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Abstract. In this article we study the limit, as the Rossby number ε goes to
zero, of the Primitive Equations of the atmosphere and the ocean. From the math-
ematical viewpoint we study the averaging of a penalisation problem displaying
oscillations generated by an antisymmetric operator and by the presence of two
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1. Introduction

The study of the limit, as the Rossby number ε goes to zero, of the equations of
the atmosphere and the oceans is a major physical and computational problem to
which much effort has been devoted. In a more mathematical context, this problem
is related to the averaging of oscillations using renormalization and other averaging
procedures.

In the mathematical literature, an important contribution is due to Schochet [18]
who tackled similar problems by studying an asymptotics in the fast time variable;
such problems have also been studied in the general framework of wave equations
by Joly, Rauch, Metivier [9], Grenier [8], and Gallagher [7]. For the equations of the
atmosphere and the ocean, mathematical work includes the following: Embid and
Majda [6], Babin, Mahalov, and Nicolaenko (see, e.g., [1], [3]) or Warn, Bokhove,
Shepherd, and Vallis [23]. Many more articles on the subject are available in the
physics and mathematical literature.

In the mathematical physics literature, a number of averaging problems and pro-
cedures have been studied or proposed; see e.g., the article [10] by van Kampen
on the elimination of fast variables, or the averaging procedure by Bogolyubov and
Mitropolsky [4]. Our work follows more closely the approach, based on renormal-
ization theory, of Chen, Oono, and Goldenfeld [5] revisited by Ziane [25]. Here we
also extend to infinite dimension part of the work by Temam and Wirosoetisno [22]
valid in finite dimension.

As we said, the renormalization method that we use here was introduced in [5]
and [25]. It was then applied to different types of partial differential equations by
Moise, Temam, and Ziane (see [14], [15]); the method was also applied to ordinary
differential equations (see e.g., [13], [21], [25]).

This article is organized as follows: In the first part of Section 2 (Subsection 2.1),
we present the PEs and recall a few facts on their mathematical setting, some well-
known, and some borrowed from a companion paper [17]. In the second part of
Section 2 (Subsection 2.2), we recall a few facts about renormalization following [5],
[15], [25], [21]. In Section 3 we study the properties of the renormalized system,
starting with the existence of weak solutions and ending the section with the ex-
istence of very regular solutions. In Section 4 we show that we can approximate
the exact solution of the primitive equations by an asymptotic solution which exists
for all times and we estimate the difference between the exact and asymptotic solu-
tions. We end the paper with three appendices: in Section 5 we give the details of
the derivation of the renormalized system, in Section 6.1 we give a result of number
theory needed in Section 4 to bound some small denominators necessary for the
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error estimates, and in Section 6.2 we present an alternate method for bounding the
small denominators.

2. The Initial and Renormalized Problems

In Section 2.1 we recall the Primitive Equations in a form suitable for our study.
In Section 2.2 we recall a few facts about renormalization.

2.1. The PEs in Space Dimension Two. We work in the two-dimensional space
and consider the domain

M = (0, L1)× (−L3/2, L3/2),

0x being the west–east direction, and 0z being the vertical direction. All the quanti-
ties depend only on x, z and t. We consider the PEs written in the nondimensional
form (2.1) below; a description of the derivation of these equations and a study
concerning the existence and regularity of their solutions is given in Petcu, Temam
and Wirosoetisno [17]:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
− 1

ε
v +

1

ε

∂p

∂x
= νv ∆u + Su,(2.1a)

∂v

∂t
+ u

∂v

∂x
+ w

∂v

∂z
+

1

ε
u = νv ∆v + Sv,(2.1b)

∂p

∂z
= −Nρ,(2.1c)

∂u

∂x
+

∂w

∂z
= 0,(2.1d)

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
− N

ε
w = νρ ∆ρ + Sρ.(2.1e)

Here u, v, w are the non-dimensional components of the three dimensional velocity
vector, p is the pressure, ρ is the density and ε is the Rossby number. In the
more physical situation, the source terms Su, Sv, and Sρ usually vanish; they are
introduced here for mathematical generality. Here νv and νρ are the non-dimensional

eddy viscosity coefficients, N is the Burgers number, and we set ∆ = ∂2/∂x2 +
∂2/∂z2. In the physical problem, the total pressure is

pfull = pref + p̄ + p′,

and the total density is
ρfull = ρref + ρ̄ + ρ′.

Here pref is a hydrostatic pressure corresponding to the reference value of the density
ρref , ρ̄ is the density stratification profile which is linear in z and p̄ is the pressure
in hydrostatic equilibrium with it; p′ and ρ′ are perturbations from these states. In
(2.1) we do not work with the total pressure and the total density but with the
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perturbations p′ and ρ′ where the primes were dropped and ρ′ has been replaced by
ρ′/N . See [17] for more details regarding the derivation of this system.

We also assume that all the unknown functions are M-periodic. The prognostic
variables of this system are u, v, ρ and the diagnostic variables are p, w; as we will
see below, p and w can, at each instant of time, be (essentially) determined in terms
of the prognostic variables.

We recall that an M-periodic function

u =
∑

(k1, k3)∈Z2

u(k1, k3)e
2πi(k1x/L1+k3z/L3),

is in Hm
per(M), m > 0, if and only if

∑

k∈Z2

(1 + |k|2)m|uk|2 < ∞,

where we denoted by k the pair (k1, k3). We denote by Ḣm
per(M) the functions from

Hm
per(M) with average zero on M. In order to simplify the writing we will also

set k′i = 2πki/Li. We easily notice that if (u, v, ρ, w, p) is a solution of (2.1) for
S = (Su, Sv, Sρ), then (ũ, ṽ, ρ̃, w̃, p̃) is also a solution of (2.1) for S̃u, S̃v, S̃ρ where:

ũ(x, z, t) = u(x, −z, t), p̃(x, z, t) = p(x, −z, t),

ṽ(x, z, t) = v(x, −z, t), S̃u(x, z, t) = Su(x, −z, t),

w̃(x, z, t) = −w(x, −z, t), S̃v(x, z, t) = Sv(x, −z, t),

ρ̃(x, z, t) = −ρ(x, −z, t), S̃ρ(x, z, t) = −Sρ(x, −z, t).

Hence, assuming that Su and Sv are even in z, and that Sρ is odd in z,

Su(x, z, t) = Su(x,−z, t),

Sv(x, z, t) = Sv(x,−z, t),

Sρ(x, z, t) = −Sρ(x,−z, t),

it is natural to look for a solution where u, v and p are even in z and ρ, w odd in z,

u(x, z, t) = u(x,−z, t), w(x, z, t) = −w(x,−z, t),

v(x, z, t) = v(x,−z, t), p(x, z, t) = p(x,−z, t),

ρ(x, z, t) = −ρ(x,−z, t).

For more details regarding the motivation of this choice (symmetry and periodicity)
we refer the reader to [17].

In accordance with these requirements of symmetry and periodicity, we introduce
the following function spaces:



RENORMALIZATION FOR PRIMITIVE EQUATIONS 5

V = {(u, v, ρ) ∈ (Ḣ1
per(M))3; u, v even in z, ρ odd in z, u(k1, 0) = 0, ∀ k1 ∈ Z},

H = the closure of V in (L2(M))3,

V 2 = the closure of V ∩ (H2
per(M))3 in (H2

per(M))3.

The condition u(k1, 0) = 0, ∀ k1, expresses the condition (2.3) appearing below.
We can express the diagnostic variables w and p in terms of the prognostic vari-

ables u, v, and ρ. For each U = (u, v, ρ) ∈ V we can determine uniquely

(2.2) w = w(U) = −
∫ z

0

ux(x, z′, t) dz′.

Note that w = 0 at z = 0 and L3/2 by the requirements of w (periodicity and
anti-symmetry); see more details in [17]. By (2.2), the fact that w = 0 at z = L3/2
gives the constraint on u

(2.3)

∫ L3/2

−L3/2

ux dz = 0.

As for the pressure, it can be determined uniquely in terms of ρ up to ps, writing

p(x, z, t) = ps(x, t)−
∫ z

0

ρ(x, z′, t) dz′.

For U , Ũ ∈ V , we set

(2.4) ((U, Ũ)) = ((u, ũ)) + ((v, ṽ)) + ((ρ, ρ̃)), ‖U‖ = ((U,U))1/2.

where we have written dM for dx dz, and

(2.5) ((φ, φ̃)) =

∫

M

(∂φ

∂x

∂φ̃

∂x
+

∂φ

∂z

∂φ̃

∂z

)
dM.

By the Poincaré inequality,

(2.6) |U |L2 ≤ c0‖U‖, ∀ U ∈ V ,

so that ‖ · ‖ is a Hilbert norm on V .
The space H is endowed with the usual scalar product of (L2(M))3.

Variational Formulation of the Problem

We introduce the following forms:
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a(U, Ũ) = νv((u, ũ)) + νv((v, ṽ)) + νρ((ρ, ρ̃)),

e(U, Ũ) =

∫

M

(−v ũ + u ṽ) dM + N

∫

M

ρw̃ dM−N

∫

M

wρ̃ dM,

b(U,U ], Ũ) =

∫

M

(
u
∂u]

∂x
+ w(U)

∂u]

∂z

)
ũ dM +

∫

M

(
u
∂v]

∂x
+ w(U)

∂v]

∂z

)
ṽ dM

+

∫

M

(
u
∂ρ]

∂x
+ w(U)

∂ρ]

∂z

)
ρ̃ dM.

The variational form of the problem is obtained by multiplying (2.1a), (2.1b),
(2.1e), by u, v and ρ respectively, integrating over M and adding the resulting
equations. After some easy calculations we arrive at this problem:

Given t? > 0 arbitrary, U0 ∈ H and S = (Su, Sv, Sρ) ∈ L2(0, t?; H), we look for
a function U from (0, t?) into V such that

(2.7)
d

dt
(U, Ũ)H + a(U, Ũ) + b(U,U, Ũ) +

1

ε
e(U, Ũ) = (S, Ũ)H , ∀ Ũ ∈ V ,

and

(2.8) U(0) = U0.

We also define the linear operators

A : V → V ′, 〈AU, Ũ〉V ′,V = a(U, Ũ), ∀ U, Ũ ∈ V ′,(2.9)

L : V → V ′, 〈LU, Ũ〉V ′,V = e(U, Ũ), ∀ U, Ũ ∈ V ,(2.10)

and the bilinear form
(2.11)

B : V × V 2 → V ′, 〈B(U, Ũ), U ]〉V ′,V = b(U, Ũ , U ]), ∀ U,U ] ∈ V , Ũ ∈ V 2,

where V ′ denotes the dual space of V ; it is shown in [17] that b is trilinear continuous
on V × V 2 × V and V × V × V 2 so that B is bilinear continuous from V × V 2

into V ′ and from V × V into V ′
2.

Then problem (2.7) with initial condition (2.8) is equivalent to the abstract evo-
lution equation:

dU

dt
+ AU + B(U,U) +

1

ε
LU = S, in V ′

2,

U(0) = U0.
(2.12)

Regarding the existence and uniqueness of solutions of (2.7) we recall from [17] the
following result:
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Theorem 2.1. Given U0 ∈ H and S ∈ L∞(R+; H), there exists at least one
solution U of equation (2.7) with initial condition (2.8) such that

(2.13) U ∈ L∞(R+; H) ∩ L2(0, t?; V ), for all t? > 0.

If U0 ∈ V and S ∈ L∞(R+; H), there exists a unique solution U of (2.7)–(2.8) such
that

U ∈ L∞(R+; V ) ∩ L2(0, t?; (Ḣ2
per(M))3), ∀ t? > 0.

Moreover, for all m ∈ N, m ≥ 2, if U0 ∈ (Ḣm
per(M))3 and S ∈ L∞(R+; (Ḣm−1

per (M))3),

then U ∈ L∞(R+; (Ḣm
per(M))3) ∩ L2(0, t?; (Ḣm+1

per (M))3), ∀ t? > 0.

2.2. Asymptotics and Renormalization Group Method. The aim of this ar-
ticle is to present an application of the renormalization group method (RG) to the
2D primitive equations described above. The RG method gives us an algorithm for
finding approximate (averaged) solutions for a general equation of the form:

dU

dt
+

1

ε
LU = F(U),

U(0) = U0,
(2.14)

where ε > 0 is a small parameter and L is an antisymmetric operator, so that the
solutions of (2.14) display large oscillations for ε small. We assume that L is a
diagonalizable, antisymmetric linear operator (not necessarily bounded) and F is
a nonlinear operator. Two natural time scales (at least) are present in (2.14), the
slow time t, and the fast time s = t/ε. To implement the RG method, we imagine
a formal asymptotic expansion for equation (2.14) written in the fast time variable:

dǓ

ds
+ LǓ = εF(Ǔ),

Ǔ(0) = U0,

(2.15)

where we have set Ǔ(s) = U(εs). In what follows we drop the checks and the formal
expansion is written:

(2.16) U = U0 + εU1 + ε2U2 + · · · .

We formally substitute (2.16) into (2.15) and we find:

dU0

ds
+ LU0 = 0,(2.17)

dU1

ds
+ LU1 = F(U0),(2.18)

dU2

ds
+ LU2 = ∇UF(U0) · U1,(2.19)

and so on.
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The solution of (2.17) can be written

U0(s) = e−LsU(0).

For equation (2.18) we apply the variation of constants formula and we obtain:

(2.20) U1(s) = e−Ls

∫ s

0

eLs′F(e−Ls′U0) ds′.

For U1 we choose the initial data to be zero, but other choices may be appropriate
(see [21]).

We set F (s, ·) = eLsF(e−Ls·) and we split F into two parts: the resonant part
Fr(·) corresponding to the time-independent part of F (s, ·) and the remaining non-
resonant part Fn(s, ·). In our applications, F will be polynomial1 in U and the
definition of the time-independent part of F is not problematic. We thus have:

(2.21) F (s, U) = Fr(U) + Fn(s, U),

and we define the primitive of the non-resonant part by

(2.22) Fnp(s, U) =

∫ s

0

Fn(s′, U) ds′.

Substituting these relations in (2.20) we find:

(2.23) U1(s) = e−Ls{sFr(U0) + Fnp(s, U0)}.
The first order RG equation, as discussed in [21], is of the form:

dŪ

ds
= εFr(Ū),

Ū(0) = U0.
(2.24)

For the details, see e.g., [15], [18] and [21]. The first order approximate solution is
defined by

(2.25) Ũ1(s) = e−Ls{Ū(s) + εFnp(s, Ū(s))},
and it is shown, e.g., in [18], that Ũ1 − U is of order ε in an interval of time s of
order O(1/ε) and in an interval of time t of order O(1).

The renormalized system (2.24)–(2.25) gives us an O(ε) approximation to the
exact solution over a timescale t ∼ O(1) without having to solve an oscillatory
differential equation. Because of the computational difficulties, in this article we
only derive the first-order approximate solution but we can apply the method to
higher-order approximate solutions as described in [21] in the context of ordinary
differential equations.

1Here we call polynomial function a function of the form F(U) =
∑n

j=0 Fj(U, · · · , U), where n

is finite arbitrary, and Fj is j-linear continuous on a suitable function space.
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In this article, the polynomial F is taken to be of the form:

F(U) = S − A(U)−B(U,U),

where S is an external force, A is a linear coercive operator and B is a bilinear
operator. In Section 5, we explicitly construct the resonant parts of A and B.
We will see that the resonant parts of A and B have the same properties as the
original operators; this does not seem to happen at higher orders. In Section 6.1
and Section 6.2 we give two different methods to handle the small denominators,
one result being a typical number theory result and the other is a more particular
result, the method following [3].

3. Description of the Renormalized System

We start this section by writing the initial system (2.1) in Fourier modes and by
introducing a change of variables to facilitate the computation of the renormalized
equation (Section 3.1). In the subsequent subsections we prove the existence of weak
solutions (Section 3.2), of strong solutions (Section 3.3) and of even more regular
solutions for the renormalized system (Section 3.4).

3.1. The Original Equations in Fourier Modes. We introduce the fast time
s = t/ε in the system (2.1). Abusing the notation, new functions depending on x, z
and s are denoted in the same way as before. We obtain the following system:

∂u

∂s
+ εu

∂u

∂x
+ εw

∂u

∂z
− v +

∂p

∂x
= ενv∆u + εSu,

∂v

∂s
+ εu

∂v

∂x
+ εw

∂v

∂z
+ u = ενv∆v + εSv,

∂p

∂z
= −Nρ,(3.1)

ux + wz = 0,

∂ρ

∂s
+ εu

∂ρ

∂x
+ εw

∂ρ

∂z
−Nw = ενρ∆ρ + εSρ.

All the functions being periodic, they admit Fourier series expansions. Hence, for
instance, for u we write

u =
∑

(k1, k3)∈Z2

u(k1,k3)e
i(k′1x+k′3z),

where k′j = 2πkj/Lj. Note here that, by periodicity of w, integration of the fourth
equation of (3.1) yields

(3.2)

∫ L3/2

−L3/2

ux dz = 0.
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In Fourier series, this is equivalent to the condition u(k1,0) = 0 for all k1 ∈ Z, which
appears in the definition of the space V . The fact that w is odd in z implies that
w(k1, 0) = 0, for all k1. We use these properties in what follows.

We hereby assume that Su, Sv, Sρ are functions independent of time.
With primes denoting ∂/∂s, we can write the system (3.1) in Fourier modes as

follows

u′k + ε
∑

j+l=k

(il′1ujul + il′3wjul)− vk + ik′1pk = −ενv |k′|2uk + εSu, k,

v′k + ε
∑

j+l=k

(il′1ujvl + il′3wjvl) + uk = −ενv |k′|2vk + εSv, k,

ik′3pk = −Nρk,(3.3)

k′1uk + k′3wk = 0,

ρ′k + ε
∑

j+l=k

(il′1ujρl + il′3wjρl)−Nwk = −ενρ|k′|2ρk + εSρ, k.

The zeroth order system

We now make explicit for our problem the solution of the linear zeroth order equation
(2.17), whose solution will be used later on in the variation of constants formulas
and in particular in the analogue of (2.20). With the same notation as before and
with U = (u, v, ρ), we have

u′k − vk + ik′1pk = 0,

v′k + uk = 0,

ik′3pk = −Nρk,(3.4)

k′1uk + k′3wk = 0,

ρ′k −Nwk = 0.

For k3 = 0, we have u(k1, 0) = 0, w(k1, 0) = 0 and ρ(k1, 0) = 0 from the definition of
the space V , so only the first two lines of system (3.4) are nontrivial:

− vk + ik′1pk = 0,(3.5)

v′k = 0.

This gives us v(k1, 0)(s) = v(k1, 0)(0) and (3.5) allows us to express pk in terms of vk.
For k3 6= 0 we can express the k-component of the diagnostic variables in terms

of the prognostic variables:

pk = − N

ik′3
ρk,(3.6)

wk = −δkuk,(3.7)
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where for notational conciseness we have set

(3.8) δk =
k′1
k′3

if k′3 6= 0, and δk = 0 if k′3 = 0.

Substituting (3.6) and (3.7) in (3.4) we find:

u′k − vk − δkNρk = 0,

v′k + uk = 0,(3.9)

ρ′k + δkNuk = 0.

To solve this system we introduce the following change of unknowns suggested by
the diagonalization of system (3.9). We set:

(3.10) nk =
1

βk

vk +
δkN

βk

ρk = (vk, ρk) · ~φk,

where we denoted

(3.11) βk =
(
1 + δ2

kN
2
)1/2

,

and

(3.12) ~φk =
( 1

βk

,
δkN

βk

)
.

We also define the following vector:

(3.13) ~γk =
(
− δkN

βk

,
1

βk

)
.

and we set mk = (vk, ρk) · ~γk. For notational conciseness we also set

(3.14) ~mk = mk~γk, ~nk = nk
~φk.

Note that ~φk = (1, 0) and ~γk = (0, 1) when k3 = 0.
Conversely, given mk and nk, the initial unknowns can be recovered using vk =

(mk, nk) · ~γk and ρk = (mk, nk) · ~φk.
In the new variables uk, nk, mk, the system (3.9) for k3 6= 0 can now be written

as:

u′k − βknk = 0,

n′k + βkuk = 0,(3.15)

m′
k = 0,

and this system is easy to solve.

Weak formulation (in the new variables)

We denote by n and m the functions

n(x, z, s) =
∑

knk(s)e
i(k′1x+k′3z), m(x, z, s) =

∑
kmk(s)e

i(k′1x+k′3z),
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where here and elsewhere
∑

k means the summation over k = (k1, k3) ∈ Z2\{0}.
We also consider Sn and Sm similarly defined by their Fourier series. Here we

have set Sm, k = (Sv, k, Sρ, k) · ~γk and Sn, k = (Sv, k, Sρ, k) · ~φk.
As we saw before, m(k1,0) = 0. This motivates us to introduce the following spaces:

Ṽ = {(u, n,m) ∈ (Ḣ1
per(M))3 : u(k1,0) = 0, u, n are even in z, m is odd in z},

H̃ = the closure of Ṽ in (L̇2(M))3.

Notice that technically the space Ṽ is the same as V but the components play
different roles.

We also introduce the space

(3.16) Ṽ 2 = the closure of Ṽ ∩ (Ḣ2
per(M))3 in (Ḣ2

per(M))3.

We now define the linear operators Ã, L̃ from Ṽ into the dual Ṽ
′
of Ṽ , and the

bilinear operator B̃ from Ṽ × Ṽ into Ṽ
′
2. These operators are the expressions of A

and B in the new variables. With V = (u, n, m), they are defined by their Fourier
series components Ãk, B̃k as follows,

ÃV =
∑

k Ãk(V )ei(k′1x+k′3z),

B̃(V, V [) =
∑

k B̃k(V, V [)ei(k′1x+k′3z),

L̃V =
∑

k L̃k(V )ei(k′1x+k′3z).

More explicitly, for Ãk we have

ÃkVk =




|k′|2νvuk

|k′|2νvnk + (νρ − νv )|k′|2(Nδk/βk)(mk, nk) · ~φk

|k′|2νvmk + |k′|2(1/βk)(νρ − νv )(mk, nk) · ~φk


 for all k,

while for L̃k we have

L̃k = 0 for k3 = 0,

L̃k =




0 −βk 0
βk 0 0
0 0 0


 for k3 6= 0,
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and similarly for B̃,

B̃k(V, V [) =




0

i
∑k k′1uj(~m

[
l + ~n[

l) · ~φk

0


 for k3 = 0,

B̃k(V, V [) =




i
∑k (l′1 − l′3δj)uju

[
l

i
∑k (l′1 − l′3δj)uj(~m

[
l + ~n[

l) · ~φk

i
∑k (l′1 − l′3δj)uj(~m

[
l + ~n[

l) · ~γk


 for k3 6= 0.

Here and elsewhere in this paper
∑k means that the sum is taken over j, l in Z2\{0},

for j + l = k.
The resulting system from this change of variables can be written in the form

(3.17) V ′ + L̃V = εG̃(V ),

where S̃ = (Su, Sn, Sm) and

G̃(V ) = −ÃV − B̃(V, V ) + S̃.

We also define the bilinear forms ã(V, V [) = 〈ÃV, V [〉
Ṽ
′
,Ṽ

and ẽ(V, V [) = 〈L̃V, V [〉
Ṽ
′
,Ṽ

where V and V [ belong to Ṽ . We also introduce b̃(V, V [, V ]) = 〈B̃(V, V [), V ]〉
Ṽ
′
,Ṽ

where V , V ] belong to Ṽ and V [ belongs to Ṽ 2. Writing explicitly the trilinear
form b̃ we find:

b̃(V, V [, V ]) = i
∑c

(l′1 − l′3δj)uju
[
lu

]
k

+ i
∑c

(l′1 − l′3δj)uj(~m
[
l + ~n[

l) · (~m]
k + ~n]

k).

Here and elsewhere in this paper,
∑c means that the sum is taken over j, l, k, for

j + l + k = 0.
The variational formulation of the problem in the new variables now reads:

Given t? > 0 arbitrary, V0 ∈ H̃ and S̃ = (Su, Sn, Sm) ∈ L2(0, t?; H̃), we look for

a function V from (0, t?) into Ṽ such that

(3.18)
d

dt
(V, V [)H̃ + ã(V, V [) + b̃(V, V, V [) + ẽ(V, V [) = (S̃, V [)Ṽ , ∀ V [ ∈ Ṽ ,

and

(3.19) V (0) = V0.

The first order system

We write the full nonlinear system (3.3) in terms of the new variables.
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For k3 6= 0, the system (3.3) in the new variables reads:

u′k − βknk = −ενv |k′|2uk − iε
∑k

(l′1 − l′3δj)ujul + εSu, k,

n′k + βkuk = −ενv |k′|2nk − ε|k′|2(νρ − νv )
δkN

βk

(mk, nk) · ~φk

− iε
∑k

(l′1 − l′3δj)uj(~ml + ~nl) · ~φk + εSn, k,

m′
k = −ενv |k′|2mk − ε|k′|2(νρ − νv )

1

βk

(mk, nk) · ~φk

− iε
∑k

(l′1 − l′3δj)uj(~ml + ~nl) · ~γk + εSm, k.

(3.20)

For the case k3 = 0 we note that uk = 0 and mk = 0 because of the definitions of
the spaces.

Study of the new variational problem

We can see, after some elementary computations, that ã is a bilinear and coercive
form on Ṽ , so it remains to prove the properties of b̃.

Lemma 3.1. The form b̃ is trilinear continuous from Ṽ × Ṽ 2 × Ṽ to R and from
Ṽ × Ṽ × Ṽ 2 to R, and

b̃(V, V [, V [) = 0, ∀ V ∈ Ṽ , ∀ V [ ∈ Ṽ 2,

b̃(V, V [, V ]) = −b̃(V, V ], V [) ∀ V, V [, V ] ∈ Ṽ , with V [ or V ] ∈ Ṽ 2.
(3.21)

Furthermore:

(3.22) |b̃(V, V [, V ])| ≤ c |V |H1|V [|1/2

H1 |V [|1/2

H2 |V ]|1/2

L2 |V ]|1/2

H1 ,

for all V , V ] in Ṽ and V [ in Ṽ 2.

Proof. To prove the continuity of the bilinear form and (3.22), we estimate for

example the second term of b̃(V, V [, V ]), the estimates being similar for all the
terms: ∣∣∣i

∑c
(l′1 − l′3δj)uj(~m

[
l + ~n[

l) · (~m]
k + ~n]

k)
∣∣∣

≤
∑c |l′||j′||uj|(|m[

l |+ |n[
l |)(|m]

k|+ |n]
k|)

≤
∫

M

η1η2η3 dM ≤ |η1|L2|η2|L4|η3|L4

≤ c|η1|L2||η2|1/2

L2 |η2|1/2

H1 |η3|1/2

L2 |η3|1/2

H1

≤ c|V |H1|V [|1/2

H1 |V [|1/2

H2 |V ]|1/2

L2 |V ]|1/2

H1 ;
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here we wrote:

η1 =
∑

j

|j′||uj|ei(x·j′), η2 =
∑

j

|j′|(|m[
j|+ |n[

j|)ei(x·j′),

η3 =
∑

j

(|m]
j|+ |n]

j|)ei(x·j′)

It remains to prove the orthogonality property (3.21). For V [ = V ] we have:

b̃(V, V [, V [) = i
∑c

(l′1 − l′3δj)uju
[
lu

[
k

+ i
∑c

(l′1 − l′3δj)uj(~m
[
l + ~n[

l) · (~m[
k + ~n[

k).
(3.23)

Interchanging k and l and adding the resulting equations to (3.23), we find:

b̃(V, V [, V [) =
i

2

∑c
[l′1 + k′1 − (l′3 + k′3)δj]uju

[
lu

[
k

+
i

2

∑c
[l′1 + k′1 − (l′3 + k′3)δj]uj(~m

[
l + ~n[

l) · (~m[
k + ~n[

k)

= 0.

We have used here the fact that

l′1 + k′1 − (l′3 + k′3)δj = −j′1 + j′3
j′1
j′3

= 0.

¤
Remark 3.2. Because of the algebraic way we changed the variables and the con-
servation of the properties for the linear and bilinear operators, we have exactly the
same result as Theorem 2.1 for the new system.

3.2. The Renormalized Equation. Existence of Weak Solutions. We turn
now to the renormalized system [the analogue of (2.24) for (3.17)],

(3.24)
dV̄

dt
+ Ãr(V̄ ) + B̃r(V̄ , V̄ ) = S̃r.

The computation of Ãr, B̃r and S̃r is given in Section 5. It is established there
that ãr(V, V ]) = 〈ÃrV, V ]〉

Ṽ
′
,Ṽ

is a bilinear continuous form in Ṽ satisfying

(3.25) ãr(V̄ , V̄ ) ≥ c1‖V̄ ‖2,

and that b̃r(V, V ], V [) = 〈B̃r(V, V ]), V [〉
Ṽ
′
,Ṽ

is trilinear continuous on Ṽ × Ṽ 2 × Ṽ

satisfying

(3.26) b̃r(V̄ , V̄ , V̄ ) = 0.
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The variational formulation of the renormalized problem (3.24)

Given t? > 0 arbitrary and
V̄0 ∈ H̃ , S̃r ∈ H̃ ,

we look for a function V̄ from (0, t?) into Ṽ , such that, for every test function

V ] ∈ Ṽ ,

(3.27)
( d

dt
V̄ , V ]

)
+ ãr(V̄ , V ]) + b̃r(V̄ , V̄ , V ]) = (S̃r, V ]),

with

(3.28) V̄ (0) = V̄0.

As usual, in order to solve this problem we need to obtain some a priori estimates.
For that purpose, for arbitrary fixed t > 0, we set V ] = V̄ (t) in equation (3.27).
Taking into account the coercivity (3.25) and orthogonality (3.26) properties, we
obtain

1

2

d

dt
|V̄ |2L2 + c1‖V̄ ‖2 ≤ (S̃r, V̄ )L2 ≤ c1

2
‖V̄ ‖2 + c′1|S̃r|2L2 .

This gives

(3.29)
d

dt
|V̄ |2L2 + c1‖V̄ ‖2 ≤ 2c′1|S̃r|2L2 .

Applying Poincaré’s inequality (2.6) we find,

(3.30)
d

dt
|V̄ |2L2 + c1c0|V̄ |2L2 ≤ 2c′1|S̃r|2L2 ,

and, using the Gronwall lemma,

(3.31) |V̄ (t)|2L2 ≤ e−c1c0t|V̄ (0)|2L2 +
2c′1
c0c1

|S̃r|2L2(1− e−c0c1t).

This bounds V̄ (t) for all t by its initial data,

|V̄ (t)|2L2 ≤ |V̄ (0)|2L2 +
2c′1
c0c1

|S̃r|2L2 .

Eq. (3.31) also gives us a bound on V̄ (t) independent of the initial data: Setting
r2
0 := (2c′1/c0c1)|S̃r|2L2 , we obtain by classical computations (see e.g., [20]) that any

ball B(0, r′0) with r′0 > r0 is an absorbing ball and that |V̄ (t)|2L2 ≤ r′0
2 for all

t ≥ t0(|V̄0|L2).
Using the previous estimates and the Galerkin method we can establish the ex-

istence of weak solutions of (3.27) and (3.28) exactly as for the original problem
(Theorem 2.1):
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Theorem 3.3. Given t? > 0, S̃r ∈ H̃ and V̄0 ∈ H̃, the problem (3.27)–(3.28) has
at least one solution

V̄ ∈ L∞(R+; H̃) ∩ L2(0, t?; Ṽ ).

3.3. Strong Solutions for the Renormalized Equation. We derive the appro-
priate a priori estimates. Setting V ] = ∆V̄ (t) in (3.27) with t > 0 arbitrary, we
find:

(3.32)
1

2

d

dt
‖V̄ ‖2 + c1|∆V̄ |2L2 ≤ |b̃r(V̄ , V̄ , ∆V̄ )|+ c′3|S̃r|2L2 +

c1

4
|∆V̄ |2L2 .

Bounding the trilinear form on the r.h.s. using Lemma 5.1,

|b̃r(V̄ , V̄ , ∆V̄ )| ≤ 2c2|V̄ |1/2

L2 ‖V̄ ‖|∆V̄ |3/2

L2 ,

we get

1

2

d

dt
‖V̄ ‖2 + c1|∆V̄ |2L2 ≤ 2c2|V̄ |1/2

L2 ‖V̄ ‖|∆V̄ |3/2

L2 + c′3|S̃r|2L2 +
c1

4
|∆V̄ |2L2

≤ c′4|V̄ |2L2‖V̄ ‖4 + c′3|S̃r|2L2 +
c1

2
|∆V̄ |2L2 ,

or

(3.33)
d

dt
‖V̄ ‖2 + c1|∆V̄ |2L2 ≤ 2c′4|V̄ |2L2‖V̄ ‖4 + 2c′3|S̃r|2L2 .

Existence follows from applying the classical Gronwall lemma, giving us a bound on
V̄ in L∞(0, t?; H

1).
A bound uniform in time is obtained in the following manner: We pick r > 0

arbitrary and integrate (3.29) from t to t + r with t ≥ 0,

(3.34) c1

∫ t+r

t

‖V̄ (t′)‖2 dt′ ≤ rc′2|S̃r|2L2 + |V̄ (t)|2L2 .

This and the fact that |V̄ |L2 is bounded in L∞(R+) allows us to apply the uniform
Gronwall lemma to (3.33) (as in [20]). Computations similar to those in [17] give us
estimates uniform in time and we have that ‖V̄ ‖ is bounded in L∞(R+).

Integrating (3.33) from 0 to t? we obtain a bound of V̄ in L2(0, t?; Ṽ ∩(H2
per(M))3).

For later purposes, we note that integrating (3.33) from t to t + r gives us

(3.35)

∫ t+r

t

|∆V̄ (t′)|2L2 dt′ ≤ k(r, S̃r), ∀ t ≥ t1(|V̄0|L2 , r).

These a priori estimates give the following:

Theorem 3.4. Given S̃r ∈ H̃ and V̄0 ∈ Ṽ , the problem (3.27) has a unique solution

(3.36) V̄ ∈ L∞(R+; Ṽ ) ∩ L2(0, t?; Ṽ ∩ (H2
per(M))3), ∀ t? > 0.
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Remark 3.5. (i) Uniqueness in Theorem 3.4 is proved in a classical way.
(ii) The proof Theorem 3.4 for the renormalized system (3.24)–(3.28) is simpler

than for the original system (2.7) due to the fact that the analogue of (3.33) for the
latter is of the form (see [17]):

(3.37)
d

dt
‖U‖2 + c1|∆U |2L2 ≤ c′1|∆U |2L2‖U‖+ c′2‖U‖2,

which does not lead immediately to the appropriate estimates in L∞(0, t1; V ). The
difference between the r.h.s. of (3.34) and (3.37) arises because the renormalized
system does not contain problematic terms that are present in the original system.

3.4. More Regular Solutions for the Renormalized System. It is desirable
to establish the existence of more regular solutions for the renormalized equation.
We do this by induction. For simplicity we take the forcing S independent of time
and S, V̄0 ∈

⋂
m Ḣm

per.
Suppose that for a fixed arbitrary m ∈ N, m ≥ 2, we have

(3.38)

V̄ ∈ L∞(R+; Ṽ ∩ (Hm−1
per (M))3),

∫ t+r

t

|V̄ (t′)|2Hm dt′ ≤ Km,

for all t > tm−1(V̄0), where by Km we denote as before a constant independent of
the initial condition.

We seek to prove that

V̄ ∈ L∞(R+; Ṽ ∩ (Hm
per(M))3),

∫ t+r

t

|V̄ (t′)|2Hm+1 dt′ ≤ Km+1.

First we derive the a priori estimates: We set in (3.27)

V̄1 = ∆mV̄ (t) =
∑

k∈Z2

|k′|2mV̄k(t) ei(k′·x),

with t > 0 fixed, to get

(3.39)
1

2

d

dt
|V̄ |2Hm + c1|V̄ |2Hm+1 ≤ |b̃r(V̄ , V̄ , ∆mV̄ )|+ |(S̃r, ∆mV̄ )L2|.
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We estimate |b̃r(V̄ , V̄ , ∆mV̄ )| which, using (5.29), reads

b̃r(V̄ , V̄ , ∆mV̄ ) = − i

2

∑c

j3 6=0, k3=0
βj=βl

k′1|k′1|2m(n̄lūj − ūln̄j)n̄k
~φl · ~φk

− i

2

∑c

j3l3k3 6=0
βj=βk

|k′|2m(l′1 − l′3δj)ūkn̄jm̄l
~φk · ~γl − i

2

∑c

j3 6=0, l3=0
βj=βk

l′1|k′1|2mn̄jn̄lūk
~φl · ~φk

+
i

2

∑c

j3l3k3 6=0
βj=βk

|k′|2m(l′1 − l′3δj)ūjm̄ln̄k~γl · ~φk +
i

2

∑c

j3 6=0, l3=0
βj=βk

l′1|k′1|2mūjn̄ln̄k
~φl · ~φk

+
i

2

∑c

j3l3k3 6=0
βj=βl

|k′|2m(l′1 − l′3δj)(n̄lūj − n̄jūl)m̄k
~φl · ~γk.

(3.40)

The first term of (3.40) is bounded as:∣∣∣∣
i

2

∑c

j3 6=0, k3=0
βj=βl

k′1|k′1|2m(n̄lūj − ūln̄j)n̄k
~φl · ~φk

∣∣∣∣

≤ c′1
∑c

j3 6=0, k3=0
βj=βl

|k′|2m+1(|n̄l||ūj|+ |n̄j||ūl|)|n̄k|

≤ c′2
∑c

j3 6=0, k3=0
βj=βl

(|n̄l||ūj|+ |n̄j||ūl|)|n̄k|(|j′|m + |l′|m)|k′|m+1

≤ c′3

∫

M

q1 q2 q3 dM + c′3

∫

M

q3 q4 q5 dM

≤ c′3|q1|L4|q2|L4|q3|L2 + c′3|q3|L2|q4|L4|q5|L4

≤ c′4|q1|1/2

L2 ‖q1‖1/2|q2|1/2

L2 ‖q2‖1/2|q3|L2 + c′4|q3|L2|q4|1/2

L2 ‖q4‖1/2|q5|1/2

L2 ‖q5‖1/2

≤ c′5|V̄ |1/2

L2 ‖V̄ ‖1/2|V̄ |1/2
Hm|V̄ |3/2

Hm+1 ,

where we wrote:

q1 =
∑

j∈Z2

|ūj||j′|mei(x·j′), q2 =
∑

j∈Z2

|n̄j|ei(x·j), q3 =
∑

j∈Z2

|n̄j||j′|m+1ei(x·j′),

q4 =
∑

j∈Z2

|n̄j||j′|mei(x·j′), q5 =
∑

j∈Z2

|ūj|ei(x·j′).

Estimating similarly the other terms, we finally obtain:
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Lemma 3.6. There exists a constant c3 > 0 depending only on L1 and L3 such that,
for all V̄ in Ṽ ∩ (H2m

per(M))3,

(3.41) b̃r(V̄ , V̄ , ∆mV̄ ) ≤ c3|V̄ |1/2‖V̄ ‖1/2|V̄ |1/2
Hm|V̄ |3/2

Hm+1 .

Returning to (3.39) and using Young’s inequality, we find:

1

2

d

dt
|V̄ |2Hm + c1|V̄ |2Hm+1 ≤ c3|V̄ |1/2‖V̄ ‖1/2|V̄ |1/2

Hm|V̄ |3/2

Hm+1 + |(S̃r, ∆m V̄ )L2|

≤ c1

2
|V̄ |2Hm+1 + c′1|S̃r|2Hm−1 + c′2|V̄ |2L2|V̄ |2H1|V̄ |2Hm ,

or

(3.42)
d

dt
|V̄ |2Hm + c1|V̄ |2Hm+1 ≤ 2c′1|S̃r|2Hm−1 + 2c′2|V̄ |2L2|V̄ |2H1|V̄ |2Hm .

Applying the classical Gronwall lemma to (3.42) we obtain estimates in L∞(0, t?; Hm)
for all t? > 0, with the bounds depending on the initial data.

Bounds uniform in time, V̄ ∈ L∞(R+; Hm), can be obtained by using the induc-
tion hypothesis and applying the Gronwall lemma to (3.42). The bound thus ob-
tained is independent of |U0|m when t ≥ tm(U0) but the bound of V̄ in L∞(0, tm(U0);
Hm) depends of course on |U0|m.

Applying classical methods (see, e.g., [11], [20]) to the above a priori estimates,
we find:

Theorem 3.7. For any m ∈ N, m ≥ 2, given V̄0 ∈ (Hm
per(M))3 ∩ Ṽ and S̃r ∈

(Hm−1
per (M))3∩Ṽ , there exists a unique solution V̄ of (3.27) in L∞(R+; (Hm

per(M))3).

4. First-Order Error Estimates

We introduce as in Section 2 the first-order approximate solution V 1(s)

(4.1) V 1(s) = e−sL̃[V̄ (s) + εGnp(V̄ , s)].

Here V̄ (s) is the solution of the renormalized equation,

dV̄

ds
= εGr(V̄ ),

V̄ (0) = V0.
(4.2)

Our aim in this section is to compare the approximate solution V 1(s) to the exact
solution V (s), which satisfies

dV

ds
+ L̃V = εG(V ),

V (0) = V0.
(4.3)
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The notations we have used are as follows:

G(V ) := −ÃV − B̃(V, V ) + S̃,

G(s, V ) := eL̃sG(e−L̃sV ).

The resonant and non-resonant parts of G(s, V ) are defined as in (2.21),

(4.4) G(s, V ) = Gr(V ) + Gn(s, V ),

and the primitive Gnp(s, V ) of Gn(s, V ) is defined as in (2.22).
Denoting the error by

(4.5) W (s) = V 1(s)− V (s) = e−sL̃[V̄ (s) + εGnp(V̄ (s), s)]− V (s),

we find after straightforward computations that it satisfies:

dW

ds
+ L̃W + εÃW + εB̃(W,W ) + εB̃(V 1, W ) + εB̃(W,V 1) = ε2Rε,

W (0) = 0,
(4.6)

where

Rε = −Ãe−sL̃Gnp(s, V̄ )− B̃(e−sL̃V̄ , e−sL̃Gnp(s, V̄ ))

− B̃(e−sL̃Gnp(s, V̄ ), e−sL̃V̄ )− εB̃(e−sL̃Gnp(s, V̄ ), e−sL̃Gnp(s, V̄ ))

− e−sL̃∇V̄ Gnp(s, V̄ ) ·Gr(V̄ ).

(4.7)

We take the scalar product of (4.6) with W in (L2(M))3 and, using the coercivity
and orthogonality properties, we obtain,

1

2

d

ds
|W |2L2 + εc1|W |2H1 ≤ ε|b̃(W,V 1, W )|+ ε2|(Rε,W )L2|

≤ ε|b̃(W,V 1, W )|+ ε2c0|Rε|L2|W |H1 .
(4.8)

The first term on the r.h.s. is bounded using Lemma 3.1,

(4.9) |b̃(W,V 1,W )| ≤ c|W |1/2

L2 |V 1|1/2

H1 |V 1|1/2

H2 |W |3/2

H1 ;

applying Young’s inequality to this and to |Rε|L2|W |H1 , we find:

(4.10)
d

ds
|W |2L2 + εc1|W |2H1 ≤ ε2c′ |Rε|2L2 + εc |W |2L2|V 1|2H1|V 1|2H2 .

It remains to estimate Rε and V 1.
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Estimates for Rε

We start with

|Rε|L2 ≤ c |e−L̃sGnp(V̄ , s)|H2 + |e−L̃s∇V̄ Gnp(V̄ , s) ·Gr(V̄ )|L2

+ |B̃(e−L̃sV̄ , e−L̃sGnp(V̄ , s))|L2 + |B̃(e−L̃sGnp(V̄ , s), V̄ )|L2

+ ε |B̃(e−L̃sGnp(V̄ , s), Gnp(V̄ , s))|L2

(4.11)

Note that since the eigenvalues of the matrix L̃k are purely imaginary for all k ∈ Z2,

(4.12) |e−L̃sV | ≤ |V |,
where here | · | denotes the usual Euclidean norm in R3.

By arguments similar to those used in the proof of Lemmas 3.1 and 3.6, one can
show that, for all p ∈ N,

(4.13) |B̃(V, V [)|Hp ≤ c4|V |Hp+2|V [|Hp+2 , ∀ V, V [ ∈ Ṽ ∩ (Hp+2
per (M))3.

Using this and (4.12) in (4.11), we have

|Rε|L2 ≤ c |Gnp(V̄ , s)|H2 + 2c4 |V̄ |H2|Gnp(V̄ , s)|H2 + εc4 |Gnp(V̄ , s)|2H2

+ c|∇V̄ Gnp(V̄ , s) ·Gr(V̄ )|L2 .
(4.14)

To continue we need to estimate |Gnp(s, V̄ )|H2 and |∇V̄ Gnp(s, V̄ ) ·Gr(V̄ )|L2 .

Estimates for Gnp(V̄ , s)

We recall from Section 5 that Gn = Ãn + B̃n + S̃n, with Ãn, B̃n and S̃n being defined
in (5.17), (5.23), (5.25) and (5.26). To estimate

Gnp(s, V̄ ) =

∫ s

0

Gn(s, V̄ ) ds,

we shall need to bound terms of the forms:

I1(j) =
esαβj − 1

αβj

,(4.15)

I2(j, l) =
es(α1βj+α2βl) − 1

α1βj + α2βl

, where βj − βl 6= 0,(4.16)

I3(j, l, k) =
es(α1βj+α2βl+α3βk) − 1

α1βj + α2βl + α3βk

,(4.17)

In these expressions, the αs can take on the values of ±i and the βs are real and
not less than 1 [cf. (3.11)].

We now obtain bounds for the denominators in (4.16) and (4.17). It turns out
that, provided that the Burgers number N does not lie in a set of measure zero,
α1βj + α2βl + α3βk 6= 0. Similarly, it can also be shown [cf. Sect. 6.2] that, when N
lies outside a small set, the denominators can be bounded from below.
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I1(j) is easily estimated:

(4.18) |I1(j)| =
∣∣∣e

αsβj − 1

αβj

∣∣∣ =

√
2(1− cos sβj)

βj

≤ 2.

To estimate I2(j, l), βj 6= βl, we distinguish two cases:
(i) For α1 = α2, we obtain |I2(j, l)| = 2/|βj + βl| ≤ 1.
(ii) For α1 = −α2, we need a bound for 2/|βj − βl|. We assume without loss of
generality that βj > βl; writing N ′ = N2(L3/L1)

2 we find,

|I2(j, l)| = 2

βj − βl

=
2(βj + βl)

β2
j − β2

l

=
2(βj + βl)

N ′(j1/j3)2 −N ′(l1/l3)2
=

2

N ′
βj + βl

j2
1 l

2
3 − j2

3 l
2
1

j2
3 l

2
3

≤ 2

N ′ (βj + βl)j
2
3 l

2
3 ≤

2

N ′
(√

1 + N ′(j1/j3)2 +
√

1 + N ′(l1/l3)2
)

j2
3 l

2
3

≤ c(N ′)|j|2|l|2.
To estimate I3(j, k, l) we also consider two cases:

(i) All αi have the same sign, which immediately leads to |I3| ≤ 2/3.
(ii) α1 = α2 = −α3, for which we compute

|I3| ≤ 2

|βj + βl − βk|
=

2|(βj + βl + βk)(−βj + βl + βk)(−βl + βj + βk)|
|(βj + βl + βk)(βj + βl − βk)(−βj + βl + βk)(βj − βl + βk)|

≤ |J1|
|J2|

where

J1 = 2(βj + βl + βk)(−βj + βl + βk)(−βl + βj + βk) j4
3 l

4
3k

4
3,

J2 = 3j4
3 l

4
3k

4
3 + 2N ′(j2

1 l
4
3k

4
3j

2
3 + l21l

2
3j

4
3k

4
3 + k2

1k
2
3j

4
3 l

4
3)

+ N ′2(2j2
1j

2
3 l

2
1l

2
3k

4
3 + 2j2

1j
2
3k

2
1k

2
3l

4
3 + 2l21l

2
3k

2
1k

2
3j

4
3 − j4

1 l
4
3k

4
3 − l41j

4
3k

4
3 − k4

1j
4
3 l

4
3).

Setting

σ1 = 2j2
1j

2
3 l

2
1l

2
3k

4
3 + 2j2

1j
2
3k

2
1k

2
3l

4
3 + 2l21l

2
3k

2
1k

2
3j

4
3 − j4

1 l
4
3k

4
3 − k4

1j
4
3k

4
3 − k4

1j
4
3 l

4
3 ,

σ2 = 2(j2
1 l

4
3k

4
3j

2
3 + l21l

2
3j

4
3k

4
3 + k2

1k
2
3j

4
3 l

4
3),

σ3 = 3j4
3 l

4
3k

4
3 ,

we need to estimate 1/|N ′2σ1 + N ′σ2 + σ3|. For this we recall from [19]2:

2Pointed out to us by Yann Bugeaud (personal communication).
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For any δ > 0 and for almost all v ∈ R, there exists a constant K depending on
v and δ such that

(4.19) |v2q + vp + r| > K(v, δ)(|q|+ |p|+ |r|)−(2+δ), ∀ p, q, r ∈ Z.

For the convenience of the reader, we provide in Section 6.1 an elementary proof
of a weaker result in which the power 2 + δ is replaced by 3 + δ.

Choosing N ′ such that (4.19) holds (almost all real numbers satisfy this property),
we estimate I3 as:

(4.20) |I3| ≤ J1K(N ′, δ)(|σ1|+ |σ2|+ |σ3|)2+δ ≤ K(N ′, δ)|j|12+4δ|l|12+4δ|k|12+4δ.

We note that this result implies that the denominator α1βj + α2βl + α3βk in (4.17)
is never zero for almost all N ′ ∈ R.

We are now ready to estimate |Gnp(s, V̄ )|H2 : Taking into account (5.14), (5.16)

and (5.17), we see that Ãnp(V̄ , s) only contains terms of type I1 and we have:

|Ãnp(s, V̄ )|H2 ≤ c′
[∑

k (|I1(k)| |k′|2|m̄k|)2(1 + |k′|2)2
]1/2

+ c′′
[∑

k (|I1(k)| |k′|2(|ūk|+ |n̄k|))2(1 + |k′|2)2
]1/2

≤ c |V̄ |H4 .

(4.21)

Next, we estimate B̃np(s, V̄ ). From (5.23) and (5.25), the most problematic terms
(imposing the highest regularity on V̄ ) are those which, after integration, are of type
I3. We only estimate the typical term M1, 2, np (see Appendix for details on M1, 2, n),
which we bound using (4.20):

∣∣∣− i

8

∑α,k

j3l3 6=0

I3(j, l, k) (l′1 − l′3δj)Xα2,j(V̄ ) Xα3, l(V̄ )ei(k′1x+k′3z)

(
1
−α1

)∣∣∣
H2

≤ c(N ′, δ)
[∑

|j′|13+4δ|l′|13+4δ|k′|12+4δ(|ūj|+ |n̄j|)(|ūl|+ |n̄l|)(1 + |k′|2)2
]1/2

≤ c(N ′, δ) |q2
1|H14+4δ ≤ c(N ′, δ) |q1|2H14+4δ ≤ c(N ′, δ) |V̄ |2H27+8δ ,

where q1 :=
∑

j |j′|13+4δ(|uj| + |nj|)ei(j′1x+j′3z), and we have used |l′1 − l′3(j
′
1/j

′
3)| ≤

|j′| |l′|.
We can now write

(4.22) |B̃np(V̄ , s)|H2 ≤ c(N ′, δ)|V̄ |2H27+8δ .

Finally, noting that,
|S̃np|H2 ≤ |S̃|H2 ,

we obtain the following estimate:

(4.23) |Gnp(s, V̄ )|H2 ≤ c1(N
′, δ)|V̄ |H4 + c2(N

′, δ)|V̄ |2H27+8δ + c3(N
′, δ)|S̃|H2 ,
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valid, as (4.19) tells us, for almost every N ′ ∈ R.

Estimates for |∇V̄ Gnp(s, V̄ ) ·Gr(V̄ )|L2

We consider the bilinear form

B̃np(s, V̄ , V ]) =




B̃
(1)
np (s, V̄ , V ])

B̃
(2)
np (s, V̄ , V ])

B̃
(3)
np (s, V̄ , V ])


 ,

whose Fourier components are:

For k3 = 0, B̃
(1)
np, k(s, V̄ , V ]) = 0, B̃

(3)
np, k(s, V̄ , V ]) = 0, and

B̃
(2)
np, k(s, V̄ , V ]) =

ik′1
2

∑α,k

j3l3 6=0

I1(j)Xα1, j(V̄ )m]
l~γl · ~φk

+
ik′1
4

∑α,k

j3l3 6=0
α1βj+α2βl 6=0

I2(j, l)α2Xα1,j(V̄ )Xα2, l(V
])~φl · ~φk,

For k3 6= 0:

B̃np, k(s, V̄ , V ]) =

(
Mk

1,2,np(s, V̄ , V ])
Mk

3,np(s, V̄ , V ])

)
,

where

Mk
1, 2, np(s,V̄ , V ]) =

i

8

∑α,k

j3l3 6=0

I3(j, l, k)(l′1 − l′3δj)Xα2, j(V̄ )Xα3, l(V
])

(
1
−α1

)

+
i

4

∑α,k

j3l3 6=0
α1βk+α2βj 6=0

I2(j, k)(l′1 − l′3δj)α1Xα2, j(V̄ )m]
l
~φk · ~γl

(
1
−α1

)

+
i

8

∑α,k

j3l3 6=0

I3(j, l, k)(l′1 − l′3δj)α1α3Xα2, j(V̄ )Xα3, l(V
])~φk · ~φl

(
1
−α1

)

+
i

4

∑α,k

l3=0
α1βk+α2βj 6=0

I2(j, k)l′1α1Xα2, j(V̄ )n]
l
~φk · ~φl

(
1
−α1

)
,
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and

Mk
3, np(s, V̄ , V ]) =

i

2

∑α,k

l3=0

I1(j)l
′
1Xα1, j(V̄ )n]

l
~φl · ~γk

+
i

2

∑α,k

j3l3 6=0

(l′1 − l′3δj)I1(j)Xα1, j(V̄ )m]
l~γl · ~γk

+
i

4

∑α,k

j3l3 6=0
α1βj+α2βl 6=0

I2(j, l)(l′1 − l′3δj)α2Xα1, j(V̄ )Xα2, l(V
])~φl · ~γk.

Since Gnp(s, V̄ ) = Ãnp(s, V̄ ) + B̃np(s, V̄ ) + S̃np, we have

∇V̄ Gnp(V̄ , s) ·Gr(V̄ ) = ∇V̄ Ãnp(V̄ , s) ·Gr(V̄ ) +∇V̄ B̃np(V̄ , s) ·Gr(V̄ )

= Ãnp(Gr(V̄ ), s) + B̃np(V̄ , Gr(V̄ ), s) + B̃np(Gr(V̄ ), V̄ , s).

Using the same type of argument as before, we have the estimates:

|Ãnp(Gr(V̄ ), s)|L2 ≤ c|Gr(V̄ )|H2 ,

|B̃np(V̄ , Gr(V̄ ), s)|L2 ≤ K(N ′, δ)|V̄ |H27+8δ |Gr(V̄ )|H27+8δ ,

|B̃np(Gr(V̄ ), V̄ , s)|L2 ≤ K(N ′, δ)|V̄ |H27+8δ |Gr(V̄ )|H27+8δ .

We bound Gr(V̄ ) = −Ãr(V̄ )− B̃r(V̄ , V̄ ) + S̃r using

|S̃r|Hm ≤ |S̃|Hm ,

|B̃r(V̄ , V̄ )|Hm ≤ c|V̄ |2Hm+2 ,

|Ãr(V̄ )|Hm ≤ c|V̄ |Hm+2 ,

for all m ∈ N. Finally, we find:

(4.24) |∇V̄ Gnp(V̄ , s) ·Gr(V̄ )|L2 ≤ K(N ′, δ, |V̄ |H29+8δ , |S̃|H27+8δ).

Putting the estimates we have just derived into (4.14), we have

(4.25) |Rε|L2 ≤ K(N ′, δ, |V̄ |H29+8δ , |S̃|H27+8δ).

Using Theorem 3.7, we can write this in terms of the initial conditions:

(4.26) |Rε|L2 ≤ K(N ′, δ, |V0|H29+8δ , |S̃|H28+8δ).

Estimates for W (s)

Note that V 1(s) = esL̃[V̄ (s) + εGnp(s, V̄ (s))] has been bounded by (4.23),

(4.27) |V 1(s)|H2 ≤ K(N ′, δ, |V̄ |H27+8δ , |S̃|H2), ∀ s > 0,



RENORMALIZATION FOR PRIMITIVE EQUATIONS 27

or, using Theorem 3.7 again,

(4.28) |V 1(s)|H2 ≤ K(N ′, δ, |V0|H27+8δ , |S̃|H26+8δ), ∀ s > 0.

Putting this into (4.10), we have

(4.29)
d

ds
|W |2L2 + εc1|W |2H1 ≤ ε2κ1 + εκ2|W |2L2 ,

where κ1 and κ2 are constants depending on N ′, δ, |V̄ |H29+8δ and |S̃|H28+8δ . The
desired bound on W (s) follows from this using the classical Gronwall lemma:

(4.30) |W (s)|2L2 ≤ ε2κ1

κ2

eεκ2s, ∀ s ≥ 0.

Taking δ = 1/8 and collecting the results in this section, we have the following:

Theorem 4.1. For any L1 and L3, and for almost all Burgers numbers N ∈ R,
given V0 ∈ (H30

per(M))3 ∩ Ṽ , and S̃ ∈ (H29
per(M))3 ∩ Ṽ , the difference between the

solution V of the original system (3.20) and the approximate solution V 1 given by
(4.1) satisfies

(4.31) |V 1(t)− V (t)|2L2 ≤ ε2κ′eκ′′t, ∀ t ≥ 0,

where κ′ and κ′′ are constants depending on N , L1, L3, V0 and S̃.

Remark 4.2. We can redo the above estimates, using the bounds on I3 given in
Appendix 3 instead, to arrive at the following:

Theorem 4.3. Let µ > 0, L1 and L3 be fixed. Take V0 ∈ (H11
per(M))3 ∩ Ṽ and

S̃ ∈ (H10
per(M))3 ∩ Ṽ . Then there exists a set Θµ

3(L1, L3) having a Lebesgue mea-
sure mes Θµ

3(L1, L3) ≤ µ such that, for all Burgers numbers N /∈ Θµ
3(L1, L3), the

difference between the solution V of the original system (3.20) and the approximate
solution V 1 given by (4.1) satisfies,

(4.32) |V 1(t)− V (t)|2L2 ≤ ε2κ′eκ′′t, ∀ t ≥ 0,

where κ′ and κ′′ are constants depending on N , L1, L3, µ, V0 and S̃.

5. Appendix: Derivation of the renormalized equation

Following the algorithm briefly explained in Section 2.2, we start by solving the
linear system obtained from (3.20) by dropping all order-ε terms (zeroth order ap-
proximation).

For k3 = 0 we find:

(5.1) u(k1,0) = 0, m(k1,0) = 0,

and n′(k1,0) = 0 which implies that n(k1,0)(s) = n(k1,0)(0).
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For k3 6= 0 we find, as we already saw, the system (3.15):

u′k − βknk = 0,

n′k + βkuk = 0,

m′
k = 0.

(5.2)

Setting Vk = (uk, nk,mk), this system of ordinary differential equations can be
written as

(5.3) V ′
k + L̃kVk = 0 where L̃k =




0 −βk 0
βk 0 0
0 0 0


 .

Its solution is Vk(s) = e−sL̃kVk(0); with

e−sL̃k =

(
1
2

∑α esαβkRα 0
0 1

)
where Rα =

(
1 −α
α 1

)

and α = ±i, we have explicitly,

(5.4) Vk(s) =




1
2

∑α esαβk
(
uk(0)− αnk(0)

)

1
2

∑α αesαβk
(
uk(0)− αnk(0)

)

mk(0)


 .

Denoting Xα,k(V ) := uk − αnk, (5.4) reads

uk(s) = 1
2

∑α esαβkXα,k(V0),

nk(s) = 1
2

∑α αesαβkXα,k(V0),

mk(s) = mk(0).

(5.5)

Here and throughout this paper,
∑α always range over α = ±i ; similarly for αi.

For the O(ε) approximation, we need to separate the r.h.s. G(s, V ) into its reso-
nant and non-resonant parts,

(5.6) G(s, V ) = esL̃G(e−sL̃V ) = Gr(V ) + Gn(s, V ),

and then compute the primitive Gnp of Gn. As usual, we analyse separately the
cases k3 = 0 and k3 6= 0.

The case k3 = 0

In this case, the equations of motion (3.3) read

uk = 0,

n′k = −ενv |k′|2nk − εi
∑k

k′1uj(ml~γl + nl
~φl) · ~φk + ε Sn,k,

mk = 0,

(5.7)
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where the superscript k in
∑k means that it is taken over j + l = k with k fixed.

Since here the fast linear operator vanishes, L̃(k1,0) = 0, we have

esL̃k S̃k = S̃k,

{esL̃kÃe−sL̃k}k = Ãk = Ãr,k,

{esL̃kB̃(e−sL̃V, e−sL̃V )}k = B̃k(e
−sL̃V, e−sL̃V ).

(5.8)

The u and m components of B̃k vanish, so we only need to compute

B̃
(n)
k = i

∑k
k′1uj(ml~γl + nl

~φl) · ~φk

= ik′1
∑k[

ml(0)~γl + 1
2

∑α2

Xα2,l(V0)α2e
sα2βl ~φl

][
1
2

∑α1

Xα1,j(V0)e
sα1βj

]
.

(5.9)

The resonant part (i.e. the s-independent part) of this expression obtains when
α1βj + α2βl = 0, which only happens when α1 = −α2 and βj = βl ; this gives us,

B̃
(n)
r,k (V, V ) =

ik′1
4

∑α,k

j3l3 6=0
βj=βl

αX−α,j(V )Xα,l(V )~φl · ~φk

=
ik′1
2

∑k

j3l3 6=0
βj=βl

(nluj − njul)~φl · ~φk .

(5.10)

The non-resonant part of B̃
(n)
k is,

B̃
(n)
n,k(s, V, V ) =

ik′1
2

∑α,k

j3l3 6=0

esα1βjmlXα1,j(V )~γl · ~φk

+
ik′1
4

∑α,k

j3l3 6=0
α1βj+α2βl 6=0

es(α1βj+α2βl)α2Xα1,j(V )Xα2,l(V )~φl · ~φk .
(5.11)

The case k3 6= 0

We begin with the linear operator Ak [cf. (3.20)],

(5.12) ÃkVk =



|k′|2νvuk

|k′|2νvnk + (νρ − νv )|k′|2(Nδk/βk)(mk, nk) · ~φk

|k′|2νvmk + |k′|2(νρ − νv )(1/βk)(mk, nk) · ~φk


 ,
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which we split into its diagonal and off-diagonal parts,

Ã1, kVk = νv |k′|2Vk ,

Ã2, kVk =




0

|k′|2(νρ − νv )(Nδk/βk)(mk, nk) · ~φk

|k′|2(νρ − νv )(1/βk)(mk, nk) · ~φk


 .

(5.13)

Since Ã1,k is diagonal, it is completely resonant. To find the resonant part of Ã2,k,

we compute, using Vk = esL̃kV0,

esL̃kÃ2,kVk =

(
1
2

∑α R−α 0
0 I

) 


0

|k′|2(νρ − νv )(Nδk/βk)(mk, nk) · ~φk

|k′|2(νρ − νv )(1/βk)(mk, nk) · ~φk




=




νρ − νv

2

∑α
α|k′|2(Nδk/βk)(mk, nk) · ~φke

sαβk

νρ − νv

2

∑α |k′|2(Nδk/βk)(mk, nk) · ~φke
sαβk

|k′|2(νρ − νv )(1/βk)(mk, nk) · ~φk




.

(5.14)

Continuing the computations for esL̃kÃ2,kVk, we obtain:




νρ − νv

2

∑α1

α1|k′|2Nδk

βk

[
mk(0)

1

βk

+
Nδk

2βk

∑α2

α2Xα2,k(V0)e
sα2βk

]
esα1βk

νρ − νv

2

∑α1 |k′|2Nδk

βk

[
mk(0)

1

βk

+
Nδk

2βk

∑α2

α2Xα2, k(V0)e
sα2βk

]
esα1βk

(νρ − νv )|k′|2
1

βk

[
mk(0)

1

βk

+
Nδk

2βk

∑α
αXα, k(V0)e

sαβk
]




,

(5.15)

where (5.5) has been used for the last equation. Using the fact that
∑α Xα,k(V0) =

2uk(0) and
∑α αXα,k(V0) = 2nk(0), we obtain from the last expression the resonant

part of Ãk:

{Ã2,rV }k =




νρ − νv

2
|k′|2(Nδk/βk)

2uk

νρ − νv

2
|k′|2(Nδk/βk)

2nk

(νρ − νv )|k′|2(1/βk)
2mk




.(5.16)

The nonresonant part of Ã2 is then

(5.17) Ã2, n = Ã2 − Ã2, r .
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Next, we treat the bilinear from B̃:

esL̃kB̃k(e
−sL̃V0, e

−sL̃V0) =

(
1
2

∑α esαβkR−α 0
0 I

)
· B̃k(e

−sL̃V0, e
−sL̃V0) =

(
Mk

1,2

Mk
3

)
,

(5.18)

where we denoted by Mk
1, 2 the u and n components of the resulting column and by

Mk
3 the m component. We have

Mk
1, 2 =

i

2

∑α
esαβk

∑k
(l′1 − l′3δj)ujul

(
1
−α

)

+
i

2

∑α
αesαβk

∑k
(l′1 − l′3δj)uj(ml~γl + nl

~φl) · ~φk

(
1
−α

)
,

(5.19)

or, using (5.5),

Mk
1, 2 =

i

8

∑α,k

j3l3 6=0

es(α1βk+α2βj+α3βl)(l′1 − l′3δj)Xα2, j(V0)Xα3, l(V0)

(
1
−α1

)

+
i

4

∑α,k

j3l3 6=0

es(α1βk+α2βj)(l′1 − l′3δj)α1Xα2, j(V0)ml(0)~γl · ~φk

(
1
−α1

)

+
i

8

∑α,k

j3l3 6=0

es(α1βk+α2βj+α3βl)(l′1 − l′3δj)α1α3Xα2, j(V0)Xα3, l(V0)~φk · ~φl

(
1
−α1

)

+
i

4

∑α,k

l3=0

es(α1βk+α2βj)l′1α1Xα2, j(V0)n(l1, 0)(0)~φl · ~φk

(
1
−α1

)
.

The resonant part of this expression obtains when α1βk + α2βj = 0 (implying that
α1 = −α2 and βk = βj), or when α1βk + α2βj + α3βl = 0. As shown in Section 4,
the latter scenario does not happen if the Burgers number N lies outside a set of
measure zero. Assuming the generic situation, the resonant part of Mk

1, 2 is

Mk
1,2,r =

i

4

∑α,k

j3l3 6=0
βk=βj

(l′1 − l′3δj)αX−α,j(V )ml
~φk · ~γl

(
1
−α

)

+
i

4

∑α,k

l3=0
βk=βj

l′1αX−α,j(V )nl
~φk · ~φl

(
1
−α

)
.

(5.20)

After some elementary computations we obtain:

(5.21) Mk
1,r = − i

2

∑k

j3l3 6=0
βk=βj

(l′1 − l′3δj)njml
~φk · ~γl − i

2

∑k

l3=0
βk=βj

l′1njnl
~φk · ~φl,
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(5.22) Mk
2,r =

i

2

∑k

j3l3 6=0
βk=βj

(l′1 − l′3δj)ujml
~φk · ~γl +

i

2

∑k

l3=0
βk=βj

l′1ujnl
~φk · ~φl.

Similarly, the nonresonant part of Mk
1,2 is

Mk
1,2,n =

i

8

∑α,k

j3l3 6=0

es(α1βk+α2βj+α3βl)(l′1 − l′3δj)Xα2, j(V )Xα3, l(V )

(
1
−α1

)

+
i

4

∑α,k

j3l3 6=0
α1βk+α2βj 6=0

es(α1βk+α2βj)(l′1 − l′3δj)α1Xα2,j(V )ml
~φk · ~γl

(
1
−α1

)

+
i

8

∑α,k

j3l3 6=0

es(α1βk+α2βj+α3βl)(l′1 − l′3δj)α1α3Xα2, j(V )Xα3, l(V )~φk · ~φl

(
1
−α1

)

+
i

4

∑α,k

l3=0
α1βk+α2βj 6=0

es(α1βk+α2βj)l′1α1Xα2, j(V )nl
~φk · ~φl

(
1
−α1

)
.

(5.23)

We turn now to the m component of M ,

Mk
3 = i

∑k

j3 6=0

(l′1 − l′3δj)uj(ml~γl + nl
~φl) · ~γk

=
i

2

∑α,k

l3=0

eα1sβj l′1Xα1, j(V0)nl(0)~φl · ~γk

+
i

2

∑k

j3l3 6=0

eα1sβj(l′1 − l′3δj)Xα1, j(V0)ml(0)~γl · ~γk

+
i

4

∑α,k

j3l3 6=0

es(α1βj+α2βl)(l′1 − l′3δj)α2Xα1, j(V0)Xα2, l(V0)~φl · ~γk,

where we have use (5.5) for the last equality. Its resonant part is,

Mk
3,r =

i

4

∑α,k

j3l3 6=0
βj=βl

(l′1 − l′3δj)αX−α, j(V )Xα, l(V )~φl · ~γk

=
i

2

∑k

j3l3 6=0
βj=βl

(l′1 − l′3δj)(ujnl − njul)~φl · ~γk,(5.24)
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while its nonresonant part is,

Mk
3,n =

i

2

∑α,k

l3=0

eα1sβj l′1Xα1, j(V )n(l1, 0)
~φl · ~γk

+
i

2

∑α,k

j3l3 6=0

eα1sβj(l′1 − l′3δj)Xα1, j(V )ml
~φl · ~γk

+
i

4

∑α,k

j3l3 6=0
α1βj+α2βl 6=0

es(α1βj+α2βl)α2(l
′
1 − l′3δj)Xα1,j(V )Xα2,l(V )~φl · ~γk.

(5.25)

Finally, we compute

{eL̃sS̃k}k =

(
1
2

∑α
esαβkR−α 0

0 1

)


Su,k

Sn,k

Sm,k




=




1
2

∑α
esαβk(Su,k + αSn,k)

−1
2

∑α
esαβkα(Su,k + αSn,k)

Sm,k


 ,

whence we find:

(5.26) S̃r,k =




0
0

Sm,k


 and S̃n,k =




1
2

∑α
esαβk(Su,k + αSn,k)

−1
2

∑α
esαβkα(Su,k + αSn,k)

0


 .

The renormalized system

We have now computed all the terms in the renormalized system,

(5.27)
dV

dt
+ ÃrV + B̃r(V, V ) = S̃r,

written here in the slow time t. Explicitly, we have in Fourier modes for k = (k1, 0):

(5.28)

duk

dt
= 0,

dmk

dt
= 0,

dnk

dt
= −νvk

′2
1n(k1, 0) − i

2

∑k

j3l3 6=0
βj=βl

k′1(nluj − njul)~φl · ~φk + Sn, k.
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For k3 6= 0, we have

duk

dt
= −νv |k′|2uk −

νρ − νv

2
|k′|2N2δ2

k

β2
k

uk +
i

2

∑k

j3l3 6=0
βk=βj

(l′1 − l′3δj)njml~γl · ~φk

+
i

2

∑k

l3=0
βk=βj

l′1njnl
~φk · ~φl,

dnk

dt
= −νv |k′|2nk −

νρ − νv

2
|k′|2N2δ2

k

β2
k

nk − i

2

∑k

j3l3 6=0
βk=βj

(l′1 − l′3δj)ujml
~φk · ~γl

− i

2

∑k

l3=0
βk=βj

l′1ujnl
~φk · ~φl,

dmk

dt
= −νv |k′|2mk − (νρ − νv )|k′|2

1

β2
k

mk

− i

2

∑k

j3l3 6=0
βj=βl

(l′1 − l′3δj)(ujnl − njul)~φl · ~γk + Sm, k.

Properties of the renormalized system

As mentioned in the Introduction, the renormalized linear operator Ãr and bilinear
operator B̃r in (5.27) enjoy some properties of their original counterparts, as we now
show:

ãr(V, V ) = 〈ÃrV, V 〉
Ṽ
′
,Ṽ

= νv

∑

k

|k′|2|nk|2 + νv

∑

k

|k′|2|uk|2

+
νρ − νv

2

∑

k

|k′|2N2δ2
k

β2
k

|uk|2 +
νρ − νv

2

∑

k

|k′|2N2δ2
k

β2
k

|nk|2

+ νv

∑

k

|k′|2|mk|2 + (νρ − νv )
∑

k

|k′|2 1

β2
k

|mk|2.

After some elementary computations we have

ãr(V, V ) ≥ min(νv , νρ)(‖u‖2 + ‖n‖2 + ‖m‖2),

thus proving the coercivity of ar in Ṽ .
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We turn now to the trilinear form b̃r(V, V [, V ]) = 〈B̃r(V, V [), V ]〉
Ṽ
′
,Ṽ

,

b̃r(V, V [, V ]) = − i

2

∑c

j3 6=0, k3=0
βj=βl

k′1(n
[
luj − u[

lnj)n
]
k
~φl · ~φk(5.29)

− i

2

∑c

j3l3k3 6=0
βj=βk

(l′1 − l′3δj)u
]
knjm

[
l
~φk · ~γl

− i

2

∑c

j3 6=0, l3=0
βj=βk

l′1njn
[
lu

]
k
~φl · ~φk +

i

2

∑c

j3l3k3 6=0
βj=βk

(l′1 − l′3δj)ujm
[
ln

]
k
~φk · ~γl

+
i

2

∑c

j3 6=0, l3=0
βj=βk

l′1ujn
]
kn

[
l
~φl · ~φk +

i

2

∑c

j3l3k3 6=0
βj=βl

(l′1 − l′3δj)(ujn
[
l − u[

lnj)m
]
k~γk · ~φl.

Interchanging k with l and using the elementary relation

l′1 + k′1 − (k′3 + l′3)(j
′
1/j

′
3) = −j′1 + j′3(j

′
1/j

′
3) = 0 (since j + l + k = 0),

we now compute

b̃r(V, V [, V [) = − i

2

∑c

j3 6=0, l3=0
βj=βk

l′1(n
[
kuj − u[

knj)n
[
l
~φl · ~φk − i

2

∑c

j3l3k3 6=0
βj=βk

(l′1 − l′3δj)u
[
knjm

[
l~γl · ~φk

− i

2

∑c

j3 6=0, l3=0
βj=βk

l′1nju
[
kn

[
l
~φl · ~φk +

i

2

∑c

j3l3k3 6=0
βj=βk

(l′1 − l′3δj)ujm
[
ln

[
k
~φk · ~γl

+
i

2

∑c

j3 6=0, l3=0
βj=βk

l′1ujn
[
kn

[
l
~φl · ~φk +

i

2

∑c

j3l3k3 6=0
βj=βk

(l′1 − l′3δj)(n
[
luj − nju

[
l)m

[
k
~φl · ~γk

= − i

2

∑c

j3l3k3 6=0
βj=βk

(
l′1 + k′1 − l′3

j′1
j′3

+ k′3
j′1
j′3

)
(u[

lnj − ujn
[
l)m

[
k
~φl · ~γk = 0.

(5.30)

We have thus proved that the orthogonality of b(V, V ], V [) is preserved in the renor-
malized system.

Lemma 5.1. There exists a constant c2 > 0 such that for all V = (u, n, m),

V [ = (u[, n[,m[), V ] = (v], n], m]), with V , V ] ∈ Ṽ and V [ ∈ Ṽ 2, we have

|b̃r(V, V [, V ])| ≤ c2‖V ‖1/2|∆V |1/2

L2 |V [|1/2

L2 ‖V [‖1/2|V ]|L2

+ c2|V |1/2

L2 ‖V ‖1/2‖V [‖1/2|∆V [|1/2

L2 |V ]|L2 ,
(5.31)
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(5.32) |b̃r(V, V [, V ])| ≤ c2‖V ‖‖V [‖‖V ]‖.
Proof. We need to estimate each term of b̃r(V, V [, V ]). In order to facilitate the
computations we write:

u1 =
∑

j=(j1, j3)∈Z2

|uj|ei(xj′1+zj′3), u2 =
∑

j=(j1, j3)∈Z2

|j′||uj|ei(xj′1+zj′3),

and similarly for n and m. We estimate |l′1 − l′3(j
′
1/j

′
3)| taking into account the

summation conditions βj = βk ⇔ |j′1/j′3| = |k′1/k′3|: When j′1/j
′
3 = k′1/k

′
3, we have

from j+l+k = 0 that |l′1−l′3(j
′
1/j

′
3)| = 0. When j′1/j

′
3 = −k′1/k

′
3, we write j′1 = −sk′1,

j′3 = sk′3, and using j + l +k = 0 again we have |l′1− l′3(j
′
1/j

′
3)| = 2|k′1| ≤ 2(|j′|+ |l′|).

We also have |k′1 − k′3(j
′
1/j

′
3)| = 2|k′1| ≤ 2(|j′|+ |l′|).

We can now proceed and estimate |b̃r(V, V [, V ])|:∣∣∣∣∣
i

2

∑c

j3 6=0, k3=0
βj=βl

k′1(n
[
luj − u[

lnj) n]
(k1, 0)

~φl · ~φk

∣∣∣∣∣

≤ c
∑c

j3 6=0, k3=0
βj=βl

(|uj||n[
l ||n]

k|+ |nj||u[
l ||n]

k|)(|j′|+ |l′|)

≤ c

∫

M

u2n
[
1n

]
1 dM + c

∫

M

u[
1n2n

]
1 dM + c

∫

M

u1n
]
1n

[
2 dM + c

∫

M

u[
2n1n

]
1 dM

≤ c|u2|L4(M)|n]
1|L4(M)|n[

1|L2(M) + c|u[
1|L4(M)|n2|L4(M)|n]

1|L2(M)

+ c|n[
2|L4(M)|u1|L4(M)|n]

1|L2(M) + c|u[
2|L4(M)|n1|L4(M)|n]

1|L2(M).

Using the fact that |u|L4(M) ≤ c|u|H1/2(M) in space dimension two, we find:
∣∣∣∣∣
i

2

∑c

j3 6=0, k3=0
βj=βl

k′1(n
[
luj − u[

lnj) n]
(k1, 0)

~φl · ~φk

∣∣∣∣∣

≤ c‖V ‖1/2|∆V |1/2

L2 |V [|1/2

L2 ‖V [‖1/2|V ]|L2 + c|V |1/2

L2 ‖V ‖1/2‖V [‖1/2|∆V [|1/2

L2 |V ]|L2 .

All the other terms can be estimated in the same manner, giving us (5.31). The
proof of (5.32) follows using the same type of argument. ¤

6. Auxiliary Results

6.1. A Result in Number Theory. In this section we prove for interested readers
a (weaker) analogue of the small denominator estimate (4.19) used in Section 4.
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Lemma 6.1. For any δ > 3 and for almost every ξ ∈ (0, R), where R is an ar-
bitrarily natural number , there exists a constant γ > 0 such that |p + qξ + rξ2| >
γ|p2 + q2 + r2|−δ/2 for all (p, q, r) ∈ Z3\{0}.
Proof. We need to show that the set

Ω = {ξ ∈ (0, R) : ∀ γ > 0 ∃ (p, q, r) ∈ Z3\{0} with |p+qξ+rξ2| ≤ γ|p2+q2+r2|−δ/2}
has measure zero.

We first split Z3\{0} into Z1 + Z2 + Z3 + Z4, where

Z1 = {(p, q, r) : rξ2 + qξ + p = 0 has no solution in R},
Z2 = {(p, q, r) : rξ2 + qξ + p = 0 has a double root |ξ∗| ≤ 2R},
Z3 = {(p, q, r) : rξ2 + qξ + p = 0 has two simple roots},

and Z4 covers the other cases which do not concern us. Noting that

Ω =
⋂
γ

⋃
p,q,r

Ωγ(p, q, r),

we fix γ and (p, q, r), and compute the measure of the set

(6.1) Ωγ(p, q, r) = {ξ ∈ (0, R) : |p + qξ + rξ2| ≤ γ|p2 + q2 + r2|−δ/2}.
We now consider Z1, Z2 and Z3 in turn.

(p, q, r) ∈ Z1: mes Ωγ(p, q, r) = 0 for γ < 1/4, because

min
ξ∈R

|rξ2 + qξ + p| = |q2 − 4pr|
4|r| ≥ γ|p2 + q2 + r2|−1

and |q2 − 4pr| ≥ 1 in this case.
(p, q, r) ∈ Z2: in this case |r| ≥ 1 and q2 − 4pr = 0, which implies pr ≥ 0. We

then have,

(6.2) mes Ωγ(p, q, r) ≤
√

γ/|r| |p2 + q2 + r2|−δ/4.

Since the root |ξ∗| ≤ 2R, q2 ≤ 8r2 and (using 4pr = q2) also p2 ≤ 4r2R4. Therefore√
|r| ≥ C(R)|p2 + q2 + r2|1/4 and

(6.3) mes Ωγ(p, q, r) ≤ √
γ C(R) |p2 + q2 + r2|−(δ+1)/4.

Since q2 = 4pr, this is equivalent to (allowing us to sum over Z2\{0} in (6.6) below)

(6.4) mes Ωγ(p, q, r) ≤ √
γ C(R) |p2 + r2|−(δ+1)/4.

(p, q, r) ∈ Z2: as before, we assume that r ≥ 1; the case r ≤ −1 is similar, and
the “linear” case r = 0 is easy. We denote η = γ|p2 + q2 + r2|−δ/2, ∆ = q2 − 4pr,
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∆− = q2 − 4p(r− η) and ∆+ = q2 − 4p(r + η). Considering the neighbourhood of a
root, and noting that ∆− > 0 whenever γ < 1/4, we have

mes {ξ : |rξ2 + qξ + p| ≤ η} ≤
√

∆+ −
√

∆−
2r

=
8η√

∆+ +
√

∆−
≤ 8η√

∆
≤ 8η.

Regardless of where the roots lie, we thus have

(6.5) Ωγ(p, q, r) ≤ 16γ|p2 + q2 + r2|−δ/2.

Putting together the results of the three cases, we have

(6.6) mes Ωγ ≤ 16γ
∑

p,q,r |p2 + q2 + r2|−δ/2 +
√

γ C(R)
∑

p,r |p2 + r2|−(δ+1)/4

where the first sum is taken over Z3\{0} and the second over Z2\{0}. Both sums
converge when δ > 3, giving us

(6.7) mes Ωγ ≤ √
γ C(δ, R),

valid for γ < 1/4, whence it follows that mes Ω = 0. ¤
6.2. Another Estimate for Small Denominators. In this section, following an
alternate approach due to Babin, Mahalov, and Nicolaenko (see [3]), we present
another way of estimating the three-wave resonances. In a sense the method is an
improvement of that used in Section 4 because we require less regularity on the
initial data. On the other hand, it is weaker because it is valid only for Burgers
numbers belonging to a certain quasi-resonant set.

Recall that βk = [1 + N2(k′1/k
′
3)

2]1/2. As in Section 4, we need to estimate the
term

I3 =
es(α1βj+α2βl+α3βk) − 1

α1βj + α2βl + α3βk

,(6.8)

where α1βj + α2βl + α3βk 6= 0, α1, α2, α3 = ±i and j + l + k = 0.
The problem is nontrivial only when the αi are not of the same sign; with no loss

of generality, we suppose that α1 = α2 = −α3. In estimating |βj + βl − βk|−1, we
have two cases:

Case 1. If |βl − βk| ≤ βj/2, then |βj + βl − βk|−1 ≤ 2/βj ≤ 2 and we are done.

Case 2. If |βl − βk| ≥ βj/2, some work is needed. We estimate

|I3| ≤ 2

|βj + βl − βk|
=

2|(βj + βl + βk)(−βj + βl + βk)(−βl + βj + βk)|
|(βj + βl + βk)(βj + βl − βk)(−βj + βl + βk)(βj − βl + βk)|

=: 2I ′3.

(6.9)
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Denoting λ = N2 and χk = (k′1/k
′
3)

2, we have

(6.10) I ′3 =
|(βj + βl + βk)(−βj + βl + βk)(−βl + βj + βk)|

|P (λ)| ,

where

(6.11) P (λ) = λ2(χ2
k + χ2

j + χ2
l − 2χkχj − 2χjχl − 2χkχl)− 2λ(χj + χl + χk)− 3.

The discriminant of this quadratic polynomial is

(6.12) ∆ = 2[(χj − χl)
2 + (χl − χk)

2 + (χk − χj)
2] ≥ 0.

Since P (λ) = 0 has no more than two solutions for each fixed (j, l), the set of Burgers
numbers N for which βj +βl−βk = 0 is at most countable. We denote the solutions
of P (λ) = 0 by λ±(j, l).

We define the three-wave quasi-resonant set Θµ
3(L1, L3):

Given µ > 0 and a sequence of positive numbers {ξ(j,l)} with
∑

(j,l) ξ(j,l) ≤ 1, we

define the three-wave quasi-resonant set Θµ
3(L1, L3) as:

(6.13) Θµ
3(L1, L3) =

⋃

(j,l)∈Z2

{N : 2|N −N?(j, l, L1, L3)| ≤ µξ(j,l)},

where N?(j, l, L1, L3) :=
√

λ±(j, l, L1, L3). It is obvious that the Lebesque measure
mes Θµ

3(L1, L3) ≤ µ for all L1 and L3.
For j, l, L1 and L3 given, the set {N : 2|N − N?(j, l, L1, L3)| ≤ µξ(j,l)} can be

defined approximately by |P (λ)| ≤ δ. For δ small, we have

δ '
∣∣∣dλ

dδ
(0)

∣∣∣
−1

|λ(δ)− λ±(j, l, L1, L3)|

' 2N±(j, l, L1, L3)|N −N±(j, l, L1, L3)|
∣∣∣dλ

dδ
(0)

∣∣∣
−1

,

(6.14)

where

(6.15)
∣∣∣dλ

dδ
(0)

∣∣∣ =
1√
∆

=
1√

2[(χj − χl)2 + (χl − χk)2 + (χk − χj)2]
.

or, using βj − βk = N2(χj − χk),

(6.16)
∣∣∣dλ

dδ
(0)

∣∣∣ =
N2

√
2[(β2

j − β2
l )

2 + (β2
l − β2

k)
2 + (β2

k − β2
j )

2]
≤ N2

2
√

2
.
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Since βk ≤ max(1, N2)|k′|, for N /∈ Θµ
3(L1, L3), we have, using (6.14) that:

1

|βj + βl − βk| ≤ C(N)
(|k′|+ |l′|+ |j′|)3

|P (λ)|
≤ C(N, L1, L3)

(|k′|+ |j′|+ |l′|)3

µξ(j,l)

.

(6.17)

We now choose ξ(j,l): For any η > 0 we can take

(6.18) ξ(j,l) = c(η)|j′|−2−η|l′|−2−η,

where c(η) =
(∑

j,l∈Z2 |j′|−2−η|l′|−2−η
)−1

. Substituting this into (6.17), we obtain
the following bound:

1

|βj + βl − βk| ≤ C(N,L1, L3, η)
(|k′|+ |j′|+ |l′|)3

µ
|l′|2+η|j′|2+η, N /∈ Θµ

3(L1, L3).

We can now conclude with the following result:

Lemma 6.2. Let η > 0 and µ > 0; then for every L1, L3 ∈ R and N /∈ Θµ
3 (L1, L3)

we have βj + βl − βk 6= 0 for all j, l, k with j + l + k = 0, and

(6.19)
1

|βj + βl − βk| ≤ max
(
2, C(N, L1, L3, η)

(|k′|+ |j′|+ |l′|)3

µ
|l′|2+η|j′|2+η

)
.
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