.1c):

p(x, z, t) = p(x, 0, t)−
∫ z

0

∑

(k1, k3)

ρk1, k3e
i(k′1x+k′3z′)dz′

=
∑

k1

psk1
eik′1x −

∑

(k1, k3), k3 6=0

ρk1, k3

ik′3
eik′1x(eik′3z − 1)

[using the fact that ρk1, 0 = 0, ρ being odd in z]

=
∑

k1

(
psk1

+
∑

k3 6=0

ρk1, k3

ik′3

)
eik′1x −

∑

(k1, k3), k3 6=0

ρk1, k3

ik′3
ei(k′1x+k′3z)

=
∑

k1

p?k1
eik′1x −

∑

(k1, k3), k3 6=0

ρk1, k3

ik′3
ei(k′1x+k′3z),

where we denoted by ps the surface pressure and p? =
∑

k1∈Z p? k1e
ik′1x, which is the

average of p in the vertical direction, is defined by

p?,k1 = psk1
+

∑

k3 6=0

ρk1, k3

ik′3
.
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Note that p is fully determined by ρ, up to one of the terms ps or p? which are
connected by the relation above.

We now obtain the variational formulation of problem (1.1). For that purpose we
consider a test function Ũ = (ũ, ṽ, ρ̃) ∈ V and we multiply (1.1a), (1.1b) and (1.1e),
respectively by ũ, ṽ and κ ρ̃, where the constant κ (which was already introduced in
(2.5) and (2.6)) will be chosen later. We add the resulting equations and integrate
over M. We find:

(2.13)
d

dt
(U, Ũ)H + b(U,U, Ũ) + a(U, Ũ) +

1

ε
e(U, Ũ) = (S, Ũ)H , ∀ Ũ ∈ V.

Here we set

a(U, Ũ) = νv((u, ũ)) + νv((v, ṽ)) + κνρ((ρ, ρ̃)),

e(U, Ũ) =

∫

M

(uṽ − vũ) dM +

∫

M

(ρw̃ − κN2 wρ̃) dM,

b(U,U ], Ũ) =

∫

M

(
u
∂u]

∂x
+ w(U)

∂u]

∂z

)
ũ dM +

∫

M

(
u
∂v]

∂x
+ w(U)

∂v]

∂z

)
ṽ dM

+ κ

∫

M

(
u
∂ρ]

∂x
+ w(U)

∂ρ]

∂z

)
ρ̃ dM.

We now choose κ = 1/N2 and this way we find e(U, U) = 0. Also it can be easily
seen that:

a : V × V → R is bilinear, continuous, coercive, a(U,U) ≥ c1‖U‖2,

e : V × V → R is bilinear, continuous, e(U,U) = 0,

b is trilinear, continuous from V × V2 × V into R,

and from V × V × V2 into R,

(2.14)

where V2 is the closure of V ∩ (H2
per(M))3 in (H2

per(M))3. Furthermore,

b(U, Ũ , U ]) = −b(U,U ], Ũ),

b(U, Ũ , Ũ) = 0,
(2.15)

when U, Ũ , U ] ∈ V with Ũ or U ] in V2. We also have the following:

Lemma 2.1. There exists a constant c2 > 0 such that, for all U ∈ V , Ũ ∈ V2 and
U ] ∈ V :

|b(U,U ], Ũ)| ≤ c2|U |1/2

L2 ‖U‖1/2‖U ]‖|Ũ |1/2

L2 ‖Ũ‖1/2

+ c2‖U‖‖U ]‖1/2|U ]|1/2
V2
|Ũ |1/2

L2 ‖Ũ‖1/2.
(2.16)

Proof. We only estimate two typical terms; the other terms are estimated exactly in
the same way. Using the Hölder, Sobolev and interpolation inequalities, we write:
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∣∣∣
∫

M

u
∂u]

∂x
ũ dM

∣∣∣ ≤ |u|L4

∣∣∣∂u]

∂x

∣∣∣
L2
|ũ|L4

≤ c′1|u|1/2

L2 ‖u‖1/2
∣∣∣∂u]

∂x

∣∣∣
L2
|ũ|1/2

L2 ‖ũ‖1/2,

∣∣∣
∫

M

w(U)
∂u]

∂z
ũ dM

∣∣∣ ≤ |w(U)|L2

∣∣∣∂u]

∂z

∣∣∣
L4
|ũ|L4

≤ c′2‖u‖
∣∣∣∂u]

∂z

∣∣∣
1/2

L2

∥∥∥∂u]

∂z

∥∥∥
1/2

|ũ|1/2‖ũ‖1/2;

(2.16) follows from these estimates and the analogous estimates for the other terms.
¤

We now recall the result regarding the existence of weak solutions for the PEs of
the ocean; see [7]. In [7] the existence of the weak solutions is established in three
space dimensions with different boundary conditions, but the proof applies as well
to two dimensions with our boundary conditions.

Theorem 2.1. Given U0 ∈ H and S ∈ L∞(R+; H), there exists at least one solution
U of (2.13), U ∈ L∞(R+; H) ∩ L2(0, t?; V ), ∀ t? > 0, with U(0) = U0.

The proof of this theorem is based on the a priori estimates given below, which
gives, as in [7], that U ∈ L∞(0, t?; H), ∀ t? > 0; however, as shown below, we have
in fact,

U ∈ L∞(R+; H).

Taking Ũ = U in equation (2.13), after some simple computations and using (2.14),
we obtain:

(2.17)
d

dt
|U |2H + c1‖U‖2 ≤ c′1|S|2∞ ,

d

dt
|U |2H + c0c1|U |2H ≤ c′1|S|2∞ ,

where |S|∞ is the norm of S in L∞(R+; H). Using the Gronwall inequality, we infer
from (2.17) that:

(2.18) |U(t)|2H ≤ |U(0)|2H e−c1c0t +
c′1

c1c0

(1− e−c1c0t) |S|2∞ , ∀ t > 0.

Hence

lim sup
t→∞

|U(t)|2H ≤ c′1
c1c0

|S|2∞ =: r2
0 ,

and any ball B(0, r′0) in H with r′0 > r0 is an absorbing ball; that is, for all U0,
there exists t0 = t0(|U0|H) depending increasingly on |U0|H (and depending also on
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r′0, |S|∞ and other data), such that |U(t)|H ≤ r′0, ∀ t ≥ t0(|U0|H). Furthermore,
integrating equation (2.17) from t to t + r, with r > 0 arbitrarily chosen, we find:

(2.19)

∫ t+r

t

‖U(t′)‖2 dt′ ≤ K1, for all t ≥ t0(|U0|H),

where K1 denotes a constant depending on the data but not on U0. As mentioned
before, (2.18) implies also that

U ∈ L∞(R+; H), |U(t)|H ≤ max(|U0|H , r0).

Remark 2.1. We notice that, in the inviscid case (νv = νρ = 0 with S = 0), taking

Ũ = U in (2.13), we find, at least formally,

(2.20)
d

dt

(
|u|2L2 + |v|2L2 +

1

N2
|ρ|2L2

)
= 0.

The physical meaning of (2.20) is that the sum of the kinetic energy (given by
1
2
(|u|2L2 + |v|2L2)) and the available potential energy (given by 1

2N2 |ρ|2L2) is conserved
in time. This is the physical justification of the introduction of the constant κ = N−2

in (2.5).

3. Existence and Uniqueness of Strong Solutions for the PEs

The solutions given by Theorem 2.1 are usually called weak solutions. We are now
interested in strong solutions (and even more regular solutions in Section 4). We
use here the same terminology as in fluid mechanics (incompressible Navier–Stokes
equations): weak solutions are those in L∞(L2) and L2(H1), strong solutions are
those in L∞(H1) and L2(H2). We notice that we cannot obtain directly the global
existence of strong solutions for the PEs as, e.g., for the Navier–Stokes equations
using a single a priori estimate (obtained by replacing Ũ by ∆U in (2.13)). Instead,
to derive the necessary a priori estimates we proceed by steps: we successively derive
estimates in L∞(L2) and L2(H1) for uz, ux, vz, vx, ρz and ρx (here the subscripts t,
x, z denote differentiation). Notice that the order in which we obtain these estimates
cannot be changed in the calculations below.

Firstly, using (2.11) we rewrite (1.1a) as:

(3.1)
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
− 1

ε
v +

1

ε

∂ps

∂x
− 1

ε

∫ z

0

ρx(x, z′, t) dz′ = νv∆u + Su.

We differentiate (3.1) with respect to z and we find, with wz = −ux:

utz + uuxz + wuzz − 1

ε
vz − 1

ε
ρx − νvuxxz − νvuzzz = Su, z ,
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where Su, z = ∂zSu = ∂Su/∂z. After multiplying this equation by uz and integrating
over M, we find:

1

2

d

dt
|uz|2L2 + νv‖uz‖2 +

∫

M

uuzuxz dM +

∫

M

wuzuzz dM

− 1

ε

∫

M

vzuz dM− 1

ε

∫

M

ρxuz dM =

∫

M

uzSu, z dM.

Integrating by parts and taking into account the periodicity and the conservation
of mass equation (1.1d) we obtain:

(3.2)
1

2

d

dt
|uz|2L2 + νv‖uz‖2 − 1

ε

∫

M

vzuz dM− 1

ε

∫

M

ρxuz dM =

∫

M

uzSu, z dM.

In all that follows K(ε), K ′(ε), K ′′(ε), ..., denote constants depending on ε and
other data but not on U0; we use the same symbol for different constants. We easily
obtain the following estimates:

1

ε

∣∣∣
∫

M

vzuz dM
∣∣∣ =

1

ε

∣∣∣
∫

M

vuzz dM
∣∣∣ ≤ K(ε)|v|2L2+

νv

6
‖uz‖2,

1

ε

∣∣∣
∫

M

ρxuz dM
∣∣∣ =

1

ε

∣∣∣
∫

M

ρ uxz dM
∣∣∣ ≤ νv

6
‖uz‖2+K(ε)|ρ|2L2 ,

∣∣∣
∫

M

Su,zuz dM
∣∣∣ =

∣∣∣
∫

M

Suuzz dM
∣∣∣ ≤ νv

6
‖uz‖2+c′1|Su|2L2 ;

applied to (3.2), these give:

(3.3)
d

dt
|uz|2L2 + νv ‖uz‖2 ≤ K(ε)(|v|2L2 + |ρ|2L2) + c′1|Su|2L2 .

We apply Poincaré’s inequality (2.8) and we find:

(3.4)
d

dt
|uz|2L2 + c0νv|uz|2L2 ≤ K(ε)(|v|2L2 + |ρ|2L2) + c′1|Su|2L2 .

Using Gronwall’s lemma, we infer from (3.4) that:

|uz(t)|2L2 ≤ |uz(0)|2L2e−c0νvt + K(ε)e−c0νvt

∫ t

0

(|v(t′)|2L2 + |ρ(t′)|2L2)ec0νvt′ dt′ + c′2|Su|2∞

(3.5)

≤ |uz(0)|2L2e−c0νvt + K ′(ε)(1− e−c0νvt)(|v|2∞ + |ρ|2∞) + c′2|Su|2∞
≤ |uz(0)|2L2e−c0νvt + K ′(ε)(|v|2∞ + |ρ|2∞) + c′2|Su|2∞,

where |v|∞ = |v|L∞(R+; L2(M)), and similarly for ρ and Su. We obtain an explicit
bound for the norm of uz in L∞(R+; H):

(3.6) |uz(t)|2L2 ≤ |uz(0)|2L2 + K ′(ε)(|v|2∞ + |ρ|2∞) + c′2|Su|2∞.

For what follows, we recall here the uniform Gronwall lemma (see e.g., [10]):
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If ξ, η and y are three positive locally integrable functions on (t1, ∞) such that
y′ is locally integrable on (t1, ∞) and which satisfy

y′ ≤ ξy + η,
∫ t+r

t

ξ(s) ds ≤ a1,

∫ t+r

t

η(s) ds ≤ a2,

∫ t+r

t

y(s) ds ≤ a3, ∀ t ≥ t1,
(3.7)

where r, a1, a2, a3 are positive constants, then

(3.8) y(t + r) ≤
(a3

r
+ a2

)
ea1 , t ≥ t1.

The bound (3.6) depends on the initial data U0. In order to obtain a bound
independent of U0 we apply the uniform Gronwall lemma to the equation:

(3.9)
d

dt
|uz|2L2 ≤ K(ε)(|v|2L2 + |ρ|2L2) + c′1|Su|2L2 .

to obtain

(3.10) |uz(t)| ≤ K ′(ε, r, r′0), ∀ t ≥ t′1,

where t′1 = t0(|U0|L2) + r and r > 0 is fixed. Integrating equation (3.3) from t to
t + r with r > 0 as before, we also find:

(3.11)

∫ t+r

t

‖uz(s)‖2 ds ≤ K ′′(ε, r, r′0), ∀ t ≥ t′1.

We now derive the same kind of estimates for ux: We differentiate (3.1) with
respect to x and we obtain

utx + u2
x + uuxx + wuxz + wxuz − 1

ε
vx +

1

ε
ps,xx +

∫ 0

z

ρxx(z
′) dz′

− νv uxxx − νv uzzx = Su, x;

(3.12)

multiplying this equation by ux and integrating over M we find, using (1.1d):

1

2

d

dt
|ux|2L2 +

∫

M

u3
x dM +

∫

M

wxuzux dM− 1

ε

∫

M

vxux dM− 1

ε

∫

M

ps, x xux dM

+

∫

M

(∫ 0

z

ρx x(z
′) dz′

)
ux dM + νv‖ux‖2 =

∫

M

uxSu, x dM.

(3.13)

Based on the Hölder, Sobolev and interpolation inequalities, we derive the following
estimates:∣∣∣

∫

M

u3
x dM

∣∣∣ ≤ |ux|3L3(M) ≤ c′4|ux|3H1/3(M) ≤ c′5|ux|2L2‖ux‖

≤ νv

12
‖ux‖2 + c′6|ux|4L2 ,
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∣∣∣
∫

M

wxuzux dM
∣∣∣ ≤ c′7|wx|L2|uz|1/2

L2 ‖uz‖1/2|ux|1/2

L2 ‖ux‖1/2

≤ c′8|uxx|L2|uz|1/2

L2 ‖uz‖1/2|ux|1/2

L2 ‖ux‖1/2

≤ νv

12
‖ux‖2 + c′9|uz|2L2‖uz‖2|ux|2L2 ,

By the definition of V , and since ps is independent of z, we find:

1

ε

∣∣∣
∫

M

ps, x xux dM
∣∣∣ =

1

ε

∣∣∣
∫ L

0

ps, xx

∫ L3/2

−L3/2

ux dz dx
∣∣∣ = 0.

We can also prove the following estimates:

1

ε

∣∣∣
∫

M

vxuxdM
∣∣∣ ≤ νv

12
‖ux‖2+K ′(ε)|v|2L2 ,

1

ε

∣∣∣
∫

M

(∫ 0

z

ρx x(z
′) dz′

)
ux dM

∣∣∣ =
1

ε

∣∣∣
∫

M

(∫ 0

z

ρx(z
′) dz′

)
uxx dM

∣∣∣

≤ νv

12
‖ux‖2 + K ′′(ε)|ρx|2L2 ,

∣∣∣
∫

M

uxSu, x dM
∣∣∣ ≤ νv

12
‖ux‖2 + c′10|Su|2∞.

With these relations (3.13) implies:

(3.14)
d

dt
|ux|2L2 + νv‖ux‖2 ≤ ξ |ux|2L2 + η,

where we denoted
ξ = ξ(t) = 2c′6|ux|2L2 + 2c′9|uz|2L2‖uz‖2,

and
η = η(t) = 2K ′(ε)|v|2L2 + 2K ′′(ε)|ρx|2L2 + 2c′10|Su|2∞.

We easily conclude from (3.14) that

(3.15) ux ∈ L∞(0, t?; L2) ∩ L2(0, t?; H1), ∀ t? > 0.

However, for later purposes, (3.15) is not sufficient, and we need estimates uniform
in time.

We will apply the uniform Gronwall lemma to (3.14) with t1 = t′1 as in (3.10).
Noting that

∫ t+r

t

ξ(t′) dt′ =
∫ t+r

t

[2c′6|ux|2L2 + 2c′9|uz(t
′)|2L2‖uz(t

′)‖2] dt′

≤ 2c′6

∫ t+r

t

|ux(t
′)|2L2 dt′ + 2c′9|uz|2∞

∫ t+r

t

‖uz(t
′)‖2 dt′

≤ a1, ∀ t ≥ t′1,

(3.16)
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∫ t+r

t

η(t′) dt′ =
∫ t+r

t

[2K ′(ε)|v|2L2 + 2K ′′(ε)|ρx|2L2 + 2c′10|Su|2∞] dt′

≤ K(ε) + 2c′10r|Su|2∞
= a2, ∀ t ≥ t′1,

(3.17)

(3.18)

∫ t+r

t

|ux(t
′)|2L2 dt′ ≤ a3, ∀ t ≥ t′1,

(3.8) then yields:

(3.19) |ux(t)|2L2 ≤
(a3

r
+ a2

)
ea1 , ∀ t ≥ t′1 + r,

and thus

(3.20) |ux|L2 ∈ L∞(R+).

Note that in (3.16)–(3.18) we can use bounds on |uz|∞ (and other similar terms)
independent of U0, since t ≥ t0(|U0|L2) + r. Integrating equation (3.14) from 0
to t′1 + r where t′1 = t′1(|U0|L2), we obtain a bound for ux in L2(0, t′1 + r; H1)
which depends on ‖U0‖. A bound independent of U0 is obtained if we work with
t ≥ t′1 + r = t′′1 = t′′1(|U0|L2): Integrating equation (3.14) from t to t + r with r as
before, we find:

(3.21)

∫ t+r

t

‖ux(s)‖2 ds ≤ K(ε), ∀ t ≥ t′′1.

We perform similar computations for vz: We differentiate (1.1b) with respect to
z, multiply the resulting equation by vz and integrate over M. Using again the
conservation of mass relation, we arrive at:

1

2

d

dt
|vz|2L2 +

∫

M

uzvxvz dM +

∫

M

wzv
2
z dM +

1

ε

∫

M

uzvz dM + νv‖vz‖2

=

∫

M

vzSu, z dM.

(3.22)

We notice the following estimate:

∣∣∣
∫

M

uzvxvz dM
∣∣∣ ≤ c′11|uz|1/2

L2 ‖uz‖1/2|vx|L2|vz|1/2

L2 ‖vz‖1/2

≤ νv

8
‖vz‖2 + c′12|uz|2/3

L2 ‖uz‖2/3|vx|4/3

L2 |vz|2/3

L2

≤ νv

8
‖vz‖2 + c′12|uz|2/3

L2 ‖uz‖2/3|vx|4/3

L2 (1 + |vz|2L2).
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We also see that∣∣∣
∫

M

wzvzvz dM
∣∣∣ =

∣∣∣
∫

M

uxvzvz dM
∣∣∣ ≤ c′13|ux|1/2

L2 ‖ux‖1/2|vz|3/2

L2 ‖vz‖1/2

≤ νv

8
‖vz‖2 + c′14|ux|2/3

L2 ‖ux‖2/3|vz|2L2 ,

1

ε

∣∣∣
∫

M

uzvz dM
∣∣∣ =

1

ε

∣∣∣
∫

M

u vzz dM
∣∣∣ ≤ νv

8
‖vz‖2+K(ε)|u|2L2 ,

∣∣∣
∫

M

Sv, zvz dM
∣∣∣ =

∣∣∣
∫

M

Svvzz dM
∣∣∣ ≤ νv

8
‖vz‖2+c′15|Sv|2∞,

which gives:

(3.23)
d

dt
|vz|2L2 + νv‖vz‖2 ≤ ξ|vz|2 + η,

where we denoted

η = η(t) = 2c′12|uz|2/3

L2 ‖uz‖2/3|vx|4/3

L2 + 2K(ε)|u|2 + 2c′15|Sv|2∞,

and
ξ = ξ(t) = 2c′12|uz|2/3

L2 ‖uz‖2/3|vx|4/3

L2 + 2c′14|ux|2/3

L2 ‖ux‖2/3.

From (3.23), using the estimates obtained before and applying the classical Gronwall
lemma we obtain bounds depending on the initial data for vz in L∞loc(0, t?; L

2) and
L2

loc(0, t?; H
1), valid for any finite interval of time (0, t?).

To obtain estimates valid for all time, we apply the uniform Gronwall lemma
observing that:

∫ t+r

t

ξ(t′) dt′ ≤ 2c′12|uz|2/3
∞

( ∫ t+r

t

‖uz(t
′)‖ dt′

)1/3( ∫ t+r

t

|vx(t
′)|2L2 dt′

)2/3

+ 2c′14|ux|2/3
∞

∫ t+r

t

‖ux(t
′)‖2/3 dt′

≤ a1, ∀ t ≥ t′′1,

(3.24)

∫ t+r

t

η(t′) dt′ ≤ 2c′12|uz|2/3
∞

( ∫ t+r

t

‖uz(t
′)‖ dt′

)1/3( ∫ t+r

t

|vx(t
′)|2L2 dt′

)2/3

+ 2K(ε)|u|2∞r + 2c′15r|Sv|2∞
≤ a2, ∀ t ≥ t′′1,

(3.25)

(3.26)

∫ t+r

t

|vz(t
′)|2 dt′ ≤ a3, ∀ t ≥ t′′1.

Then the uniform Gronwall lemma gives:

(3.27) |vz(t)|2L2 ≤
(a3

r
+ a2

)
ea1 , ∀ t ≥ t′′1 + r,
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with a1, a2, a3 as in (3.25), (3.24) and (3.26). Integrating equation (3.23) from t to
t + r with r > 0 as above and t ≥ t′′1 + r, we find:

(3.28)

∫ t+r

t

‖vz(s)‖2 ds ≤ K(ε), ∀ t ≥ t′′1 + r.

The same methods apply to vx, ρz and ρx, noticing that at each step we precisely
use the estimates from the previous steps, so the order can not be changed in this
calculations.

With these estimates, the Galerkin method as used for the proof of Theorem 2.1
gives the existence of strong solutions:

Theorem 3.1. Given U0 ∈ V and S ∈ L∞(R+; H), there is a unique solution U of
equation (2.13) with U(0) = U0 such that

(3.29) U ∈ L∞(R+; V ) ∩ L2(0, t?; (Ḣ2(M))3), ∀ t? > 0.

Proof. As we said, the existence of strong solutions follows from the previous esti-
mates. It remains to prove the uniqueness.

Assume U1 and U2 are two solutions of problem (2.13) satisfying (3.29), and let
U = U1 − U2. We write (2.13) for U1 and U2 with Ũ = U ; combining the resulting
equations, we find:

(3.30)
1

2

d

dt
|U |2H + a(U,U) + b(U1, U1, U)− b(U2, U2, U) = 0.

Using (2.15b) we obtain:

(3.31)
1

2

d

dt
|U |2H + c1‖U‖2 + b(U,U2, U) ≤ 0.

From Lemma (2.1) and using Young’s inequality we find that:

b(U,U2, U) ≤ c′1|U |L2‖U‖‖U2‖+ c′2|U |1/2

L2 ‖U‖3/2|U2|1/2
V2

≤ c1

2
‖U‖2 + c′3|U |2L2‖U2‖2 + c′4|U |2L2|U2|2V2

.
(3.32)

Going back to (3.31) we find:

(3.33)
d

dt
|U |2H ≤ c′5|U |2H(‖U2‖2 + |U2|2V2

).

Since U2 satisfies (3.29) the function

t → ‖U2(t)‖2 + |U2(t)|2V2
is integrable,

and we can apply the Gronwall lemma which yields, since U1(0) = U2(0),

(3.34) |U(t)|2H ≤ 0, ∀ t ∈ [0, t?].

From (3.34) we conclude that U1 = U2. ¤



14 PETCU, TEMAM, AND WIROSOETISNO

4. More Regular Solutions for the PEs

In this section we show how to obtain estimates on the higher order derivatives
from which one can derive the existence of solutions of the PEs in (Ḣm(M))3 for all
m ∈ N, m ≥ 2 (hence up to C∞ regularity). In all that follows we work with U0 in
(Ḣm

per(M))3.

We set |U |m =
(∑

[α]=m |DαU |2L2

)1/2
. We fix m ≥ 2 and, proceeding by induction,

we assume that for all 0 ≤ l ≤ m− 1, we have shown that

(4.1) U ∈ L∞(R+; (Ḣ l(M))3) ∩ L2(0, t?; (Ḣ l+1(M))3), ∀ t? > 0,

with

(4.2)

∫ t+r

t

|U(t′)|2l+1 dt′ ≤ al, ∀ t ≥ tl(U0),

where al is a constant depending on the data (and l) but not on U0, and r > 0 is
fixed (the same as before). We then want to establish the same results for l = m.

In equation (2.13) we take Ũ = ∆mU(t) with m ≥ 2 and t arbitrarily fixed, and
we obtain: (dU

dt
, ∆mU

)
L2

+ a(U, ∆mU) + b(U,U, ∆mU) +
1

ε
e(U, ∆mU)

= (S, ∆mU)L2 .
(4.3)

Integrating by parts, using periodicity and the coercivity of a and the fact that
e(U,U) = 0, we find:

(4.4)
1

2

d

dt
|U(t)|2m + c1|U |2m+1 ≤ |b(U,U, ∆mU)|+ |(S, ∆mU)L2|.

We need to estimate the terms on the right hand side of (4.4). We first notice that

(4.5) |(S, ∆mU)L2| ≤ c|S|2m−1 +
c1

2(m + 3)
|U |2m+1,

and it remains to estimate |b(U,U, ∆mU)|.
By the definition of b we have:

b(U,U, ∆mU) =

∫

M

(uux + w(U)uz)∆
mu dM +

∫

M

(uvx + w(U)vz)∆
mv dM

+ κ

∫

M

(uρx + w(U)ρz)∆
mρ dM.

(4.6)

The computations are similar for all the terms, and, for simplicity, we shall only
estimate the first integral on the right hand side of (4.6).

We notice that b(U,U, ∆mU) is a sum of integrals of the type∫

M

u
∂u

∂x
D2α1

1 D2α3
3 u dM,

∫

M

w(U)
∂u

∂z
D2α1

1 D2α3
3 u dM,
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where αi ∈ N with α1 + α3 = m. By Di we denoted the differential operator ∂/∂xi.
Integrating by parts and using periodicity, the integrals take the form

(4.7)

∫

M

Dα
(
u
∂u

∂x

)
Dαu dM,

∫

M

Dα
(
w(U)

∂u

∂z

)
Dαu dM,

where Dα = Dα1
1 Dα3

3 . Using Leibniz’ formula, we see that the integrals are sums of
integrals of the form

(4.8)

∫

M

uDα ∂u

∂x
Dαu dM,

∫

M

w(U) Dα ∂u

∂z
Dαu dM,

and of integrals of the form

(4.9)

∫

M

δku δm−k ∂u

∂x
Dαu dM,

∫

M

δkw(U) δm−k ∂u

∂z
Dαu dM,

with k = 1, ..., m, where δk is some differential operator Dα with [α] = α1 + α3 = k.
For each α, after integration by parts we see that the sum of the two integrals in (4.8)
is zero because of the mass conservation equation (1.1d). It remains to estimate the
integrals of type (4.9). We use here the Sobolev and interpolation inequalities. For
the first term in (4.9) we write:

∣∣∣
∫

M

δku δm−k ∂u

∂x
Dαu dM

∣∣∣ ≤ |δku|L4

∣∣∣δm−k ∂u

∂x

∣∣∣
L4
|Dαu|L2

≤ c′1|δku|1/2

L2 |δku|1/2

H1

∣∣∣δm−k ∂u

∂x

∣∣∣
1/2

L2

∣∣∣δm−k ∂u

∂x

∣∣∣
1/2

H1
|Dαu|L2

≤ c′1|U |1/2
k |U |1/2

k+1|U |1/2
m−k+1|U |1/2

m−k+2|U |m,

(4.10)

where k = 1, ..., m.
The second term from (4.9) is estimated as follows:

∣∣∣
∫

M

δkw(U) δm−k ∂u

∂z
Dαu dM

∣∣∣ ≤ |δkw(U)|L2

∣∣∣δm−k ∂u

∂z

∣∣∣
L4
|Dαu|L4

≤ c′2|δkw(U)|L2

∣∣∣δm−k ∂u

∂z

∣∣∣
1/2

L2

∣∣∣δm−k ∂u

∂z

∣∣∣
1/2

H1
|Dαu|1/2

L2 |Dαu|1/2

H1

≤ c′3|U |k+1|U |1/2
m−k+1|U |1/2

m−k+2|U |1/2
m |U |1/2

m+1,

(4.11)

where k = 1, ..., m.
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From (4.10) and (4.11) we obtain that:

|b(U,U, ∆mU)| ≤ c3

m∑

k=1

|U |1/2
k |U |1/2

k+1|U |1/2
m−k+1|U |1/2

m−k+2|U |m

+ c3

m∑

k=1

|U |k+1|U |1/2
m−k+1|U |1/2

m−k+2|U |1/2
m |U |1/2

m+1.

(4.12)

We now need to bound the terms on the right hand side of (4.12). The terms
corresponding to k = 2, ..., m − 1 in the first sum do not contain |U |m+1 and we
leave them as they are. For k = 1 and k = m, we apply Young’s inequality and we
obtain:

(4.13) c3|U |1/2
1 |U |1/2

2 |U |3/2
m |U |1/2

m+1 ≤
c1

2(m + 3)
|U |2m+1 + c′4|U |2/3

1 |U |2/3
2 |U |2m.

For the terms in the second sum in (4.12) we distinguish between k = 1, k = m and
k = 2, ..., m− 1. The term corresponding to k = 1 is bounded by:

(4.14) c3|U |2|U |m|U |m+1 ≤ c1

2(m + 3)
|U |2m+1 + c′5|U |22|U |2m.

For k = m we find:

(4.15) c3|U |1/2
1 |U |1/2

2 |U |1/2
m |U |3/2

m+1 ≤
c1

2(m + 3)
|U |2m+1 + c′6|U |21|U |22|U |2m.

For the terms corresponding to k = 2, ...,m− 1 we apply Young’s inequality in the
following way:

c3|U |k+1|U |1/2
m−k+1|U |1/2

m−k+2|U |1/2
m |U |1/2

m+1

≤ c1

2(m + 3)
|U |2m+1 + c′7|U |4/3

k+1|U |2/3
m−k+1|U |2/3

m−k+2|U |2/3
m .

(4.16)

Gathering all the estimates above we find:

d

dt
|U |2m + c1|U |2m+1 ≤ ξ + η|U |2m,

where the expressions of ξ and η are easily derived from (4.4), (4.13), (4.14), (4.15)
and (4.16). Using the Gronwall lemma and the induction hypotheses (4.1)–(4.2) we
obtain a bound for U in L∞(0, t?; Hm) and L2(0, t?; H

m+1), for all fixed t? > 0,
this bound depending also on |U0|m. We also see that, because of the induction
hypotheses (4.1)–(4.2), we can apply the uniform Gronwall lemma and we obtain
U bounded in L∞(R+; Hm) with a bound independent of |U0|m when t ≥ tm(U0);
we also obtain an analogue of (4.2). The details regarding the way we apply the
uniform Gronwall lemma and derive these bounds are similar to the developments
in Section 3.

In summary we have proven the following result:
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Theorem 4.1. Given m ∈ N, m ≥ 1, U0 ∈ V ∩ (Ḣm
per(M))3 and S ∈ L∞(R+; H ∩

(Ḣm−1
per (M))3), equation (2.13) has a unique solution U such that

(4.17) U ∈ L∞(R+; (Ḣ
m

per(M))3) ∩ L2(0, t?; (Ḣm+1
per (M))3), ∀ t? > 0.

Remark 4.1. Since ∩m≥0Ḣ
m
per(M) = Ċ∞per(M), given U0 ∈ (Ċ∞per(M))3 and S ∈

L∞(R+; (Ċ∞per(M))3), equation (2.13) has a unique solution U belonging to L∞(R+;

(Ḣm
per(M))3) for all m ∈ N; that is, U is in L∞(R+; (Ċ∞per(M))3). Regularity (differen-

tiability) in time can be also derived if S is also C∞ in time. However the arguments
above do not provide the existence of an absorbing set in (Ċ∞per(M))3.

5. Appendix: Physical Background

The large-scale ocean equations considered in this article, also called the Primitive
Equations (PEs), are derived from the general conservation laws of physics using
the Boussinesq and hydrostatic approximations. They comprise: the conservation of
horizontal momentum equation, the hydrostatic equation, the continuity equation,
the equation for the temperature (conservation of energy), the equation of diffusion
for the salinity and the equation of state (see, e.g., [7], [8] or [12]):

∂v∗

∂t∗
+ (v∗ · ∇∗)v∗ + w∗∂v∗

∂z∗
+ fk × v∗ +

1

ρref

∇p∗ = µ∗v ∆∗
hv

∗ + ν∗v
∂2v∗

∂z∗2
,(5.1a)

∂p∗full

∂z∗
= −ρ∗full g,(5.1b)

∂u∗

∂x∗
+

∂v∗

∂y∗
+

∂w∗

∂z∗
= 0,(5.1c)

∂T

∂t∗
+ (v∗ · ∇∗)T + w∗ ∂T

∂z∗
= µT ∆∗

hT + νT

∂2T

∂z∗2
,(5.1d)

∂S

∂t∗
+ (v∗ · ∇∗)S + w∗ ∂S

∂z∗
= µS ∆∗

hS + νS

∂2S

∂z∗2
,(5.1e)

ρ∗full = ρref

[
1− βT (T − Tref)− βS(S − Sref)

]
.(5.1f)

Here v∗ = (u∗, v∗) is the horizontal velocity, w∗ the vertical velocity, p∗full the (full)
pressure, ρ∗full the (full) density, T the temperature and S the salinity. Asterisks
denote dimensional quantities, a notation which will be useful below when we non-
dimensionalise. The constants ρref , Tref , Sref denote reference (average) values re-
spectively for the density, temperature and salinity; g is the gravitational accelera-
tion and f the Coriolis parameter. The horizontal gradient and Laplacian operators
are denoted by ∇∗ and ∆∗

h, respectively.
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We recall that in the hydrostatic approximation of the Boussinesq equation, the
conservation of the vertical momentum equation is replaced by the hydrostatic equa-
tion corresponding to its leading terms (5.1b). We chose a linear equation of state
(5.1f), but this is not essential; appropriate nonlinear equations could be handled
similarly; also ρref , Tref and Sref could be nonconstant with suitable changes in the
following. Equations (5.1) correspond to the f -plane approximation of equations on
the sphere, hence f = constant = 2Ω, Ω being the angular velocity of the Earth in
its rotation around the poles’ axes.

A simplification of this system can be obtained if we assume that βT νT = βSνS

and βT µT = βSµS so that (5.1d)–(5.1f) can be combined into a single equation for
ρ, namely:

(5.2)
∂ρ∗full

∂t∗
+ u∗

∂ρ∗full

∂x∗
+ v∗

∂ρ∗full

∂y∗
+ w∗∂ρ∗full

∂z∗
= µ∗ρ ∆∗

hρ
∗
full + ν∗ρ

∂2ρ∗full

∂z∗2
.

We are interested in the case where the density ρ∗full is of the form

(5.3) ρ∗full(x, y, z, t) = ρref + ρ̄(z) + ρ∗(x, y, z, t),

where ρ̄ = ρ̄(z) is a stratification profile of the density. Similarly, we write the
pressure as,

(5.4) p∗full(x, y, z, t) = pref + p̄(z) + p∗(x, y, z, t),

where ∂pref/∂z = −gρref and ∂p̄/∂z∗ = −gρ̄. With this, (5.1b) reduces to

(5.5)
∂p∗

∂z∗
= −gρ∗.

We shall be interested in the physical regimes where |ρ̄| ¿ |ρref | and |ρ∗| ¿ |ρ̄|, the
first inequality meaning that the density profile ρ̄ does not depart too much from
a mean reference value ρref and the second one meaning that the horizontal and
temporal variations of the density surfaces are very small compared to the vertical
stratification. Furthermore, we consider a part of the ocean where ρ̄(z) is a linear
function of z and introduce the (constant) Brunt–Väisälä frequency N∗, defined by

(5.6) (N∗)2 = − g

ρref

dρ̄

dz
.

With this, the evolution equation for density (5.2) can be written as,

(5.7)
∂ρ∗

∂t∗
+ u∗

∂ρ∗

∂x∗
+ v∗

∂ρ∗

∂y∗
+ w∗∂ρ∗

∂z∗
− ρref

g
(N∗)2 w∗ = µρ ∆∗

hρ
∗ + νρ

∂2ρ∗

∂z∗2
.

At this point, we have reduced the PEs to (5.1a), (5.5), (5.1c), and (5.7), with
the dependent variables being (v∗, w∗, ρ∗, p∗). We now non-dimensionalise this set
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of equations by means of the following typical scales: For length and velocity, we
write

x∗ = Lx, y∗ = Ly, z∗ = Hz,

u∗ = Uu, v∗ = Uv, w∗ = Ww,

where (x, y, z) and (u, v, w) are dimensionless variables. We also define the aspect
ratio

(5.8) δ := H/L.

Since we are interested in the advective timescale, we write t∗ = Tt with t dimen-
sionless, where

(5.9) T = L/U,

and define the Rossby number as

(5.10) ε = U/fL.

The (perturbation) pressure p∗ is non-dimensionalised by

(5.11) p∗ = (U2ρref/ε) p,

and the (perturbation) density ρ∗ by

(5.12) ρ∗ = (U2ρref/εgH) ρ,

where again p(x, y, z, t) and ρ(x, y, z, t) are dimensionless. We define the Burger
number as

(5.13) N = N∗H/fL.

Finally, we define the non-dimensional eddy viscosity coefficients (inverse Reynolds
numbers) by

µv = µ∗v/UL, νv = ν∗vL/UH2,

µρ = µ∗ρ/UL, νρ = ν∗ρL/UH2 .

We shall choose µv = νv and µρ = νρ for the sake of simplicity.
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With these, we can write the PEs in the completely non-dimensional form,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− 1

ε
v +

1

ε

∂p

∂x
= νv∆3u + Su ,(5.14a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+

1

ε
u +

1

ε

∂p

∂y
= νv∆3v + Sv ,(5.14b)

∂p

∂z
= −ρ,(5.14c)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,(5.14d)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
− N2

ε
w = νρ∆3ρ + Sρ .(5.14e)

Here the forcing and source terms Su, Sv, Sρ have been added to the right-hand
sides for mathematical generality.

In this paper, we shall consider the case of two spatial dimensions by assuming
that all functions are independent of y, but we allow v to be non-zero. We intend to
study the three-dimensional case in a similar paper. The system (5.14) becomes now
(1.1). We notice easily that if u, v, ρ, w, p are solutions of (1.1) for S = (Su, Sv, Sρ),

then ũ, ṽ, ρ̃, w̃, p̃ are solutions of (1.1) for S̃u, S̃v, S̃ρ where:

ũ(x, z, t) =u(x, −z, t), ṽ(x, z, t) =v(x, −z, t),

w̃(x, z, t) =− w(x, −z, t), p̃(x, z, t) =p(x, −z, t),

ρ̃(x, z, t) =− ρ(x, −z, t),

S̃u(x, z, t) =Su(x, −z, t), S̃v(x, z, t) =Sv(x, −z, t),

S̃ρ(x, z, t) =− Sρ(x, −z, t).

Therefore if we assume that Su, Sv are even in z and Sρ is odd in z, then we can
anticipate the existence of a solution of (1.1) such that:

u, v, w, p, ρ are periodic in x and z with periods L1 and L3,

and

u, v and p are even in z; w and ρ are odd in z,

provided the initial conditions satisfy the same symmetry properties. Our aim is
to solve the problem (1.1) with the periodicity and symmetry properties above and
with initial data

u = u0, v = v0, ρ = ρ0 at t = 0.
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Hence the natural function spaces for this problem are as follows:

V = {(u, v, ρ) ∈ (Ḣ1
per(M))3, u, v even in z , ρ odd in z, u(k1, 0) = 0},
H = closure of V in L2(M)3.

The motivations for considering periodic boundary conditions is that there are
needed in studies on homogeneous turbulence of the atmosphere and also for the
study of the renormalized equations considered in [9].
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